KR20170098165A - A method for producing fusion protein-polysaccharide complex and use thereof - Google Patents

A method for producing fusion protein-polysaccharide complex and use thereof Download PDF

Info

Publication number
KR20170098165A
KR20170098165A KR1020170018898A KR20170018898A KR20170098165A KR 20170098165 A KR20170098165 A KR 20170098165A KR 1020170018898 A KR1020170018898 A KR 1020170018898A KR 20170018898 A KR20170018898 A KR 20170018898A KR 20170098165 A KR20170098165 A KR 20170098165A
Authority
KR
South Korea
Prior art keywords
fusion protein
protein
dgas
polysaccharide complex
glycosyltransferase
Prior art date
Application number
KR1020170018898A
Other languages
Korean (ko)
Other versions
KR101949009B1 (en
Inventor
박천석
정종현
서동호
정동현
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of KR20170098165A publication Critical patent/KR20170098165A/en
Application granted granted Critical
Publication of KR101949009B1 publication Critical patent/KR101949009B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for producing a fusion protein-polysaccharide complex, which comprises a step of reacting a fusion protein including a sugar transferase and a target protein with carbohydrate; a fusion protein-polysaccharide composite produced through the method; and a method for refining and fixing a target protein by using the fusion protein-polysaccharide composite. When the fusion protein-polysaccharide composite of the present invention is used, a target protein can be very simply refined and fixed compared to a conventional protein refining and fixing method. Thus, the present invention can be widely utilized to produce a target protein and to produce a useful product by using the target protein.

Description

융합단백질-다당 복합체의 제조방법 및 이의 용도{A method for producing fusion protein-polysaccharide complex and use thereof}TECHNICAL FIELD [0001] The present invention relates to a fusion protein-polysaccharide complex and use thereof,

본 발명은 당전이효소 및 목적 단백질을 포함한 융합단백질, 이의 발현 카세트, 상기 발현 카세트를 포함하는 융합단백질 발현용 벡터에 관한 것이다. 또한, 본 발명은 상기 융합단백질을 탄수화물과 반응시키는 단계를 포함하는, 융합단백질-다당 복합체의 제조방법; 상기 제조방법에 의해 제조된, 융합단백질-다당 복합체; 상기 융합단백질-다당 복합체를 이용한 목적 단백질의 정제방법 및 고정화 방법에 관한 것이다. The present invention relates to a fusion protein comprising a glycosyltransferase and a target protein, an expression cassette thereof, and a vector for expressing a fusion protein comprising the expression cassette. The present invention also relates to a method for producing a fusion protein-polysaccharide complex, which comprises reacting the fusion protein with a carbohydrate; A fusion protein-polysaccharide complex prepared by the above production method; And a method for purification and immobilization of a target protein using the fusion protein-polysaccharide complex.

단백질을 생체계에서 분리하는 첫 단계는 물리적 기법 또는 계면활성제를 사용하여 세포를 파괴하여 목적하는 효소를 가용화하는 것이다. 이렇게 추출한 세포액으로부터 목적하는 단백질의 여러 가지 물리 화학적 성질을 이용하여 단계적으로 목적하는 단백질을 분리 및 정제한다. 현재 대부분의 생산 단백질들은 크로마토그래피(chromatography) 방법에 의하여 분리/정제되고 있으며, 크로마토그래피 방법에는 담체와의 정전기적 상호작용의 차이를 이용한 이온크로마토그래피, 가교분자 간을 분자의 크기나 형태에 따라 분리시키는 분자체 여과크로마토그래피, 재조합 단백질 생산에 있어 널리 이용되고 있는 친화 태그(affinity tag)를 이용한 흡착 크로마토그래피 등이 있다. 그러나 이러한 크로마토그래피 단백질 정제 방법은 고가의 레진(resin)을 사용해야 하므로 스케일 업(scale-up)이 힘들며, 여러 단계를 거쳐야 하는 단점이 있다. The first step in separating proteins from the biosystem is to break down the cells using physical techniques or surfactants to solubilize the desired enzyme. The desired protein is separated and purified stepwise from the thus-extracted cell solution using various physicochemical properties of the desired protein. Currently, most of the production proteins are separated and purified by chromatography. Chromatography methods include ion chromatography using the difference in electrostatic interaction with the carrier, Separation by molecular sieve filtration, adsorption chromatography using an affinity tag that is widely used in the production of recombinant proteins, and the like. However, this chromatographic protein purification method has a disadvantage that scale-up is difficult because it requires the use of an expensive resin, and it takes several steps.

고정화 효소는 천연적인 효소에 비하여 활성은 약간 떨어지지만, 일반적으로 열이나 약제에 대한 저항력이 크고, 반응계에서 쉽게 회수하여 재이용할 수 있기 때문에 유기물질의 생산, 환경오염 물질의 제거, 임상분석을 비롯한 용도가 다양하며 장기간 안정적이고 반복해서 사용할 수 있는 촉매로서 그 응용이 확대되고 있다. 특히 고정화효소를 채운 분리관을 사용하면 반응물이 위에서 연속적으로 주입되어 아래에서 생성물이 얻어지므로 연속 생산이 가능하다. 고정화 기술로는 효소의 결합 형태에 따라 물리적 방법과 화학적 방법이 있다. 화학적 방법으로는 흡착법(adsorption), 이온결합법(ionic bonding), 공유결합법(covalent bonding)이 있으며, 물리적 방법에는 포괄법(entrapment)과 캡슐화(encapsulation)가 있다.Immobilized enzymes are slightly less active than natural enzymes, but generally have a high resistance to heat and chemicals, and can easily be recovered and reused in a reaction system. Therefore, the production of organic substances, removal of environmental pollutants, The application of this catalyst has been expanding as a catalyst that can be used repeatedly and stably for a long period of time. In particular, using a separation tube filled with immobilized enzyme, continuous production is possible because the reaction product is continuously injected from above and the product is obtained from below. Immobilization techniques include physical and chemical methods depending on the type of enzyme conjugation. Chemical methods include adsorption, ionic bonding, and covalent bonding, and physical methods include entrapment and encapsulation.

이러한 배경 하에 본 발명자들은 목적 단백질을 정제 및 고정화할 수 있는 새로운 방법을 개발하고자 예의 노력한 결과, 당전이효소 및 목적 단백질을 포함한 융합단백질을 이용하여 융합단백질-다당 복합체를 개발하고, 이를 활용하여 목적 단백질의 정제방법, 분리방법 및 고정화 방법을 구축하여 본 발명을 완성하였다. Under these circumstances, the present inventors have made intensive efforts to develop a novel method for purifying and immobilizing a target protein. As a result, they have developed a fusion protein-polysaccharide complex using a fusion protein containing a glycosyltransferase and a target protein, A protein purification method, a separation method, and an immobilization method, thereby completing the present invention.

본 발명의 목적은 당전이효소 및 목적 단백질을 포함한 융합단백질을 탄수화물과 반응시키는 단계를 포함하는 융합단백질-다당 복합체의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a fusion protein-polysaccharide complex comprising the step of reacting a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate.

본 발명의 다른 목적은 (a) 당전이효소 및 목적 단백질을 포함한 융합단백질을 발현하는 형질전환체의 용해물 또는 배양물을 탄수화물과 반응시켜, 융합단백질-다당 복합체를 함유하는 반응액을 생산하는 단계; (b) 상기 반응액에서 융합단백질-다당 복합체를 분리하는 단계; 및 (c) 상기 융합단백질-다당 복합체로부터 목적 단백질을 분리하는 단계를 포함하는, 목적 단백질의 정제방법을 제공하는 것이다.Another object of the present invention is to provide a process for producing a reaction solution containing a fusion protein-polysaccharide complex by reacting (a) a lysate or a culture of a transformant expressing a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate step; (b) separating the fusion protein-polysaccharide complex from the reaction solution; And (c) separating the target protein from the fusion protein-polysaccharide complex.

본 발명의 또 다른 목적은 (a) 당전이효소 및 목적 단백질을 포함한 융합단백질을 발현하는 형질전환체의 용해물 또는 배양물을 탄수화물과 반응시켜 융합단백질-다당 복합체를 함유하는 반응액을 생산하는 단계; 및 (b) 상기 반응액에서 융합단백질-다당 복합체를 분리하는 단계를 포함하는, 목적 단백질의 고정화 방법에 관한 것이다.Still another object of the present invention is to provide a method for producing a reaction solution containing a fusion protein-polysaccharide complex by reacting (a) a lysate or a culture of a transformant expressing a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate step; And (b) separating the fusion protein-polysaccharide complex from the reaction solution.

본 발명의 또 다른 목적은 당전이효소 및 목적 단백질을 포함한 융합단백질; 및 다당체를 포함하는, 당전이효소를 포함하는 융합단백질-다당 복합체를 제공하는 것이다.Still another object of the present invention is to provide a fusion protein comprising a glycosyltransferase and a target protein; And a fusion protein-polysaccharide complex comprising a glycosyltransferase, which comprises a polysaccharide.

본 발명의 또 다른 목적은 당전이효소 및 목적 단백질을 포함하는 융합단백질을 제공하는 것이다.It is still another object of the present invention to provide a fusion protein comprising a glycosyltransferase and a target protein.

본 발명의 또 다른 목적은 프로모터 및 상기 프로모터에 작동가능하게 연결된 당전이효소와 목적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는, 융합단백질 발현 카세트를 제공하는 것이다.Still another object of the present invention is to provide a fusion protein expression cassette comprising a promoter and a polynucleotide encoding a glycosyltransferase and a target protein operably linked to the promoter.

본 발명의 또 다른 목적은 상기 융합단백질 발현 카세트를 포함하는, 융합단백질 발현용 벡터를 제공하는 것이다.It is still another object of the present invention to provide a vector for expressing a fusion protein comprising the fusion protein expression cassette.

상기 목적을 달성하기 위한 본 발명의 하나의 양태는 당전이효소 및 목적 단백질을 포함한 융합단백질을 탄수화물과 반응시키는 단계를 포함하는, 융합단백질-다당 복합체의 제조방법을 제공한다.One aspect of the present invention provides a method for preparing a fusion protein-polysaccharide complex, which comprises reacting a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate.

본 발명의 융합단백질은 당전이효소를 포함하므로, 당전이 활성을 가져 탄수화물, 구체적으로 수크로스 유래 다당체를 생산한다. 아울러, 상기 생산된 다당체는 자연적인 비드(bead)를 만들고, 상기 비드 사이에 융합단백질이 고정되어, 융합단백질-다당 복합체가 생성된다. 상기 융합단백질-다당 복합체를 이용하면 기존의 단백질 정제방법 및 고정화 방법과 달리, 원심분리와 같은 방법으로, 매우 간단하게 목적 단백질을 정제 및 고정화할 수 있어, 본 발명은 목적 단백질의 생산 및 목적 단백질을 이용하여 유용한 산물을 생산하는 데에 널리 활용될 수 있다.Since the fusion protein of the present invention contains a sugar-transferase, it has a sugar-exchange activity and produces a carbohydrate, specifically, a polysaccharide derived from sucrose. In addition, the produced polysaccharide forms a natural bead, and the fusion protein is immobilized between the beads to produce a fusion protein-polysaccharide complex. Unlike the conventional protein purification method and immobilization method, the fusion protein-polysaccharide complex can purify and immobilize the target protein very simply by the same method as centrifugation. Can be widely used to produce useful products.

본 발명의 용어 "당전이효소(glycosyltransferase)"는 다양한 기질에 글리코시딕 결합을 만드는 효소를 의미하는 것으로서, 탄수화물을 포함하는 다당체를 제조할 수 있는 효소를 말한다. 상기 당전이효소는 다당체를 제조할 수 있는 활성을 가진 효소라면 제한 없이 본 발명에 포함되나, 구체적으로, 헥소실트랜스퍼라제(hexosyltransferase), 펜토실트랜스퍼라제(pentosyltransferase), 및 시알릴트랜스퍼라제(sialyltransferase)로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 더욱 구체적으로 헥소실트랜스퍼라제일 수 있고, 더더욱 구체적으로 아밀로수크라제(amylosucrase)일 수 있으나, 이에 제한되는 것은 아니다. 또한 본 발명의 당전이효소는 다당체를 제조할 수 있는 활성을 가진 효소라면 효소의 기원에 제한이 없다.The term " glycosyltransferase "of the present invention means an enzyme capable of producing a glycosidic bond to various substrates, and capable of producing a polysaccharide containing a carbohydrate. The glycosyltransferase is included in the present invention without limitation as long as it is an enzyme capable of producing a polysaccharide, but specifically includes hexosyltransferase, pentosyltransferase, and sialyltransferase ), More specifically, a hexosyl transferase, and more specifically, amylosucrase, but is not limited thereto. Further, the sugar transferase of the present invention has no limitation on the origin of the enzyme if it is an enzyme having an activity capable of producing a polysaccharide.

또한, 상기 아밀로수크라제는 당전이 활성을 가져 아밀로스를 생산할 수 있는 한 제한이 없으나, 구체적으로 데이노코커스(Deinococcus) 유래, 더욱 구체적으로, 데이노코커스 제오써르말리스(Deinococcus geothermalis) 유래일 수 있다.In addition, the amylose sucrase is not limited as long as it can produce amylose due to its glycosylation activity. Specifically, it is derived from Deinococcus , more specifically, Deinococcus geothermalis .

또한, 구체적으로 상기 아밀로수크라제는 서열번호 1의 아미노산 서열을 가진 단백질 또는 서열번호 2의 염기 서열로 코딩되는 단백질일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the amylose sucrase may be a protein having the amino acid sequence of SEQ ID NO: 1 or a protein encoded by the nucleotide sequence of SEQ ID NO: 2, but is not limited thereto.

본 발명의 용어 "목적 단백질"은 생산하고자 하는 단백질 또는 펩타이드를 의미하는 것으로서, 단백질 또는 펩타이드라면 종류에 제한 없이 포함되지만, 구체적으로 항원, 항체, 세포수용체, 효소, 구조 단백질, 혈청 및 세포 단백질로 이루어진 군에서 선택될 수 있다. 또한, 본 발명의 일 실시예에서는 발광 단백질인 초록형광단백질(Green Fluorescent Protein, EGFP) 또는 베타글루코시다제(β-glucosidase, DGBG)를 이용하여 융합단백질-다당 복합체를 제조하였다.The term "target protein" of the present invention means a protein or peptide to be produced, and includes any kind of protein or peptide without limitation, but specifically includes antigens, antibodies, cell receptors, enzymes, structural proteins, Can be selected from the group consisting of. In one embodiment of the present invention, a fusion protein-polysaccharide complex was prepared using a green fluorescent protein (EGFP) or a beta-glucosidase (DGBG) as a luminescent protein.

본 발명의 용어 "융합단백질"은 당전이효소가 다른 단백질 또는 펩타이드에 결합되도록 인위적으로 합성된 단백질로서, 구체적으로는 상기 당전이효소 및 목적 단백질을 포함할 수 있다. 또한, 상기 융합단백질은 목적 단백질이 당전이효소의 N-말단(N-terminal); C-말단(C-terminal); 또는 N-말단 및 C-말단에 직접적으로 연결될 수도 있고, 링커(linker)를 통해 연결될 수도 있다. 또한 상기 융합단백질은 당전이효소가 목적 단백질의 N-말단 및 C-말단에 직접적으로 연결될 수도 있고, 링커를 통해 연결될 수도 있다. The term "fusion protein" of the present invention refers to a protein artificially synthesized so that the glycosyltransferase binds to another protein or peptide, specifically, the glycosyltransferase and the target protein. In addition, the fusion protein may be a fusion protein in which the target protein is an N-terminal of a glycosyltransferase; C-terminal; Or may be directly connected to the N-terminus and the C-terminus, or may be linked via a linker. Also, the fusion protein may be directly connected to the N-terminal and C-terminal of the target protein, or may be connected through a linker.

상기 링커는 융합단백질의 당전이효소 및 목적 단백질이 활성을 나타내게 하는 한 특별히 이에 제한되지 않으나, 구체적으로는 글라이신(glycine, Gly, G), 알라닌(alanine, Ala, A), 루이신(leucine, Leu, L), 이소루이신(isoleucine, Ile, I), 프롤린(proline, Pro, P), 세린(serine, Ser, S), 트레오닌(threonine, Thr, T), 아스파라긴(asparagine, Asn, N), 아스파르트산(aspartic acid, Asp, D), 시스테인(cysteine, Cys, C), 글루타민(glutamine, Gln, Q), 글루탐산(glutamic acid, Glu, E), 리신(lysine, Lys, K), 아르기닌산 (arginine, Arg, R) 등의 아미노산을 사용하여 연결시킬 수 있고, 더욱 구체적으로는 발린, 루이신, 아스파르트산, 글라이신, 알라닌, 프롤린 등을 여러개 사용하여 연결시킬 수 있으며, 더더욱 구체적으로는 유전자 조작의 용이성을 고려하여 글라이신, 발린, 루이신, 아스파르트산 등의 아미노산을 1개 내지 5개씩 연결하여 사용할 수 있다. 예를 들어, 본 발명에서는 아밀로수크라아제의 C-말단과 베타글루코시다아제의 N-말단을 GGGGSGGGGS(서열번호 28)의 아미노산 서열로 구성된 링커(GS 링커) 또는 DKTKYTAS(서열번호 29)의 아미노산 서열로 구성된 링커(EstO 링커)를 통해 연결시켜서 융합단백질을 제조하였다. The linker is not particularly limited as long as the glycosyltransferase of the fusion protein and the target protein are active. Specific examples of the linker include glycine (Gly, G), alanine (Alanine, Ala, A), leucine Leu, L), isoleucine (Ile, I), proline, Pro, P, serine, Ser, S, threonine, Thr, T, asparagine, Asn, N Aspartic acid, Asp, D, cysteine, Cys, C, glutamine, Gln, Q, glutamic acid, Glu, E, lysine, Lys, K, Arginine, arginine, arginine, arginine, arginine, arginine, arginine, arginine, arginine, arginine, arginine, arginine, arginine and arginine. More concretely, it can be connected by using several valine, leucine, aspartic acid, glycine, alanine, proline and the like. Considering the ease of gene manipulation, amino acids such as glycine, valine, leucine and aspartic acid, Five can be connected to each other. For example, in the present invention, the C-terminus of amylose sucrose and the N-terminus of beta-glucosidase are replaced with a linker (GS linker) or DKTKYTAS (SEQ ID NO: 29) consisting of the amino acid sequence of GGGGSGGGGS And then ligated through a linker composed of an amino acid sequence (EstO linker) to prepare a fusion protein.

상기 융합단백질은 이에 포함되는 각 도메인의 야생형의 아미노산 서열과 하나 이상의 아미노산 잔기가 상이한 서열을 가지는 폴리펩타이드를 포함할 수 있다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 폴리펩타이드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 또한, 아미노산 서열상의 변이 또는 수식에 의해서 단백질의 열, pH 등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 단백질을 포함할 수 있다.The fusion protein may include a polypeptide having a sequence having a different amino acid sequence from the wild-type amino acid sequence of each domain contained in the fusion protein. Amino acid exchange in proteins and polypeptides that do not globally alter the activity of the molecule is known in the art. The most commonly occurring exchanges involve amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu and Asp / Gly. In addition, the protein may include a protein having increased structural stability or increased protein activity due to mutation or modification of the amino acid sequence, such as heat, pH and the like.

상기 융합단백질 또는 상기 융합단백질을 구성하는 폴리펩타이드는 당해 분야에 공지된 화학적 펩타이드 합성방법으로 제조하거나, 상기 융합단백질을 코딩하는 유전자를 PCR(polymerase chain reaction)에 의해 증폭하거나 공지된 방법으로 합성한 후 발현벡터에 클로닝하여 발현시켜서 제조할 수 있다. The fusion protein or the polypeptide constituting the fusion protein may be prepared by a chemical peptide synthesis method known in the art, or may be prepared by amplifying a gene encoding the fusion protein by PCR (polymerase chain reaction) or by a known method Followed by expression in a post-expression vector.

본 발명의 상기 단백질은 상기 각 서열번호로 기재한 아미노산 서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있다. 이러한 상동성을 갖는 서열로서 실질적으로 상기 각 단백질과 동일하거나 상응하는 효능을 나타내는 단백질을 나타내는 아미노산 서열이라면 제한 없이 포함한다. 또한 이러한 상동성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 본 발명의 범위 내에 포함됨은 자명하다.The protein of the present invention has not only the amino acid sequence shown in each of the above SEQ ID NOs, but also a homology of not less than 80%, specifically not less than 90%, more specifically not less than 95%, more specifically not less than 97% Lt; / RTI > As the sequence having such homology, any amino acid sequence which represents a protein exhibiting substantially the same or equivalent activity as the respective proteins is included without limitation. It is also apparent that amino acid sequences in which some sequences are deleted, modified, substituted or added are also included within the scope of the present invention, provided that they have such homology.

아울러, 본 발명의 상기 단백질을 코딩하는 유전자는 상기 각 서열번호로 기재한 아미노산을 코딩하는 염기 서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기 서열로서 실질적으로 상기 각 단백질과 동일하거나 상응하는 효능을 나타내는 단백질을 코딩하는 염기 서열이라면 제한없이 포함한다. 또한 이러한 상동성을 갖는 염기 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 염기 서열도 본 발명의 범위 내에 포함됨은 자명하다.In addition, the gene encoding the protein of the present invention may contain not only the nucleotide sequence encoding the amino acid sequence shown in the above SEQ ID NOs, but also the nucleotide sequence having 80% or more, specifically 90% or more, more specifically 95% More specifically 98% or more, and most particularly 99% or more as a base sequence, which substantially encodes a protein exhibiting the same or corresponding efficacy as the respective proteins. Also, it is obvious that base sequences having deletion, modification, substitution or addition of some sequences are also included within the scope of the present invention if they are base sequences having such homology.

본 발명에서 사용되는 용어, "상동성"이란, 단백질을 코딩하는 유전자의 염기 서열이나 아미노산 서열의 유사한 정도를 의미하는데, 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다.As used herein, the term "homology" means a base sequence or a similar degree of amino acid sequence of a gene encoding a protein. If the homology is sufficiently high, the expression product of the gene may have the same or similar activity have.

본 발명의 일 제조예에서는 데이노코커스 제오써르말리스(Deinococcus geothermalis) 유래 아밀로수크라아제(DGAS) 및 초록형광단백질(Green Fluorescent Protein, EGFP)을 융합시킨 융합단백질을 코딩하는 유전자가 삽입된 발현 벡터 pHCXHD-egfp-dgas를 제조하였다(도 2).In one production example of the present invention, expression of a gene encoding a fusion protein fused with amylose sucrose (DGAS) derived from Deinococcus geothermalis and Green Fluorescent Protein (EGFP) Vector pHCXHD -egfp-dgas was prepared (Figure 2).

또한, 본 발명의 일 제조예에서는 DGAS와 베타글루코시다제(β-glucosidase, DGBG)를 융합시킨 융합단백질을 코딩하는 유전자가 삽입된 발현 벡터 pET-dgas-dgbg를 overlap PCR 방법을 사용하여 제조하였다(도 3).In addition, in one production example of the present invention, an expression vector having a gene encoding a fusion protein fused with DGAS and beta-glucosidase (DGBG) pET- dgas - dgbg was prepared using the overlap PCR method (Fig. 3).

또한, 본 발명의 일 제조예에서는 DGAS와 DGBG의 사이를 GS-링커로 연결한 융합단백질을 코딩하는 유전자가 삽입된 발현 벡터 pET-dgas - gs-dgbg를 제조하였다(도 4).In one production example of the present invention, an expression vector pET- dgas - gs - dgbg in which a gene encoding a fusion protein linked between DGAS and DGBG was linked by GS-linker was prepared (Fig.

또한, 본 발명의 일 제조예에서는 DGAS와 DGBG의 사이를 Esterase-O-링커(EstO 링커)로 연결한 융합단백질을 코딩하는 유전자가 삽입된 발현 벡터 pET-dgas-esto-dgbg를 제조하였다(도 5).In addition, in one production example of the present invention, an expression vector pET- dgas-esto - dgbg in which a gene encoding a fusion protein in which DGAS and DGBG are linked by an Esterase-O-linker (EstO linker) 5).

또한, 본 발명의 일 제조예에서는 말토스 결합 단백질(maltose binding protein, MalE)과 DGAS의 사이를 링커로 연결한 융합단백질을 코딩하는 유전자가 삽입된 발현 벡터 pET-malE - dqas -( lacZα )를 제조하였다(도 6).In addition, in one production example of the present invention, an expression vector pET- malE - dqas- ( lacZ alpha ) into which a gene encoding a fusion protein linking maltose binding protein (MalE) and DGAS with a linker is inserted (Fig. 6).

또한, 본 발명의 일 제조예에서는 MalE와 DGAS의 사이를 링커로 연결하고, lacZ alpha fusion protein이 제거된 융합단백질을 코딩하는 유전자가 삽입된, 발현 벡터 pET-malE-dgas를 제조하였다(도 7).In one production example of the present invention, an expression vector pET- malE-dgas in which a gene coding for a fusion protein in which lacZ alpha fusion protein has been removed was ligated with a linker between MalE and DGAS (FIG. 7 ).

또한, 본 발명의 일 제조예에서는 DGAS와 MCS가 링커로 연결된 DGAS-링커-MCS의 유전자를 pMaL-cx2를 사용하여 제조하였고, 상기 DGAS-링커-MCS 유전자를 pET21a(+) 벡터에 삽입하여 pET-dgas-링커-MCS(pET-dgas-M 링커)를 제조하였다(도 8).In addition, in a preparation example of the present invention, the DGAS-linker-MCS gene in which DGAS and MCS are linked by a linker was prepared using pMaL-cx2, and the DGAS-linker-MCS gene was inserted into pET21a (+ -dgas -linker-MCS (pET- dgas- M linker) was prepared (Fig. 8).

또한, 본 발명의 일 실시예에서는 상기 제조된 pHCXHD-egfp - dgas 벡터가 삽입된 대장균(E. coli) MC1061을 37℃에서 15시간 동안 배양하여 융합단백질을 발현하였고, pET 벡터가 포함된 융합단백질을 코딩하는 유전자가 삽입된 대장균 BL21(DE3)를 18℃에서 18시간 동안 0.5 mM IPTG(Isopropyl β-D-1-thiogalactopyranoside) 존재하에 배양하여 융합단백질의 발현을 유도한 후, 균체를 회수하여 분쇄하였다. 상기 분쇄액을 원심분리하여 수득한 상등액을 Ni-NTA 친화 크로마토그래피에 주입하여 융합단백질을 정제하였다. 정제된 융합단백질은 형광색의 발색을 가져 목적 단백질이 EGFP 활성을 가짐을 확인하였고, 또는 p-nitrophenol의 노란색을 가져 목적 단백질이 베타글루코시다아제 활성을 가짐을 확인하였다.In one embodiment of the invention the prepared pHCXHD- egfp - was in the dgas vector is inserted into E. coli (E. coli) MC1061 incubated at 37 ℃ for 15 hours to express the fusion protein, the fusion protein containing the pET vector (DE3), in which the gene coding for the gene coding for IFN-γ was inserted, was cultured in the presence of 0.5 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) at 18 ° C. for 18 hours to induce expression of the fusion protein. Respectively. The supernatant obtained by centrifuging the pulverized liquid was injected into Ni-NTA affinity chromatography to purify the fusion protein. The purified fusion protein was found to have a fluorescence color and the target protein had EGFP activity, or it was confirmed that the target protein had a beta glucosidase activity due to the yellow of p- nitrophenol.

따라서, 본 발명에서 융합단백질은 당전이효소인 아밀로수크라제에 목적 단백질이 결합되어 당전이 활성 및 목적 단백질의 활성을 가지므로, 융합단백질-다당 복합체의 제조, 목적 단백질의 정제 및 고정화에 이용될 수 있다.Therefore, in the present invention, the fusion protein has a glycoprotein-polysaccharide complex, purification and immobilization of the target protein, since the target protein is bound to the glycoconjugate, amylose sucrose, Can be used.

본 발명의 용어 "탄수화물"은 당전이효소의 기질로 사용되는 화합물을 의미하는 것으로서, 구체적으로는 글루코스(glucose), 프럭토스(fructose), 만노스(mannose), 갈락토스(galactose), 리보스(ribose), 말토스(maltose), 수크로스(sucrose), 셀로비오스(cellobiose), 겐티오비오스(gentiobiose), 멜리비오스(melibiose), 락토스(lactose), 투라노스(turanose), 소포로스(sophorose), 아밀로스(amylose), 아밀로펙틴(amylopectin), 글리코겐(glycogen) 및 가용성 전분(soluble starch)으로 이루어진 군에서 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.The term "carbohydrate" of the present invention means a compound used as a substrate of a glycosyltransferase, and specifically includes glucose, fructose, mannose, galactose, ribose, Maltose, sucrose, cellobiose, gentiobiose, melibiose, lactose, turanose, sophorose, amylose, but are not limited to, amylose, amylopectin, glycogen, and soluble starch.

또한, 구체적으로 단당류 또는 이당류와 다당류를 함께 기질로 사용하여, 당전이효소를 포함하는 융합단백질과 반응시키는 경우, 아밀로스 또는 이의 유사 다당체의 생성속도를 증가시킬 수 있어, 융합단백질-다당 복합체의 생성 속도를 증가시킬 수 있다. 이는 단당류 또는 이당류만을 기질로 사용하여 아밀로오스를 만들 경우, 당전이효소가 글루코스를 신장할 수 있는 α-1,4 결합의 수가 적지만, 아밀로펙틴이나 글리코겐, 용해성 전분 (soluble starch)을 첨가할 경우 글루코스를 신장할 수 있는 α-1,4 결합 가지의 수가 많아지기 때문이다.Specifically, when a monosaccharide or a disaccharide and a polysaccharide are used together as a substrate to react with a fusion protein comprising a glycosyltransferase, the production rate of amylose or its analogous polysaccharide can be increased and the production of a fusion protein-polysaccharide complex The speed can be increased. When amylose is prepared using only a monosaccharide or a disaccharide as a substrate, the number of α-1,4 bonds in which the glycosyltransferase can extend glucose is small, but when amylopectin, glycogen, soluble starch is added, glucose The number of? -1,4 bond branches capable of elongating the?

본 발명의 일 실시예에서는 당전이효소를 포함하는 융합단백질과 반응하는 기질에 단당류 또는 이당류와 다당류를 함께 첨가할 경우, 융합단백질-다당 복합체의 생성 속도가 증가함을 확인하기 위해, 1 M의 설탕용액 200 ㎕ 및 100 mM Tris-HCl(pH 8.0) 500 ㎕에 5%의 아밀로펙틴, 글리코겐, 또는 용해성 전분 200 ㎕를 혼합한 기질을 당전이효소를 포함하는 융합단백질과 반응시킨 결과(실시예 2-2), 세 가지 타입의 다당류 모두 융합단백질-다당 복합체의 생성이 가능하였으며, 용해성 전분 및 아밀로펙틴을 넣었을 때 융합단백질-다당 복합체가 짧은 시간 내 가장 많이 생성되었고, 효소의 활성도 강하게 나타났다. 이를 통해, 융합단백질과 반응하는 기질에 단당류 또는 이당류와 다당류를 함께 첨가할 경우, 융합단백질-다당 복합체의 생성 속도가 증가함을 알 수 있었다.In one embodiment of the present invention, when the monosaccharide or the disaccharide and the polysaccharide are added to the substrate reacting with the fusion protein containing the glycosyltransferase, the production rate of the fusion protein-polysaccharide complex increases, A 500 μl sugar solution and 500 μl of 100 mM Tris-HCl (pH 8.0) were mixed with 5 μl of amylopectin, glycogen or soluble starch (200 μl), and the substrate was reacted with a fusion protein containing a glycosyltransferase (Example 2 -2). Fusion protein - polysaccharide complexes were able to be produced in all three types of polysaccharides. When soluble starch and amylopectin were added, most of the fusion protein - polysaccharide complexes were produced in a short time and enzyme activity was strong. Thus, when monosaccharide or disaccharide and polysaccharide were added together to the substrate reacting with the fusion protein, the production rate of the fusion protein-polysaccharide complex was increased.

본 발명의 용어 "융합단백질-다당 복합체"는 상기 당전이효소 활성을 가진 융합단백질을 탄수화물과 반응시킨 결과, 생성된 다당체가 서로 엉키어 만들어진 비드(bead) 사이사이에 융합단백질이 고정되어 있는 복합체를 의미한다. 또한 상기 융합단백질-다당 복합체는 원래 가지고 있던 당전이효소 및 목적 단백질의 활성을 유지한다. 또한, 상기 융합단백질-다당 복합체는 원심분리를 하면 가라앉으므로, 융합단백질을 탄수화물과 반응시켜 제조된 융합단백질-다당 복합체를 함유하는 반응액을 원심분리하면 상기 복합체를 수득할 수 있다. 상기 융합단백질-다당 복합체는 융합단백질-다당류 복합체 또는 융합단백질-다당체 복합체와 혼용된다.The term "fusion protein-polysaccharide complex" of the present invention refers to a complex in which a fusion protein having the above-mentioned glycosyltransferase activity is reacted with a carbohydrate and a fusion protein is immobilized between beads in which the resulting polysaccharide is tangled with each other . In addition, the fusion protein-polysaccharide complex maintains the original glycosyltransferase activity and the activity of the target protein. In addition, since the fusion protein-polysaccharide complex submerged by centrifugation, the reaction mixture containing the fusion protein-polysaccharide complex prepared by reacting the fusion protein with the carbohydrate can be centrifuged to obtain the complex. The fusion protein-polysaccharide complex is used in combination with a fusion protein-polysaccharide complex or a fusion protein-polysaccharide complex.

본 발명의 일 실시예에서는 융합단백질과 설탕을 반응시킨 반응액을 원심분리하여 가라앉은 하얀색의 침전물을 수득하여 다당체가 합성됨을 확인하였다. 이를 통해, 융합단백질의 아밀로수크라아제(DGAS)가 활성을 나타내어, 융합단백질-다당 복합체가 제조됨을 알 수 있었다. 또한, EGFP-DGAS 융합단백질 및 다당체로 이루어진 융합단백질-다당 복합체에서 EGFP가 활성을 가짐을 형광현미경을 통해 확인하였다(도 10). 또한, 생성된 융합단백질-다당 복합체에 10 mM의 p-nitrophenyl-β-D-glucopyranoside 40 ㎕ 과 100 mM Tris-HCl (pH 8.0) 50 ㎕를 혼합하고 40℃에서 10분 반응시킨 결과, 효소반응에 의해 유리되는 p-nitrophenol의 노란색을 확인하여 융합단백질-다당 복합체의 베타글루코시다제(DGBG)가 활성을 나타냄을 알 수 있었다(도 11). 이를 통해, 본 발명의 융합단백질을 이용한 결과, 융합단백질-다당 복합체가 생성되었으며, 생성된 융합단백질-다당 복합체는 융합된 두 가지 단백질의 활성을 모두 가짐을 알 수 있었다.In one embodiment of the present invention, the reaction solution obtained by reacting the fusion protein and the sugar was centrifuged to obtain a precipitated white precipitate, which confirmed that the polysaccharide was synthesized. Through this, it was found that amylose sucrose (DGAS) of the fusion protein was active, and a fusion protein-polysaccharide complex was produced. Further, it was confirmed by fluorescence microscopy that EGFP was active in a fusion protein-polysaccharide complex comprising an EGFP-DGAS fusion protein and a polysaccharide (FIG. 10). Also, 40 μl of 10 mM p- nitrophenyl-β-D-glucopyranoside and 50 μl of 100 mM Tris-HCl (pH 8.0) were added to the resulting fusion protein-polysaccharide complex and reacted at 40 ° C. for 10 minutes. (DGBG) of the fusion protein-polysaccharide complex was confirmed by confirming the yellow of p- nitrophenol liberated by the fusion protein-polysaccharide complex (FIG. 11). As a result, using the fusion protein of the present invention, it was found that a fusion protein-polysaccharide complex was produced, and that the resulting fusion protein-polysaccharide complex had all the activities of the two fusion proteins.

또한, 본 발명의 다른 하나의 양태는 (a) 당전이효소 및 목적 단백질을 포함한 융합단백질을 발현하는 형질전환체의 용해물 또는 배양물을 탄수화물과 반응시켜 융합단백질-다당 복합체를 함유하는 반응액을 생산하는 단계; (b) 상기 반응액에서 융합단백질-다당 복합체를 분리하는 단계; 및 (c) 상기 융합단백질-다당 복합체로부터 목적 단백질을 분리하는 단계를 포함하는, 목적 단백질의 정제방법을 제공한다.In another aspect of the present invention, there is provided a method for producing a fusion protein comprising: (a) reacting a lysate or a culture of a transformant expressing a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate, ; (b) separating the fusion protein-polysaccharide complex from the reaction solution; And (c) separating the target protein from the fusion protein-polysaccharide complex.

본 발명의 융합단백질은 탄수화물 유래 다당체로 제조된 비드를 만들고, 상기 비드 사이에 융합단백질이 고정되어, 융합단백질-다당 복합체를 형성하므로, 분리된 융합단백질-다당 복합체에서 목적 단백질을 분리하면 기존의 컬럼 등을 이용하는 단백질 정제방법보다 매우 간단하게 목적 단백질을 정제할 수 있다.Since the fusion protein of the present invention is made of a carbohydrate-derived polysaccharide and the fusion protein is immobilized between the beads to form a fusion protein-polysaccharide complex, when the target protein is isolated from the separated fusion protein-polysaccharide complex, The target protein can be purified more simply than the protein purification method using a column or the like.

본 발명의 "당전이효소", "목적 단백질", "융합단백질", "탄수화물", 및 "융합단백질-다당 복합체"는 상기에서 설명한 바와 같다.The "sugar transferase", "target protein", "fusion protein", "carbohydrate", and "fusion protein-polysaccharide complex" of the present invention are as described above.

본 발명에서 용어, "형질전환체"는 DNA를 숙주로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것으로 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화가 일어난 생물을 의미한다. In the present invention, the term "transformant" refers to a DNA that is introduced into a host and DNA can be cloned as a chromosome factor or by chromosomal integration, thereby introducing an external DNA into a cell, .

상기 형질전환으로 본 발명의 융합단백질을 코딩하는 폴리뉴클레오티드를 포함하는 발현 벡터 또는 상기 발현 벡터의 일부를 숙주 세포 내에 도입할 수 있는데, 여기서 상기 발현 벡터의 일부란, 숙주 세포 내에 상기 융합단백질의 활성을 부여할 수 있도록 융합단백질을 코딩하는 폴리뉴클레오티드 부분을 포함하는 발현 벡터의 부분을 의미한다. 예컨대, 아그로박테리아 매개 형질전환법에서 숙주 세포 내로 전달되는 Ti 플라스미드의 T-DNA를 들 수 있으나, 이에 제한되는 것은 아니다. By such transformation, an expression vector comprising a polynucleotide encoding the fusion protein of the present invention or a part of the expression vector can be introduced into the host cell. Herein, a part of the expression vector refers to an activity of the fusion protein in the host cell Quot; means a portion of an expression vector that comprises a polynucleotide portion that encodes a fusion protein so as to confer expression of the fusion protein. For example, but not by way of limitation, T-DNA of a Ti plasmid transferred into a host cell in an Agrobacterium-mediated transformation method.

본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 일반적으로 형질전환 방법에는 CaCl2 침전법, CaCl2 방법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 있다. 본 발명의 융합단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 형질전환시키기 위한 방법은 상기 예들에 국한되지 않으며, 당업계에서 통상적으로 사용되는 형질전환 또는 형질감염 방법이 제한 없이 사용될 수 있다.Any transformation method of the present invention can be used, and can be easily carried out according to a conventional method in the art. Generally, the transformation methods include the CaCl 2 precipitation method, the Hanahan method which uses a reducing material called DMSO (dimethyl sulfoxide) for the CaCl 2 method, the electroporation method, the calcium phosphate precipitation method, the protoplasm fusion method, Agrobacterium-mediated transformation, transformation with PEG, dextran sulfate, lipofectamine, and drying / inhibition-mediated transformation methods. The method for transforming a vector comprising a polynucleotide encoding a fusion protein of the present invention is not limited to the above examples, and transformation or transfection methods commonly used in the art can be used without limitation.

본 발명에서 형질전환체 제조에 사용될 수 있는 숙주 세포의 종류는 본 발명의 폴리뉴클레오티드를 발현하도록 하는 한 특별히 제한되지는 않는다. 본 발명에 사용될 수 있는 숙주의 특정한 예로는 대장균(E. coli)과 같은 에스케리키아(Escherichia) 속 세균; 바실러스 서브틸리스(Bacillus subtilis)같은 바실러스(Bacillus) 속 세균; 슈도모나스 푸티다(Pseudomonas putida)같은 슈도모나스(Pseudomonas) 속 세균; 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 스키조사카로마이세스 폼베(Schizosaccharomyces pombe)와 같은 효모; 동물세포, 식물세포 및 곤충 세포가 있다. 본 발명에 사용될 수 있는 대장균 균주의 구체적인 예로는 C41(DE3), BL21 또는 HB101이, 바실러스 서브틸리스 균주의 구체적인 예로는 WB700 또는 LKS87이 있다. The kind of the host cell that can be used in the production of the transformant in the present invention is not particularly limited as long as it is capable of expressing the polynucleotide of the present invention. Specific examples of the host which can be used in the present invention include bacteria belonging to the genus Escherichia such as E. coli ; Bacteria of the genus Bacillus such as Bacillus subtilis ; Bacteria of the genus Pseudomonas such as Pseudomonas putida ; Saccharomyces S. cerevisiae , yeast such as Schizosaccharomyces pombe for skiing; Animal cells, plant cells, and insect cells. Specific examples of the Escherichia coli strain that can be used in the present invention include C41 (DE3), BL21 or HB101, and specific examples of the Bacillus subtilis strain include WB700 or LKS87.

본 발명의 폴리뉴클레오티드를 포함하는 발현 벡터가 도입된 형질전환체는 식물체의 형태일 수 있으며, 특별히 이에 제한되지 않으나, 그 예로 담배, 애기장대, 감자, 인삼, 참깨, 유자, 데이지 등이 있다.The transformant into which the expression vector containing the polynucleotide of the present invention is introduced may be in the form of a plant. Examples of the transformant include, but are not limited to, tobacco, Arabidopsis, potato, ginseng, sesame, citron and daisy.

본 발명의 형질전환체 제조를 위한 벡터에 포함된 프로모터는, 상기 융합단백질의 폴리뉴클레오티드를 숙주에서 발현하도록 하는 한 어떠한 프로모터도 사용될 수 있다. 예를 들어, trp 프로모터, lac 프로모터, PL 프로모터 또는 PR 프로모터 같은 대장균 또는 파아지-유래 프로모터; T7 프로모터 같은 대장균 감염 파아지-유래 프로모터, CaMV35S, MAS 또는 히스톤 프로모터가 사용될 수 있다. 또한 tac 프로모터 같은 인공적으로 변형된 프로모터도 사용될 수 있다.The promoter contained in the vector for producing the transformant of the present invention may be any promoter so long as the polynucleotide of the fusion protein is expressed in the host. For example, Escherichia coli or phage-derived promoters such as trp promoter, lac promoter, PL promoter or PR promoter; Escherichia coli infectious phage-derived promoter such as T7 promoter, CaMV35S, MAS or histone promoter may be used. Artificially modified promoters such as the tac promoter may also be used.

본 발명의 용어 "용해물"은 본 발명의 융합단백질을 포함하고 있는, 형질전환체의 분쇄액 또는 상기 분쇄액을 원심분리하여 수득한 상등액을 의미하는 것이다. The term "lysate " of the present invention means a pulverized liquid of a transformant or a supernatant obtained by centrifuging the pulverized liquid containing the fusion protein of the present invention.

본 발명의 용어 "배양물"은 상기 형질전환체를 배양한 다음 수득한, 본 발명의 융합단백질을 포함하고 있는 산물을 의미한다. 상기 배양물은 형질전환체를 포함하는 형태 및 상기 형질전환체를 포함하는 배양액에서 원심분리 등으로 형질전환체를 제거한 형태도 모두 포함하는 개념이다. The term "culture" of the present invention means a product containing the fusion protein of the present invention obtained after culturing the transformant. The culture includes both a form containing a transformant and a form in which a transformant is removed by centrifugation or the like in a culture solution containing the transformant.

상기 용해물 및 배양물은 본 발명의 융합단백질을 포함하므로, 탄수화물 유래 다당체를 생산하는 활성을 가져, 융합단백질-다당 복합체를 생산할 수 있다. Since the lysate and the culture contain the fusion protein of the present invention, they have activity to produce a carbohydrate-derived polysaccharide, so that a fusion protein-polysaccharide complex can be produced.

본 발명의 용어 "융합단백질-다당 복합체의 분리"는 상기 융합단백질을 이용하여 제조된 융합단백질-다당 복합체를 함유하는 반응액으로부터 상기 복합체를 분리하는 것을 의미하는 것으로, 구체적으로 상기 반응액을 원심분리하여 융합단백질-다당 복합체를 침전시켜 분리할 수 있다.The term "fusion protein-polysaccharide complex separation" of the present invention means to separate the complex from the reaction solution containing the fusion protein-polysaccharide complex prepared using the fusion protein, specifically, Separation can be carried out by precipitating the fusion protein-polysaccharide complex.

본 발명의 일 실시예에서는 제조예 1 내지 7에서 제조된 재조합 벡터가 삽입된 대장균 MC1061과 BL21(DE3)를 연속 발현 및 IPTG(Isopropyl β-D-1-thiogalactopyranoside) 존재하에 배양한 후, 원심분리를 수행하여 균체를 회수하였다. 이후, 라이시스 버퍼(Lysis buffer)[50 mM NaH2PO4, pH 7.0, 300 mM NaCl, 10 mM imidazole, pH 7.0]에 현탁하여, 초음파 분쇄하였다. 이후, 상기 분쇄액을 원심분리를 수행하여 상등액을 수득하였다. 또한, 상기 상등액으로부터 Ni-NTA 친화 크로마토그래피를 이용하여 융합단백질을 정제한 후, 융합단백질과 설탕을 반응시켜 DNS와 환원당의 발색을 통해 아밀로수크라아제의 활성을 확인하였다. 또한, 목적 단백질로 사용된 EGFP의 활성을 fluorescence microscopy를 이용하여 형광색의 발색을 통해 확인하였다. 또한, 베타글루코시다아제의 활성을 p-nitrophenyl-β-D-glucopyranoside를 이용하여 효소반응에 의해 유리되는 p-nitrophenol의 노란색을 통해 확인하였다.In one embodiment of the present invention, Escherichia coli MC1061 and BL21 (DE3) inserted with the recombinant vectors prepared in Production Examples 1 to 7 were cultured in the presence of continuous expression and IPTG (Isopropyl? -D-1-thiogalactopyranoside) And the cells were recovered. Then, the suspension system in Lai buffer (Lysis buffer) [50 mM NaH 2 PO 4, pH 7.0, 300 mM NaCl, 10 mM imidazole, pH 7.0], was pulverized ultrasound. Thereafter, the pulverized liquid was centrifuged to obtain a supernatant. Further, the fusion protein was purified from the supernatant using Ni-NTA affinity chromatography, and the activity of the amylose sucrose was confirmed by the reaction of the fusion protein with sugar and the coloring of DNS and reducing sugar. In addition, the activity of EGFP used as a target protein was confirmed by fluorescence microscopy. The activity of β-glucosidase was also confirmed by the yellow color of p- nitrophenol liberated by enzyme reaction using p- nitrophenyl-β-D-glucopyranoside.

본 발명의 용어 "목적 단백질의 분리"는 상기 융합단백질-다당 복합체로부터 목적 단백질을 분리하는 것을 의미하는 것으로, 구체적으로 프로테아제를 융합단백질-다당 복합체에 처리하여 목적 단백질을 분리할 수 있다.The term "separation of a target protein" of the present invention refers to separation of a target protein from the fusion protein-polysaccharide complex. Specifically, the target protein can be isolated by treating the fusion protein-polysaccharide complex with a protease.

본 발명의 일 실시예에서는 프로테아제(Factor Xa)를 융합단백질(DGAS-링커-DGBG)-다당 복합체에 처리하여 반응시킨 결과, 링커가 분해됨으로써 DGAS와 DGBG가 분리됨을 확인하였고, 목적단백질인 DGBG는 상층액 부분에서 수득할 수 있음을 확인하였다(도 12).In one embodiment of the present invention, protease (Factor Xa) was treated with a fusion protein (DGAS-linker-DGBG) -saturated polysaccharide complex, and as a result, it was confirmed that DGAS and DGBG were separated by decomposing the linker. It was confirmed that it could be obtained in the supernatant portion (Fig. 12).

또한, 본 발명의 다른 하나의 양태는 (a) 당전이효소 및 목적 단백질을 포함한 융합단백질을 발현하는 형질전환체의 용해물 또는 배양물을 탄수화물과 반응시켜 융합단백질-다당 복합체를 함유하는 반응액을 생산하는 단계; 및 (b) 상기 반응액에서 융합단백질-다당 복합체를 분리하는 단계를 포함하는, 목적 단백질의 고정화 방법을 제공한다.In another aspect of the present invention, there is provided a method for producing a fusion protein comprising: (a) reacting a lysate or a culture of a transformant expressing a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate, ; And (b) separating the fusion protein-polysaccharide complex from the reaction solution.

본 발명의 융합단백질은 탄수화물 유래 다당체로 제조된 비드를 만들고, 상기 비드 사이에 융합단백질이 고정되어 융합단백질-다당 복합체가 형성된다. 상기 형성된 복합체는 목적 단백질의 활성을 나타내므로, 복합체를 분리하여 목적 단백질의 기질과 반응시킨 후, 다시 복합체를 분리하여 재사용할 수 있으므로, 본원발명의 융합단백질-다당 복합체를 이용하면 목적 단백질을 쉽게 고정화할 수 있다.The fusion protein of the present invention produces a bead made of a carbohydrate-derived polysaccharide, and a fusion protein is immobilized between the beads to form a fusion protein-polysaccharide complex. Since the complex thus formed exhibits the activity of the target protein, the complex can be separated and reacted with the substrate of the target protein, and then the complex can be separated and reused. Therefore, when the fusion protein- polysaccharide complex of the present invention is used, Can be immobilized.

본 발명의 "당전이효소", "목적 단백질", "융합단백질", "형질전환체", "용해물", "배양물" "탄수화물", "융합단백질-다당 복합체", 및 "융합단백질-다당 복합체의 분리"는 상기에서 설명한 바와 같다.The terms "glycoprotein", "target protein", "fusion protein", "transformant", "lysate", "culture" "carbohydrate", "fusion protein- polysaccharide complex" - separation of polysaccharide complex "is as described above.

또한, 본 발명의 다른 하나의 양태는 당전이효소 및 목적 단백질을 포함한 융합단백질; 및 다당체를 포함하는, 융합단백질-다당 복합체를 제공한다.Another embodiment of the present invention is a fusion protein comprising a glycosyltransferase and a target protein; ≪ / RTI > and a polysaccharide.

본 발명의 융합단백질-다당 복합체를 이용하면 기존의 단백질 정제방법 및 고정화 방법과 달리 매우 간단하게 목적 단백질을 정제 및 고정화할 수 있어, 목적 단백질의 생산 및 목적 단백질을 이용하여 유용한 산물을 생산하는 데에 널리 활용될 수 있다.The fusion protein-polysaccharide complex of the present invention can purify and immobilize a desired protein in a very simple manner, unlike the existing methods for protein purification and immobilization, and produce useful products using target proteins and target proteins Can be widely used.

본 발명의 "당전이효소", "목적 단백질", "융합단백질", 및 "융합단백질-다당 복합체"는 상기에서 설명한 바와 같다.The "sugar transferase", "target protein", "fusion protein", and "fusion protein-polysaccharide complex" of the present invention are as described above.

또한, 본 발명의 다른 하나의 양태는 당전이효소 및 목적 단백질을 포함하는 융합단백질을 제공한다.Further, another embodiment of the present invention provides a fusion protein comprising a glycosyltransferase and a target protein.

본 발명의 "당전이효소", "목적 단백질" 및 "융합단백질"은 상기에서 설명한 바와 같다.The "sugar transferase", "target protein" and "fusion protein" of the present invention are as described above.

또한, 본 발명의 다른 하나의 양태는 프로모터 및 상기 프로모터에 작동가능하게 연결된 당전이효소와 목적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는, 융합단백질 발현 카세트를 제공한다.Yet another aspect of the present invention provides a fusion protein expression cassette comprising a promoter and a polynucleotide encoding a glycosyltransferase and a protein of interest operably linked to the promoter.

본 발명의 "당전이효소", "목적 단백질" 및 "융합단백질"은 상기에서 설명한 바와 같다.The "sugar transferase", "target protein" and "fusion protein" of the present invention are as described above.

본 발명에서 용어 "프로모터"란, RNA 중합효소에 대한 결합 부위를 포함하고 프로모터 하위(downstream) 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 폴리뉴클레오티드 서열을 말한다. 본 발명의 발현 카세트에 있어서, 상기 프로모터는 융합단백질의 발현을 개시할 수 있는 어떤 프로모터도 가능하다.The term "promoter" in the present invention refers to a polynucleotide sequence that is upstream of the coding region and contains a binding site for an RNA polymerase and has a transcription initiation activity to the mRNA of a downstream gene . In the expression cassette of the present invention, the promoter may be any promoter capable of initiating the expression of the fusion protein.

본 발명에서 용어 "작동가능하게 연결된"은, 하나의 폴리뉴클레오티드 단편이 다른 폴리뉴클레오티드 단편과 결합되면 통상적으로 이들 각각의 기능 또는 발현이 다른 폴리뉴클레오티드 단편의 영향을 받지만, 이들 폴리뉴클레오티드 단편의 여러 가능한 결합 조합 중에서 각 단편이 그 기능을 수행하는데 있어 검출할 만한 영향이 없는 상태의 결합을 의미한다. 아울러, 본 발명의 발현 카세트는 전사를 조절하기 위한 임의의 전사 시작 조절 서열 및 전사 종결 조절 서열을 추가로 포함할 수 있다. 작동가능한 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.The term "operably linked" in the present invention means that when one polynucleotide fragment is combined with another polynucleotide fragment, each of these functions or expression is typically affected by other polynucleotide fragments, Means a combination in which each fragment in the combination combination has no detectable effect in performing its function. In addition, the expression cassette of the present invention may further comprise any transcription initiation regulatory sequence and transcription termination regulatory sequence for regulating transcription. Operable linkages can be produced using genetic recombination techniques well known in the art, and site-specific DNA cleavage and linkage can be performed using enzymes generally known in the art.

본 발명에서 상기 발현 카세트는 당전이효소를 코딩하는 폴리뉴클레오티드와 목적 단백질을 코딩하는 폴리뉴클레오티드가 링커로 연결될 수 있으나, 이에 제한되지 않는다. 상기 링커는 전술한 바와 같다.In the present invention, the expression cassette may include, but is not limited to, a polynucleotide encoding a glycosyltransferase and a polynucleotide encoding a target protein. The linker is as described above.

또한, 본 발명의 다른 하나의 양태는 상기 발현 카세트를 포함하는, 융합단백질 발현용 벡터를 제공한다.Further, another embodiment of the present invention provides a vector for expressing a fusion protein comprising the expression cassette.

본 발명의 "융합단백질"은 상기에서 설명한 바와 같다.The "fusion protein" of the present invention is as described above.

상기 발현 카세트는 세포 내로의 효율적인 도입을 가능하게 하는 전달체 내에 포함된 형태일 수 있다. 상기 전달체는 구체적으로는 벡터이며, 벡터는 바이러스 벡터 또는 비바이러스 벡터 모두 사용 가능하다. 바이러스 벡터(viral vector)로서 예를 들면, 렌티바이러스(lentivirus), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 아데노바이러스-관련 바이러스(adeno-associated virus), 허피스바이러스(herpes virus) 또는 아비폭스바이러스(avipox virus) 벡터 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 비바이러스 벡터로서 예를 들면 플라스미드 형태를 들 수 있다.The expression cassette may be in a form that is contained within a carrier that enables efficient introduction into the cell. The carrier is specifically a vector, and the vector can be used as both a viral vector and a non-viral vector. As viral vectors there may be mentioned, for example, lentivirus, retrovirus, adenovirus, adeno-associated virus, herpes virus or avium fox, Avipox virus vectors, and the like, but the present invention is not limited thereto. Non-viral vectors include, for example, plasmid forms.

또한, 상기 발현용 벡터는 선별마커를 추가로 포함함 수 있다. 상기 "선별마커(selection marker)"란 본 발명의 발현 카세트가 도입되어 형질전환된 세포의 선별을 용이하게 하기 위한 것이다. 본 발명의 발현용 벡터에서 사용할 수 있는 선별마커로는 벡터의 도입 여부를 용이하게 검출 또는 측정할 수 있는 유전자라면, 특별히 한정되지 않으나, 대표적으로 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들, 예를 들어 EGFP(녹색 형광 단백질), 퓨로마이신(puromycin), 네오마이신(Neomycin: Neo), 하이그로마이신(hygromycin: Hyg), 히스티디놀 디하이드로게나제(histidinol dehydrogenase gene, hisD) 또는 구아닌 포스포리보실트랜스퍼라제 (guanine phosphosribosyltransferase, Gpt) 등이 있다.In addition, the expression vector may further comprise a selection marker. The "selection marker" is intended to facilitate screening of transformed cells into which the expression cassette of the present invention has been introduced. The selection marker that can be used in the expression vector of the present invention is not particularly limited as long as it is a gene that can easily detect or measure the introduction of the vector. However, the marker may be exemplified by a drug resistance, a nutritional requirement, Such as EGFP (Green Fluorescent Protein), puromycin, Neomycin (Neo), hygromycin (Hyg), Heath, etc., which confer a selectable phenotype, Histidinol dehydrogenase gene, hisD) or guanine phosphosribosyltransferase (Gpt).

본 발명의 당전이효소와 다양한 목적 단백질로 만들어진 융합단백질은 탄수화물로부터 융합단백질-다당 복합체를 제조할 수 있으며, 상기 융합단백질-다당 복합체를 이용하면 기존의 단백질 정제방법 및 고정화 방법과 달리 매우 간단하게 목적 단백질을 정제 및 고정화할 수 있어, 본 발명은 목적 단백질의 생산 및 목적 단백질을 이용하여 유용한 산물을 생산하는 데에 널리 활용될 수 있다.The conjugated protein of the present invention and a fusion protein made of various target proteins can produce a fusion protein-polysaccharide complex from a carbohydrate. When the fusion protein-polysaccharide complex is used, unlike the conventional protein purification method and immobilization method, The target protein can be purified and immobilized. Thus, the present invention can be widely used for production of a target protein and production of a useful product using the target protein.

도 1은 제조예 1 내지 7에서 제조된 융합단백질의 구조를 나타낸 도이다.
도 2는 데이노코커스 제오써르말리스(Deinococcus geothermalis) 유래 아밀로수크라아제(DGAS) 및 초록형광단백질(Green Fluorescent Protein, EGFP)를 융합시킨 융합단백질(EGFP-DGAS)를 발현시킬 수 있는 발현 벡터(pHCXHD- egfp-dgas)를 나타낸 도이다.
도 3은 DGAS 및 베타-글루코시다아제(β-glucosidase, DGBG)를 융합시킨 융합단백질(DGAS-DGBG)를 발현시킬 수 있는 발현 벡터(pET-dgas - dgbg)를 나타낸 도이다.
도 4는 DGAS 및 DGBG의 사이를 GS-링커(linker)로 연결한 융합시킨 융합단백질(DGAS-GS-DGBG)를 발현시킬 수 있는 발현 벡터(pET-dgas-gs-dgbg)를 나타낸 도이다.
도 5는 DGAS 및 DGBG의 사이를 Esterase-O-링커(EstO 링커)로 연결한 융합단백질(DGAS-EstO-DGBG)를 발현시킬 수 있는 발현 벡터(pET-dgas - esto - dgbg)를 나타낸 도이다.
도 6은 DGAS 및 말토스 결합 단백질(maltose binding protein, MalE)를 융합시킨 융합단백질(MalE-DGAS)을 발현시킬 수 있는 발현 벡터(pET-malE - dgas -( lacZ α))를 나타낸 도이다.
도 7은 MalE 및 DGAS를 융합시킨 융합단백질(MalE-DGAS)를 발현시킬 수 있는 발현 벡터(pET-malE - dgas)를 나타낸 도이다.
도 8은 MCS 부분에 목적 단백질을 넣어 발현하면, 앞쪽에 DGAS가 붙어있는 다양한 융합단백질의 제작이 가능한 발현 벡터(pET-dgas-링커)를 나타낸 도이다.
도 9는 DGAS를 포함하는 융합단백질(DGAS-DGBG, DGAS-GS-DGBG, DGAS-EstO-DGBG)의 다당체 합성 활성을 확인한 사진이다.
도 10은 EGFP-DGAS 융합단백질 및 다당체로 이루어진 융합단백질-다당 복합체에서 EGFP가 활성을 가짐을 확인한 도이다.
도 11은 DGAS 및 DGBG를 포함하는 융합단백질(DGAS-DGBG, DGAS-GS-DGBG, DGAS-EstO-DGBG)-다당 복합체의 베타글루코시다제(DGBG) 활성을 확인한 도이다.
도 12는 융합단백질(DGAS-링커-DGBG)-다당 복합체로부터 목적 단백질인 DGBG를 분리할 수 있음을 확인한 도이다. 이때, kDA는 단백질 분자량 마커를 의미한다. 레인(Lane) 1은 설탕과의 반응이 완료된 융합단백질-다당 복합체; 레인 2 내지 5는 각 1 내지 4회의 세척 작업이 완료된 상등액; 레인 6은 4회의 세척 작업이 완료된 융합단백질-다당 복합체; 레인 7은 프로테아제(Factor Xa) 반응 이후에 융합단백질로부터 분리되어 상층액에 존재하는 목적단백질 DGBG; 및 레인 8은 프로테아제 반응 이후에 융합단백질로부터 분리되어 다당체 펠렛 부분에 존재하는 DGAS를 보여준다.
도 13은 융합단백질(DGAS-EstO-DGBG)-다당 복합체를 통해 고정화된 DGBG의 활성을 재사용 횟수에 따라 분석한 도이다.
1 shows the structures of the fusion proteins prepared in Preparation Examples 1 to 7.
Fig. 2 is a graphical representation of the distribution of < RTI ID = 0.0 > Deinococcus & an illustrative dgas) - in geothermalis) derived from amyl sucrase dehydratase (DGAS) and green fluorescent protein (Green Fluorescent Protein, EGFP) fusion in which the fusion protein (an expression vector capable of expressing the EGFP-DGAS) (pHCXHD - egfp .
FIG. 3 is a diagram showing an expression vector (pET- dgas - dgbg ) capable of expressing a fusion protein (DGAS-DGBG) obtained by fusion of DGAS and beta-glucosidase ( DGBG ).
FIG. 4 is a diagram showing an expression vector (pET- dgas - gs - dgbg ) capable of expressing a fusion fusion protein (DGAS-GS-DGBG) in which a DGAS and a DGBG are linked by a GS-linker.
5 is a diagram showing an expression vector (pET- dgas - esto - dgbg ) capable of expressing a fusion protein (DGAS-EstO-DGBG) in which the DGAS and DGBG are linked by an Esterase-O-linker .
Fig. 6 is a diagram showing an expression vector ( pET- malE - dgas- ( lacZ a ) ) capable of expressing a fusion protein (MalE-DGAS) fused with DGAS and a maltose binding protein (MalE ) .
Fig. 7 shows an expression vector (pET- malE - dgas ) capable of expressing a fusion protein (MalE-DGAS) fused with MalE and DGAS.
FIG. 8 is a diagram showing an expression vector (pET- dgas- linker) capable of producing a variety of fusion proteins in which a target protein is introduced into an MCS portion and expressed with DGAS in front.
FIG. 9 is a photograph showing the polysaccharide synthesis activity of the fusion proteins (DGAS-DGBG, DGAS-GS-DGBG and DGAS-EstO-DGBG) containing DGAS.
FIG. 10 shows that EGFP is active in a fusion protein-polysaccharide complex comprising an EGFP-DGAS fusion protein and a polysaccharide.
FIG. 11 is a view showing beta glucosidase (DGBG) activity of a fusion protein (DGAS-DGBG, DGAS-GS-DGBG, DGAS-EstO-DGBG) -polysaccharide complex containing DGAS and DGBG.
FIG. 12 is a diagram for confirming that a target protein, DGBG, can be isolated from a fusion protein (DGAS-linker-DGBG) -polysaccharide complex. Here, kDA is a protein molecular weight marker. Lane 1 is a fusion protein-polysaccharide complex in which the reaction with sugar is completed; Lanes 2 to 5 are supernatants each of which has been subjected to one to four washing operations; Lane 6 is a fusion protein-polysaccharide complex in which four washing operations have been completed; Lane 7 represents the target protein DGBG separated from the fusion protein after the protease (Factor Xa) reaction and present in the supernatant; And lane 8 show the DGAS present in the polysaccharide pellet portion separated from the fusion protein after the protease reaction.
FIG. 13 shows the activity of DGBG immobilized through a fusion protein (DGAS-EstO-DGBG) -polysaccharide complex according to the number of times of reuse.

이하, 본 발명을 보다 구체적으로 설명하기 위하여 하기 실시예 등을 들어 설명한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 본 발명의 구체적 이해를 돕기 위해 예시적으로 제공되는 것이다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided by way of example to facilitate a specific understanding of the present invention.

제조예Manufacturing example 1.  One. 아밀로수크라아제(amylosucrase)와Amylosucrase < / RTI > and < RTI ID = 초록형광단백질Abstract Fluorescent Protein (Green Fluorescent Protein, (Green Fluorescent Protein, EGFPEGFP )를 융합시킨 ) Was fused 융합단백질의Of the fusion protein 제조 Produce

데이노코커스 제오써르말리스(Deinococcus geothermalis) 유래 아밀로수크라아제(DGAS, 서열번호 1) 및 초록형광단백질(Green Fluorescent Protein, EGFP)을 융합시킨 효소의 융합단백질을 제조하기 위해, 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하여, 표 1에 나타낸 서열을 가지는 정방향 프라이머 F_N_DGAS 및 역방향 프라이머 R_X_DGAS를 설계하였다. 또한, pET-egfp 벡터(vector)를 주형 DNA로 하여, 정방향 프라이머 F_N_EGFP 및 역방향 프라이머 R_N_EGFP를 설계한 후, 각각을 표 2에 기재된 방법으로 중합효소연쇄반응(PCR)을 수행하였다. Deinococcus geothermalis) to produce the sucrase dehydratase (DGAS, SEQ ID NO: 1) and a green fluorescent protein (a fusion protein of an enzyme fused to Green Fluorescent Protein, EGFP) as derived from amyl, Day furnace the chromosome of Lactococcus fifth sseoreu Marlies as template DNA The forward primer F_N_DGAS and the reverse primer R_X_DGAS having the sequences shown in Table 1 were designed. The forward primer F_N_EGFP and the reverse primer R_N_EGFP were designed using the pET- egfp vector as a template DNA, and PCR was carried out by the method described in Table 2, respectively.

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence F_N_DGASF_N_DGAS 정방향Forward 33 5'-CAT ATG CTG AAA GAC GTG CTC ACT-3'5'-CAT ATG CTG AAA GAC GTG CTC ACT-3 ' R_X_DGASR_X_DGAS 역방향Reverse 44 5'-CTC GAG TGC TGG AGC CTC CCC GGC-3'5'-CTC GAG TGC TGG AGC CTC CCC GGC-3 ' F_N_EGFPF_N_EGFP 정방향Forward 55 5'-CAT ATG GTG AGC AAG GGC GAG-3'5'-CAT ATG GTG AGC AAG GGC GAG-3 ' R_N_EGFPR_N_EGFP 역방향Reverse 66 5'-CAT ATG CTT GTA CAG CTC GTC CAT GC-3'5'-CAT ATG CTT GTA CAG CTC GTC CAT GC-3 '

PCR 조건PCR conditions 변성
(denaturation)
denaturalization
(denaturation)
사전변성 (pre-denaturation)Pre-denaturation 94 ℃/5 min94 ° C / 5 min
증폭
(amplification)
Amplification
lt; / RTI >
변성 (denaturation)Denaturation 94 ℃/0.5 min94 DEG C / 0.5 min 25 cycle25 cycles
결합 (annealing)Annealing 63 ℃/0.5 min63 DEG C / 0.5 min 확장 (extension)Extension 72 ℃/2 min72 ° C / 2 min 최종 확장
(final extension)
Final Expansion
(final extension)
최종확장 (final extension)Final extension 72 ℃/7 min72 ° C / 7 min

상기 PCR을 통해 수득한 각각의 PCR 산물인 DGAS 및 pHCXHD 벡터(또는 'pHC 벡터'로도 명명됨)를 제한효소 NdeI과 XhoI으로 처리한 후, 함께 라이게이션(ligation)하여 pHCXHD-dgas 벡터를 제조하였다. 상기 pHCXHD-dgas 벡터를 제한효소 NdeI으로 재차 처리한 후, dgas 유전자 앞쪽 부분에 egfp 유전자를 연결하여, pHCXHD- egfp-dgas 벡터를 제조하였다(도 2). 또한, 상기 pHCXHD- egfp-dgas 벡터를 이용하여 DGAS 및 EGFP가 융합된 융합단백질(DGAS-EGFP)을 제조하였다.The DGAS and pHCXHD vectors (also referred to as 'pHC vectors') obtained by the above PCR were treated with restriction enzymes Nde I and Xho I and ligation together to obtain pHCXHD-dgas Vector. The pHCXHD- dgas After again a vector with a restriction enzyme Nde I treatment, to connect the egfp gene the gene dgas front portion, pHCXHD - dgas vector was prepared (FIG. 2) - egfp. In addition, the pHCXHD - egfp - using dgas vector was prepared DGAS and EGFP fusion fusion proteins (DGAS-EGFP).

제조예Manufacturing example 2.  2. 아밀로수크라아제와Amylose sucrase and 베타-글루코시다아제(β- Beta-glucosidase (beta-glucosidase) glucosidaseglucosidase )를 융합시킨 ) Was fused 융합단백질의Of the fusion protein 제조 Produce

데이노코커스 제오써르말리스 유래 아밀로수크라아제(DGAS) 및 데이노코커스 제오써르말리스 유래 베타-글루코시다아제(DGBG)를 융합시킨 효소를 overlap PCR 방법으로 제조하기 위해, 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하여 표 3에 나타낸 서열을 가지는 정방향 프라이머 F_N_DGAS 및 역방향 프라이머 R_ASBG를 설계하였다. 또한 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하여, 정방향 프라이머 F_DGBG 및 역방향 프라이머 R_DGBG_X를 설계한 후, 각각을 상기 표 4에 기재된 방법으로 PCR을 수행하였다.In order to prepare an enzyme fused with amylose sucrose (DGAS) derived from Deinococcus zephullis malaria and beta-glucosidase (DGBG) derived from Deinococcus zephar males by the overlap PCR method, As a template DNA, a forward primer F_N_DGAS and a reverse primer R_ASBG having the sequences shown in Table 3 were designed. Also, the forward primer F_DGBG and the reverse primer R_DGBG_X were designed using the chromosome of Deinococcus zeussalmalis as a template DNA, and PCR was carried out by the method described in Table 4, respectively.

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence F_N_DGASF_N_DGAS 정방향Forward 77 5'-CAT ATG CTG AAA GAC GTG CTC ACT TCT GAA CT-3'5'-CAT ATG CTG AAA GAC GTG CTC ACT TCT GAA CT-3 ' R_ASBGR_ASBG 역방향Reverse 88 5'-AGT CTG GGT CAT TGC TGG AGC CTC CCC-3' 5'-AGT CTG GGT CAT TGC TGG AGC CTC CCC-3 ' F_ASBGF_ASBG 정방향Forward 99 5'-GAG GCT CCA GCA ATG ACC CAG ACT CGA-3'5'-GAG GCT CCA GCA ATG ACC CAG ACT CGA-3 ' R_DGBG_XR_DGBG_X 역방향Reverse 1010 5'-CTC GAG TCT CAG AAA TTG ACG GTA-3'5'-CTC GAG TCT CAG AAA TTG ACG GTA-3 '

PCR 조건PCR conditions 변성
(denaturation)
denaturalization
(denaturation)
사전변성(pre-denaturation)Pre-denaturation 94 ℃/ 5 min94 ° C / 5 min
증폭
(amplification)
Amplification
lt; / RTI >
변성 (denaturation)Denaturation 94 ℃/ 0.5 min94 DEG C / 0.5 min 25 cycle25 cycles
결합 (annealing)Annealing 63 ℃/ 0.5 min63 DEG C / 0.5 min 확장 (extension)Extension 72 ℃/ 4 min72 ° C / 4 min 최종 확장
(final extension)
Final Expansion
(final extension)
최종확장 (final extension)Final extension 72 ℃/ 7 min72 ° C / 7 min

상기 PCR을 통해 수득한 각각의 PCR 산물을 혼합하고, 다시 주형 DNA를 사용하여, 정방향 프라이머 F_N_DGAS 및 역방향 프라이머 R_DGBG_X를 이용하여 상기 표 4에 기재된 방법으로 PCR을 수행하였다. 최종적으로 만들어진 약 3.3 kb의 PCR 산물을 pGEM-T Easy 벡터와 함께 라이게이션하여 pGEM-T-dgas - dgbg 벡터를 제조하였다. 이후, 시퀀싱을 통해 염기서열이 알맞게 증폭됨을 확인하였다. 또한, 상기 pGEM-T-dgas-dgbg 벡터와 발현벡터인 pET21a(+)를 제한효소 NdeI과 XhoI으로 처리한 후, 함께 라이게이션하여 pET-dgas-dgbg 벡터를 제조하였다(도 3). 또한, 상기 pET-dgas-dgbg 벡터를 이용하여 DGAS 및 DGBG가 융합된 융합단백질(DGAS-DGBG)을 제조하였다.Each of the PCR products obtained through the above PCR was mixed and PCR was performed using the forward primer F_N_DGAS and the reverse primer R_DGBG_X using the template DNA as described in Table 4 above. The final product of approximately 3.3 kb of PCR product was ligated with pGEM-T Easy vector to obtain pGEM-T- dgas - dgbg Vector. Afterwards, it was confirmed that the nucleotide sequence was amplified properly by sequencing. The pGEM-T- dgas-dgbg vector and the expression vector pET21a (+) were treated with restriction enzymes Nde I and Xho I, and ligated together to obtain pET- dgas - dgbg (Fig. 3). Also, a fusion protein (DGAS-DGBG) fused with DGAS and DGBG was prepared using the above pET- dgas - dgbg vector.

제조예Manufacturing example 3.  3. DGAS와DGAS and DGBG의Of DGBG 사이를  Between GSGS -링커(linker)로 연결한 - Linked by a linker 융합단백질의Of the fusion protein 제조 Produce

데이노코커스 제오써르말리스 유래 아밀로수크라아제(DGAS)와 베타글루코시다아제(DGBG)의 사이를 GS-링커(gs)로 연결한 융합단백질을 제조하기 위해, 먼저 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하여, 하기 표 5와 같은 서열을 가지는 정방향 프라이머 F_N_DGAS 및 역방향 프라이머 R_DGAS_GS_BX을 설계한 후, 표 2에 기재된 방법으로 PCR을 수행하여 DGAS와 GS-링커의 유전자가 연결된 DGAS-GS 링커를 수득하였다. 이때 역방향 프라이머에 포함된 GS 링커의 아미노산 서열은 GGGGSGGGGS(서열번호 28)이며, 링커의 말단(terminal) 부분의 아미노산 GS는 BamHI site, 아미노산 LE는 XhoI site에 해당한다. 또한, 정방향 프라이머 F_B_DGBG 및 역방향 프라이머 R_DGBG_X를 이용하여 N-말단에는 BamHI site, C-말단에는 XhoI site를 갖는 DGBG를 표 2에 기재된 PCR 조건으로 수득하였다.In order to prepare a fusion protein in which a GS-linker ( gs ) is connected between amylose sucrose (DGAS) and beta-glucosidase (DGBG) derived from Deinococcus zephar monkeys, The forward primer F_N_DGAS and the reverse primer R_DGAS_GS_BX having the sequences shown in Table 5 below were designed using the chromosome as the template DNA and PCR was performed according to the method described in Table 2 to obtain a DGAS-GS linker in which DGAS and GS- ≪ / RTI > Here, the amino acid sequence of the GS linker contained in the reverse primer is GGGGSGGGGS (SEQ ID NO: 28), the amino acid GS at the terminal portion of the linker corresponds to BamH I site, and the amino acid LE corresponds to Xho I site. Further, DGBG having BamH I site at the N-terminus and Xho I site at the C-terminus was obtained using the forward primer F_B_DGBG and the reverse primer R_DGBG_X under the PCR conditions shown in Table 2.

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence F_N_DGASF_N_DGAS 정방향 Forward 1111 5'-CAT ATG CTG AAA GAC GTG CTC ACT TCT GAA CT-3'5'-CAT ATG CTG AAA GAC GTG CTC ACT TCT GAA CT-3 ' R_DGAS_GS_BXR_DGAS_GS_BX 역방향Reverse 1212 5'-CTC GAG GGA TCC ACC ACC GCC CGA GCC ACC GCC ACC TGC TGG AGC CTC CCC GGC GG -3' 5'-CTC GAG GGA TCC ACC ACC GCC CGA GCC ACC GCC ACC TGC TGG AGC CTC CCC GGC GG -3 ' F_B_DGBGF_B_DGBG 정방향 Forward 1313 5'-GGA TCC ATG ACC CAG ACT CGA CCC GC-3'5'-GGA TCC ATG ACC CAG ACT CGA CCC GC-3 ' R_DGBG_XR_DGBG_X 역방향Reverse 1414 5'-CTC GAG TCT CAG AAA TTG ACG GTA-3'5'-CTC GAG TCT CAG AAA TTG ACG GTA-3 '

또한, pET21a(+) 벡터와 상기 수득한 DGAS-GS 링커를 제한효소 NdeI과 XhoI로 처리한 후, 함께 라이게이션하여 pET-dgas - gs 벡터를 제조하였다. 상기 pET-dgas-gs 벡터를 다시 제한효소 BamHI과 XhoI으로 처리하여, GS 링커 말단 부분을 자르고, 뒤쪽 효소인 DGBG를 삽입하였다. 그 결과, XhoI(아미노산 LE) 부분이 제거되어 두 효소 사이에는 온전히 GGGGSGGGGS(서열번호 28) 서열을 갖는 링커가 연결이 된 pET-dgas - gs-dgbg 벡터를 얻을 수 있었다(도 4). 또한, 상기 pET-dgas - gs-dgbg 벡터를 이용하여 DGAS 및 DGBG를 GS 링커로 연결시킨 융합단백질(DGAS-GS-DGBG)을 제조하였다.The pET21a (+) vector and the DGAS-GS linker thus obtained were treated with restriction enzymes Nde I and Xho I, and ligated together to obtain pET- dgas - gs Vector. The pET- dgas-gs vector was further treated with restriction enzymes BamHI and XhoI to cut off the GS linker end portion and insert the downstream enzyme DGBG. As a result, the Xho I (amino acid LE) portion was removed and a pET- dgas - gs - dgbg vector in which a linker having the sequence GGGGSGGGGS (SEQ ID NO: 28) was completely bound between the two enzymes was obtained (FIG. In addition, the pET- dgas - gs - dgbg (DGAS-GS-DGBG) was prepared by linking DGAS and DGBG with a GS linker using a vector.

제조예Manufacturing example 4.  4. DGAS와DGAS and DGBG의Of DGBG 사이를 Esterase-O-링커(linker)로 연결한  Linked by an Esterase-O-linker 융합단백질의Of the fusion protein 제조 Produce

데이노코커스 제오써르말리스 유래 아밀로수크라아제(DGAS)와 베타글루코시다아제(DGBG)의 사이를 Esterase-O-링커(EstO 링커, esto)로 연결한 융합단백질을 제조하기 위해, 먼저 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하여, 표 6과 같은 서열을 가지는 정방향 프라이머 F_N_DGAS 및 역방향 프라이머 R1_DGAS_EstO을 설계하였다. 이때 역방향 프라이머에는 Esterase O 링커의 일부분만 합성되어 있는데, 이는 주형 DNA와 비상보적인 부분이 프라이머에 많이 존재함으로 인해 프라이머와 주형 DNA 간에 어닐링 효율이 떨어지는 것을 방지하기 위함이다. 따라서, 생성된 PCR 산물을 다시 주형 DNA로 사용하고, 정방향 프라이머 F_N_DGAS 및 역방향 프라이머 R2_DGAS_EstO를 사용하여, 표 2에 기재된 PCR 조건으로 온전한 EstO 링커가 연결된 DGAS-EstO 링커 유전자를 얻었다. 이때 역방향 프라이머에는 EstO 링커의 나머지 부분이 모두 합성되어 있는데, 전체 EstO 링커의 아미노산 서열은 DKTKYTAS(서열번호 29)이며, 링커의 말단 부분의 아미노산 AS는 NheI site, 아미노산 LE는 XhoI site에 해당한다. In order to prepare a fusion protein in which the distance between amylose sucrose (DGAS) derived from Deinococcus zephyralis and the beta glucosidase (DGBG) is linked with an Esterase-O-linker (EstO linker, esto ) A forward primer F_N_DGAS and a reverse primer R1_DGAS_EstO having the sequence as shown in Table 6 were designed using the chromosome of Deinococcus zepharthalis as a template DNA. In this case, only a part of the Esterase O linker is synthesized in the reverse primer in order to prevent the annealing efficiency between the primer and the template DNA from deteriorating due to the presence of the template DNA and the non-complementary portion in the primer. Thus, the resultant PCR product was used again as template DNA, and the forward primer F_N_DGAS and the reverse primer R2_DGAS_EstO were used to obtain a DGAS-EstO linker gene to which a complete EstO linker was linked under the PCR conditions shown in Table 2. [ At this time, all the rest of the EstO linker is synthesized in the reverse primer. The amino acid sequence of the entire EstO linker is DKTKYTAS (SEQ ID NO: 29), the amino acid AS at the end of the linker is Nhe I site, and the amino acid LE corresponds to Xho I site do.

또한, 정방향 프라이머 F_Nh_DGBG 및 역방향 프라이머 R_DGBG_X를 이용하여 N-말단에는 NheI site, C-말단에는 XhoI site를 갖는 DGBG를 표 2에 기재된 PCR 조건으로 얻었다.Using forward primer F_Nh_DGBG and reverse primer R_DGBG_X, DGBG having Nhe I site at the N-terminus and Xho I site at the C-terminus was obtained under the PCR conditions shown in Table 2.

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence F_N_DGASF_N_DGAS 정방향Forward 1515 5'-CAT ATG CTG AAA GAC GTG CTC ACT TCT GAA CT-3'5'-CAT ATG CTG AAA GAC GTG CTC ACT TCT GAA CT-3 ' R1_DGAS_EstOR1_DGAS_EstO 역방향Reverse 1616 5'-CGT GTA TTT AGT TTT GTC TGC TGG AGC CTC CCC GGC-3' 5'-CGT GTA TTT AGT TTT GTC TGC TGG AGC CTC CCC GGC-3 ' R2_DGAS_EstOR2_DGAS_EstO 역방향Reverse 1717 5'-CTC GAG GCT AGC CGT GTA TTT AGT TTT-3'5'-CTC GAG GCT AGC CGT GTA TTT AGT TTT-3 ' F_Nh_DGBGF_Nh_DGBG 정방향Forward 1818 5'-GGA TCC ATG ACC CAG ACT CGA CCC GC-3'5'-GGA TCC ATG ACC CAG ACT CGA CCC GC-3 ' R_DGBG_XR_DGBG_X 역방향Reverse 1919 5'-CTC GAG TCT CAG AAA TTG ACG GTA-3'5'-CTC GAG TCT CAG AAA TTG ACG GTA-3 '

또한, pET21a(+) 벡터와 상기 수득한 DGAS-EstO 링커를 제한효소 NdeI과 XhoI로 처리한 후, 함께 라이게이션하여 pET-dgas - esto 벡터를 제조하였다. 상기 pET-dgas-esto 벡터를 다시 제한효소 NheI과 XhoI으로 처리하여, EstO 링커 말단 부분을 자르고, 뒤쪽 효소인 DGBG를 삽입하였다. 그 결과, 두 효소 사이에는 XhoI(아미노산 LE) 부분이 제거되어, 온전히 DKTKYTAS(서열번호 29) 서열을 갖는 링커가 연결이 된 pET-dgas - esto-dgbg 벡터를 얻을 수 있었다(도 5). 또한, 상기 pET-dgas-gs-dgbg 벡터를 이용하여 DGAS 및 DGBG를 EstO 링커로 연결시킨 융합단백질(DGAS-EstO-DGBG)을 제조하였다.The pET21a (+) vector and the DGAS-Esto linker thus obtained were treated with restriction enzymes Nde I and Xho I, and ligated together to obtain pET- dgas - esto Vector. The pET- dgas-esto vector was further treated with restriction enzymes Nhe I and Xho I to cut the terminal portion of the EstO linker and insert the downstream enzyme DGBG. As a result, the Xho I (amino acid LE) portion was removed between the two enzymes, and a linker having the sequence of DKTKYTAS (SEQ ID NO: 29) was ligated to pET- dgas - esto - dgbg Vector was obtained (Fig. 5). Also, a fusion protein (DGAS-EstO-DGBG) in which DGAS and DGBG were linked by an EstO linker was prepared using the above pET- dgas-gs - dgbg vector.

제조예Manufacturing example 5.  5. 말토스Maltose 결합 단백질(maltose binding protein,  Binding protein (maltose binding protein, MalEMalE )과 )and DGAS가DGAS 링커로 연결된  Linked by a linker MalEMalE -- DGASDGAS 융합단백질의Of the fusion protein 제조 Produce

말토스 결합 단백질(maltose binding protein, MalE)과 DGAS가 링커로 연결된 MalE-DGAS 융합단백질을 제조하기 위해, 먼저 유전자 발현벡터인 pMaL-cx2(New England Biolabs)를 주형 DNA로 하여, 표 7과 같은 서열을 가지는 정방향 프라이머 F_N_malE 및 역방향 프라이머 R_malE_X을 설계한 후, 표 2에 기재된 방법으로 PCR을 수행하여 MalE-lacZ alpha fusion protein(ACCESSION : AFE02922)의 유전자를 얻었다. 또한, 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하고, 정방향 프라이머 F_E_DGAS 및 역방향 프라이머 R_DGAS_H로 표 2에 기재된 방법으로 PCR을 수행한 결과, 2kb 상당의 dgas 유전자를 얻었다. MalE-DGAS fusion protein with maltose binding protein (MalE) and DGAS linked by linker For the preparation, the forward primer F_N_malE and the reverse primer R_malE_X having the sequence shown in Table 7 were designed using the gene expression vector pMaL-cx2 (New England Biolabs) as the template DNA, and PCR was carried out by the method described in Table 2 To obtain the gene for MalE-lacZ alpha fusion protein (ACCESSION: AFE02922). PCR was performed using the forward primer F_E_DGAS and the reverse primer R_DGAS_H using the chromosome of Deinococcus zeussalmalis as the template DNA and the method described in Table 2. As a result, a 2 kb equivalent dgas gene was obtained.

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence F_N_malEF_N_malE 정방향Forward 2020 5'-CAT ATG AAA ATC GAA GAA GGT AAA CTG GTA-3'5'-CAT ATG AAA ATC GAA GAA GGT AAA CTG GTA-3 ' R_malE_XR_malE_X 역방향Reverse 2121 5'-CTC GAG TCC GCC AAA ACA GCC AAG CTG CCA-3' 5'-CTC GAG TCC GCC AAA ACA GCC AAG CTG CCA-3 ' F_E_DGASF_E_DGAS 정방향Forward 2222 5'-GAA TTC ATG CTG AAA GAC GTG CTC ACT TCT-3'5'-GAA TTC ATG CTG AAA GAC GTG CTC ACT TCT-3 ' R_DGAS_HR_DGAS_H 역방향Reverse 2323 5'-AAG CTT TGC TGG AGC CTC CCC GGC GGT CAG-3'5'-AAG CTT TGC TGG AGC CTC CCC GGC GGT CAG-3 '

또한, pET21a(+) 벡터와 상기 수득한 MalE-lacZ alpha fusion protein 유전자를 제한효소 NdeI과 XhoI로 처리한 후, 함께 라이게이션하여 pET-malE-( lacZα ) 벡터를 제조하였다. 상기 pET-malE-( lacZα ) 벡터를 다시 제한효소 EcoRI과 Hind III로 처리하여, MalE-lacZ alpha fusion protein 유전자 내부에 있던 MCS 부분을 잘라, 상기 수득한 dgas 유전자와 함께 라이게이션하여 pET-malE-dgas-( lacZα ) 벡터를 제조하였다(도 6). MalE-lacZ alpah fusion protein의 구조는 MalE-링커-MCS-lacZ alpha protein으로 구성되어 있어, pET-malE - dqas -( lacZα ) 벡터를 사용하여 제조되는 MalE-DGAS 융합단백질은 MalE와 DGAS가 링커로 연결되어 있다.Also, pET21a (+) vector and the above-obtained handle-lacZ alpha fusion protein gene to MalE restriction enzymes Nde I and Xho I, then, with ligation pET- malE - was prepared (lacZα) vector. The pET- malE - (lacZα) processes the vector back to a restriction enzyme EcoR I and Hind III, MalE lacZ-alpha fusion protein gene was cut out of the MCS section therein, ligated with the above-obtained gene dgas pET- malE -dgas- ( lacZ? ) vector was prepared (Fig. 6). The MalE-lacZ fusion protein is composed of MalE-linker-MCS-lacZ alpha protein, and the MalE-DGAS fusion protein prepared using the pET- malE - dqas- ( lacZα ) vector is composed of MalE and DGAS as linkers It is connected.

제조예Manufacturing example 6.  6. MalEMalE -- DGASDGAS 융합단백질에서Fusion protein lacZlacZ alphaalpha fusionfusion proteinprotein 이 제거된 Removed Jung 합단백질의 제조Preparation of the sum protein

MalE-DGAS 융합단백질에서 lacZ alpha fusion protein이 제거된 융합단백질을 제조하기 위해, 먼저 유전자 발현벡터인 pMaL-cx2(New England Biolabs)를 주형 DNA로 하여, 표 7과 같은 서열을 가지는 정방향 프라이머 F_N_malE 및 표 8과 같은 서열을 가지는 역방향 프라이머 R_malE_X2을 설계한 후, 표 2에 기재된 방법으로 PCR을 수행하여 malE-( lacZα ) 유전자에서 malE 유전자만 얻었다.In order to prepare a fusion protein from which the lacZ alpha fusion protein was removed from the MalE-DGAS fusion protein, the forward primer F_N_malE having the sequence shown in Table 7 was used as the template DNA, and pMaL-cx2 (New England Biolabs) After designing the reverse primer R_malE_X2 having the sequence shown in Table 8, PCR was carried out as shown in Table 2 to obtain malE ( lacZ? ) Gene malE Only genes were obtained.

또한, 데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하고, 표 7과 같은 서열을 가지는 정방향 프라이머 F_E_DGAS 및 역방향 프라이머 R_DGAS_H를 사용하여 표 2에 기재된 방법으로 PCR을 수행한 결과, 2kb 상당의 dgas 유전자를 얻었다.PCR was carried out by using the forward primer F_E_DGAS and the reverse primer R_DGAS_H having the sequence shown in Table 7 as a template DNA and using the chromosome of Deinococcus zeussalmalis as a template to obtain a 2 kb equivalent dgas gene .

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence R_malE_X2R_malE_X2 역방향Reverse 2424 5'-CTC GAG AAG CTT GCC TGC AGG TCG-3'5'-CTC GAG AAG CTT GCC TGC AGG TCG-3 '

또한, pET21a(+) 벡터와 상기 수득한 malE 유전자를 제한효소 NdeI과 XhoI로 처리한 후, 함께 라이게이션하여 pET-MalE 벡터를 제조하였다. 상기 pET-MalE 벡터를 다시 제한효소 EcoRI과 Hind III로 처리하여, MalE 유전자 내부에 있던 MCS 부분을 잘라, 상기 수득한 dgas 유전자와 함께 라이게이션하여 pET-malE - dgas 벡터를 제조하였다(도 7). malE 유전자의 구조는 malE-링커-MCS 유전자로 구성되어 있어, MCS 대신 dgas 유전자를 삽입한 결과, lacZ alpha fusion protein이 제거된 MalE-DGAS 단백질이 제조되었다. Further, the pET21a (+) vector and the obtained malE The gene was treated with restriction enzymes Nde I and Xho I and ligated together to prepare a pET-MalE vector. Processing the vector pET-MalE back to the restriction enzyme EcoR I and Hind III, the cut part was MCS within the MalE gene, ligated with the above-obtained gene dgas pET- malE - dgas Vector (Fig. 7). The structure of malE gene is composed of malE- linker-MCS gene. As a result of inserting dgas gene instead of MCS, MalE-DGAS protein with lacZ alpha fusion protein was produced.

제조예Manufacturing example 7. 다양한 목적 단백질 발현을 위한  7. For the expression of various target proteins pETpET -- DGASDGAS -링커-MCS의 제조- Preparation of Linker-MCS

데이노코커스 제오써르말리스의 염색체를 주형 DNA로 하고, 표 9와 같은 서열을 가지는 정방향 프라이머 F_SacI_DGAS 및 역방향 프라이머 R_DGAS_SacI_Mutant로 PCR을 수행한 결과, 2kb 상당의 dgas 유전자를 얻을 수 있었다. 이후, pMaL-cx2를 제한효소 SacI으로 한쪽을 절단하여 라이게이션하여 pMal-cx2에서 MalE과 링커 사이 부분에 dgas 유전자를 삽입하였다. 이 플라스미드를 주형 DNA로 하여 표 6과 같은 서열을 가지는 정방향 프라이머 F_N_DGAS 및 표 9와 같은 서열을 가지는 역방향 프라이머 R_malE_X3로 PCR을 수행한 결과, DGAS-링커-MCS의 유전자를 수득하였다.PCR was carried out using the forward primer F_SacI_DGAS and the reverse primer R_DGAS_SacI_Mutant having the sequence shown in Table 9 as the template DNA, and a dgas gene equivalent to 2 kb was obtained as a result of the chromosome of Deinococcus zeosharmalis as the template DNA. Then, the ligation was cut to one side of pMaL-cx2 with restriction enzyme Sac I was inserted to a portion between the MalE gene dgas and linker in pMal-cx2. Using this plasmid as the template DNA, the forward primer F_N_DGAS having the sequence shown in Table 6 and the reverse primer R_malE_X3 having the sequence shown in Table 9 were subjected to PCR to obtain the DGAS-linker-MCS gene.

PCR에 사용된 프라이머Primers used in PCR 프라이머 명칭Name of the primer 서열번호SEQ ID NO: 유전자서열Gene sequence F_SacI_DGASF_SacI_DGAS 정방향Forward 2525 5'-GAG CTC ATG CTG AAA GAC GTG CTC-3'5'-GAG CTC ATG CTG AAA GAC GTG CTC-3 ' R_DGAS_SacI_MutantR_DGAS_SacI_Mutant 역방향Reverse 2626 5'-CGA GCT CGC TGG AGC CTC CCC GGC-3' 5'-CGA GCT CGC TGG AGC CTC CCC GGC-3 ' R_malE_X3R_malE_X3 역방향Reverse 2727 5'-CTC GAG GTC GAC TCT AGA GGA-3'5'-CTC GAG GTC GAC TCT AGA GGA-3 '

pET21a(+) 벡터와 상기 수득한 DGAS-링커-MCS 유전자를 제한효소 NdeI과 XhoI로 처리한 후, 함께 라이게이션하여 pET-dgas-링커-MCS(pET-dgas-M 링커) 벡터를 제조하였다(도 8). 상기 pET-dgas-링커-MCS의 MCS 부분에 목적 단백질의 유전자를 넣어 발현하면, 앞쪽에 DGAS 단백질이 붙어있는 다양한 융합단백질의 제작이 가능하다. The pET21a (+) vector and the obtained DGAS-linker-MCS gene were treated with restriction enzymes Nde I and Xho I and ligated together to prepare a pET- dgas -linker-MCS (pET- dgas- M linker) vector (Fig. 8). When the gene of the desired protein is inserted into the MCS portion of the pET- dgas -linker-MCS, various fusion proteins having the DGAS protein attached thereto can be produced.

상기 목적 단백질은 당업자가 원하는 모든 단백질이 가능하며, 특히, 의료, 연구용 및 산업용 단백질, 예를 들어, 항원, 항체, 세포수용체, 효소, 구조 단백질, 혈청, 및 세포 단백질로 이루어진 군에서 선택되는 생물학적 활성을 갖는 다양한 단백질이 될 수 있다. The target protein may be any protein desired by a person skilled in the art, and may be a biological protein selected from the group consisting of medical, research and industrial proteins such as antigen, antibody, cell receptor, enzyme, structural protein, serum, Can be various proteins having activity.

실시예Example 1.  One. 융합단백질의Of the fusion protein 발현 및 활성 확인 Identification of expression and activity

도 1의 융합단백질을 대량으로 얻기 위해, 상기 제조예 1의 pHCXHD-egfp -dgas 벡터가 삽입된 대장균(E. coli) MC1061을 37℃에서 15시간 동안 배양하여 융합단백질을 발현하였고, 제조예 2 내지 7의 pET 벡터가 삽입된 대장균 BL21(DE3)은 18℃에서 18시간 동안 0.5 mM IPTG(Isopropyl β-D-1-thiogalactopyranoside) 존재하에 배양하여 융합단백질의 발현을 유도하였다. 배양 후, 4℃ 및 4,000 rpm 조건으로 30분 동안 원심분리를 수행하여 균체를 회수하였다. 이후, 융해 버퍼(Lysis buffer)[50 mM NaH2PO4, pH 7.0, 300 mM NaCl, 10 mM imidazole, pH 7.0]에 현탁하여, 초음파 분쇄하였다. 이후, 상기 분쇄액을 4℃ 및 12,000 rpm 조건으로 10분간 원심분리를 수행한 후, 상등액을 수득하였다. 상기 상등액을 Ni-NTA 친화 크로마토그래피에 주입하여, 재조합 단백질을 정제하여 발현을 확인하였다.To obtain a fusion protein of Figure 1 in large quantities, and that the pHCXHD- egfp -dgas vector of Preparative Example 1, Escherichia coli (E. coli) MC1061 inserted incubated at 37 ℃ for 15 hours was expressed a fusion protein, Preparation 2 E. coli BL21 (DE3) into which the pET vector was inserted was cultured at 18 DEG C for 18 hours in the presence of 0.5 mM IPTG (Isopropyl beta-D-1-thiogalactopyranoside) to induce the expression of the fusion protein. After the incubation, the cells were recovered by performing centrifugation at 4 ° C and 4,000 rpm for 30 minutes. Then, the suspension in the fusion buffer (Lysis buffer) [50 mM NaH 2 PO 4, pH 7.0, 300 mM NaCl, 10 mM imidazole, pH 7.0], was pulverized ultrasound. Thereafter, the pulverized liquid was subjected to centrifugation at 4 ° C and 12,000 rpm for 10 minutes, and a supernatant was obtained. The supernatant was injected into Ni-NTA affinity chromatography, and the recombinant protein was purified to confirm its expression.

또한, 융합단백질의 아밀로수크라아제(DGAS) 활성을 측정하기 위해, 상기 재조합 벡터로부터 발현된 융합단백질과 설탕(수크로스)을 반응시켰다. 아밀로수크라아제(DGAS)는 설탕으로부터 α-1,4 결합의 아밀로오스(amylose)를 합성 또는 신장시킬 수 있다. 먼저, 1 M의 설탕용액 40 ㎕과 100 mM Tris-HCl(pH 8.0) 50 ㎕를 혼합한 후, 정제한 융합단백질 10 ㎕를 첨가하고 30℃에서 3시간 반응시킨 후, DNS 300 ㎕를 넣어 반응을 정지시킨 후, 5분간 끓는 물에서 DNS와 환원당의 발색을 통해 아밀로수크라아제의 활성을 확인하였다. Further, in order to measure the amylose sucrose (DGAS) activity of the fusion protein, the fusion protein expressed from the recombinant vector was reacted with sugar (sucrose). Amylose sucrase (DGAS) can synthesize or elongate amylose of alpha-1,4 linkages from sugar. First, 40 μl of a 1 M sugar solution and 50 μl of 100 mM Tris-HCl (pH 8.0) were mixed, and 10 μl of the purified fusion protein was added. After reacting at 30 ° C for 3 hours, 300 μl of DNS was added And the activity of amylose sucrase was confirmed by coloring DNS and reducing sugar in boiling water for 5 minutes.

또한, 목적 단백질로 사용된 초록형광단백질(EGFP)의 발현은 형광현미경을 이용하여 확인하였다. Expression of the green fluorescent protein (EGFP) used as the target protein was confirmed by fluorescence microscopy.

또한, 베타글루코시다아제(DGBG)의 활성을 측정하기 위해, 10 mM 의 p-nitrophenyl-β-D-glucopyranoside 40 ㎕ 과 100 mM Tris-HCl(pH 8.0) 50 ㎕를 혼합한 후, 정제한 융합단백질 10 ㎕를 첨가하고 40℃에서 10분 반응시켜, 효소반응에 의해 유리되는 p-nitrophenol의 노란색을 확인하였다.In order to measure the activity of beta-glucosidase (DGBG), 40 μl of 10 mM p- nitrophenyl-β-D-glucopyranoside and 50 μl of 100 mM Tris-HCl (pH 8.0) were mixed, 10 μl of protein was added and reacted at 40 ° C for 10 minutes to confirm the yellow color of p- nitrophenol liberated by the enzyme reaction.

이를 통해, 당전이효소 및 목적 단백질을 포함한 융합단백질이 발현되며, 상기 융합단백질은 융합된 두 가지 효소의 활성을 모두 가짐을 알 수 있었다.As a result, a fusion protein including a glycosyltransferase and a target protein was expressed, and the fusion protein had all the activities of the two fused enzymes.

실시예Example 2.  2. 융합단백질Fusion protein -다당 복합체의 제조 및 제조 속도 증가 방법- Preparation of polysaccharide complexes and methods for increasing the production rate

실시예Example 2-1.  2-1. 융합단백질Fusion protein -다당 복합체의 제조- Preparation of polysaccharide complex

당전이효소를 포함하는 융합단백질을 이용하여, 융합단백질-다당 복합체를 제조하기 위해, 먼저 상기 제조예에 따른 융합단백질과 설탕을 반응시켰다. 그 후 반응액을 13,000 rpm에서 원심분리하여 하얀색의 침전물을 수득하였다(도 9). 이를 통해, 융합단백질의 DGAS가 활성을 나타내어, 융합단백질-다당 복합체가 제조됨을 알 수 있었다.In order to prepare a fusion protein-polysaccharide complex using the fusion protein containing the sugar-transferase, the fusion protein according to the above-mentioned preparation example was first reacted with sugar. The reaction solution was then centrifuged at 13,000 rpm to obtain a white precipitate (Fig. 9). As a result, it was found that DGAS of the fusion protein was active, and a fusion protein-polysaccharide complex was produced.

또한, EGFP-DGAS 융합단백질 및 다당체로 이루어진, 융합단백질-다당 복합체에서 EGFP가 활성을 가짐을 형광현미경을 통해 확인하였다(도 10). In addition, fluorescence microscopy confirmed that EGFP was active in the fusion protein-polysaccharide complex of EGFP-DGAS fusion protein and polysaccharide (FIG. 10).

또한, 생성된 융합단백질-다당 복합체에 10 mM의 p-nitrophenyl-β-D-glucopyranoside 40 ㎕ 과 100 mM Tris-HCl (pH 8.0) 50 ㎕를 혼합하고 40℃에서 10분 반응시킨 결과, 효소반응에 의해 유리되는 p-nitrophenol의 노란색을 확인하여 융합단백질-다당 복합체의 DGBG가 활성을 나타냄을 알 수 있었다(도 11). Also, 40 μl of 10 mM p- nitrophenyl-β-D-glucopyranoside and 50 μl of 100 mM Tris-HCl (pH 8.0) were added to the resulting fusion protein-polysaccharide complex and reacted at 40 ° C. for 10 minutes. The yellow of p- nitrophenol liberated by the fusion protein-polysaccharide complex was found to be active (FIG. 11).

이를 통해, 본 발명의 융합단백질을 이용한 결과, 융합단백질-다당 복합체가 생성되었으며, 생성된 융합단백질-다당 복합체는 융합된 두 가지 단백질의 활성을 모두 가짐을 알 수 있었다.As a result, using the fusion protein of the present invention, it was found that a fusion protein-polysaccharide complex was produced, and that the resulting fusion protein-polysaccharide complex had all the activities of the two fusion proteins.

실시예Example 2-2.  2-2. 융합단백질Fusion protein -다당 복합체의 제조 속도 증가 방법- Methods for increasing production rate of polysaccharide complex

융합단백질과 반응하는 기질에 단당류 또는 이당류와 다당류를 함께 첨가할 경우 융합단백질-다당 복합체의 생성 속도가 증가함을 확인하기 위해, 1 M의 설탕용액 200 ㎕ 및 100 mM Tris-HCl (pH 8.0) 500 ㎕에 5%의 아밀로펙틴, 글리코겐, 또는 용해성 전분 200 ㎕를 혼합하여 기질을 제조하였다. 그 후, 기질에 융합단백질 100 ㎕를 첨가하여, 45℃에서 2시간 이상 반응한 결과, 아밀로펙틴과 용해성 전분을 넣었을 때 융합단백질-다당 복합체가 짧은 시간 내 가장 많이 생성되었으며, 효소의 활성도 강하게 나타났다. 이는 아밀로펙틴과 용해성 전분이 DGAS의 기질로써의 특이성이 높기 때문에 가지가 신장하기 위한 당 전이가 빠르게 일어났기 때문이다. In order to confirm that the production rate of the fusion protein-polysaccharide complex increases when the monosaccharide or the disaccharide and the polysaccharide are added to the substrate reacting with the fusion protein, 200 μl of 1 M sugar solution and 100 mM Tris-HCl (pH 8.0) 500 [mu] l was mixed with 5% amylopectin, glycogen, or soluble starch (200 [mu] l) to prepare a substrate. Then, when 100 μl of the fusion protein was added to the substrate and the reaction was carried out at 45 ° C for 2 hours or more, when the amylopectin and the soluble starch were added, the fusion protein-polysaccharide complex was produced most in a short time and the enzyme activity was strong. This is because amylopectin and soluble starch have a high specificity as a substrate for DGAS, so sugar transfer for growing the branch has occurred rapidly.

이를 통해, 융합단백질과 반응하는 기질에 단당류 또는 이당류와 다당류를 함께 첨가할 경우 융합단백질-다당 복합체의 생성 속도가 증가함을 알 수 있었다.Thus, the addition of a monosaccharide or a disaccharide and a polysaccharide to a substrate that reacts with the fusion protein increases the production rate of the fusion protein-polysaccharide complex.

실시예Example 3.  3. 융합단백질Fusion protein -다당 복합체를 이용한 목적 단백질의 정제방법- Purification method of target protein using polysaccharide complex

실시예Example 3-1.  3-1. 융합단백질Fusion protein -다당 복합체의 분리- Isolation of polysaccharide complex

실시예 1에 기재된 방법으로, 융합단백질을 발현하는 대장균을 분쇄한 후 원심분리하여, 융합단백질을 함유한 상등액을 제조하였다. 그 후 상등액에 설탕을 반응시켜, 융합단백질-다당 복합체를 제조하였다. E. coli expressing the fusion protein was pulverized by the method described in Example 1 and then centrifuged to prepare a supernatant containing the fusion protein. Then, the supernatant was reacted with sugar to prepare a fusion protein-polysaccharide complex.

원심분리에 의해 융합단백질-다당 복합체를 수득할 수 있으므로, 원심분리에 의해 세포 용해물로부터 목적 단백질을 원스텝으로 간단히 정제할 수 있었다. 이는 기존의 정제방법인 상등액을 Ni-NTA 친화 크로마토그래피에 주입하는 방법에 비해 매우 간단한 원스텝 정제방법이므로, 목적 단백질을 생산하는 데에 매우 유용하게 사용될 수 있음을 알 수 있었다.Since the fusion protein-polysaccharide complex can be obtained by centrifugation, the desired protein can be easily purified from the cell lysate by one step by centrifugation. This indicates that the supernatant, which is a conventional purification method, is a very simple one-step purification method as compared with the method of injecting the supernatant into Ni-NTA affinity chromatography, and thus can be very useful for producing a target protein.

실시예Example 3-2.  3-2. 융합단백질Fusion protein -다당 복합체로부터 프로테아제를 통해 - through the protease from the polysaccharide complex 목적단백질의Of the target protein 분리 detach

상업적으로 사용하고 있는 pMaL-cx2 벡터는 내부에 프로테아제(Factor Xa)에 의해 절단되는 사이트가 삽입되어 있다. 그 외에도 다양한 pMAL 벡터는 엔테로키나제(Enterokinase), 제네나제(Genenase) 등의 프로테아제 절단 사이트를 가지고 있다. 제조예 5 내지 7의 벡터는 융합된 단백질 사이에 링커와 제한효소 절단부위(cleavage site)를 가지고 있어, 프로테아제를 처리하면 링커의 C-말단에 붙어 있던 효소가 떨어져 나오게 된다. 따라서, 융합단백질-다당 복합체에 프로테아제를 처리하면 C-말단의 목적 단백질이 절단되므로, 융합단백질에서 원하는 단백질만을 다시 2차 정제할 수 있다.The commercially available pMaL-cx2 vector has a site inserted therein that is cleaved by a protease (Factor Xa). In addition, various pMAL vectors have protease cleavage sites such as Enterokinase and Genenase. The vectors of Preparative Examples 5 to 7 have a linker and a cleavage site between the fused proteins. When the protease is treated, the enzyme attached to the C-terminus of the linker is released. Therefore, when the protease is treated in the fusion protein-polysaccharide complex, the target protein at the C-terminus is cleaved, so that only the desired protein can be secondary purified again from the fusion protein.

구체적으로, 융합단백질-다당 복합체를 통해 목적단백질을 분리할 수 있음을 확인하기 위해, 제조예 7에서 제조된 pET-dgas-링커-MCS 벡터의 MCS 부분에 목적 단백질로서 DGBG 유전자를 삽입하고 발현하여, DGAS-링커-DGBG의 융합단백질을 지닌 대장균을 수득하였다. 실시예 3-1에 기재된 방법으로 융합단백질을 발현하는 대장균을 분쇄한 후 원심분리하여 융합단백질을 함유한 상등액을 수득하였다. 그 후 상등액에 설탕을 반응시켜 융합단백질-다당 복합체를 제조하였다. 원심분리에 의해 융합단백질-다당 복합체를 수득한 후 최초 상등액과 동량의 100 mM Tris-HCl(pH 8.0)에 현탁시킨 후 원심분리에 의해 융합단백질-다당 복합체를 수득하는 세척 작업을 4회 반복함으로써, 다른 대장균 단백질이 세척된 융합단백질-다당 복합체를 수득하였다. 이후, 1 mg의 상기 세척된 융합단백질-다당 복합체를 20 mM Tris-HCl(pH 8.0)의 버퍼에서 프로테아제인 Factor Xa 0.02 mg와 23℃에서 6시간 이상 반응하고 원심분리를 수행하였다. Specifically, in order to confirm that the target protein can be isolated through the fusion protein-polysaccharide complex, the DGBG gene was inserted into the MCS portion of the pET- dgas -linker-MCS vector prepared in Preparation Example 7 as a target protein and expressed , E. coli having a fusion protein of DGAS-linker-DGBG was obtained. Escherichia coli expressing the fusion protein was pulverized by the method described in Example 3-1 and then centrifuged to obtain a supernatant containing the fusion protein. Then, the supernatant was reacted with sugar to prepare a fusion protein-polysaccharide complex. The fusion protein-polysaccharide complex was obtained by centrifugation, suspended in an equal amount of 100 mM Tris-HCl (pH 8.0) as the initial supernatant, and washed four times to obtain a fusion protein-polysaccharide complex by centrifugation , A fusion protein-polysaccharide complex in which another E. coli protein was washed was obtained. Then, 1 mg of the washed fusion protein-polysaccharide complex was reacted with 0.02 mg of Factor Xa, which is a protease, in a buffer of 20 mM Tris-HCl (pH 8.0) at 23 캜 for 6 hours or longer and centrifuged.

그 결과, DGAS-링커-DGBG의 융합단백질에서 프로테아제(Factor Xa) 서열을 포함하는 링커가 분해됨으로써 DGAS와 DGBG가 분리됨을 확인하였고, 분리된 DGBG는 상층액 부분에서 수득할 수 있으며, DGAS는 다당체의 펠렛 부분에서 발견됨을 확인하였다(도 12).As a result, it was confirmed that the DGAS and DGBG were separated by decomposing the linker containing the protease (Factor Xa) sequence in the fusion protein of DGAS-linker-DGBG, and the separated DGBG could be obtained in the supernatant portion, (Fig. 12). ≪ tb > < TABLE >

이를 통해, 본원발명의 융합단백질-다당 복합체를 이용하면 목적 단백질을 쉽게 정제할 수 있음을 알 수 있었다.Thus, it was found that the target protein can be easily purified using the fusion protein-polysaccharide complex of the present invention.

실시예Example 4.  4. 융합단백질Fusion protein -다당 복합체를 사용한 목적 단백질의 고정화 방법- Immobilization method of target protein using polysaccharide complex

융합단백질-다당 복합체를 통해 목적단백질을 고정화할 수 있음을 확인하기 위해, 실시예 2에서 제조된 아밀로펙틴과 용해성 전분에 의해 생성된, 융합단백질-다당 복합체에 50mM Tris-HCl(pH 8.0)과 목적 단백질(DGBG)의 기질인 10 mM의 p-nitrophenyl-β-D-glucopyranoside를 반응시켜 노란색으로 발색되면, 상층액을 버리고, 50mM Tris-HCl(pH 8.0)의 버퍼로 세척한 후, 원심분리하여 융합단백질-다당 복합체를 다시 수득하였다. 그 다음 다시 수득된 융합단백질-다당 복합체를 상기와 같은 방법으로 p-nitrophenyl-β-D-glucopyranoside과 반응시켜 재사용하였다.To confirm that the target protein can be immobilized through the fusion protein-polysaccharide complex, 50 mM Tris-HCl (pH 8.0) was added to the fusion protein-polysaccharide complex produced by the amylopectin and the soluble starch prepared in Example 2, The reaction mixture was reacted with 10 mM p- nitrophenyl-β-D-glucopyranoside as a substrate of protein (DGBG) The fusion protein-polysaccharide complex was again obtained. Then, the fusion protein-polysaccharide complex obtained again was reacted with p- nitrophenyl-β-D-glucopyranoside in the same manner as above and reused.

그 결과, 반응 혼합물로부터 융합단백질-다당 복합체를 원심분리에 의해 간단히 분리할 수 있고, 5주기까지 상기 복합체의 DGBG가 100% 활성이 유지됨을 확인하여, 원심분리에 의해 융합단백질-다당 복합체를 재사용할 수 있음을 확인하였다(도 13).As a result, it was confirmed that the fusion protein-polysaccharide complex could be easily separated from the reaction mixture by centrifugation, and that the DGBG of the complex was maintained at 100% activity for up to 5 cycles, and the fusion protein- polysaccharide complex was reused (Fig. 13).

이를 통해, 본원발명의 융합단백질-다당 복합체를 이용하면 목적 단백질을 쉽게 고정화할 수 있어, 목적 단백질을 이용하여 유용한 산물을 생산하는 데에 매우 널리 활용될 수 있음을 알 수 있었다.Thus, it can be seen that the fusion protein-polysaccharide complex of the present invention can easily immobilize a target protein and can be widely used for producing a useful product using a target protein.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. In this regard, it should be understood that the above-described embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention without departing from the scope of the present invention as defined by the appended claims.

<110> University-Industry Cooperation Group of Kyung Hee University <120> A method for producing fusion protein-polysaccharide complex and use thereof <130> KPA141233-KR-P1 <150> KR 10-2016-0019296 <151> 2016-02-18 <160> 29 <170> KopatentIn 2.0 <210> 1 <211> 650 <212> PRT <213> Deinococcus geothermalis <400> 1 Met Leu Lys Asp Val Leu Thr Ser Glu Leu Ala Ala Gln Val Arg Asp 1 5 10 15 Ala Phe Asp Asp Asp Arg Asp Ala Glu Thr Phe Leu Leu Arg Leu Glu 20 25 30 Arg Tyr Gly Glu Asp Leu Trp Glu Ser Leu Arg Ala Val Tyr Gly Asp 35 40 45 Gln Val Arg Ala Leu Pro Gly Arg Leu Leu Glu Val Met Leu His Ala 50 55 60 Tyr His Ala Arg Pro Ala Glu Leu Arg Arg Leu Asp Glu Ala Arg Leu 65 70 75 80 Leu Arg Pro Asp Trp Leu Gln Arg Pro Glu Met Val Gly Tyr Val Ala 85 90 95 Tyr Thr Asp Arg Phe Ala Gly Thr Leu Lys Gly Val Glu Glu Arg Leu 100 105 110 Asp Tyr Leu Glu Gly Leu Gly Val Lys Tyr Leu His Leu Met Pro Leu 115 120 125 Leu Arg Pro Arg Glu Gly Glu Asn Asp Gly Gly Tyr Ala Val Gln Asp 130 135 140 Tyr Arg Ala Val Arg Pro Asp Leu Gly Thr Met Asp Asp Leu Ser Ala 145 150 155 160 Leu Ala Arg Ala Leu Arg Gly Arg Gly Ile Ser Leu Val Leu Asp Leu 165 170 175 Val Leu Asn His Val Ala Arg Glu His Ala Trp Ala Gln Lys Ala Arg 180 185 190 Ala Gly Asp Pro Lys Tyr Arg Ala Tyr Phe His Leu Phe Pro Asp Arg 195 200 205 Arg Gly Pro Asp Ala Phe Glu Ala Thr Leu Pro Glu Ile Phe Pro Asp 210 215 220 Phe Ala Pro Gly Asn Phe Ser Trp Asp Glu Glu Ile Gly Glu Gly Glu 225 230 235 240 Gly Gly Trp Val Trp Thr Thr Phe Asn Ser Tyr Gln Trp Asp Leu Asn 245 250 255 Trp Ala Asn Pro Asp Val Phe Leu Glu Phe Val Asp Ile Ile Leu Tyr 260 265 270 Leu Ala Asn Arg Gly Val Glu Val Phe Arg Leu Asp Ala Ile Ala Phe 275 280 285 Ile Trp Lys Arg Leu Gly Thr Asp Cys Gln Asn Gln Pro Glu Val His 290 295 300 His Leu Thr Arg Ala Leu Arg Ala Ala Ala Arg Ile Val Ala Pro Ala 305 310 315 320 Val Ala Phe Lys Ala Glu Ala Ile Val Ala Pro Ala Asp Leu Ile His 325 330 335 Tyr Leu Gly Thr Arg Ala His His Gly Lys Val Ser Asp Met Ala Tyr 340 345 350 His Asn Ser Leu Met Val Gln Leu Trp Ser Ser Leu Ala Ser Arg Asn 355 360 365 Thr Arg Leu Phe Glu Glu Ala Leu Arg Ala Phe Pro Pro Lys Pro Thr 370 375 380 Ser Thr Thr Trp Gly Leu Tyr Val Arg Cys His Asp Asp Ile Gly Trp 385 390 395 400 Ala Ile Ser Asp Glu Asp Ala Ala Arg Ala Gly Leu Asn Gly Ala Ala 405 410 415 His Arg His Phe Leu Ser Asp Phe Tyr Ser Gly Gln Phe Pro Gly Ser 420 425 430 Phe Ala Arg Gly Leu Val Phe Gln Tyr Asn Pro Val Asn Gly Asp Arg 435 440 445 Arg Ile Ser Gly Ser Ala Ala Ser Leu Ala Gly Leu Glu Ala Ala Leu 450 455 460 Glu Thr Gly Asp Pro Gly Arg Ile Glu Asp Ala Val Arg Arg Leu Leu 465 470 475 480 Leu Leu His Thr Val Ile Leu Gly Phe Gly Gly Val Pro Leu Leu Tyr 485 490 495 Met Gly Asp Glu Leu Ala Leu Leu Asn Asp Tyr Ala Phe Glu Asp Val 500 505 510 Pro Glu His Ala Pro Asp Asn Arg Trp Val His Arg Pro Gln Met Asp 515 520 525 Trp Ala Leu Ala Glu Arg Val Arg Gln Glu Pro Ser Ser Pro Ala Gly 530 535 540 Arg Val Asn Thr Gly Leu Arg His Leu Leu Arg Val Arg Arg Asp Thr 545 550 555 560 Pro Gln Leu His Ala Ser Ile Glu Ser Gln Val Leu Pro Ser Pro Asp 565 570 575 Ser Arg Ala Leu Leu Leu Arg Arg Asp His Pro Leu Gly Gly Met Val 580 585 590 Gln Val Tyr Asn Phe Ser Glu Glu Thr Val Met Leu Pro Ser His Val 595 600 605 Leu Arg Asp Val Leu Gly Asp His Val Gln Asp Arg Leu Ser Gly Ser 610 615 620 Ala Phe Arg Leu Asp Arg Pro Thr Val Arg Leu Glu Gly Tyr Arg Ala 625 630 635 640 Leu Trp Leu Thr Ala Gly Glu Ala Pro Ala 645 650 <210> 2 <211> 1953 <212> DNA <213> Deinococcus geothermalis <400> 2 atgctgaaag acgtgctcac ttctgaactg gcggcgcagg tacgagacgc cttcgatgat 60 gaccgtgacg ccgagacgtt cctgctgcgg ctggaacgct acggcgagga cctctgggag 120 agcctgcgcg cggtgtatgg cgaccaggtg agggccttgc cagggcgact gctggaagtc 180 atgctccacg cctatcacgc ccgccccgcg gagctgcggc gtttggacga ggcccggctg 240 ctgcggcccg actggctgca acgtcccgag atggtgggct acgtcgccta caccgaccgt 300 tttgccggaa cgctgaaggg ggtagaggag cgcttggact acctggaggg cctgggtgtg 360 aagtacctgc acctgatgcc ccttctcagg ccgcgcgagg gcgaaaatga cggtggctac 420 gcggtgcagg attaccgagc ggtgcgtccc gacctgggca cgatggatga cctctcggcc 480 ctcgcgcggg cgctgcgggg ccgcggcatc agcctggtgc tggatctcgt gctgaaccac 540 gtggcgcgcg aacatgcgtg ggcccagaag gcgcgggcgg gtgatcccaa gtaccgggcc 600 tactttcatc tcttccccga ccgcaggggg ccggacgctt ttgaagccac ccttcctgag 660 atctttcccg acttcgcgcc gggcaacttc tcgtgggacg aggagatcgg tgaaggcgag 720 gggggctggg tctggaccac cttcaacagc taccagtggg acctgaactg ggccaacccc 780 gacgtgtttc tggagtttgt ggacatcatc ctctacctcg ccaaccgggg cgtggaggtg 840 ttccggctgg atgcgatcgc cttcatctgg aagcggctgg gaaccgactg ccaaaaccag 900 ccggaagttc accacctcac gcgggcgctg cgggcagccg cgcgcatcgt cgcgcccgca 960 gtcgccttta aggccgaggc gatcgtggcg cccgccgacc tgatccacta cctgggcacc 1020 cgtgcgcacc acggcaaggt gagcgacatg gcctaccaca acagcctgat ggtgcagctg 1080 tggagtagcc tcgccagccg gaatacccgt ctctttgagg aggcactgcg ggcgtttccc 1140 cccaagccca cgagcacgac ctgggggctg tacgtccgct gtcacgacga catcggctgg 1200 gccatcagcg acgaggacgc ggcccgggcc ggattgaacg gcgcggcgca ccggcacttt 1260 ctctcggact tctacagcgg tcagtttccc ggctcctttg cgcgggggct ggtgtttcag 1320 tacaacccgg tgaacggcga ccggcgcatc agtggctcgg cggccagcct cgctgggctg 1380 gaggcagcgc tggaaaccgg ggacccgggc cgcatcgagg acgcggtgcg tcgcctgctg 1440 ctcctccaca cggtcattct cggcttcggc ggggtgccgc tgctgtacat gggcgacgaa 1500 ctcgccctgc tgaatgacta cgccttcgag gacgtgcccg aacacgcgcc ggacaaccgc 1560 tgggtgcatc gcccgcagat ggattgggcc ctcgcggagc gggtgcggca ggagccttcc 1620 tcgcccgccg gacgggtgaa cacgggcctg cgccacctcc tgcgggtgcg ccgcgatacc 1680 ccgcagctgc acgccagcat cgagagccag gtgctgccca gccccgattc gcgtgcgctt 1740 ctgctgcgcc gcgaccatcc cctcggcggg atggtgcagg tgtacaactt cagcgaggag 1800 acggtgatgc tgcccagcca tgttctgcgg gacgtgctgg gggaccacgt ccaggaccgg 1860 ctgagcggga gtgcctttcg cctagatcgg cccaccgttc gcctggaggg ctaccgggca 1920 ctgtggctga ccgccgggga ggctccagca taa 1953 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 3 catatgctga aagacgtgct cact 24 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_X_DGAS primer <400> 4 ctcgagtgct ggagcctccc cggc 24 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> F_N_EGFP primer <400> 5 catatggtga gcaagggcga g 21 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> R_N_EGFP primer <400> 6 catatgcttg tacagctcgt ccatgc 26 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 7 catatgctga aagacgtgct cacttctgaa ct 32 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R_ASBG primer <400> 8 agtctgggtc attgctggag cctcccc 27 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> F_ASBG primer <400> 9 gaggctccag caatgaccca gactcga 27 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGBG_X primer <400> 10 ctcgagtctc agaaattgac ggta 24 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 11 catatgctga aagacgtgct cacttctgaa ct 32 <210> 12 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> R_DGAS_GS_BX primer <400> 12 ctcgagggat ccaccaccgc ccgagccacc gccacctgct ggagcctccc cggcgg 56 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> F_B_DGBG primer <400> 13 ggatccatga cccagactcg acccgc 26 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGBG_X primer <400> 14 ctcgagtctc agaaattgac ggta 24 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 15 catatgctga aagacgtgct cacttctgaa ct 32 <210> 16 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> R1_DGAS_EstO primer <400> 16 cgtgtattta gttttgtctg ctggagcctc cccggc 36 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R2_DGAS_EstO primer <400> 17 ctcgaggcta gccgtgtatt tagtttt 27 <210> 18 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> F_Nh_DGBG primer <400> 18 ggatccatga cccagactcg acccgc 26 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGBG_X primer <400> 19 ctcgagtctc agaaattgac ggta 24 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F_N_malE primer <400> 20 catatgaaaa tcgaagaagg taaactggta 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R_malE_X primer <400> 21 ctcgagtccg ccaaaacagc caagctgcca 30 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F_E_DGAS primer <400> 22 gaattcatgc tgaaagacgt gctcacttct 30 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R_DGAS_H primer <400> 23 aagctttgct ggagcctccc cggcggtcag 30 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_malE_X2 primer <400> 24 ctcgagaagc ttgcctgcag gtcg 24 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> F_SacI_DGAS primer <400> 25 gagctcatgc tgaaagacgt gctc 24 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGAS_SacI_Mutant primer <400> 26 cgagctcgct ggagcctccc cggc 24 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R_malE_X3 primer <400> 27 ctcgaggtcg actctagagg a 21 <210> 28 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> GS-linker <400> 28 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1 5 10 <210> 29 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Esterase-O-linker <400> 29 Asp Lys Thr Lys Tyr Thr Ala Ser 1 5 <110> University-Industry Cooperation Group of Kyung Hee University <120> A method for producing fusion protein-polysaccharide complex and          use thereof <130> KPA141233-KR-P1 <150> KR 10-2016-0019296 <151> 2016-02-18 <160> 29 <170> Kopatentin 2.0 <210> 1 <211> 650 <212> PRT <213> Deinococcus geothermalis <400> 1 Met Leu Lys Asp Val Leu Thr Ser Glu Leu Ala Ala Gln Val Arg Asp   1 5 10 15 Ala Phe Asp Asp Asp Arg Asp Ala Glu Thr Phe Leu Leu Arg Leu Glu              20 25 30 Arg Tyr Gly Glu Asp Leu Trp Glu Ser Leu Arg Ala Val Tyr Gly Asp          35 40 45 Gln Val Arg Ala Leu Pro Gly Arg Leu Leu Glu Val Met Leu His Ala      50 55 60 Tyr His Ala Arg Pro Ala Glu Leu Arg Arg Leu Asp Glu Ala Arg Leu  65 70 75 80 Leu Arg Pro Asp Trp Leu Gln Arg Pro Glu Met Val Gly Tyr Val Ala                  85 90 95 Tyr Thr Asp Arg Phe Ala Gly Thr Leu Lys Gly Val Glu Glu Arg Leu             100 105 110 Asp Tyr Leu Glu Gly Leu Gly Val Lys Tyr Leu His Leu Met Pro Leu         115 120 125 Leu Arg Pro Arg Glu Gly Glu Asn Asp Gly Gly Tyr Ala Val Gln Asp     130 135 140 Tyr Arg Ala Val Arg Pro Asp Leu Gly Thr Met Asp Asp Leu Ser Ala 145 150 155 160 Leu Ala Arg Ala Leu Arg Gly Arg Gly Ile Ser Leu Val Leu Asp Leu                 165 170 175 Val Leu Asn His Val Ala Arg Glu His Ala Trp Ala Gln Lys Ala Arg             180 185 190 Ala Gly Asp Pro Lys Tyr Arg Ala Tyr Phe His Leu Phe Pro Asp Arg         195 200 205 Arg Gly Pro Asp Ala Phe Glu Ala Thr Leu Pro Glu Ile Phe Pro Asp     210 215 220 Phe Ala Pro Gly Asn Phe Ser Trp Asp Glu Glu Ile Gly Glu Gly Glu 225 230 235 240 Gly Gly Trp Val Trp Thr Thr Phe Asn Ser Tyr Gln Trp Asp Leu Asn                 245 250 255 Trp Ala Asn Pro Asp Val Phe Leu Glu Phe Val Asp Ile Ile Leu Tyr             260 265 270 Leu Ala Asn Arg Gly Val Glu Val Phe Arg Leu Asp Ala Ile Ala Phe         275 280 285 Ile Trp Lys Arg Leu Gly Thr Asp Cys Gln Asn Gln Pro Glu Val His     290 295 300 His Leu Thr Arg Ala Leu Arg Ala Ala Ala Arg Ile Val Ala Pro Ala 305 310 315 320 Val Ala Phe Lys Ala Glu Ala Ile Val Ala Pro Ala Asp Leu Ile His                 325 330 335 Tyr Leu Gly Thr Arg Ala His His Gly Lys Val Ser Asp Met Ala Tyr             340 345 350 His Asn Ser Leu Met Val Gln Leu Trp Ser Ser Leu Ala Ser Arg Asn         355 360 365 Thr Arg Leu Phe Glu Glu Ala Leu Arg Ala Phe Pro Pro Lys Pro Thr     370 375 380 Ser Thr Thr Trp Gly Leu Tyr Val Arg Cys His Asp Asp Ile Gly Trp 385 390 395 400 Ala Ile Ser Asp Glu Asp Ala Ala Arg Ala Gly Leu Asn Gly Ala Ala                 405 410 415 His Arg His Phe Leu Ser Asp Phe Tyr Ser Gly Gln Phe Pro Gly Ser             420 425 430 Phe Ala Arg Gly Leu Val Phe Gln Tyr Asn Pro Val Asn Gly Asp Arg         435 440 445 Arg Ile Ser Gly Ser Ala Ala Leu     450 455 460 Glu Thr Gly Asp Pro Gly Arg Ile Glu Asp Ala Val Arg Arg Leu Leu 465 470 475 480 Leu Leu His Thr Val Ile Leu Gly Phe Gly Gly Val Pro Leu Leu Tyr                 485 490 495 Met Gly Asp Glu Leu Ala Leu Leu Asn Asp Tyr Ala Phe Glu Asp Val             500 505 510 Pro Glu His Ala Pro Asp Asn Arg Trp Val His Arg Pro Gln Met Asp         515 520 525 Trp Ala Leu Ala Glu Arg Val Glu Glu Pro Ser Ser Pro Ala Gly     530 535 540 Arg Val Asn Thr Gly Leu Arg His Leu Leu Arg Val Arg Arg Asp Thr 545 550 555 560 Pro Gln Leu His Ala Ser Ile Glu Ser Gln Val Leu Pro Ser Pro Asp                 565 570 575 Ser Arg Ala Leu Leu Leu Arg Arg Asp His Pro Leu Gly Gly Met Val             580 585 590 Gln Val Tyr Asn Phe Ser Glu Glu Thr Val Met Leu Pro Ser Ser Val         595 600 605 Leu Arg Asp Val Leu Gly Asp His Val Gln Asp Arg Leu Ser Gly Ser     610 615 620 Ala Phe Arg Leu Asp Arg Pro Thr Val Arg Leu Glu Gly Tyr Arg Ala 625 630 635 640 Leu Trp Leu Thr Ala Gly Glu Ala Pro Ala                 645 650 <210> 2 <211> 1953 <212> DNA <213> Deinococcus geothermalis <400> 2 atgctgaaag acgtgctcac ttctgaactg gcggcgcagg tacgagacgc cttcgatgat 60 gaccgtgacg ccgagacgtt cctgctgcgg ctggaacgct acggcgagga cctctgggag 120 agcctgcgcg cggtgtatgg cgaccaggtg agggccttgc cagggcgact gctggaagtc 180 atgctccacg cctatcacgc ccgccccgcg gagctgcggc gtttggacga ggcccggctg 240 ctgcggcccg actggctgca acgtcccgag atggtgggct acgtcgccta caccgaccgt 300 tttgccggaa cgctgaaggg ggtagaggag cgcttggact acctggaggg cctgggtgtg 360 aagtacctgc acctgatgcc ccttctcagg ccgcgcgagg gcgaaaatga cggtggctac 420 gcggtgcagg attaccgagc ggtgcgtccc gacctgggca cgatggatga cctctcggcc 480 ctcgcgcggg cgctgcgggg ccgcggcatc agcctggtgc tggatctcgt gctgaaccac 540 gtggcgcgcg aacatgcgtg ggcccagaag gcgcgggcgg gtgatcccaa gtaccgggcc 600 tactttcatc tcttccccga ccgcaggggg ccggacgctt ttgaagccac ccttcctgag 660 atctttcccg acttcgcgcc gggcaacttc tcgtgggacg aggagatcgg tgaaggcgag 720 gggggctggg tctggaccac cttcaacagc taccagtggg acctgaactg ggccaacccc 780 gacgtgtttc tggagtttgt ggacatcatc ctctacctcg ccaaccgggg cgtggaggtg 840 ttccggctgg atgcgatcgc cttcatctgg aagcggctgg gaaccgactg ccaaaaccag 900 ccggaagttc accacctcac gcgggcgctg cgggcagccg cgcgcatcgt cgcgcccgca 960 gtcgccttta aggccgaggc gatcgtggcg cccgccgacc tgatccacta cctgggcacc 1020 cgtgcgcacc acggcaaggt gagcgacatg gcctaccaca acagcctgat ggtgcagctg 1080 tggagtagcc tcgccagccg gaatacccgt ctctttgagg aggcactgcg ggcgtttccc 1140 cccaagccca cgagcacgac ctgggggctg tacgtccgct gtcacgacga catcggctgg 1200 gccatcagcg acgaggacgc ggcccgggcc ggattgaacg gcgcggcgca ccggcacttt 1260 ctctcggact tctacagcgg tcagtttccc ggctcctttg cgcgggggct ggtgtttcag 1320 tacaacccgg tgaacggcga ccggcgcatc agtggctcgg cggccagcct cgctgggctg 1380 gaggcagcgc tggaaaccgg ggacccgggc cgcatcgagg acgcggtgcg tcgcctgctg 1440 ctcctccaca cggtcattct cggcttcggc ggggtgccgc tgctgtacat gggcgacgaa 1500 ctcgccctgc tgaatgacta cgccttcgag gacgtgcccg aacacgcgcc ggacaaccgc 1560 tgggtgcatc gcccgcagat ggattgggcc ctcgcggagc gggtgcggca ggagccttcc 1620 tcgcccgccg gacgggtgaa cacgggcctg cgccacctcc tgcgggtgcg ccgcgatacc 1680 ccgcagctgc acgccagcat cgagagccag gtgctgccca gccccgattc gcgtgcgctt 1740 ctgctgcgcc gcgaccatcc cctcggcggg atggtgcagg tgtacaactt cagcgaggag 1800 acggtgatgc tgcccagcca tgttctgcgg gacgtgctgg gggaccacgt ccaggaccgg 1860 ctgagcggga gtgcctttcg cctagatcgg cccaccgttc gcctggaggg ctaccgggca 1920 ctgtggctga ccgccgggga ggctccagca taa 1953 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 3 catatgctga aagacgtgct cact 24 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_X_DGAS primer <400> 4 ctcgagtgct ggagcctccc cggc 24 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> F_N_EGFP primer <400> 5 catatggtga gcaagggcga g 21 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> R_N_EGFP primer <400> 6 catatgcttg tacagctcgt ccatgc 26 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 7 catatgctga aagacgtgct cacttctgaa ct 32 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R_ASBG primer <400> 8 agtctgggtc attgctggag cctcccc 27 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> F_ASBG primer <400> 9 gaggctccag caatgaccca gactcga 27 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGBG_X primer <400> 10 ctcgagtctc agaaattgac ggta 24 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 11 catatgctga aagacgtgct cacttctgaa ct 32 <210> 12 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> R_DGAS_GS_BX primer <400> 12 ctcgagggat ccaccaccgc ccgagccacc gccacctgct ggagcctccc cggcgg 56 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> F_B_DGBG primer <400> 13 ggatccatga cccagactcg acccgc 26 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGBG_X primer <400> 14 ctcgagtctc agaaattgac ggta 24 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F_N_DGAS primer <400> 15 catatgctga aagacgtgct cacttctgaa ct 32 <210> 16 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> R1_DGAS_EstO primer <400> 16 cgtgtattta gttttgtctg ctggagcctc cccggc 36 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> R2_DGAS_EstO primer <400> 17 ctcgaggcta gccgtgtatt tagtttt 27 <210> 18 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> F_Nh_DGBG primer <400> 18 ggatccatga cccagactcg acccgc 26 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGBG_X primer <400> 19 ctcgagtctc agaaattgac ggta 24 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F_N_malE primer <400> 20 catatgaaaa tcgaagaagg taaactggta 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R_malE_X primer <400> 21 ctcgagtccg ccaaaacagc caagctgcca 30 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F_E_DGAS primer <400> 22 gaattcatgc tgaaagacgt gctcacttct 30 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R_DGAS_H primer <400> 23 aagctttgct ggagcctccc cggcggtcag 30 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_malE_X2 primer <400> 24 ctcgagaagc ttgcctgcag gtcg 24 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> F_SacI_DGAS primer <400> 25 gagctcatgc tgaaagacgt gctc 24 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> R_DGAS_SacI_Mutant primer <400> 26 cgagctcgct ggagcctccc cggc 24 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R_malE_X3 primer <400> 27 ctcgaggtcg actctagagg a 21 <210> 28 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> GS-linker <400> 28 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser   1 5 10 <210> 29 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Esterase-O-linker <400> 29 Asp Lys Thr Lys Tyr Thr Ala Ser   1 5

Claims (20)

당전이효소 및 목적 단백질을 포함한 융합단백질을 탄수화물과 반응시키는 단계를 포함하는, 융합단백질-다당 복합체의 제조방법.A method for producing a fusion protein-polysaccharide complex, comprising the step of reacting a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate. 제1항에 있어서, 상기 당전이효소는 헥소실트랜스퍼라제, 펜토실트랜스퍼라제, 및 시알릴 트랜스퍼라제로 이루어진 군에서 선택되는 하나 이상인 것인, 융합단백질-다당 복합체의 제조방법.The method for producing a fusion protein-polysaccharide complex according to claim 1, wherein the sugar transferase is at least one selected from the group consisting of hexosyltransferase, pentosyltransferase, and sialyltransferase. 제1항에 있어서, 상기 당전이효소는 아밀로수크라제인 것인, 융합단백질-다당 복합체의 제조방법.The method of producing a fusion protein-polysaccharide complex according to claim 1, wherein the sugar transferase is amylose sucrose. 제1항에 있어서, 상기 탄수화물은 글루코스, 프럭토스, 만노스, 갈락토스, 리보스, 말토스, 수크로스, 셀로비오스, 겐티오비오스, 멜리비오스, 락토스, 투라노스, 소포로스, 아밀로스, 아밀로펙틴, 글리코겐 및 가용성 전분으로 이루어진 군에서 선택되는 하나 이상인 것인, 융합단백질-다당 복합체의 제조방법.The method of claim 1, wherein the carbohydrate is selected from the group consisting of glucose, fructose, mannose, galactose, ribose, maltose, sucrose, cellobiose, gentiobiose, melibiose, lactose, turanose, Soluble starch, and soluble starch. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt; 제1항에 있어서, 상기 융합단백질은 목적 단백질이 당전이효소의 N-말단; C-말단; 또는 N-말단 및 C-말단에 결합된 것인, 융합단백질-다당 복합체의 제조방법.The fusion protein according to claim 1, wherein the fusion protein comprises the N-terminus of the glycosyltransferase; C-terminal; Or the N-terminus and the C-terminus of the fusion protein-polysaccharide complex. 제1항에 있어서, 상기 융합단백질은 당전이효소가 목적 단백질의 N-말단 및 C-말단에 결합된 것인, 융합단백질-다당 복합체의 제조방법.2. The method according to claim 1, wherein the fusion protein is a fusion protein-polysaccharide complex wherein the sugar transferase is bound to the N-terminus and the C-terminus of the target protein. 제1항에 있어서, 상기 융합단백질은 당전이효소 및 목적 단백질이 링커(linker)를 통하여 결합된 것인, 융합단백질-다당 복합체의 제조방법.The method for producing a fusion protein-polysaccharide complex according to claim 1, wherein the fusion protein is obtained by linking a glycosyltransferase and a target protein via a linker. 제1항에 있어서, 상기 목적 단백질은 항원, 항체, 세포수용체, 효소, 구조 단백질, 혈청 및 세포 단백질로 이루어진 군에서 선택되는 것인, 융합단백질-다당 복합체의 제조방법.The method for producing a fusion protein-polysaccharide complex according to claim 1, wherein the target protein is selected from the group consisting of an antigen, an antibody, a cell receptor, an enzyme, a structural protein, a serum and a cell protein. (a) 당전이효소 및 목적 단백질을 포함한 융합단백질을 발현하는 형질전환체의 용해물 또는 배양물을 탄수화물과 반응시켜, 융합단백질-다당 복합체를 함유하는 반응액을 생산하는 단계;
(b) 상기 반응액에서 융합단백질-다당 복합체를 분리하는 단계; 및
(c) 상기 융합단백질-다당 복합체로부터 목적 단백질을 분리하는 단계를 포함하는, 목적 단백질의 정제방법.
(a) producing a reaction solution containing a fusion protein-polysaccharide complex by reacting a lysate or a culture of a transformant expressing a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate;
(b) separating the fusion protein-polysaccharide complex from the reaction solution; And
(c) separating the target protein from the fusion protein-polysaccharide complex.
제9항에 있어서, 상기 (b) 단계는 반응액을 원심분리하여, 융합단백질-다당 복합체를 분리하는 것인, 목적 단백질의 정제방법.[10] The method of claim 9, wherein the step (b) comprises centrifuging the reaction mixture to separate the fusion protein-polysaccharide complex. 제9항에 있어서, 상기 당전이효소는 헥소실트랜스퍼라제, 펜토실트랜스퍼라제 및 시알릴 트랜스퍼라제로 이루어진 군에서 선택되는 하나 이상인 것인, 목적 단백질의 정제방법.10. The method of claim 9, wherein the sugar transferase is at least one selected from the group consisting of hexosyltransferase, pentosyltransferase, and sialyltransferase. 제9항에 있어서, 상기 당전이효소는 아밀로수크라제인 것인, 목적 단백질의 정제방법.10. The method for purifying a target protein according to claim 9, wherein the glycosyltransferase is amylose sucrose. 제9항에 있어서, 상기 탄수화물은 글루코스, 프럭토스, 만노스, 갈락토스, 리보스, 말토스, 수크로스, 셀로비오스, 겐티오비오스, 멜리비오스, 락토스, 투라노스, 소포로스, 아밀로스, 아밀로펙틴, 글리코겐 및 가용성 전분으로 이루어진 군에서 선택되는 하나 이상인 것인, 목적 단백질의 정제방법.10. The method of claim 9, wherein the carbohydrate is selected from the group consisting of glucose, fructose, mannose, galactose, ribose, maltose, sucrose, cellobiose, gentiobiose, melibiose, lactose, turanose, sophorose, amylose, amylopectin, glycogen and Soluble starch, and soluble starch. 제9항에 있어서, 상기 (c) 단계는 융합단백질-다당 복합체에서 융합단백질의 링커를 절단하여 목적단백질을 분리하는 것인, 목적 단백질의 정제방법.[10] The method of claim 9, wherein the step (c) comprises cleaving a linker of the fusion protein in the fusion protein-polysaccharide complex to separate the target protein. (a) 당전이효소 및 목적 단백질을 포함한 융합단백질을 발현하는 형질전환체의 용해물 또는 배양물을 탄수화물과 반응시켜, 융합단백질-다당 복합체를 함유하는 반응액을 생산하는 단계; 및
(b) 상기 반응액에서 융합단백질-다당 복합체를 분리하는 단계를 포함하는, 목적 단백질의 고정화 방법.
(a) producing a reaction solution containing a fusion protein-polysaccharide complex by reacting a lysate or a culture of a transformant expressing a fusion protein containing a glycosyltransferase and a target protein with a carbohydrate; And
(b) separating the fusion protein-polysaccharide complex from the reaction solution.
당전이효소 및 목적 단백질을 포함한 융합단백질; 및 다당류를 포함하는, 융합단백질-다당 복합체.A fusion protein including a glycosyltransferase and a target protein; And a polysaccharide. 당전이효소 및 목적 단백질을 포함하는 융합단백질.A fusion protein comprising a glycosyltransferase and a target protein. 프로모터 및 상기 프로모터에 작동가능하게 연결된 당전이효소와 목적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는, 융합단백질 발현카세트.A fusion protein expression cassette comprising a promoter and a polynucleotide encoding a glycosyltransferase and a protein of interest operably linked to the promoter. 제18항에 있어서, 상기 당전이효소를 코딩하는 폴리뉴클레오티드와 목적 단백질을 코딩하는 폴리뉴클레오티드는 링커로 연결된 것인, 융합단백질 발현카세트.19. The fusion protein expression cassette of claim 18, wherein the polynucleotide encoding the glycosyltransferase and the polynucleotide encoding the desired protein are linked by a linker. 제18항 또는 제19항의 융합단백질 발현카세트를 포함하는, 융합단백질 발현용 벡터.19. A vector for expressing a fusion protein comprising the fusion protein expression cassette of claim 18 or 19.
KR1020170018898A 2016-02-18 2017-02-10 A method for producing fusion protein-polysaccharide complex and use thereof KR101949009B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160019296 2016-02-18
KR20160019296 2016-02-18

Publications (2)

Publication Number Publication Date
KR20170098165A true KR20170098165A (en) 2017-08-29
KR101949009B1 KR101949009B1 (en) 2019-02-18

Family

ID=59760089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170018898A KR101949009B1 (en) 2016-02-18 2017-02-10 A method for producing fusion protein-polysaccharide complex and use thereof

Country Status (1)

Country Link
KR (1) KR101949009B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185114A1 (en) * 1996-09-30 2004-09-23 Peter Keeling Starch encapsulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185114A1 (en) * 1996-09-30 2004-09-23 Peter Keeling Starch encapsulation

Also Published As

Publication number Publication date
KR101949009B1 (en) 2019-02-18

Similar Documents

Publication Publication Date Title
KR20190082318A (en) CRISPR / CPF1 system and method
CN107922958A (en) For producing the glucosyltransferase aa sequence motifs of linear poly- 1,3 glucans of α
CN108239633B (en) Mutant of D-psicose-3-epimerase with improved catalytic activity and application thereof
CA2510550A1 (en) Catalytic domains of .beta./1,4)-galactosyltransferase i having altered donor and acceptor specificities, domains that promote in vitro protein folding, and methods for their use
CN109072203B (en) Mirror image nucleic acid replication system
WO2012076715A1 (en) Mgmt-based method for obtaining high yield of recombinant protein expression
WO2021185360A1 (en) Novel truncated sortase variants
Davies et al. Recombinant baculovirus vectors expressing glutathione–S–transferase fusion proteins
KR20170115535A (en) A protein having affinity for immunoglobulin, an affinity separator using the same, a column for liquid chromatography
EP0587541B1 (en) Process to purify the big-endothelin protein
EP1151117B1 (en) Intein-mediated protein ligation of expressed proteins
CA2159079C (en) Methods and dna expression systems for over-expression of proteins in host cells
KR101949009B1 (en) A method for producing fusion protein-polysaccharide complex and use thereof
CN114369585B (en) Fucosyltransferase mutant of recombinant helicobacter pylori and application thereof
CA2522904A1 (en) Synthetic genes for plant gums and other hydroxyproline-rich glycoproteins
Anderson et al. Construction and expression of a synthetic wheat storage protein gene
CA2517674A1 (en) Process for preparing dideoxyinosine using adenosine deaminase enzyme
AU2003202005A1 (en) Fusion proteins
JPH11178574A (en) New collagenlike protein
EP1981978A2 (en) Affinity polypeptide for purification of recombinant proteins
KR101747701B1 (en) manufacturing method of panose using recombination dextransucrase
WO2002018447A1 (en) Fusion protein containing additional cationic amino acids and improvement of bio-operation by using same
KR101294598B1 (en) 4-alpha-Glucanotransferase-amylose complex and the applications of the same
JP5020487B2 (en) Novel DNA for expression of fusion protein and method for producing protein using the DNA
KR100481910B1 (en) Fusion protein producing galactose α-1,3-galactose-β-1,4-N-acetyl glucosamine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant