KR20170106686A - 가정의 에너지 사용량 예측 방법 및 장치 - Google Patents
가정의 에너지 사용량 예측 방법 및 장치 Download PDFInfo
- Publication number
- KR20170106686A KR20170106686A KR1020160030093A KR20160030093A KR20170106686A KR 20170106686 A KR20170106686 A KR 20170106686A KR 1020160030093 A KR1020160030093 A KR 1020160030093A KR 20160030093 A KR20160030093 A KR 20160030093A KR 20170106686 A KR20170106686 A KR 20170106686A
- Authority
- KR
- South Korea
- Prior art keywords
- generation
- household
- energy
- variable
- energy usage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000007781 pre-processing Methods 0.000 claims abstract description 30
- 230000005611 electricity Effects 0.000 claims description 61
- 238000005265 energy consumption Methods 0.000 claims description 40
- 230000002159 abnormal effect Effects 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000012417 linear regression Methods 0.000 claims description 7
- 230000001373 regressive effect Effects 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 10
- 238000013523 data management Methods 0.000 description 9
- 238000012549 training Methods 0.000 description 9
- 238000007405 data analysis Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 heating Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/02—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
- G01W1/06—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed giving a combined indication of weather conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/08—Payment architectures
- G06Q20/14—Payment architectures specially adapted for billing systems
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Accounting & Taxation (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Finance (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Environmental & Geological Engineering (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Atmospheric Sciences (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
본 발명의 일 태양에 따른 가정의 에너지 사용량 예측 방법은, 제1 지역의 기상 정보와 상기 제1 지역에 위치한 제1 주거 단지의 세대별 에너지 사용량을 수신하는 단계와 상기 기상 정보와 상기 세대별 에너지 사용량을 전처리하여, 전처리 변수를 생성하는 단계와 상기 기상 정보, 상기 세대별 에너지 사용량 및 상기 전처리 변수를 이용하여, 세대별 회귀 모델을 생성하고, 상기 세대별 회귀 모델의 성능을 측정하는 단계와 상기 세대별 회귀 모델의 성능을 측정한 결과를 이용하여, 세대별 최적의 회귀 모델을 결정하는 단계 및 상기 세대별 최적의 회귀 모델에 상기 제1 지역의 기상 예측 정보를 적용하여, 상기 세대별 에너지 사용량을 예측하는 단계를 포함할 수 있다.
Description
본 발명은 가정의 에너지 사용량을 예측하기 위한 방법 및 그 장치에 관한 발명이다. 보다 자세하게는 가정의 에너지 사용량에 영향을 미칠 수 있는 기상 정보를 독립 변수(dependent variable)로, 에너지 사용량을 종속 변수(independent variable)로 하여, 가정의 에너지 사용량을 예측하는 방법 및 그 방법을 수행하는 장치에 관한 것이다.
최근 사물 인터넷(IoT; Internet of Things)과 홈 네트워킹(Home Networking)에 관련된 기술의 발달로, 아파트와 같은 대규모 주거 시설에서는 각 세대의 에너지 사용량의 집계 및 정산을 자동화하고 있다. 예를 들면 가스, 전기, 온수, 난방 및 수도와 같은 각 항목들의 사용량을 실시간으로 집계하고, 월별로 취합하여 자동으로 정산을 하고 있다.
그러나 기존에는 단순히 각 세대의 에너지 사용량에 대해 예측의 관점보다는 관측의 관점에서 실제 사용량을 취합하는 정도에 그쳤다. 물론, 이전 년도의 사용량이나 이전월의 사용량에 대해 단순 비교나 단순 누적으로 정보를 제공하기도 하였으나, 실제 해당월의 사용량을 예측하기에는 부족하여 참고용에 지나지 않았다.
이에 각 세대의 에너지 사용량을 보다 정확하게 예측하고, 그 과정에서 다른 세대의 에너지 사용량과 비교하여 추가적인 정보를 제공할 수 있는 방법이 요구된다.
본 발명이 해결하고자 하는 기술적 과제는 가정의 에너지 사용량을 예측하기 위한 방법 및 그 장치를 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 태양에 따른 가정의 에너지 사용량 예측 방법은, 제1 지역의 기상 정보와 상기 제1 지역에 위치한 제1 주거 단지의 세대별 에너지 사용량을 수신하는 단계와 상기 기상 정보와 상기 세대별 에너지 사용량을 전처리하여, 전처리 변수를 생성하는 단계와 상기 기상 정보, 상기 세대별 에너지 사용량 및 상기 전처리 변수를 이용하여, 세대별 회귀 모델을 생성하고, 상기 세대별 회귀 모델의 성능을 측정하는 단계와 상기 세대별 회귀 모델의 성능을 측정한 결과를 이용하여, 세대별 최적의 회귀 모델을 결정하는 단계 및 상기 세대별 최적의 회귀 모델에 상기 제1 지역의 기상 예측 정보를 적용하여, 세대별 미래의 에너지 사용량을 예측하는 단계를 포함할 수 있다.
일 실시예에서, 상기 기상 정보는, 평균기온, 최저기온, 최고기온, 강수량, 상대습도, 일조시간, 구름량 중에서 하나 이상을 포함할 수 있다.
다른 실시예에서, 상기 세대별 예너지 사용량은, 전기 사용량, 수도 사용량, 가스 사용량, 난방 사용량, 온수 사용량 중에서 하나 이상을 포함할 수 있다.
또 다른 실시예에서, 상기 전처리 변수를 생성하는 단계는, 상기 세대별 에너지 사용량을 월별로 평일 여부에 따라 취합한 가중치 변수를 생성하는 단계를 포함할 수 있다.
다른 실시예에서, 상기 전처리 변수를 생성하는 단계는, 상기 세대별 에너지 사용량을 n-1일자부터 n-p일자까지 일자별로 시프트한 AR 변수(Auto regressive variable)를 생성하는 단계를 포함하되, n일자는 상기 미래의 세대별 에너지 사용량을 예측하려는 일자이며, n-1일자는 n일자 1일전, n-p일자는 n일자 p일 전이다.
또 다른 실시예에서, 상기 전처리 변수를 생성하는 단계는, 상기 세대별 에너지 사용량을 n-1일자부터 n-p일자까지 일자별로 시프트한 AR 변수(Auto regressive variable)를 생성하는 단계를 포함하되, n일자는 상기 미래의 세대별 에너지 사용량을 예측하려는 일자이며, n-1일자는 n일자 1일전, n-p일자는 n일자 p일 전이다.
또 다른 실시예에서, 상기 AR 변수(Auto regressive variable)를 생성하는 단계는, n+1 일자의 세대별 에너지 사용량을 예측하는 경우, 그 전에 예측한 n일자의 세대별 에너지 사용량을 이용하여 AR 변수를 생성하는 단계를 포함할 수 있다.
또 다른 실시예에서, 상기 AR 변수(Auto regressive variable)를 생성하는 단계는, 시프트한 일자별로 상기 세대별 에너지 사용량을 다르게 반영하여 AR 변수를 생성하는 단계를 포함할 수 있다.
또 다른 실시예에서, 상기 전처리 변수를 생성하는 단계는, 상기 기상 정보와 상기 세대별 에너지 사용량의 선형 회귀 분석을 통하여, 선형 회귀 분석 모델의 기울기가 달라지는(piecewise) 분기 지점을 결정하는 단계와 상기 분기 지점을 기준으로 구간을 나누고, 상기 기상 정보가 상기 구간에 포함되면 1의 값을, 상기 구간에 포함되지 않으면 0의 값을 갖는 지시 변수를 생성하는 단계 및 상기 지시 변수를 상기 기상 정보 또는 상기 세대별 에너지 사용량에 곱한 곱 변수를 생성하는 단계를 포함할 수 있다.
또 다른 실시예에서, 상기 세대별 에너지 사용량을 기준으로 상기 제1 주거 단지에 속한 세대를 k개의 클러스터로 구성하는 단계와 상기 기상 정보와 상기 클러스터에 속한 세대의 평균 에너지 사용량을 전처리하여, 상기 클러스터의 전처리 변수를 생성하는 단계 및 상기 기상 정보, 상기 클러스터에 속한 세대의 평균 에너지 사용량 및 상기 클러스터의 전처리 변수를 이용하여, 상기 클러스터의 미래의 평균 에너지 사용량을 예측하는 단계를 포함할 수 있다.
또 다른 실시예에서, 상기 클러스터의 미래의 평균 에너지 사용량을 예측하는 단계는, 상기 클러스터의 예측된 평균 에너지 사용량과, 상기 클러스터에 속한 제1 세대의 예측된 에너지 사용량을 비교하여, 이상 여부를 판단하는 단계 및 상기 제1 세대의 예측된 에너지 사용량이 이상으로 판단된 경우에, 상기 제1 세대에 알람을 제공하는 단계를 포함할 수 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 태양에 따른 가정의 에너지 사용량 예측 장치는, 하나 이상의 프로세서 와 상기 프로세서에 의하여 수행되는 컴퓨터 프로그램을 로드하는 메모리 및 제1 지역의 기상 정보와 상기 제1 지역에 위치한 제1 주거 단지의 세대별 에너지 사용량을 저장하는 스토리지를 포함하되, 상기 컴퓨터 프로그램은, 상기 기상 정보와 상기 세대별 에너지 사용량을 전처리하여, 전처리 변수를 생성하는 오퍼레이션과 상기 기상 정보, 상기 세대별 에너지 사용량 및 상기 전처리 변수를 이용하여, 세대별 회귀 모델을 생성하고, 상기 세대별 회귀 모델의 성능을 측정하는 오퍼레이션과 상기 세대별 회귀 모델의 성능을 측정한 결과를 이용하여, 세대별 최적의 회귀 모델을 결정하는 오퍼레이션 및 상기 세대별 최적의 회귀 모델에 상기 제1 지역의 기상 예측 정보를 적용하여, 세대별 미래의 에너지 사용량을 예측하는 오퍼레이션을 포함할 수 있다.
상기와 같은 본 발명에 따르면 각 세대의 에너지(가스, 전기, 온수, 난방, 수도 등)의 사용량과 기상 정보(기온, 습도, 강우량 등) 사이에 분석 기법을 적용하여, 각 세대별로 미래의 일 사용량 또는 월 사용량을 정확하게 예측할 수 있다.
또한, 에너지 사용 패턴(pattern)이 비슷한 세대를 군집(cluster)으로 묶어, 각 세대별의 예측치와 동일 군집 세대들의 예측치를 비교하여, 과다 사용이 예상되는 세대에는 사전에 알람을 제공할 수 있다. 이를 통해 에너지 사용을 줄이고, 관리비를 절감할 수 있다.
또한, 단순히 기상 정보를 그대로 이용하기보다, 예측의 정확도를 높일 수 있는 추가 변수들을 적용하여, 분석 및 회귀 모델을 만들 수 있다. 이를 통해 미래의 에너지 사용량의 일간/월간 변화의 추이를 보다 정확하게 예측할 수 있다. 이른바 빅데이터 분석을 통한 예측 방법을 적용하여, 에너지 사용량 예측의 정확도를 높일 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해 될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 가정의 에너지 사용량을 예측하는 방법의 순서도이다.
도 2a 내지 도 2b는 본 발명의 몇몇 실시예에서 사용될 수 있는 입력 데이터를 설명하기 위한 예시도이다.
도 3a 내지 도 3c는 본 발명의 몇몇 실시예에서 사용될 수 있는 가중치 변수를 설명하기 위한 예시도이다.
도 4a 내지 도 4b 는 본 발명의 몇몇 실시예에서 사용될 수 있는 AR 변수를 설명하기 위한 예시도이다.
도 5a 내지 도 5c는 본 발명의 몇몇 실시예에서 사용될 수 있는 지시 변수를 설명하기 위한 예시도이다.
도 6a 내지 6c 및 도 7은 본 발명의 일 실시예에 따른 예측 인자를 이용하여 타겟 인자를 예측하는 방법을 설명하기 위한 예시도이다.
도 8은 본 발명의 일 실시예에 따른 가정의 에너지 사용량을 예측하는 장치의 하드웨어 구성도이다.
도 2a 내지 도 2b는 본 발명의 몇몇 실시예에서 사용될 수 있는 입력 데이터를 설명하기 위한 예시도이다.
도 3a 내지 도 3c는 본 발명의 몇몇 실시예에서 사용될 수 있는 가중치 변수를 설명하기 위한 예시도이다.
도 4a 내지 도 4b 는 본 발명의 몇몇 실시예에서 사용될 수 있는 AR 변수를 설명하기 위한 예시도이다.
도 5a 내지 도 5c는 본 발명의 몇몇 실시예에서 사용될 수 있는 지시 변수를 설명하기 위한 예시도이다.
도 6a 내지 6c 및 도 7은 본 발명의 일 실시예에 따른 예측 인자를 이용하여 타겟 인자를 예측하는 방법을 설명하기 위한 예시도이다.
도 8은 본 발명의 일 실시예에 따른 가정의 에너지 사용량을 예측하는 장치의 하드웨어 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
명세서에서 사용되는 "포함한다 (comprises)" 및/또는 "포함하는 (comprising)"은 언급된 구성 요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성 요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
설명에 들어가기에 앞서 이해의 편의를 돕기 위해 발명을 설명하는데 사용될 용어들을 먼저 정의하도록 한다. 대부분, 용어에 대한 정의는 통계 분야나 분석 분야에서 사용되는 용어의 정의와 동일하거나 유사하다.
예측 인자(predictor variable)는 예측에 사용되는 변수를 말한다. 흔히 독립 변수라고도 불린다. 본 발명에서는 1) 일차적으로 기온, 강수량, 습도, 일조시간 등과 같은 기상 정보가 예측 인자에 해당되며, 2) 이차적으로는 기상 정보나 에너지 사용량을 가공한 전처리 변수들이 예측 인자로 사용될 수 있다.
타겟 인자(target variable)는 예측하고자 하는 대상이 되는 변수를 말한다. 흔히 종속 변수라고도 불린다. 본 발명에서는 각 세대의 전기, 수도, 가스, 난방, 온수 등과 같은 에너지 사용량이 타겟 인자에 해당된다.
입력 데이터란 홈 네트워크를 통해 각 세대별 입력으로 들어오는 데이터를 의미한다. 사물 인터넷을 통해 각 세대별로 실시간으로 집계되는 에너지 사용량과, 기상청을 통해서 제공되는 기상 관측 데이터 및 기상 예보 데이터가 입력 데이터에 해당한다.
훈련 데이터란 모델 학습에 사용되는 정제된 형태의 데이터를 의미한다. 그리고, 테스트 데이터란 훈련 데이터에 의해 학습된 모델의 성능을 평가하는데 사용되는 데이터를 의미한다. 훈련 데이터와 테스트 데이터의 인스턴스는 예측 인자와 타겟 인자로 구성되어 있다.
회귀 모델은 훈련 데이터의 예측 인자와 타겟 인자 사이의 관계를 분석하여 표현되는 모델을 의미한다. 회기 모델을 사용하여 특정 예측 인자 값들에 대한 타겟 인자의 값을 예측할 수 있다.
이하, 본 발명에 대하여 첨부된 도면에 따라 보다 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 가정의 에너지 사용량을 예측하는 방법의 순서도이다.
도 1을 참고하면, 입력 데이터는 2 개의 경로를 통해서 사용된다. 하나는 각 세대별 에너지 사용량을 예측하는 단계(S1230 내지 S1260)와, 다른 하나는 각 세대를 클러스터링하여 군집을 만들고, 각 군집별 에너지 사용량을 예측하는 단계(S1110 내지 S1160)이다.
우선 기상 정보와 각 세대별 에너지 사용량을 입력 데이터로 수신한다(S1000). 과거의 기상 정보와 과거의 에너지 사용량을 분석하여 회귀 모델을 생성한 후, 기상 예측 정보로부터 회귀 모델을 통해 각 세대별로 미래의 에너지 사용량을 예측하고자 하는 것이 본 발명의 목적이다.
기상 정보는 기상청에서 제공하는 RSS나 오픈 API를 통해 수집할 수 있다. 또는, 공공 데이터 포털을 통해 오픈 API 형태로 수집할 수 있다. 보다 자세한 정보는 공공 데이터 포털의 웹 사이트(https://www.data.go.kr/)에서 확인할 수 있다. 그리고, 각 세대별 에너지 사용량은 홈 네트워크와 사물 인터넷을 통해 자동으로 수집되는 것을 전제로 설명을 한다.
기상 정보와 에너지 사용량 사이에는 일정한 상관 관계가 있음을 경험칙으로도 알 수 있다. 기온이 올라가면 냉방을 위한 전기 사용량이 늘 것이며, 기온이 내려가면 난방이나 온수의 사용량이 증가할 것이다. 본 발명에서는 이와 같은 상관 관계를 다양한 분석 기법을 적용하여 각 세대별로 보다 정확하게 예측하고자 한다.
각 세대별 에너지 사용량을 정해진 주기에 따라 가공하여 평균 데이터를 생성한다(S1110). 분별, 시간별, 일자별, 주별 또는 월별과 같이 다양한 값을 주기로 사용할 수 있다. 이하 이해의 편의를 돕기 위해, 일자별로 에너지 사용량의 평균 데이터를 생성하여 사용하는 것을 전제로 한다. 마찬가지로 기상 정보도 일자별로 평균 데이터를 생성하여 사용하도록 한다.
각 세대별로 그리고 일자별로 에너지 사용량의 평균 데이터를 생성한 후에는, 클러스터링을 수행한다(S1120). 일반적으로 클러스터링에는 K-평균 알고리즘(K-means algorithm)이 사용한다. K-평균 알고리즘은 주어진 데이터를 K 개의 그룹으로 나눌 때, 각 그룹 내 항목들의 비용 함수를 최소화하도록 그룹을 설정하는 알고리즘이다. 일반적으로 비용 함수로는 유클리드 공간 상의 거리를 사용한다. 위키 페이지 "https://ko.wikipedia.org/wiki/K-평균_알고리즘"에서 K-평균 알고리즘에 대한 보다 자세한 설명을 참고할 수 있다.
예를 들어 101동부터 110동까지 10개의 동이 있는 아파트를 가정해보자. 그리고 각 동은 한 층에 두 세대씩 총 십층 높이의 아파트라고 하면, 200세대가 거주하는 아파트 단지라는 것을 알 수 있다. 이 때 각 세대별로 에너지 사용량을 분석해보면 일정한 그룹이 나누어지게 된다.
예를 들면, 200세대 중에서 아파트의 평수, 즉 면적에 따라 에너지 사용량이 달라질 수 있다. 또한, 200세대 중에서 세대의 구성원, 즉 4인 가족인지 2인 가족인지 등에 따라서도 에너지 사용량이 달라질 수 있다. 이처럼 에너지 사용량 패턴에 따라 그룹을 나누게 되면, 동일한 기상 정보 아래에서는 비슷한 패턴으로 에너지를 사용하는 그룹을 얻을 수 있다.
이를 통해, 특정 A 그룹에 속한 a 세대가, 해당 특정 A 그룹의 에너지 사용량 예측과 다르게 에너지 사용량이 예측된다면 알람을 제공할 수 있다. 즉 종래에는 단순하게 기설정된 값을 기준으로 에너지 사용이 과다한지 여부를 정적으로 판단하고 알람을 제공했다면, 본 발명에서는 종래에 비슷한 패턴으로 에너지를 사용한 다른 세대와 비교하여, 현재의 에너지 사용이 과다한지 여부를 동적으로 판단한다. 이를 통해 보다 더 정확하게 이상 사용(abnormal usage)을 예측할 수 있다.
예를 들면, 종래에는 전기 사용량이 월평균 500kWh를 초과하면 과다로 판단하고 해당 세대에게 알람을 제공하였다고 가정하자. 이런 경우, 다른 세대와 비교없이 해당 세대가 월평균 500kWh를 초과하면 바로 알람이 발생하게 된다. 그러나 본 발명에 따르면 비슷한 에너지 사용 패턴을 가진 다른 세대의 예측 사용량과 비교를 수행하므로 보다 정확하게 알람을 제공할 수 있다.
예를 들어, a 세대가 속한 A 그룹은 비슷하게 에너지를 사용한다고 할 때, 마침 폭염으로 인해 a 세대의 에너지 사용량이 월평균 500kWh를 초과하여 621kWh의 값으로 예측된다고 하자. 그렇더라도 동일하게 A 그룹의 에너지 사용량이 월평균 500kWh를 초과하여 650kWh로 예측되면, 이 경우에는 이상으로 판단하지 않는 것이다. a 세대가 월평균 500kWh를 초과하여 에너지를 많이 사용하기는 하였으나, 기존에 a 세대와 비슷한 에너지 사용 패턴을 보인 A 그룹 역시 월평균 500kWh를 초과하여 에너지를 많이 사용하기 때문에 이 경우에는 이상으로 판단하지 않는 것이다.
이번에는 a 세대의 에너지 사용량이 월평균 500kWh 미만의 값인 427kWh의 값으로 예측된다고 하자. 이때, A 그룹의 에너지 사용량이 월평균 400kWh로 예측되면, 이 때에는 이상으로 판단하게 된다. a 세대의 에너지 사용량이 500kWh보다 작기는 하나, 기존에 a 세대와 비슷한 에너지 사용 패턴을 보인 A 그룹보다는 에너지를 많이 사용하고 있기 때문에 이상으로 판단하는 것이다.
즉 기존의 에너지 사용 패턴을 분석하여 그룹을 설정하고 해당 그룹의 에너지 사용량을 예측함으로써, 해당 그룹에 속한 특정 세대에 대해 동적인 기준을 가지고 에너지 사용이 과다한지 여부를 판단할 수 있다. 이를 통해서 기설정된 정적인 값을 기준으로 에너지 사용이 과다한지 여부를 판단하는 것보다 더 정확하게 이상 여부를 판단할 수 있다.
세대별 에너지 사용량을 취합하여 군집을 설정한 후에는 해당 군집의 데이터를 추출하고 전처리를 수행한다(S1130). 그리고 동일 군집의 회귀 모델을 생성하고(S1140), 회귀 모델의 성능을 측정한다(S1150). 이를 통해 동일 군집의 에너지 사용량을 예측한다(S1160).
마찬가지로 각 세대별 에너지 사용량을 예측하기 위해서는 세대별 입력 데이터를 추출하고 전처리를 수행한다(S1230). 그리고 세대별 회귀 모델을 생성하고(S1240), 회귀 모델의 성능을 측정한다(S1250). 이를 통해 각 세대별 에너지 사용량을 예측한다(S1260).
특정 군집의 에너지 사용량을 예측하는 S1130 내지 S1160의 단계는 특정 세대의 에너지 사용량을 예측하는 S1230 내지 S1260 단계와 유사하다. 그러므로 이에 대한 설명은 추후 도 2a 내지 도 7을 통해서 보다 자세하게 하도록 한다.
특정 세대의 에너지 사용량을 예측하고(S1260), 해당 특정 세대가 속한 군집의 에너지 사용량을 예측한 후에는(S1160), 이를 비교하여 이상 사용 여부를 판단한다(S1300). 단순하게는 특정 세대의 예측된 에너지 사용량이, 해당 특정 세대가 속한 군집의 예측된 에너지 사용량보다 큰지 여부를 기준으로 이상 여부를 판단할 수 있다.
또는 범위를 설정하여 특정 세대가 속한 군집의 예측된 에너지 사용량을 기준으로 -10% 부터 +10% 까지는 정상으로 보고 이 범위 이외에는 이상 사용으로 판단할 수도 있다. 예를 들면 해당 군집의 전기 사용량이 100kWh로 예측되었다면 90~110kWh까지는 정상인 범위로 보는 것이다. 그리고 그 이외의 값, 특히 110kWh를 초과하는 범위에서는 이상으로 판단할 수 있다.
이상으로 판단된 경우에는 해당 세대에게 경고 또는 주의의 메시지를 전달할 수 있다(S1400). 홈 네트워크를 통해 가정에 설치된 단말에 해당 세대의 이번달 에너지 사용량 예측값과 해당 세대가 속한 군집의 이번달 에너지 사용량 예측값을 비교하여서 보여줄 수 있다. 이를 통해 에너지 절약을 유도하고 관리비를 절감할 수 있다.
지금까지 도 1을 통해서 기존의 기상 정보와 기존의 에너지 사용량을 바탕으로 미래의 에너지 사용량을 예측하는 방법을 살펴보았다. 이 과정에서 각 세대를 에너지 사용량을 기준으로 클러스터링하여 군집을 설정함으로써, 이상 사용 여부를 판단하기 위한 동적 기준을 세우는 방법도 살펴보았다. 이후에는 기존의 기상 정보와 기존의 에너지 사용량을 바탕으로 분석을 수행하고, 미래의 에너지 사용량을 예측하는 방법에 대해서 살펴보도록 한다.
도 2a 내지 도 2b는 본 발명의 몇몇 실시예에서 사용될 수 있는 입력 데이터를 설명하기 위한 예시도이다.
도 2a는 기상 정보의 예이며, 도 2b는 에너지 사용량의 예이다. 도 2a를 참고하면, 2013년 01월 01일부터 2013년 01월 09일까지 9일간의 기상 정보가 수집된 것을 볼 수 있다. 여기서 요일은 일월화수목금토를 각각 1부터 7까지의 값을 대응시켜서, 숫자로 변환하여 사용할 수 있다. 즉 2013년 01월 01일은 3이므로 화요일에 해당하고, 2013년 01월 09일은 4이므로 수요일에 해당한다.
도 2a를 참고하면 겨울철에 해당하는 01월달의 평균기온, 최저기온, 최고기온, 강수량, 상대습도, 일조시간, 운량(=구름의 양)에 대한 기상 정보를 확인할 수 있다. 이는 일자별로 취합된 값이며, 기상 정보를 제공하는 기상청이나 공공 데이터 포탈에서 수집할 수 있는 값들이다. 또한, 기상 예측 정보도 비슷한 포맷(format)으로 기상청이나 공공 데이터 포털에서 수집할 수 있다. 물론, 기상 정보를 수집할 때는 분석하고자 하는 세대가 위치한 지역의 기상 정보를 수집해야 할 것이다.
이를 통해서 과거에 a의 일자별 평균 기온에서 b의 전기를 사용한 세대가 미래의 a'의 일자별 평균 기온에서는 어느 정도의 전기를 사용할지 예측할 수 있다. 물론 도 2a에 예시된 기상 정보 외에도 추가적인 정보를 더 사용할 수 있다. 이를 테면 일교차와 같은 정보도 사용할 수 있으며, 해당 지역에서 일출 시간 및 일몰 시간과 같은 정보도 사용할 수 있다. 도 2a에 예시된 기상 정보는 발명의 이해를 돕기 위한 것일 뿐 이와 같은 기상 정보로 한정하기 위함이 아니다.
도 2b를 참고하면, 2013년 09월 01일부터 2013년 09월 09일까지 9일간의 에너지 사용량이 수집된 것을 볼 수 있다. 이는 특정 세대의 에너지 사용량이다. 이와 같은 에너지 사용량은 홈 네트워크와 사물 인터넷을 통해 자동으로, 실시간으로 수집된다. 도 2에서는 전기, 수도, 가스, 난방, 온수와 같은 에너지 사용량이 예시되어 있다. 그러나 도 2a와 마찬가지로 이 외에도 다양한 에너지 사용량을 수집하고 분석할 수 있다.
기상 정보를 인풋(input)으로, 에너지 사용량을 아웃풋(output)으로 하여, 이 둘 사이의 상관 관계를 분석하는 데에는 일반적인 통계 방법이 사용될 수 있다. 그러나 본 발명에서는 분석의 정확도를 높이기 위해서 추가적으로 인풋 변수를 생성하여 사용할 수 있다.
도 3a 내지 도 3c는 본 발명의 몇몇 실시예에서 사용될 수 있는 가중치 변수를 설명하기 위한 예시도이다.
본 발명에서 사용하는 일자별 가중치 변수란 에너지 사용량에 영향을 줄 수 있는 일자의 특성을 고려하는 것이다. 도 3a를 참고하면 2013년 01월부터 2013년 12월까지 평일의 전기 사용량과 주말의 전기 사용량을 정리한 것을 볼 수 있다. 즉 에너지 사용량 추이를 분석하여 보니 1) 월별로 일정한 패턴이 있는 것을 발견할 수 있었고, 2) 추가적으로 평일인지 주말인지에 따라 에너지 사용량에 일정한 패턴이 있는 것을 발견할 수 있었다. 본 발명에서는 이를 상관 관계를 분석하는데 추가적으로 반영하기 위해서 일자별로 가중치 변수를 생성하는 것이다.
도 3b는 도 3a의 표를 꺾은선 그래프로 나타낸 것이다. 도 3b를 참고하면 일반적으로 봄과 가을의 전기 사용량보다 여름과 겨울에 전기 사용량이 더 큰 것을 볼 수 있다. 이는 아마도 냉난방으로 인해 전기 사용량이 증가하였기 때문일 것이다. 또한 도 3b를 참고하면 여름에는 평일의 전기 사용량이 더 크나, 겨울에는 주말의 전기 사용량이 더 큰 것을 볼 수 있다. 이는 아마 열대야나 주말 여행 문화와 관련이 있을 수 있다. 다만, 이는 특정 세대의 에너지 사용량에 관한 예시일뿐, 가족 구성원이나 주거 환경이 다른 세대에서는 얼마든지 다른 패턴으로 에너지 사용량이 나타날 수 있다.
도 3c는 전기 사용량과 일자별 가중치 전기 사용량을 함께 표로 도시한 것이다. 도 3c를 참고하면 2013년 09월 01일부터 09월 09일까지 9일간의 전기 사용량과, 해당 세대의 일자별 가중치 전기 사용량을 볼 수 있다. 09월 01일 및 09월 07일, 09월 08일은 주말에 해당하므로 도 3a의 표에서 2013년 09월 주말의 전기 사용량인 5.293이 가중치 전기 사용량으로 취합되었으며, 그 외의 나머지 일자들은 평일로서 2013년 09월 평일의 전기 사용량인 5.101이 가중치 전기 사용량으로 취합되었다.
이처럼 전기 사용량을 예측할 때 과거 전기 사용량에 계절과 요일의 특성을 반영한 인풋 변수를 추가로 더 사용함으로써 정확도를 높일 수 있다. 이하 과거의 전기 사용량 평균 데이터에 월과 주말 여부를 반영한 변수를 가중치 변수라고 한다. 가중치 변수는 월별(x12), 주말 여부(x2)에 따라 총 24개의 변수 값이 생성될 수 있다.
도 4a 내지 도 4b 는 본 발명의 몇몇 실시예에서 사용될 수 있는 AR 변수를 설명하기 위한 예시도이다.
AR(Auto regressive) 변수란 최근의 추이를 반영하기 위해 생성한 변수이다. 도 4a를 참고하면 도 4a의 예에서는 하루씩 변이(shift)해서 이전의 전기 사용량을 분석에 반영하는 것을 볼 수 있다. 예를 들면, 09월 09일자의 전기 사용량을 분석하는 데에는 09월 09일자의 전기 사용량인 6.4 외에도, 1일 전인 09월 08일의 전기 사용량인 6.4, 2일 전인 09월 07일의 전기 사용량인 6.6, 3일 전인 09월 06일의 전기 사용량인 6.4, 4일 전인 09월 05일의 전기 사용량인 6.5, 5일 전인 09월 04일의 전기 사용량인 6.2가 사용될 수 있다.
이는 최근에 전기 사용량이 많은 세대일수록 보다 더 많은 전기를 사용할 것으로 예측되기 때문이다. 입력 데이터를 분석할 때, 이를 반영하기 위해 생성한 변수가 AR 변수이다. 도 4a의 예에서는 5일치의 데이터만 사용하였으나, 경우에 따라서는 다양하게 조정이 가능할 것이다. 예를 들면 10일 전의 데이터까지 사용할 수도 있고, 간단하게 3일 전의 데이터까지만 사용할 수도 있다.
이는 세대마다 현시점(t 시점)의 에너지 사용량은 과거시점(t-1 시점, …, t-p시점)의 에너지 사용량의 영향을 받기 때문이다. 에너지 사용량 데이터에 대해 시점을 쉬프트하여 새로운 데이터를 생성하고 이를 데이터 분석을 위한 인풋 변수로 사용할 수 있다. 또한 쉬프트 과정에서 데이터에 가중치를 부여할 수도 있다.
도 4b를 참고하면 5일간의 데이터를 쉬프트해서 사용하되 일자가 쉬프트 될수록 가중치를 1/5, 즉 20%씩 차등 적용하여 AR 변수를 생성하는 것을 볼 수 있다. 즉 1일전의 데이터를 적용할 때는 100%의 데이터를 그대로 사용하고, 2일 전의 데이터는 80%의 데이터만, 3일 전의 데이터는 60%의 데이터만, 4일 전의 데이터는 40%의 데이터만, 5일 전의 데이터는 20%의 데이터만 사용할 수 있다.
도 4b의 표를 참고하면, 09월 09일자의 전기 사용량을 분석하는 데에는 09월 09일자의 전기 사용량 6.4 외에도, 1일 전인 09월 08일의 전기 사용량의 100%인 6.4, 2일 전인 09월 07일의 전기 사용량의 80%인 5.28, 3일 전인 09월 06일의 전기 사용량의 60%인 3.84, 4일 전인 09월 05일의 전기 사용량의 40%인 2.60, 5일 전인 09월 04일의 전기 사용량의 20%인 1.24가 사용될 수 있다.
일자별로 전기 사용량을 쉬프트해서 반영하되, 최근 일자일수록 가중치를 높여서 반영함으로써 최근의 경향이 더 선명하게 반영되도록 할 수 있다. 만약 n일자의 데이터를 반영한다면 그 역수인 1/n으로 차등을 둘 수 있다. 즉, 10일치의 데이터를 반영한다면 10%씩 차등을 둘 수 있고, 3일치의 데이터를 반영한다면 33%씩 차등을 둘 수도 있다.
도 5a 내지 도 5c는 본 발명의 몇몇 실시예에서 사용될 수 있는 지시 변수를 설명하기 위한 예시도이다.
도 5a를 참고하면 평균기온과 전기 사용량 사이에 조각적인(piecewise) 그래프가 그려지는 것을 볼 수 있다. 경험칙 상으로 기온이 높아지면 냉방을 위해서 전기 사용량이 증가할 것으로 예상되나, 이 둘의 관계는 단순 비례관계가 아니다. 일정한 기온까지는 작은 기울기를 가지고 비례하나, 특정 기온 이상부터는 큰 기울기를 가지고 비례할 수 있다.
이는 사람의 감각과 관련된 변수라고 볼 수 있다. 일반적으로 사람의 감감 기관에는 역치라는 기준이 있어, 역치 이상의 자극에 대해서만 반응을 한다. 즉 어느 정도의 온도까지는 또는 어느 정도의 습도까지는 무덥다고 안 느끼다가, 특정 온도나 습도를 넘어서면 찜통 더위라고 느끼는 것을 반영하기 위한 변수라고 볼 수 있다.
도 5a의 예에서는 평균 기온 23.5 도를 기준으로 전기 사용량이 급증하는 것을 볼 수 있다. 그래서 특정 온도를 기준으로 그 이하의 온도는 0으로, 그 이상의 온도는 1로 가중치를 두어 추가적인 변수를 생성할 수 있다. 이하 본 발명에서는 0 또는 1의 가중치를 지시 변수, 그리고 0 또는 1의 지시 변수를 곱한 값을 곱변수라고 정의한다.
도 5a에서 23.5 도는 예시일 뿐이다. 경우에 따라서는 이런 기준치가 없을 수도 있으며, 하나 이상일 수도 있다. 이 경우에는 구간으로 지시 변수가 나타나게 될 것이다. 예를 들면 10 도 이상 20도 이하와 같은 구간 값을 기준으로 지시 변수가 달라질 수 있다. 다만, 이해의 편의를 돕기 위해 도 5a 내지 5c를 설명함에 있어서는 지시 변수의 기준값은 23.5 도로 하나인 것을 전제로 설명을 계속해나간다.
도 5b를 참고하면 지시 변수는 해당 일자의 평균 기온(X 평균 기온)이 기준이 되는 평균 기온(a 평균 기본)보다 큰지 작은지에 따라서 0 또는 1의 값을 가질 수 있다. 이를 통해 기울기가 달라지는 회귀 모델의 인풋 데이터를 더 선명하게 입력 데이터 분석에 반영할 수 있다.
도 5c를 참고하면 23.5 도를 기준으로 그보다 큰 09월 03일의 24.1도, 09월 04일의 24.0도, 09월 08일의 23.9도에서는 지시 변수가 1로 생성되었다. 곱변수는 해당 일자의 평균 기온과 해당 일자의 지시 변수를 곱하면 되므로, 03일, 04일, 08일 이외에는 모두 0이며, 03일 04일, 08일은 해당 일자의 평균 기온이 각각 24.1도, 24.0도, 23.9도로 곱변수로 생성된다.
지시 변수를 가르는 기준점은 데이터 분석을 통해 자동으로 설정될 수 있다. 즉 도 5a의 예처럼 특정 기상 정보와 특정 사용량 데이터 사이의 선형 회귀 모델이 조각적인 형태로 나타나는 경우, 선형 회귀의 기울기가 기 설정된 값 또는 비율 이상의 차이를 나타내는 경우 해당 지점을 기준점으로 자동으로 설정할 수 있다. 또한 경우에 따라서는 지시 변수를 세대별 에너지 사용량 데이터에 곱하여 곱 변수를 생성할 수도 있다.
지금까지 도 2a 내지 5c를 통해 입력 데이터를 전처리 하는 과정을 살펴보았다. 도 2a 내지 도 5c를 통해서 살펴본 전처리 과정은 도 1에서 S1130, S1230에서 사용될 수 있는 전처리 과정이다. 단순히 1) 이전 기상 정보, 2) 이전 사용량 데이터 외에, 3) 추가로 생성한 변수를 활용하여 데이터를 분석함으로서 예측의 정확도를 높일 수 있다. 추가로 생성한 변수는 1) 가중치 변수, 2) AR 변수, 3) 지시 변수(or 곱 변수)이다.
도 6a 내지 6c 및 도 7은 본 발명의 일 실시예에 따른 예측 인자를 이용하여 타겟 인자를 예측하는 방법을 설명하기 위한 예시도이다.
도 6a 내지 6c를 참고하면 전기 사용량을 예측하기 위해, 1) 기존의 09월 01일부터 09월 09일까지의 전기 사용량, 2) 해당 기간 동안의 기상 정보, 3) 가중치 변수, 4) AR 변수, 5) 곱 변수를 활용하여 상관 관계를 분석하는 것을 볼 수 있다. 전처리 과정을 통해 생성된 3개의 변수를 추가적으로 더 이용함으로써 예측의 정확도를 높일 수 있다. 테스트 결과로는 기상 정보와 사용량 정보를 이용할 때는 95% 정도의 정확도를 보였으나, 전처리로 생성된 3개의 변수를 더 이용함으써 99% 정도의 정확도를 확보할 수 있었다.
도 6a 내지 도 6c의 예처럼 데이터를 분석하기 위한 변수를 가중치 변수, AR 변수, 곱 변수(or 지시 변수)와 같이 추가적으로 더 이용하는 이유는 예측의 정확도를 높이기 위해서이다. 만약 인풋 변수도 1개, 아웃풋 변수도 1개라면 이 둘 사이의 상관 관계를 예측한 모델은 오차가 클 수 있다. 인풋 변수가 크게 바꿈에 따라 아웃풋 변수에도 영향이 커지기 때문이다. 이를 상쇄하기 위해 인풋 변수를 추가적으로 더 이용할 수 있다. 상관 관계가 있는 다른 추가적인 인풋 변수를 더 이용함으로써 오차를 상쇄시킬 수 있는 효과가 있다.
본 발명에서는 예측의 정확도를 높이기 위해 인풋 변수를 전처리 과정에서 1) 가중치 변수, 2) AR 변수, 3) 곱 변수(or 지시 변수)로 추가적으로 더 생성한다. 도 6a의 예에서는 전기 사용량이 타겟 인자이고, 기상 정보 + 가중치 변수가 예측 인자이다. 도 6b의 예에서는 전기 사용량이 타겟 인자이고, 기상 정보 + AR 변수가 예측 인자이다. 도 6c의 예에서는 전기 사용량이 타겟 인자이고, 기상 정보 + 곱 변수가 예측 인자이다. 이렇게 3개의 변수를 전처리 과정을 통해서 생성하여 입력 데이터를 분석할 수 있다. 물론, 1) 가중치 변수, 2) AR 변수, 3) 곱 변수(or 지시 변수)를 각각 사용할 수도 있고, 그 중에서 하나 이상을 선택하여 입력 데이터 분석에 활용할 수도 있다.
입력 데이터를 분석하기 위한 회귀 모델로는 다양한 알고리즘을 사용할 수 있다(S1140, S1240). 예를 들면 선형 회귀(Linear Regression), 회귀 트리(Regression Tree), 지지 벡터 회귀(Support Vector Regression) 등이 있으며, 회귀 분석 기법에 따라 다양한 모델을 활용할 수 있다. 회귀 분석 모델을 적용하는 과정은 통상의 데이터 분석 과정과 유사하므로 자세한 설명은 생략하도록 한다.
입력 데이터 및 이를 전처리한 데이터를 이용하여 회귀 모델을 생성한 후에는 해당 회귀 모델의 성능을 측정하여야 한다(S1150, S1250). 훈련 데이터로 앞서 다양한 회귀 알고리즘을 이용하여 생성한 회귀 모델에 테스트 데이터를 대입한 후, 데이트 데이터에 대한 예측 결과로 성능을 측정한다. 성능 측정 방식으로는 MSE(Mean Squared Error), MAE(Mean Absolute Error) 등이 있다. 다양한 회귀 모델에 대하서 각각의 성능을 측정한 후, 그 값을 비교하여 최상의 회귀 모델을 선택한다. 회귀 모델의 성능을 측정하는 과정은 통상의 데이터 분석 과정과 유사하므로 자세한 설명은 생략하도록 한다.
이 과정에서 AR 변수의 경우 추가적인 가공이 더 있을 수 있다. 도 7을 참고하면, 현재 시점을 2015년 05월 31일이라고 할 때, 그 이전의 데이터는 훈련 데이터로 이미 수집이 되어 있는 상태이다. 이 때, 2015년 06월 01일부터 2015년 06월 03일까지의 전기 사용량은 회귀 모델 분석을 통해 예측할 데이터이다.
이때, 2015년 06월 01일부터 2015년 06월 03일까지의 전기 사용량을 분석하기 위해 AR 변수의 경우 그 이전 일자의 데이터도 필요하다. 2015년 06월 01일의 경우, 이전 05월 31일과 05월 30일의 전기 사용량 데이터를 이용하여 AR 데이터를 생성할 수 있다. 하지만, 06월 02일의 경우 이틀 전 데이터는 05월 31일 데이터를 사용할 수 있으나, 하루 전 06월 01일의 데이터는 훈련 데이터로 수집되어 있지 않은 상황이다. 마찬가지로 06월 03일의 경우 하루 전과 이틀전 데이터 모두 훈련 데이터로 수집되어 있지 않은 상황이다.
이 때에는 이전 시점의 예측된 전기 사용량을 이용하여 AR 변수로 활용할 수 있다. 회귀 모델로 예측한 전기 사용량을 쉬프트 하여 AR 변수로 활용할 수 있다. 즉, AR 변수의 경우 훈련 데이터를 쉬프트해서 활용할 수도 있으나, 예측 데이터를 쉬프트해서 활용할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 가정의 에너지 사용량을 예측하는 장치의 하드웨어 구성도이다.
도 8을 참고하면 가정의 에너지 사용량을 예측하는 장치(10)는 하나 이상의 프로세서(510), 메모리(520), 스토리지(560) 및 인터페이스(570)을 포함할 수 있다. 프로세서(510), 메모리(520), 스토리지(560) 및 인터페이스(570)는 시스템 버스(550)를 통하여 데이터를 송수신한다.
프로세서(510)는 메모리(520)에 로드 된 컴퓨터 프로그램을 실행하고, 메모리(520)는 상기 컴퓨터 프로그램을 스토리지(560)에서 로드(load) 한다. 상기 컴퓨터 프로그램은, 기상 정보 관리 오퍼레이션(521), 사용량 정보 관리 오퍼레이션(523), 군집 데이터 관리 오퍼레이션(535), 변수 데이터 관리 오퍼레이션(527) 및 예측 데이터 관리 오퍼레이션(529)을 포함할 수 있다.
기상 정보 관리 오퍼레이션(521)은 인터페이스(570)을 통해서 입력 데이터 중에서 기상 정보를 수집한다. 수집한 기상 정보를 시스템 버스(550)을 통해 스토리지(560)의 기상 정보(561)로 저장한다. 이 과정에서 기상 정보(561)의 가공이 있을 수 있다. 예를 들면 일자별 평균 데이터를 저장하거나, 일출 시간과 일몰 시간을 이용하여 일조 시간을 연산하는 등의 가공이 있을 수 있다.
사용량 정보 관리 오퍼레이션(523)은 인터페이스(570)을 통해서 입력 데이터 중에서 에너지 사용량을 수집한다. 분석 대상이 되는 세대의 에너지 사용량 뿐만 아니라 해당 세대가 속한 대규도 주거 단지의 에너지 사용 내역을 수집한다. 수집한 에너지 사용량을 시스템 버스(550)을 통해 스토리지(560)의 사용량 정보(563)에 저장한다. 추후에 기상 정보(561)와 사용량 정보(563)은 클러스터를 구성하거나, 에너지 사용량을 예측하는데 활용될 수 있다.
군집 데이터 관리 오퍼레이션(525)는 에너지 사용량을 기준으로 세대를 클러스터링을 수행한다. 이렇게 생성된 클러스터의 정보를 시스템 버스(550)을 통해 스토리지(560)의 군집 데이터(565)로 저장한다. 이 과정에서 추가적인 데이터의 가공이 있을 수 있다. 예를 들면, 군집에 속한 각 세대의 에너지 사용량을 평균하여 군집의 에너지 사용량 데이터를 일자별로 생성할 수 있다.
변수 데이터 관리 오퍼레이션(527)은 스토리지(560)의 기상 정보(561)과 사용량 정보(563)을 추가적으로 가공하는 오퍼레이션이다. 즉 데이터를 예측하기 위한 회귀 모델을 생성하기 전에, 예측의 정확도를 높이기 위한 전처리 과정을 변수 데이터 관리 오퍼레이션(527)이 수행한다.
변수 데이터 관리 오퍼레이션(527)은 기상 정보(561)를 가공하여 지시 변수 및 곱 변수를 생성할 수 있다. 또한 사용량 정보(56)을 가공하여 가중치 변수 및 AR 변수를 생성할 수 있다. 이 과정에서 추가적으로 아직 사용량 정보(563)가 수집되지 않은 미래의 일자는 도 7의 예에서처럼 미래의 예측 데이터를 쉬프트하여 AR 변수를 생성할 수도 있다. 변수 데이터 관리 오퍼레이션(527)은 가중치 변수, AR 변수, 곱 변수(or 지시 변수)를 시스템 버스(550)을 통해 스토리지(560)의 변수 데이터(567)로 저장한다.
예측 데이터 관리 오퍼레이션(529)은 기상 정보(561)와 사용량 정보(563)의 두 가지 입력 데이터 및 가중치 변수, AR 변수, 곱 변수(or 지시 변수)의 세 가지 데이터를 활용하여 회귀 모델을 생성하고, 회귀 모델을 검증하여, 최상의 회귀 모델을 선정한다. 또한, 인터페이스(570)을 통해 미래의 기상 정보를 수집하고, 앞서 선정한 회귀 모델을 이용하여 미래의 에너지 사용량을 예측한다. 또한, 특정 세대의 예측된 에너지 사용량과, 해당 세대가 속한 군집의 예측된 에너지 사용량을 비교하여 이상 사용 여부를 판단하고 해당 특정 세대에게 알람을 제공할 수 있다.
도 8의 각 구성 요소는 소프트웨어(Software) 또는, FPGA(Field Programmable Gate Array)나 ASIC(Application-Specific Integrated Circuit)과 같은 하드웨어(Hardware)를 의미할 수 있다. 그렇지만, 상기 구성 요소들은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니며, 어드레싱(Addressing)할 수 있는 저장 매체에 있도록 구성될 수도 있고, 하나 또는 그 이상의 프로세서들을 실행시키도록 구성될 수도 있다. 상기 구성 요소들 안에서 제공되는 기능은 더 세분화된 구성 요소에 의하여 구현될 수 있으며, 복수의 구성 요소들을 합하여 특정한 기능을 수행하는 하나의 구성 요소로 구현될 수도 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (10)
- 제1 지역의 기상 정보와 상기 제1 지역에 위치한 제1 주거 단지의 세대별 에너지 사용량을 수신하는 단계;
상기 기상 정보와 상기 세대별 에너지 사용량을 전처리하여, 전처리 변수를 생성하는 단계;
상기 기상 정보, 상기 세대별 에너지 사용량 및 상기 전처리 변수를 이용하여, 세대별 회귀 모델을 생성하고, 상기 세대별 회귀 모델의 성능을 측정하는 단계;
상기 세대별 회귀 모델의 성능을 측정한 결과를 이용하여, 세대별 최적의 회귀 모델을 결정하는 단계; 및
상기 세대별 최적의 회귀 모델에 상기 제1 지역의 기상 예측 정보를 적용하여, 세대별 미래의 에너지 사용량을 예측하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법. - 제1항에 있어서,
상기 기상 정보는,
평균기온, 최저기온, 최고기온, 강수량, 상대습도, 일조시간, 구름량 중에서 하나 이상을 포함하는,
가정의 에너지 사용량 예측 방법. - 제1항에 있어서,
상기 세대별 예너지 사용량은,
전기 사용량, 수도 사용량, 가스 사용량, 난방 사용량, 온수 사용량 중에서 하나 이상을 포함하는,
가정의 에너지 사용량 예측 방법. - 제1항에 있어서,
상기 전처리 변수를 생성하는 단계는,
상기 세대별 에너지 사용량을 월별로 평일 여부에 따라 취합한 가중치 변수를 생성하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법. - 제1항에 있어서,
상기 전처리 변수를 생성하는 단계는,
상기 세대별 에너지 사용량을 n-1일자부터 n-p일자까지 일자별로 시프트한 AR 변수(Auto regressive variable)를 생성하는 단계를 포함하되,
n일자는 상기 미래의 세대별 에너지 사용량을 예측하려는 일자이며, n-1일자는 n일자 1일전, n-p일자는 n일자 p일 전인,
가정의 에너지 사용량 예측 방법. - 제5항에 있어서,
상기 AR 변수(Auto regressive variable)를 생성하는 단계는,
n+1 일자의 세대별 에너지 사용량을 예측하는 경우, 그 전에 예측한 n일자의 세대별 에너지 사용량을 이용하여 AR 변수를 생성하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법. - 제5항에 있어서,
상기 AR 변수(Auto regressive variable)를 생성하는 단계는,
시프트한 일자별로 상기 세대별 에너지 사용량을 차등하여 적용한 AR 변수를 생성하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법. - 제1항에 있어서,
상기 전처리 변수를 생성하는 단계는,
상기 기상 정보와 상기 세대별 에너지 사용량의 선형 회귀 분석을 통하여, 선형 회귀 분석 모델의 기울기가 달라지는(piecewise) 분기 지점을 결정하는 단계;
상기 분기 지점을 기준으로 구간을 나누고, 상기 기상 정보가 상기 구간에 포함되면 1의 값을, 상기 구간에 포함되지 않으면 0의 값을 갖는 지시 변수를 생성하는 단계; 및
상기 지시 변수를 상기 기상 정보 또는 상기 세대별 에너지 사용량에 곱한 곱 변수를 생성하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법. - 제1항에 있어서,
상기 세대별 에너지 사용량을 기준으로 상기 제1 주거 단지에 속한 세대를 k개의 클러스터로 구성하는 단계;
상기 기상 정보와 상기 클러스터에 속한 세대의 평균 에너지 사용량을 전처리하여, 상기 클러스터의 전처리 변수를 생성하는 단계; 및
상기 기상 정보, 상기 클러스터에 속한 세대의 평균 에너지 사용량 및 상기 클러스터의 전처리 변수를 이용하여, 상기 클러스터의 미래의 평균 에너지 사용량을 예측하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법. - 제9항에 있어서,
상기 클러스터의 미래의 평균 에너지 사용량을 예측하는 단계는,
상기 클러스터의 예측된 평균 에너지 사용량과, 상기 클러스터에 속한 제1 세대의 예측된 에너지 사용량을 비교하여, 이상 여부를 판단하는 단계; 및
상기 제1 세대의 예측된 에너지 사용량이 이상으로 판단된 경우에, 상기 제1 세대에 알람을 제공하는 단계를 포함하는,
가정의 에너지 사용량 예측 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160030093A KR102495494B1 (ko) | 2016-03-14 | 2016-03-14 | 가정의 에너지 사용량 예측 방법 및 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160030093A KR102495494B1 (ko) | 2016-03-14 | 2016-03-14 | 가정의 에너지 사용량 예측 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170106686A true KR20170106686A (ko) | 2017-09-22 |
KR102495494B1 KR102495494B1 (ko) | 2023-02-06 |
Family
ID=60035013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160030093A KR102495494B1 (ko) | 2016-03-14 | 2016-03-14 | 가정의 에너지 사용량 예측 방법 및 장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102495494B1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190043976A (ko) * | 2017-10-19 | 2019-04-29 | 광주과학기술원 | 에너지 수요 예측 방법 및 그 시스템 |
KR102028601B1 (ko) * | 2019-03-20 | 2019-10-04 | 영남이공대학교 산학협력단 | 시설물의 에너지 사용량 예측 방법 및 장치 |
KR20200118530A (ko) | 2019-04-08 | 2020-10-16 | 재단법인 포항산업과학연구원 | 다변량 선형 회귀 분석을 이용한 코일 단위의 전력량 예측 장치, 방법 및 컴퓨터로 독출 가능한 기록 매체 |
KR102202643B1 (ko) * | 2019-11-29 | 2021-01-13 | 한국전자기술연구원 | 에너지 사용량 예측 방법 |
CN112529301A (zh) * | 2020-12-14 | 2021-03-19 | 南京中兴力维软件有限公司 | 用电量预测方法、设备及存储介质 |
KR20220120030A (ko) * | 2021-02-22 | 2022-08-30 | 에스케이가스 주식회사 | 프로판 사용률 예측 시스템 및 방법 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009225550A (ja) * | 2008-03-14 | 2009-10-01 | Tokyo Electric Power Co Inc:The | 電力の需要予測処理方法及び装置、並びに発電予測処理方法 |
JP2013101057A (ja) * | 2011-11-09 | 2013-05-23 | Hitachi Ltd | 電力量管理方法、電力量管理装置、及び電力量管理プログラム |
KR101278638B1 (ko) | 2012-08-29 | 2013-06-25 | 주식회사 한성이엔지 | 스마트 에너지 관리 시스템 및 그 제어 방법 |
KR101364495B1 (ko) | 2012-12-14 | 2014-02-20 | 주식회사정도엔지니어링 | 전력사용량 예측기술을 활용한 전력 관리 시스템 및 그 방법 |
KR20140087411A (ko) * | 2012-12-28 | 2014-07-09 | 주식회사 효성 | 전력 부하 예측 방법 및 이러한 방법을 수행하는 장치 |
KR20140087965A (ko) * | 2012-12-31 | 2014-07-09 | 주식회사 포스코아이씨티 | 에너지 발전량 예측 시스템 |
KR20140116619A (ko) * | 2013-03-25 | 2014-10-06 | 삼성에스디에스 주식회사 | 에너지 사용량 예측 시스템 및 방법 |
JP2014220971A (ja) * | 2013-05-10 | 2014-11-20 | 富士電機株式会社 | 電力需要予測装置、電力需要予測方法および電力需要予測プログラム |
JP2016015850A (ja) * | 2014-07-03 | 2016-01-28 | 住友電気工業株式会社 | 電力消費管理装置、電力消費管理システム、電力消費管理方法および電力消費管理プログラム |
-
2016
- 2016-03-14 KR KR1020160030093A patent/KR102495494B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009225550A (ja) * | 2008-03-14 | 2009-10-01 | Tokyo Electric Power Co Inc:The | 電力の需要予測処理方法及び装置、並びに発電予測処理方法 |
JP2013101057A (ja) * | 2011-11-09 | 2013-05-23 | Hitachi Ltd | 電力量管理方法、電力量管理装置、及び電力量管理プログラム |
KR101278638B1 (ko) | 2012-08-29 | 2013-06-25 | 주식회사 한성이엔지 | 스마트 에너지 관리 시스템 및 그 제어 방법 |
KR101364495B1 (ko) | 2012-12-14 | 2014-02-20 | 주식회사정도엔지니어링 | 전력사용량 예측기술을 활용한 전력 관리 시스템 및 그 방법 |
KR20140087411A (ko) * | 2012-12-28 | 2014-07-09 | 주식회사 효성 | 전력 부하 예측 방법 및 이러한 방법을 수행하는 장치 |
KR20140087965A (ko) * | 2012-12-31 | 2014-07-09 | 주식회사 포스코아이씨티 | 에너지 발전량 예측 시스템 |
KR20140116619A (ko) * | 2013-03-25 | 2014-10-06 | 삼성에스디에스 주식회사 | 에너지 사용량 예측 시스템 및 방법 |
JP2014220971A (ja) * | 2013-05-10 | 2014-11-20 | 富士電機株式会社 | 電力需要予測装置、電力需要予測方法および電力需要予測プログラム |
JP2016015850A (ja) * | 2014-07-03 | 2016-01-28 | 住友電気工業株式会社 | 電力消費管理装置、電力消費管理システム、電力消費管理方法および電力消費管理プログラム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190043976A (ko) * | 2017-10-19 | 2019-04-29 | 광주과학기술원 | 에너지 수요 예측 방법 및 그 시스템 |
KR102028601B1 (ko) * | 2019-03-20 | 2019-10-04 | 영남이공대학교 산학협력단 | 시설물의 에너지 사용량 예측 방법 및 장치 |
KR20200118530A (ko) | 2019-04-08 | 2020-10-16 | 재단법인 포항산업과학연구원 | 다변량 선형 회귀 분석을 이용한 코일 단위의 전력량 예측 장치, 방법 및 컴퓨터로 독출 가능한 기록 매체 |
KR102202643B1 (ko) * | 2019-11-29 | 2021-01-13 | 한국전자기술연구원 | 에너지 사용량 예측 방법 |
CN112529301A (zh) * | 2020-12-14 | 2021-03-19 | 南京中兴力维软件有限公司 | 用电量预测方法、设备及存储介质 |
CN112529301B (zh) * | 2020-12-14 | 2023-11-14 | 南京中兴力维软件有限公司 | 用电量预测方法、设备及存储介质 |
KR20220120030A (ko) * | 2021-02-22 | 2022-08-30 | 에스케이가스 주식회사 | 프로판 사용률 예측 시스템 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102495494B1 (ko) | 2023-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110610280B (zh) | 一种电力负荷短期预测方法、模型、装置及系统 | |
Vu et al. | A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables | |
KR20170106686A (ko) | 가정의 에너지 사용량 예측 방법 및 장치 | |
Wei et al. | Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks | |
Zhang et al. | A systematic feature selection procedure for short-term data-driven building energy forecasting model development | |
Fiot et al. | Electricity demand forecasting by multi-task learning | |
US9753477B2 (en) | Load forecasting for residential sector demand response | |
Xu et al. | Prediction of thermal energy inside smart homes using IoT and classifier ensemble techniques | |
KR101875329B1 (ko) | 전력 사용량 예측 장치 및 방법 | |
US20140122181A1 (en) | Demand response load forecaster | |
CN109035067A (zh) | 基于rf和arma算法的建筑能耗处理方法及装置 | |
Shaqour et al. | Electrical demand aggregation effects on the performance of deep learning-based short-term load forecasting of a residential building | |
Sengar et al. | Ensemble approach for short term load forecasting in wind energy system using hybrid algorithm | |
CN107730097B (zh) | 一种母线负荷预测方法、装置及计算设备 | |
US20170030949A1 (en) | Electrical load prediction including sparse coding | |
Koukaras et al. | Introducing a novel approach in one-step ahead energy load forecasting | |
Rana et al. | A data-driven approach based on quantile regression forest to forecast cooling load for commercial buildings | |
CN112365056A (zh) | 一种电气负荷联合预测方法、装置、终端及存储介质 | |
Maki et al. | Employing electricity-consumption monitoring systems and integrative time-series analysis models: A case study in Bogor, Indonesia | |
CN109598052A (zh) | 基于相关系数分析的智能电表寿命周期预测方法及装置 | |
CN109345011A (zh) | 一种基于深度回归森林的空调负荷预测方法及系统 | |
CN116470491A (zh) | 基于copula函数的光伏功率概率预测方法及系统 | |
CN117955094B (zh) | 一种电力负荷的预测方法和系统 | |
AU2017435881A1 (en) | Decoupled modeling methods and systems | |
Azari et al. | Exploring the impact of data uncertainty on the performance of a demand response program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |