KR20170096617A - Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme - Google Patents

Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme Download PDF

Info

Publication number
KR20170096617A
KR20170096617A KR1020170102594A KR20170102594A KR20170096617A KR 20170096617 A KR20170096617 A KR 20170096617A KR 1020170102594 A KR1020170102594 A KR 1020170102594A KR 20170102594 A KR20170102594 A KR 20170102594A KR 20170096617 A KR20170096617 A KR 20170096617A
Authority
KR
South Korea
Prior art keywords
histidine
present
strain
producing
mutant strain
Prior art date
Application number
KR1020170102594A
Other languages
Korean (ko)
Other versions
KR101887821B1 (en
Inventor
이성필
조영일
김승엽
오재영
박동철
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020170102594A priority Critical patent/KR101887821B1/en
Publication of KR20170096617A publication Critical patent/KR20170096617A/en
Application granted granted Critical
Publication of KR101887821B1 publication Critical patent/KR101887821B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01002Transaldolase (2.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01009Glucose-6-phosphate isomerase (5.3.1.9)

Abstract

The present invention provides a mutant strain capable of producing histidine, a method for producing the mutant strain, and a method for producing histidine. The present invention increases the ability to produce histidine by inactivating non-oxidative pentose phosphate pathway-related enzymes in a strain having histidine producing ability. According to the present invention, the mutant strain capable of producing histidine exhibits an increased histidine production ability by 5-50% as compared with the wild type strain.

Description

비산화 펜토오스 인산 경로 관련 효소의 불활성화에 의한 히스티딘 생산능 변이 균주{Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme}Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme}

본 발명은 비산화 펜토오스 인산 경로 관련 효소의 불활성화에 의한 히스티딘 생산능 변이 균주에 관한 것이다.The present invention relates to a histidine-producing mutant strain by inactivation of an enzyme related to the non-oxidized pentose phosphate pathway.

히스티딘(Histidine)은 단백질에 존재하는 스무 개의 표준 아미노산들 가운데 하나이다. 인간에게 있어서 필수 아미노산인 히스티딘은 순환기계의 모세혈관투과성을 항진하는 히스타민 합성의 필수성분이다. 히스타민의 전구체로서 히스티딘은 성기능 강화작용과 저산증에 위산 분비를 촉진하여 소화능을 증강시키며, 혈압을 올리고 폐 기관지의 근육을 강화한다. 그리고 조직의 성장과 수복에 필수적이므로 유아의 성장에 반드시 필요하다. 그리고 회복기의 환자에게도 면역력 증강을 위해 히스티딘은 필요한 아미노산이므로, 다른 필수 아미노산들과 같이 아미노산 보충제로서도 충분한 가치가 있다.Histidine is one of the twenty standard amino acids present in proteins. Histidine, an essential amino acid for humans, is an essential component of histamine synthesis, which promotes capillary permeability of the circulatory system. As a precursor of histamine, histidine enhances sexual function and promotes the secretion of gastric acid in hypoacidosis, thereby enhancing digestion, raising blood pressure and strengthening the muscles of the lungs. And since it is essential for tissue growth and restoration, it is essential for the growth of infants. In addition, since histidine is an amino acid necessary to enhance immunity even in patients in the recovery phase, it is also worthwhile as an amino acid supplement like other essential amino acids.

현재 히스티딘의 대량 생산을 위한 대장균의 개발에 대해서 많은 연구가 수행되고 있지만, 1) 히스티딘의 전구체인 포스포리보실피로인산 (phosphoribosylpyrophosphate; PRPP) 생산하는 오탄당 인산 회로를 통한 생산량 증가에 대한 연구 부족, 2) 히스티딘을 생합성하는 유전자에서의 중요 효소에 대한 정보부족, 3) 히스티딘을 대량생산 할 수 있도록 개발된 균주에 대한 2차 돌연변이 유발법 및 스크리닝 방법에 대한 정보 부족, 4) 외래 숙주에서 유래하는 히스티딘 합성 대사 회로에서의 대사흐름 최적화 부재 등으로 발효로 인한 생산에 어려움이 많다. 히스티딘의 생산은 일본의 경우 발효공법으로 생산하고 있으며 중국 등에서 추출법으로 생산하고 있고, 히스티딘을 과생산하는 연구(4.9 g/L)와 특허(14 g/L)(US 7067289 B1)로 발표된 상태이다.Currently, many studies are being conducted on the development of Escherichia coli for mass production of histidine, but 1) lack of research on the increase of production through the pentose phosphate cycle that produces phosphoribosylpyrophosphate (PRPP), a precursor of histidine, 2 ) Lack of information on important enzymes in genes that biosynthesize histidine, 3) Lack of information on secondary mutagenesis and screening methods for strains developed to mass-produce histidine, 4) Histidine derived from foreign hosts There are many difficulties in production due to fermentation due to the lack of optimization of metabolic flow in the synthetic metabolic circuit. The production of histidine is produced by fermentation method in Japan, and is produced by extraction method in China, and has been announced as a research on overproduction of histidine (4.9 g/L) and patent (14 g/L) (US 7067289 B1). to be.

히스티딘 생산균주를 개발하기 위해 종래의 기술에서는 가장 일반적으로 돌연변이법(주로 chemical mutagen: NTG)을 이용한 균주 개발방법을 사용하였다. 이것은 중간대사산물 또는 최종산물에 대한 내성주 선별법으로 돌연변이 유도 후, 히스티딘의 유사 구조체에 대한 내성을 가지는 변이주를 선별하는 방법이다. 그러나 이러한 돌연변이법은 균주에 원하지 않는 돌연변이도 수반할 수 있고, 변이로 인해 과생산된 산물들이 세포내 축적 되면서 세포 생육이 저하되는 등의 결과를 가져올 수 있다.In order to develop a histidine-producing strain, the conventional technique most commonly used a strain development method using a mutation method (mainly chemical mutagen: NTG). This is a method of selecting a mutant strain having resistance to a histidine-like structure after induction of mutation by selection of resistant strains for intermediate metabolites or final products. However, this mutation method may involve unwanted mutations in the strain, and the over-produced products accumulate in the cell due to the mutation, resulting in a decrease in cell growth.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, a number of papers and patent documents are referenced and citations are indicated. The disclosure contents of the cited papers and patent documents are incorporated by reference in this specification as a whole, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.

본 발명자들은 히스티딘 생합성 경로 중 전구체인 포스포리보실피로인산(phosphoribosylpyrophosphate; PRPP)의 증가를 통해 히스티딘의 생산성을 증가시킨 히스티딘(histidine) 생산능 변이 균주를 제조하고자 노력하였다. 그 결과, 비산화 펜토오스 인산 경로(non-oxidative pentose phosphate pathway)-관련 효소를 불활성화 시켜 제조한 히스티딘의 생산능 변이 균주의 증가된 히스티딘 생산능을 확인함으로써 본 발명을 완성하였다.The present inventors have tried to produce a histidine-producing mutant strain that increases the productivity of histidine through an increase in phosphoribosylpyrophosphate (PRPP), a precursor in the histidine biosynthetic pathway. As a result, the present invention was completed by confirming the increased histidine-producing ability of the mutant strain of histidine-producing ability prepared by inactivating the non-oxidative pentose phosphate pathway-related enzyme.

따라서, 본 발명의 목적은 히스티딘 생산능 변이 균주를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a histidine-producing mutant strain.

본 발명의 다른 목적은 히스티딘 생산능 변이 균주의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a histidine-producing mutant strain.

본 발명의 또 다른 목적은 히스티딘 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for preparing histidine.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent by the following detailed description, claims and drawings.

본 발명의 일 양태에 따르면, 불활성화된 비산화 펜토오스 인산 경로(non-oxidative pentose phosphate pathway)-관련 효소를 포함하는 히스티딘(histidine) 생산능 변이 균주를 제공한다.According to an aspect of the present invention, there is provided a histidine-producing mutant strain comprising an inactivated non-oxidative pentose phosphate pathway-related enzyme.

본 발명자들은 히스티딘 생합성 경로 중 전구체인 포스포리보실피로인산(phosphoribosylpyrophosphate; PRPP)의 증가를 통해 히스티딘의 생산성을 증가시킨 히스티딘생산능 변이 균주를 제조하고자 노력하였다. 그 결과, 비산화 펜토오스 인산 경로-관련 효소를 불활성화 시켜 제조한 히스티딘의생산능 변이 균주의 증가된 히스티딘생산능을 확인하였다.The present inventors have tried to prepare a histidine-producing mutant strain that increases the productivity of histidine through an increase in phosphoribosylpyrophosphate (PRPP), a precursor in the histidine biosynthetic pathway. As a result, it was confirmed that the increased histidine-producing ability of the mutant strain of histidine-producing ability prepared by inactivating the non-oxidized pentose phosphate pathway-related enzyme.

본 명세서에서 용어 "비산화 펜토오스 인산 경로"는 펜토오스 인산 경로는 환원 당량인(reducing equivalent)인 NADPH및 뉴클레오타이드의 필수 성분인 펜토오스를 생성하는 글루코오스 순환 과정 중 하나이다. 비산화 펜토오스 인산 경로는 인산화 당이 자일룰로오스-5-인산(xylulose-5-phosphate), 리불로오스-5-인산(ribulose-5-phosphate) 및 리보오스-5-인산(ribose-5-phosphate)로 상호전환되는 가역적 경로이다. 리보오스-5-인산으로부터 형성된 포스포리보실피로인산(phosphoribosylpyrophosphate; PRPP)는 히스티딘 및 퓨린/피리미딘 뉴클레오타이드의 생합성에 이용되는 활성 화합물이다(참조: http://www.genome.jp/dbget-bin/www_bget?map00030https://en.wikipedia.org/wiki/Pentose_phosphate_pathway).As used herein, the term "non-oxidized pentose phosphate pathway" refers to one of the glucose cycle processes that produce NADPH, which is a reducing equivalent, and pentose, which is an essential component of nucleotides. The non-oxidized pentose phosphate pathway consists of the phosphorylated sugars of xylulose-5-phosphate, ribose-5-phosphate and ribose-5. -phosphate) is a reversible pathway. Phosphoribosylpyrophosphate (PRPP) formed from ribose-5-phosphate is an active compound used in the biosynthesis of histidine and purine/pyrimidine nucleotides (see: http://www.genome.jp/dbget-bin/) www_bget?map00030 and https://en.wikipedia.org/wiki/Pentose_phosphate_pathway ).

본 발명의 일 구현예에 따르면, 상기 비산화 펜토오스 인산 경로-관련 효소는 포스포글루코오스이성화효소(pgi. phosphoglucoseisomerase), 트랜스케톨라아제(transketolase)A(tktA), 트랜스케톨라아제 B(tktB), 트랜스알돌라아제(transaldolase) A(talA) 및 트랜스알돌라아제 B(talB)로 구성된 군으로부터 선택되는 하나 이상의 효소이다.According to an embodiment of the present invention, the non-oxidized pentose phosphate pathway-related enzyme is phosphoglucoseisomerase (pgi.phosphoglucoseisomerase), transketolase A (tktA), transketolase B (tktB). ), transaldolase A (talA) and transaldolase B (talB).

상기 pgi를 암호화하는 뉴클레오타이드 서열은 서열목록 제1서열이다.The nucleotide sequence encoding the pgi is the first sequence of Sequence Listing.

상기 tktB를 암호화하는 뉴클레오타이드 서열은 서열목록 제2서열이다.The nucleotide sequence encoding tktB is the second sequence in the Sequence Listing.

상기 tktA를 암호화하는 뉴클레오타이드 서열은 서열목록 제3서열이다.The nucleotide sequence encoding tktA is SEQ ID No. 3 in Sequence Listing.

상기 talA를 암호화하는 뉴클레오타이드 서열은 서열목록 제4서열이다.The nucleotide sequence encoding talA is SEQ ID NO: 4.

상기 talB를 암호화하는 뉴클레오타이드 서열은 서열목록 제5서열이다.The nucleotide sequence encoding talB is SEQ ID NO: 5.

본 발명에서 히스티딘생산능 변이 균주를 표현하면서 사용하는 용어 "불활성화"는 유전자를 코딩하는 뉴클레오타이드를 치환, 삽입, 결실 또는 이들의 조합에 의하여 단백질의 발현 및/또는 활성을 억제하거나 약화시키는 것을 의미한다.In the present invention, the term "inactivation" used while expressing a mutant strain for producing histidine refers to inhibiting or attenuating the expression and/or activity of a protein by substitution, insertion, deletion, or a combination of nucleotides encoding a gene. do.

본 발명의 일 구현예에 따르면, 본 발명의 불활성화는 pgi, tktA, tktB, talA 및 talB로 구성된 군으로부터 선택되는 하나 이상의 효소를 코딩하는뉴클레오타이드 서열의 치환, 삽입, 결실 또는 이들의 조합에 의한 불활성화이다. 본 발명의 다른 구현예에 따르면, 본 발명의 불활성화는 pgi, tktA, tktB, talA 및 talB로 구성된 군으로부터 선택되는 하나 이상의효소를 코딩하는뉴클레오타이드 서열의 완전 또는 부분 결실에 의한 비산화 펜토오스 인산 경로 관련 효소의 불활성화이다. 본 발명의 특정 구현예에 르면, 본 발명의 불활성화는 pgi, tktA, tktB, talA 및 talB로 구성된 군으로부터 선택되는 하나 이상의 효소를 코딩하는 뉴클레오타이드 서열의 부분 결실에 의한 비산화 펜토오스인산 경로-관련 효소의 불활성화이다.According to one embodiment of the present invention, the inactivation of the present invention is by substitution, insertion, deletion or a combination of nucleotide sequences encoding one or more enzymes selected from the group consisting of pgi, tktA, tktB, talA and talB. It is inactivation. According to another embodiment of the present invention, the inactivation of the present invention is non-oxidized pentose phosphate by complete or partial deletion of the nucleotide sequence encoding one or more enzymes selected from the group consisting of pgi, tktA, tktB, talA and talB. It is the inactivation of pathway-related enzymes. According to a specific embodiment of the present invention, the inactivation of the present invention is a non-oxidized pentose phosphate pathway by partial deletion of a nucleotide sequence encoding one or more enzymes selected from the group consisting of pgi, tktA, tktB, talA and talB- It is the inactivation of related enzymes.

본 발명의 일 구현예에 따르면, 상기 히스티딘 생산능 변이 균주는 불활성화된 포스포글루코오스 이성화효소, 트랜스케톨라아제 B 또는 이의 조합을 포함한다.According to an embodiment of the present invention, the histidine-producing mutant strain includes an inactivated phosphoglucose isomerase, transketolase B, or a combination thereof.

본 발명의 일 구현예에 따르면, 상기 히스티딘 생산능 변이 균주는 불활성화된 트랜스케톨라아제 A, 트랜스알돌라아제 A, 트랜스알돌라아제 B 또는 이의 조합을 포함한다. According to an embodiment of the present invention, the histidine-producing mutant strain includes inactivated transketolase A, transaldolase A, transaldolase B, or a combination thereof.

불활성화 대상이 되는 비산화 펜토오스 인산 경로-관련 효소는 다양한 균주에서 발견되고 동정되었다. 하기의 실시예에서는 서열목록 제1서열 내지 제5서열의 이스케리치아 콜라이의 비산화 펜토오스 인산 경로-관련 효소가 예시되어 있으나, 이외에도 다양한 효소가 본 발명에 포함된다.Non-oxidized pentose phosphate pathway-related enzymes to be inactivated have been found and identified in various strains. In the following examples, non-oxidized pentose phosphate pathway-related enzymes of Escherichia coli of SEQ ID NOs: 1 to 5 in the Sequence Listing are exemplified, but other enzymes are included in the present invention.

본 발명의 변이 균주는 야생형(wild type) 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 균주를 모균주로 하여 비산화 펜토오스 인산 경로-관련 효소를 불활성화 시킨 균주이며, 비산화 펜토오스 인산 경로-관련 효소를 발현하거나 비산화 펜토오스 인산 경로-관련 효소의 효소 활성을 포함하고 있는 균주라면 모균주로 제한 없이 이용이 가능하다.The mutant strain of the present invention is a strain in which non-oxidized pentose phosphate pathway-related enzymes are inactivated using a histidine-producing strain containing a wild type or activated non-oxidized pentose phosphate pathway-related enzyme as a parent strain, Any strain that expresses the non-oxidized pentose phosphate pathway-related enzyme or contains the enzymatic activity of the non-oxidized pentose phosphate pathway-related enzyme can be used without limitation as a parent strain.

본 발명의 일 구현예에 따르면, 상기 히스티딘 생산능 변이균주의 모균주는 에스케리치아 콜라이 DS9H KCTC18430P이다.According to one embodiment of the present invention, the parent strain of the histidine-producing mutant strain is Escherichia coli DS9H KCTC18430P.

본 발명의 일 구현예에 따르면, 본 발명의 히스티딘 생산능 변이 균주는 에스케리치아(Escherichia) 속 균주이다. 본 발명의 다른 구현예에 따르면, 본 발명의 히스티딘 생산능 변이 균주는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii), 에스케리치아 헤르마니(Escherichia hermannii) 또는 에스케리치아 불네리스(Escherichia vulneris) 균주이다. 본 발명의 특정 구현예에 따르면, 본 발명의 히스티딘 생산능 변이 균주는 에스케리치아 콜라이이다.According to one embodiment of the present invention, the histidine-producing mutant strain of the present invention is a strain of the genus Escherichia. According to another embodiment of the present invention, the histidine-producing mutant strain of the present invention is Escherichia coli , Escherichia albertii , Escherichia blattae , and Escherichia pergu. Sony ( Escherichia fergusonii ), Escherichia hermannii (Escherichia hermannii) or Escherichia vulneris (Escherichia vulneris) strain. According to a specific embodiment of the present invention, the histidine-producing mutant strain of the present invention is Escherichia coli.

본 발명의 일 구현예에 따르면, 본 발명의 불활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능변이 균주는 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 5-50%, 5-45%, 5-40%, 10-40% 증가된 균주이다.According to one embodiment of the present invention, the histidine-producing ability mutant strain comprising an inactivated non-oxidized pentose phosphate pathway-related enzyme of the present invention is a wild-type or activated non-oxidized pentose phosphate pathway-related histidine-producing ability. Compared to the mutant strain, the histidine production capacity was increased by 5-50%, 5-45%, 5-40%, and 10-40%.

하기 본 발명의 실시예를 통해 입증하듯이, 본 발명의 히스티딘 생산능 변이 균주는 불활성화 pgi를 포함하는 경우에 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 5-30%, 5-25%, 5-20%, 10-20% 또는 15-20% 증가된 균주이다.As demonstrated through the examples of the present invention, the histidine-producing mutant strain of the present invention includes a wild-type or activated non-oxidized pentose phosphate pathway-related enzyme when the histidine-producing mutant strain of the present invention contains an inactivated pgi, and In comparison, it is a strain with an increase in the production capacity of histidine by 5-30%, 5-25%, 5-20%, 10-20% or 15-20%.

본 발명의 히스티딘 생산능 변이 균주는 불활성화 tktB를 포함하는 경우에 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 10-40%, 10-35%, 10-30%, 15-30% 또는 20-30% 증가된 균주이다.When the histidine-producing mutant strain of the present invention contains inactivated tktB, the histidine-producing ability is 10-40%, 10 compared to the histidine-producing mutant strain containing the wild-type or activated non-oxidized pentose phosphate pathway-related enzyme. -35%, 10-30%, 15-30% or 20-30% increased strain.

본 발명의 히스티딘 생산능 변이 균주는 불활성화 pgi및 tktB를 포함하는 경우에 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 20-50%, 20-45%, 20-40%, 25-40% 또는 30-40% 증가된 균주이다.When the histidine-producing mutant strain of the present invention contains inactivated pgi and tktB, the histidine-producing ability is 20-50% compared to the histidine-producing mutant strain containing the wild-type or activated non-oxidized pentose phosphate pathway-related enzyme. , 20-45%, 20-40%, 25-40% or 30-40% increased strain.

본 발명의 히스티딘 생산능 변이 균주는 불활성화 tktA를 포함하는 경우에 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 2-20%, 2-18%, 2-15%, 5-15% 또는 8-15% 증가된 균주이다.When the histidine-producing mutant strain of the present invention contains inactivated tktA, the histidine-producing ability is 2-20% compared to the histidine-producing mutant strain containing the wild-type or activated non-oxidized pentose phosphate pathway-related enzyme, 2 -18%, 2-15%, 5-15% or 8-15% increased strain.

본 발명의 히스티딘 생산능 변이 균주는 불활성화 talA를 포함하는 경우에 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 5-30%, 5-25%, 5-20%, 10-20% 또는 15-20% 증가된 균주이다.When the histidine-producing mutant strain of the present invention contains inactivated talA, the histidine-producing ability is 5-30% compared to the histidine-producing mutant strain containing the wild-type or activated non-oxidized pentose phosphate pathway-related enzyme, 5 -25%, 5-20%, 10-20% or 15-20% increased strain.

본 발명의 히스티딘 생산능 변이 균주는 불활성화 talB를 포함하는 경우에 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 비교하여 히스티딘의 생산능이 2-20%, 2-18%, 2-15%, 5-15% 또는 8-15% 증가된 균주이다.When the histidine-producing mutant strain of the present invention contains inactivated talB, the histidine-producing ability is 2-20% compared to the histidine-producing mutant strain containing a wild-type or activated non-oxidized pentose phosphate pathway-related enzyme, 2 -18%, 2-15%, 5-15% or 8-15% increased strain.

본 발명의 다른 양태에 따르면, 본 발명은 비산화 펜토오스 인산 경로-관련 효소를 불활성화 시키는 단계를 포함하는 히스티딘(histidine) 생산능 변이 균주의 제조방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for producing a histidine-producing mutant strain comprising the step of inactivating a non-oxidized pentose phosphate pathway-related enzyme.

본 발명은 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주를 공지된 유전자 재조합 방법에 의하여 비산화 펜토오스 인산 경로-관련 효소를 불활성화 시키는 것이 가능하다.In the present invention, it is possible to inactivate a non-oxidized pentose phosphate pathway-related enzyme by a known genetic recombination method in a histidine-producing mutant strain containing a wild-type or activated non-oxidized pentose phosphate pathway-related enzyme.

히스티딘 생합성에 관련된 비산화 펜토오스 인산 경로-관련 효소를 암호화 하는 유전자 pgi, tktA, tktB, talAtalB로 구성된 군으로부터 선택되는 하나 이상의 유전자를 염색체상에서 결실시키기 위하여 원스텝 불활성화 방법(one step inactivation: Warner et al., PNAS, 6:6640-6645)을 이용한다. One step inactivation method to delete one or more genes selected from the group consisting of pgi , tktA , tktB , talA and talB genes encoding the non-oxidized pentose phosphate pathway-related enzymes involved in histidine biosynthesis on the chromosome. Warner et al., PNAS, 6:6640-6645).

본 발명에서 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 균주에 형질전환 시키는 단계는 공지된 방법을 통하여 실시될 수 있다. 예컨대, 전기 천공 방법(van der Rest et al., Appl. Microbiol.Biotechnol., 52, 541-545, 1999) 등에 의해 실시될 수 있다.In the present invention, the step of transforming a histidine-producing strain containing a wild-type or activated non-oxidized pentose phosphate pathway-related enzyme may be carried out through a known method. For example, it may be carried out by an electroporation method (van der Rest et al., Appl. Microbiol. Biotechnol., 52, 541-545, 1999).

또한, 본 발명은 형질전환이 되지 않은 야생형 또는 활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 균주로부터 형질 전환된 변이 균주를 분리 및 수득하는 단계를 포함한다.In addition, the present invention includes the steps of isolating and obtaining a transformed mutant strain from a histidine-producing strain containing untransformed wild-type or activated non-oxidized pentose phosphate pathway-related enzyme.

상기 본 발명에서 형질전환이 되지 않은 균주로부터 형질전환된 히스티딘 생산능 변이 균주를 분리 및 수득하는 단계를 실시하는데 있어서 선택 표지된 벡터를 이용할 수 있다.In the present invention, a selectively labeled vector may be used in performing the step of isolating and obtaining the transformed histidine-producing mutant strain from the non-transformed strain.

또한, 본 발명에서 이용하는 벡터는 플라스미드 또는 파지(phage)를 포함하나, 이에 제한되지 않는다.In addition, the vector used in the present invention includes, but is not limited to, a plasmid or phage.

본 발명에서 이용하는 선택 표지는 당업계에서 통상적으로 이용되는 카나마이신, 앰피실린 같은 항생제 내성 유전자와 고초균유래 SacB 유전자의 산물인 레반슈크라제(levansucrase)를 포함한다.Selective markers used in the present invention include antibiotic resistance genes such as kanamycin and ampicillin, which are commonly used in the art, and levansucrase, which is a product of the SacB gene derived from Bacillus bacillus.

본 발명의 제조방법은 상술한 불활성화 비산화 펜토오스 인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 동일한 균주를 제조하는 방법이며, 불활성화의 대상이 되는 단백질(비산화 펜토오스 인산 경로-관련 효소인 포스포글루코오스 이성화효소, 트랜스케톨라아제 A, 트랜스케톨라아제 B, 트랜스알돌라아제 A 및 트랜스알돌라아제 B로 구성된 군으로부터 선택되는 하나 이상의 효소) 및 관련 유전자(pgi, tktA, tktB, talAtalB로 구성된 군으로부터 선택되는 하나 이상의유전자)를 공통으로 하기 때문에, 이 둘 사이의 공통된 내용은 본 명세서의 과도한복잡성을 피하기 위하여 그 기재를 생략한다.The production method of the present invention is a method for producing the same strain as the strain having the above-described inactivated non-oxidized pentose phosphate pathway-related enzyme, and the strain having the histidine-producing ability. -Related enzymes, phosphoglucose isomerase, transketolase A, transketolase B, transaldolase A and one or more enzymes selected from the group consisting of transaldolase B) and related genes (pgi, tktA , tktB , one or more genes selected from the group consisting of talA and talB ) are in common, so the description of the common content between the two is omitted in order to avoid excessive complexity of the present specification.

본 발명의 또 다른 양태에 따르면, 본 발명의 히스티딘 생산능변이 균주를 배양하는 단계를 포함하는 히스티딘 생산방법을 제공한다.According to another aspect of the present invention, there is provided a histidine production method comprising the step of culturing the histidine-producing mutant strain of the present invention.

본 발명은 히스티딘 생산능 균주 및 변이 균주의 전배양 또는 종배양 하는데 있어서 공지된 배양 방법을 통해 배양할 수 있다.The present invention can be cultured through a known culture method in pre-culture or seed culture of histidine-producing strains and mutant strains.

본 발명에 천연배지 또는 합성배지를 사용할 수 있으며, 배지의 탄소원으로는 예를 들어, 글루코오스, 수크로오스, 덱스트린, 글리세롤, 녹말 등이 사용될 수 있고, 질소원으로는 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 대두 케이크, 우레아, 티오우레아, 암모늄염, 나이트레이트 및 기타 유기 또는 무기 질소-함유 화합물이 사용될 수 있으나, 이러한 성분에 한정되는 것은 아니다.Natural medium or synthetic medium can be used in the present invention, and the carbon source of the medium may be, for example, glucose, sucrose, dextrin, glycerol, starch, etc., and as the nitrogen source, peptone, meat extract, yeast extract, dried Yeast, soybean cake, urea, thiourea, ammonium salts, nitrates and other organic or inorganic nitrogen-containing compounds may be used, but are not limited to these ingredients.

배지에 포함되는 무기염으로는 마그네슘, 망간, 포타슘, 칼슘, 철 등의 포스페이트, 나이트레이트, 카보네이트, 클로라이드 등이 사용될 수 있으나, 이들에 한정되는 것은 아니다.Inorganic salts contained in the medium may include phosphates such as magnesium, manganese, potassium, calcium, iron, etc., nitrates, carbonates, chlorides, etc., but are not limited thereto.

상기 탄소원, 질소원 및 무기염의 성분 이외에 아미노산, 비타민, 핵산 및 그와 관련된 화합물들이 배지에 첨가될 수 있다.In addition to the components of the carbon source, nitrogen source, and inorganic salt, amino acids, vitamins, nucleic acids, and compounds related thereto may be added to the medium.

본 발명은 상기 불활성화 비산화 펜토오스인산 경로-관련 효소를 포함하는 히스티딘 생산능 변이 균주와 동일한 균주 및 균주제조 방법을 이용하여 히스티딘을 생산하는 방법이므로, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The present invention is a method for producing histidine using the same strain and strain manufacturing method as the histidine-producing mutant strain containing the inactivated non-oxidized pentose phosphate pathway-related enzyme. In order to avoid excessive complexity, the description is omitted.

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 히스티딘(histidine) 생산능 변이 균주, 상기 변이 균주의 제조방법 및 히스티딘 제조방법을 제공한다.(a) The present invention provides a histidine-producing mutant strain, a method for preparing the mutant strain, and a method for preparing histidine.

(b) 본 발명은 히스티딘 생산능을 갖는 균주에서 비산화 펜토오스 인산 경로(non-oxidative pentose phosphate pathway)-관련 효소를 불활성화시킴으로써 히스티딘의 생산능을 증가시킨다.(b) The present invention increases histidine-producing ability by inactivating non-oxidative pentose phosphate pathway-related enzymes in strains having histidine-producing ability.

(c) 본 발명의 히스티딘 생산능 변이 균주는 야생형 균주와 비교하여 5-50% 증가된 히스티딘 생산능을 나타낸다.(c) The histidine-producing mutant strain of the present invention exhibits a 5-50% increase in histidine-producing ability compared to the wild-type strain.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예1: Example 1: pgipgi , , tktB tktB 유전자가 결실된 변이주 제조Manufacture of mutant strains with deletion of genes

pgi, tktB 유전자를 결실시켰다. 결실하고자 하는 유전자의 뉴클레오타이드 서열은 각각 서열목록 제 1 서열 및 제 2 서열과 같다. The pgi and tktB genes were deleted. The nucleotide sequence of the gene to be deleted is the same as the first sequence and the second sequence, respectively.

포스포글루코스 이성화효소(Phosphoglucose isomerase)를 코딩하는 유전자(pgi, 서열목록 제1서열) 및 트랜스케톨라아제 B(tktB, 서열목록 제2서열) 결실 균주를 제작하기 위해서 원스탭 불활성화 방법(one step inactivation; Warner et al., PNAS, 6:6640-6645(2000))을 이용하였다. 상세한 실험방법은 하기와 같다:Phospho-glucose isomerase (Phosphoglucose isomerase), a gene encoding (pgi, SEQ ID NO: 1) and trans Kane Tortola Kinase B (tktB, SEQ ID NO: 2) One staff inactivation method in order to produce a deletion strains (one step inactivation; Warner et al., PNAS, 6:6640-6645 (2000)) was used. The detailed experimental method is as follows:

하기 표 1에서의 pgi 경우, pgi 유전자 일부서열과 pKD13 플라스미드 일부 서열을 가지는 FR_F(pgi) 및, FR_R(pgi)프라이머 쌍을 이용하였고 tktB의 경우, tktB 유전자 일부서열과 pKD13 플라스미드 일부서열을 가지는 FR_F(tktB) 및 FR_R(tktB) 프라이머 쌍, 및 pKD13 플라스미드(Genbank 접근번호 AY048744)를 이용하여 PCR 반응(총부피 50 ㎕, 95 5분 1사이클 후, 95에서 30초, 58에서 30초, 72에서 2분, 총 30사이클 이후 72에서 5분 및 12에서 10분)을 수행하여 pgi와 상보적인 부분을 가지는 FRT 약 1.3kb, tktB와 상보적인 부분을 가지는 FRT 약 1.3kb의 증폭된 단편(1) 및 (2)를 각각 얻었다.Table case pgi at 1, pgi gene, some sequences with pKD13 plasmid portion FR_F having the sequence (pgi), and, was used to FR_R (pgi) a pair of primers for tktB, tktB gene part sequence and the pKD13 plasmid FR_F having some sequence (tktB) and FR_R(tktB) primer pairs, and a PCR reaction using pKD13 plasmid (Genbank accession number AY048744) (total volume 50 μl, 95 5 minutes 1 cycle, 95 to 30 seconds, 58 to 30 seconds, 72) 2 minutes, after a total of 30 cycles, 72 to 5 minutes and 12 to 10 minutes), an amplified fragment of about 1.3 kb FRT having a portion complementary to pgi and about 1.3 kb of FRT having a portion complementary to tktB (1) And (2) were obtained, respectively.

pgitktB 유전자의 결실 균주를 제조하기 위하여 pgitktB 유전자의 앞쪽 단편을 얻고자 대장균 MG1655의 지노믹(genomic) DNA를 주형으로 하여 pgi의 경우 표1의 pgi_HF1및 pgi_HR1 프라이머, tktB의 경우 표2의 tktB_HF1 및 tktB_HR1 프라이머를 이용하여 PCR(총부피 50 ㎕, 95 5분 1사이클 후, 95에서 30초, 57에서 30초, 72에서 30초, 총 30사이클 이후 72에서 5분 및 12에서 10분)을 수행하여 약 200bp 증폭된 단편(3) 및 (4)를 각각 얻었다. In order to prepare the pgi and tktB gene deletion strains, to obtain the front fragments of the pgi and tktB genes, the genomic DNA of E. coli MG1655 was used as a template. In the case of pgi, the primers pgi_HF1 and pgi_HR1 in Table 1, and Table 2 in the case of tktB. PCR using tktB_HF1 and tktB_HR1 primers (total volume 50 μl, 95 5 minutes 1 cycle, 95 30 seconds, 57 30 seconds, 72 30 seconds, total 30 cycles 72 to 5 minutes and 12 to 10 minutes) ) To obtain approximately 200bp amplified fragments (3) and (4), respectively.

또한 pgitktB 유전자의 뒤쪽 단편을 얻기 위해 대장균 MG1655의 지노믹 DNA를 주형으로 하여 표 1의 프라이머 pgi_HF2 및 pgi_HR2, 표 2의 tktB_HF2 및 tktB_HR2를 이용하여 PCR(총부피 50 ㎕, 95 5분 1사이클 후, 95에서 30초, 57에서 30초, 72에서30초, 총 30사이클 이후 72에서 5분 및 12에서 10분)을 수행하여 약 200 bp의 증폭된 단편(5) 및 (6)을 각각 얻었다.In addition, PCR (total volume 50 µl, 95 5 minutes 1 cycle) using primers pgi_HF2 and pgi_HR2 in Table 1 and tktB_HF2 and tktB_HR2 in Table 2 using the genomic DNA of E. coli MG1655 as a template to obtain the rear fragments of pgi and tktB genes. Then, 95 to 30 seconds, 57 to 30 seconds, 72 to 30 seconds, 72 to 5 minutes and 12 to 10 minutes after a total of 30 cycles) to obtain about 200 bp of amplified fragments (5) and (6), respectively. Got it.

위 실험에서 증폭된 각각의 단편 (1), (3) 및 (5) 세트 및 (2), (4) 및 (6) 세트는 증폭시 프라이머의 상보적 서열로 인하여 하나의 단편으로 연결될 수 있다. 이 단편들을 프라이머를 제외하고 총 부피 50㎕, 95 5분 1사이클 후, 95에서 30초, 57에서 30초, 72에서 2분 30초, 총 30사이클 이후 72에서 5분 및 12 에서 10분 조건으로 PCR을 수행하여 FRT가 포함되고 양쪽 끝에 pgi 단편이 있는 약 1.7kb, FRT가 포함되고 양쪽 끝에 tktB 단편이 있는 약 1.7kb 크기를 가지는 하나의 증폭된 단편을 각각 얻었다.Each of the fragments (1), (3) and (5) sets and (2), (4) and (6) sets amplified in the above experiment can be linked into one fragment due to the complementary sequence of the primers during amplification. . These fragments were subjected to a total volume of 50 µl excluding primers, 95 to 5 minutes, 1 cycle, 95 to 30 seconds, 57 to 30 seconds, 72 to 2 minutes and 30 seconds, and after a total of 30 cycles, 72 to 5 minutes and 12 to 10 minutes under conditions. PCR was performed to obtain one amplified fragment having a size of about 1.7 kb containing FRT and having a pgi fragment at both ends, and about 1.7 kb containing FRT and having a tktB fragment at both ends, respectively.

이렇게 획득한 DNA 단편을 pKD46(GenBank No. AY048746)을 포함하고 있는 에스케리치아 콜라이 DS9H(Escherichia coli, DS9H; KCTC 18430P) 세포에 전기천공하였다. 이후 카나마이신 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 pgitktB 유전자의 결실 여부를 확인하였다. 반응은 표 1의 pgi_CF 및 pgi_CR 프라이머, 표 2의 tktB_CF, tktB_CR 프라이머를 이용하여 총 부피 20 ㎕, 95 5분 1사이클 후, 95에서 30초, 55에서 30초, 72에서2분 30초, 총 30사이클 이후 72에서 5분 및 12에서 10분 조건으로 수행하였다. 염색체 내에 단편이 삽입된 경우 원래 pgi 유전자가 있을 경우 생성되는 1.6 kb와 비교하여 약 2.0 kb가 생성됨을 확인하였다. 또한 tktB의 유전자가 있을 경우 생성되는 2.0 kb 와 비교하여 약 2.4 kb가 생성됨을 확인하였다.The thus-obtained DNA fragment was electroporated into Escherichia coli DS9H (Escherichia coli, DS9H; KCTC 18430P) cells containing pKD46 (GenBank No. AY048746). Subsequently, a PCR reaction was performed on a cell line exhibiting kanamycin resistance to confirm the deletion of the pgi and tktB genes. The reaction was performed using the pgi_CF and pgi_CR primers in Table 1, the tktB_CF and tktB_CR primers in Table 2 in a total volume of 20 µl, 95 5 minutes and 1 cycle, 95 to 30 seconds, 55 to 30 seconds, 72 to 2 minutes 30 seconds, total After 30 cycles, it was carried out under conditions of 72 to 5 minutes and 12 to 10 minutes. When the fragment was inserted into the chromosome, it was confirmed that about 2.0 kb was generated compared to the 1.6 kb generated when the original pgi gene was present. In addition, it was confirmed that about 2.4 kb was generated compared to 2.0 kb generated when the tktB gene was present.

pgitktB 결실이 확인된 균주들을 이용하여 항생제 내성 표식 유전자를 제거하는 과정을 수행하였다. pgitktB 유전자 결실주에 pCP20 플라스미드를 도입하여 FLP 재조합을 유도한 후, 항생제(카나마이신) 첨가 및 미첨가 LB 평판에서 생장 여부를 통해 항생제 제거 여부를 확인하였다. 항생제가 제거된 균주들은 LB평판에서 생장을 하나, 항생제(카나마이신)가 첨가된 LB 평판에서는 생장하지 못함을 확인하였다.A process of removing the antibiotic resistance marker gene was performed using strains in which pgi and tktB deletions were confirmed. After introducing the pCP20 plasmid into the pgi and tktB gene deletion strains to induce FLP recombination, it was confirmed whether antibiotics were removed through the growth of antibiotics (kanamycin) and non-added LB plates. It was confirmed that the strains from which antibiotics were removed grew on the LB plate, but did not grow on the LB plate to which the antibiotic (kanamycin) was added.

프라이머primer 염기서열 (5'-3')Base sequence (5'-3') pgi-HF1pgi-HF1 TCAACCGCACTGAAAACCGCTCAACCGCACTGAAAACCGC pgi-HR1pgi-HR1 GAAGCAGCTCCAGCCTACACGATCCCGATGTTCACTACGTGAAGCAGCTCCAGCCTACACGATCCCGATGTTCACTACGT FR-F(pgi)FR-F(pgi) GTGTAGGCTGGAGCTGCTTCGTGTAGGCTGGAGCTGCTTC FR-R(pgi)FR-R(pgi) CTGTCAAACATGAGAATTAACTGTCAAACATGAGAATTAA pgi-HF2pgi-HF2 TTAATTCTCATGTTTGACAGGCAGGAATATCGTGATCAGGTTAATTCTCATGTTTGACAGGCAGGAATATCGTGATCAGG pgi-HR2pgi-HR2 ACCTGCTGGTAACGGCTGACACCTGCTGGTAACGGCTGAC pgi-CFpgi-CF AAGTTCTCCGCAACCTTCGAAAGTTCTCCGCAACCTTCGA pgi-CRpgi-CR GCCACGCTTTATAGCGGTTAGCCACGCTTTATAGCGGTTA

tktB-HF1tktB-HF1 GACCTTGCCAATGCGATTCGGACCTTGCCAATGCGATTCG tktB-HR1tktB-HR1 GAAGCAGCTCCAGCCTACAC CGGTCAGATGTAGCAAACTGGAAGCAGCTCCAGCCTACAC CGGTCAGATGTAGCAAACTG FR-F(tktB)FR-F(tktB) GTGTAGGCTGGAGCTGCTTCGTGTAGGCTGGAGCTGCTTC FR-R(tktB)FR-R(tktB) CTGTCAAACATGAGAATTAACTGTCAAACATGAGAATTAA tktB-HF2tktB-HF2 TTAATTCTCATGTTTGACAG CAGGATGAGGAATATCGGGATTAATTCTCATGTTTGACAG CAGGATGAGGAATATCGGGA tktB-HR2tktB-HR2 CAGCACCTTATGCGCTTTTGCAGCACCTTATGCGCTTTTG tktB-CFtktB-CF CTGTCTGAAGGCATTCGTCTCTGTCTGAAGGCATTCGTCT tktB-CRtktB-CR GTTAAACAAAATGGCGGGACGTTAAACAAAATGGCGGGAC

실시예 2: pgi, tktB 유전자 결실 균주의 L-히스티딘 생산량 평가Example 2: Evaluation of L-histidine production of pgi and tktB gene deletion strains

실시예 1에서 얻어진 pgi, tktB 유전자결실 균주의 L-히스티딘의 생성량을 확인하기 위하여 모주인 에스케리치아 콜라이 DS9H(Escherichia coli, DS9H KCTC 18430P)와 pgitktB 결실 균주인 DS9Hpgi, DS9H△tktB 및 DS9Hpgi△tktB 균주의 L-히스티딘 생성량을 비교하였다.In order to confirm the production amount of L-histidine in the pgi and tktB gene deletion strain obtained in Example 1, the parent strain Escherichia coli DS9H (Escherichia coli, DS9H KCTC 18430P) and pgi and tktB deletion strains DS9Hpgi, DS9H△tktB and DS9Hpgi The amount of L-histidine production of the ΔtktB strain was compared.

상기 균주를 표 3의 배지조성으로 플라스크에서 배양하였다.The strain was cultured in a flask with the medium composition shown in Table 3.

성분ingredient 농도density 포도당glucose 8%8% 황산마그네슘Magnesium sulfate 0.1%0.1% 황산암모늄Ammonium sulfate 2.0%2.0% MSGMSG 0.1%0.1% 일인산칼륨Potassium monophosphate 0.1%0.1% 효모추출물Yeast extract 0.1%0.1% 황산칼륨Potassium sulfate 0.02%0.02% 티아민-HClThiamine-HCl 20 ppm20 ppm 니코틴산Nicotinic acid 10 ppm10 ppm 황산철Iron sulfate 5 ppm5 ppm 황산아연Zinc sulfate 5 ppm5 ppm 황산망간Manganese sulfate 5 ppm5 ppm 탄산칼슘(별도멸균)Calcium carbonate (separately sterilized) 5.0%5.0%

상기 배지 조건(pH7.0)으로 시작 액량 10 ㎖로 수행하였고, 배양은 온도 34, 교반속도 200 rpm의 물리적 조건으로 배양하였다. 그 결과 표 4에서와 같이 L-히스티딘의 생산량이 증가하는 것을 확인하였다.The medium condition (pH 7.0) was performed with a starting liquid amount of 10 ml, and the culture was performed under physical conditions of a temperature of 34 and a stirring speed of 200 rpm. As a result, it was confirmed that the production amount of L-histidine increased as shown in Table 4.

균주명Strain name L-히스티딘(%)L-histidine (%) 배양시간(hr)Incubation time (hr) DS9HDS9H 0.770.77 7272 DS9HpgiDS9Hpgi 0.910.91 7272 DS9HtktBDS9HtktB 0.960.96 7272 DS9Hpgi,△tktBDS9Hpgi,△tktB 1.041.04 7272

pgitktB를 함께 결실시킨 균주(DS9Hpgi,tktB) 플라스크에서 배양한 결과 모주인 에스케리치아 콜라이 DS9H(Escherichia coli, DS9H KCTC 18430P) 대비 L-히스티딘이 약 35% 증가하는 것을 확인하였다. pgitktB를 각각 결실시킨 균주도 각각 18% 및 24%의 히스티딘 생성 증가를 나타냈다. 비산화(Non-oxidative) PPP 경로 관련 유전자인 pgi, tktB를 약화시켜 산화 PPP 경로가 강화되어 L-히스티딘 전구체인 PRPP가 증가한 것임을 확인할 수 있다. As a result of culturing in a flask of strains (DS9Hpgi, tktB) in which pgi and tktB were deleted together, it was confirmed that L-histidine increased by about 35% compared to the parent strain Escherichia coli DS9H (Escherichia coli, DS9H KCTC 18430P). Strains in which pgi and tktB were deleted respectively also showed an increase in histidine production of 18% and 24%, respectively. Non-oxidative (non-oxidative) PPP pathway-related genes pgi and tktB were attenuated to strengthen the oxidative PPP pathway, thereby increasing the L-histidine precursor PRPP.

실시예3: Example 3: tktAtktA , , talAtalA 또는 or talBtalB 유전자가 결실된 변이주 제조 Manufacture of mutant strains with deletion of genes

실시예 1 및 2의 결과를 바탕으로 L-히스티딘 생산능을 향상시키기 위하여 pgitktB 이외의 비산화 PPP 경로 관련 유전자인 트랜스케톨라아제(transketolase, tkt) A, 트랜스알돌라아제(transaldolase, tal) A 또는 트랜스알돌라아제B의 파쇄를 원스탭 불활성화 방법(one step inactivation; Warner et al., PNAS, 6:6640-6645(2000))을 통해 결실하였다. 불활성화고자 하는 tktA, talAtalB 유전자의 뉴클레오타이드 서열은 서열목록 제 3 서열, 제 4 서열 및 제 5 서열과 같다.Based on the results of Examples 1 and 2, in order to improve the L-histidine production ability, transketolase (tkt) A, a non-oxidizing PPP pathway-related gene other than pgi and tktB, and transaldolase, tal ) The disruption of A or transaldolase B was deleted through one step inactivation (Warner et al., PNAS, 6:6640-6645 (2000)). The nucleotide sequences of the tktA , talA, and talB genes to be inactivated are the same as the 3rd, 4th, and 5th sequences in the Sequence Listing.

트랜스케톨라아제 A를 코딩하는 유전자인 tktA와 트랜스알돌라아제 A를 코딩하는 유전자인 talA, 트랜스알돌라아제 B를 코딩하는 유전자인 talB의 결실 균주를 제작하기 위해서 다음과 같이 실험을 수행하였다:In order to produce a transformer Kane Tortola dehydratase gene of tktA and trans aldolase gene, talA, trans aldolase deletion strain of gene talB encoding the B encoding the kinase A encoding the A experiment was performed as follows:

하기 표 5, 6 및 7에서의 tktA, talA 또는 talB 유전자 일부서열과 pKD13 플라스미드 일부 서열을 가지는 프라이머, 예컨대, tktA경우 FR_F(tktA) 및 FR_R(tktA)프라이머 쌍, talA의 경우 FR_F(talA) 및 FR_R(talA) 프라이머 쌍, talB의 경우 FR_F(talB) 및 FR_R(talB) 프라이머 쌍, 및 pKD13 플라스미드(Genbank 접근번호 AY048744)를 이용하여 PCR 반응(총부피 50㎕, 95 5분 1사이클 후, 95에서 30초, 58에서 30초, 72에서 2분, 총 30사이클 이후 72에서 5분 및 12에서 10분)을 수행하여 tktA와 상보적인 부분을 가지는 FRT 약 1.3kb, talA와 상보적인 부분을 가지는 FRT 1.3kb 및, talB와 상보적인 부분을 가지는 FRT 약 1.3kb 의 증폭된 단편(7) 내지 (9)를 각각 얻었다.Table 5 and 6 and having the tktA, talA or talB gene part sequence and the pKD13 plasmid, some sequences of 7 primers, for example, when tktA FR_F (tktA) and FR_R (tktA) a pair of primers, FR_F (talA) and for talA FR_R (talA) a pair of primers, in the case of the talB FR_F (talB) and FR_R (talB) a pair of primers, and the pKD13 plasmid (Genbank accession number AY048744) using the PCR reaction (total volume 50㎕, 95 5 minutes for 1 cycle, 95 At 30 seconds, 58 to 30 seconds, 72 to 2 minutes, 72 to 5 minutes and 12 to 10 minutes after a total of 30 cycles), FRT having a part complementary to tktA is about 1.3 kb, which has a part complementary to talA. Amplified fragments (7) to (9) of about 1.3 kb of FRT and about 1.3 kb of FRT having a portion complementary to talB were obtained, respectively.

tktA, talA talB 유전자의 결실 균주를 각각 제조하기 위하여 tktA, talAtalB 유전자의 앞쪽 단편을 얻기 위해 대장균 MG1655의 지노믹 DNA를 주형으로 하여 tktA의 경우 표 5의 tktA_HF1 및 tktA_HR1 프라이머, talA의 경우 표 6의 talA_HF1 및 talA_HR1 프라이머, talB의 경우 표 7의 talB_HF1 및 talB_HR1 프라이머를 이용하여 PCR(총부피 50 ㎕, 95 5분 1사이클 후, 95에서 30초, 58에서 30초, 72에서 30초, 총 30사이클 이후 72에서 5분 및 12에서 10분)을 수행하여 약 200 bp 증폭된 단편(10) 내지 (12)을 각각 얻었다. tktA, for talA and talB tktA to the genomic DNA of E. coli MG1655 as a template to obtain the tktA, talA, and anterior segment of talB gene to each producing a deletion strains of the genes of Table 5 tktA_HF1 and tktA_HR1 primer, in the case of talA PCR using the talA_HF1 and talA_HR1 primers in Table 6, and the talB_HF1 and talB_HR1 primers in Table 7 in the case of talB (total volume 50 μl, 95 5 minutes 1 cycle, 95 to 30 seconds, 58 to 30 seconds, 72 to 30 seconds, After a total of 30 cycles, 72 to 5 minutes and 12 to 10 minutes) were performed to obtain about 200 bp amplified fragments (10) to (12), respectively.

또한 tktA, talAtalB 유전자의 뒤쪽 단편을 얻기 위해 대장균 MG1655의 지노믹 DNA를 주형으로 하여 표 5의 프라이머 tktA_HF2 및 tktA_HR2, 표 6의 프라이머 talA_HF2 및 talA2, 표 7의 프라이머 talB_HF2 및 talB_HR2를 이용하여 PCR(총부피 50 ㎕, 95 5분 1사이클 후, 95에서 30초, 58에서 30초, 72에서30초, 총 30사이클 이후 72에서 5분 및 12에서 10분)을 수행하여 약 200 bp의 증폭된 단편(13) 내지 (15)을 각각 얻었다.In addition, PCR using primers tktA_HF2 and tktA_HR2 in Table 5, primers talA_HF2 and talA2 in Table 6, and primers talB_HF2 and talB_HR2 in Table 7 using the genomic DNA of E. coli MG1655 as a template to obtain the rear fragments of tktA , talA and talB genes. (Total volume 50 μl, 95 5 minutes 1 cycle, 95 to 30 seconds, 58 to 30 seconds, 72 to 30 seconds, 72 to 5 minutes and 12 to 10 minutes after a total of 30 cycles) to amplify about 200 bp Fragments (13) to (15) were obtained, respectively.

위 실험에서 증폭된 각각의 단편(7), (10) 및 (13) 세트, 단편(8), (11) 및 (14) 세트, 및 단편(9), (12) 및 (15) 세트는 증폭시 프라이머의 상보적 서열로 인하여 하나의 단편으로 연결될 수 있다. 이 단편들을 프라이머를 제외하고 총 부피 50 ㎕, 95 5분 1사이클 후, 95에서30초, 58에서 30초, 72에서 2분 30초, 총 30사이클 이후 72에서 5분 및 12 에서 10분 조건으로 PCR을 수행하여 FRT의 양쪽 끝에 tktA 단편이 포함되어 있는 약 1.7kb, FRT의 양쪽 끝에 talA 단편이 포함되어 있는 약 1.7kb, FRT의 양쪽 끝에 talB 단편이 포함되어 있는 약 1.7kb 크기를 가지는 하나의 증폭된 단편을 각각 얻었다.Each set of fragments (7), (10) and (13) amplified in the above experiment, set of fragments (8), (11) and (14), and set of fragments (9), (12) and (15) During amplification, a single fragment may be linked due to the complementary sequence of the primers. These fragments were subjected to a total volume of 50 µl excluding primers, 95 to 5 minutes, 1 cycle, 95 to 30 seconds, 58 to 30 seconds, 72 to 2 minutes and 30 seconds, and after a total of 30 cycles, 72 to 5 minutes and 12 to 10 minutes. One having a size of about 1.7 kb containing tktA fragments at both ends of the FRT, about 1.7 kb containing talA fragments at both ends of the FRT, and about 1.7 kb containing talB fragments at both ends of the FRT by performing PCR Each of the amplified fragments of was obtained.

이렇게 획득한 DNA 단편을 pKD46(GenBank No. AY048746)을 포함하고 있는 에스케리치아 콜라이 DS9H (Escherichia coli, DS9H; KCTC 18430P) 세포에 전기침공하였다. 이후 카나마이신 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 tktA, talA 또는 talB 유전자의 결실 여부를 확인하였다. 반응은 표 5의 tktA_CF 및 tktA_CR 프라이머, 표 6의 talA_CF 및 talA_CR 프라이머, 표 7의 talB_CF 및 talB_CR 프라이머를 이용하여 총 부피 20 ㎕, 95 5분 1사이클 후, 95에서30초, 55에서 30초, 72에서 2분 30초, 총 30사이클 이후 72에서 5분 및 12에서 10분 조건으로 수행하였다. 염색체 내에 단편이 삽입된 경우 원래 tktA 유전자가 있을 경우 생성되는 2.0 kb 와 비교하여 약 2.4 kb가 생성됨을 확인하였다. 또한 talA 유전자가 있을 경우 생성되는 0.9 kb 와 비교하여 약 1.3 kb가 생성됨을 확인하였다. 그리고 talB 유전자가 있을 경우 생성되는 0.9 kb 와 비교하여 약 1.3 kb가 생성됨을 확인하였다. The thus-obtained DNA fragment was electro-invaded into Escherichia coli DS9H (Escherichia coli, DS9H; KCTC 18430P) cells containing pKD46 (GenBank No. AY048746). Subsequently, a PCR reaction was performed on a cell line exhibiting kanamycin resistance to determine whether the tktA , talA, or talB gene was deleted. The reaction was carried out using the tktA_CF and tktA_CR primers in Table 5, the talA_CF and talA_CR primers in Table 6, and the talB_CF and talB_CR primers in Table 7 in a total volume of 20 μl, 95 5 minutes, 1 cycle, 95 to 30 seconds, 55 to 30 seconds, 72 to 2 minutes and 30 seconds, after a total of 30 cycles, 72 to 5 minutes and 12 to 10 minutes were carried out under conditions. When the fragment was inserted into the chromosome, it was confirmed that about 2.4 kb was generated compared to 2.0 kb generated when the original tktA gene was present. In addition, it was confirmed that about 1.3 kb was generated compared to 0.9 kb generated when the talA gene was present. And it was confirmed that about 1.3 kb was generated compared to 0.9 kb generated when the talB gene was present.

tktA, talA 또는 talB 결실이 확인된 균주들을 이용하여 항생제 내성 표식 유전자를 제거하는 과정을 수행하였다. tktA, talA 또는 talB 유전자 결실 균주에 pCP20 프라스미드를 도입하여 FLP 재조합을 유도한 후, 항생제(카나마이신) 첨가 및 미첨가 LB 평판에서 생장 여부를 통해 항생제 제거 여부를 확인하였다. 항생제가 제거된 균주들은 LB평판에서 생장을 하나, 항생제(카나마이신)가 첨가된 LB 평판에서는 생장하지 못함을 확인 하였다.A process of removing the antibiotic resistance marker gene was performed using strains in which the deletion of tktA , talA or talB was confirmed. After inducing FLP recombination by introducing pCP20 plasmid into the strain having the tktA , talA, or talB gene deletion, it was confirmed whether antibiotics were removed through the addition of antibiotics (kanamycin) and growth in non-added LB plates. It was confirmed that the strains from which the antibiotic was removed grew on the LB plate, but not on the LB plate to which the antibiotic (kanamycin) was added.

프라이머primer 염기서열 (5'-3')Base sequence (5'-3') tktA-HF1tktA-HF1 CGTAAAGAGCTTGCCAATGCCGTAAAGAGCTTGCCAATGC tktA-HR1tktA-HR1 GAAGCAGCTCCAGCCTACACGGTGCAGCAGGCTGTAGATCGAAGCAGCTCCAGCCTACACGGTGCAGCAGGCTGTAGATC FR-F(tktA)FR-F(tktA) GTGTAGGCTGGAGCTGCTTCGTGTAGGCTGGAGCTGCTTC FR-R(tktA)FR-R(tktA) CTGTCAAACATGAGAATTAACTGTCAAACATGAGAATTAA tktA-HF2tktA-HF2 TTAATTCTCATGTTTGACAGGTCTACCGACGCATTTGACATTAATTCTCATGTTTGACAGGTCTACCGACGCATTTGACA tktA-HR2tktA-HR2 CGCAACAACGTTATCAACAGCGCAACAACGTTATCAACAG tktA-CFtktA-CF GGCTTGCGGTAAATTGTTGGGGCTTGCGGTAAATTGTTGG tktA-CRtktA-CR GTGATCTACAACACGCCTTAGTGATCTACAACACGCCTTA

프라이머primer 염기서열 (5'-3')Base sequence (5'-3') talA-HF1talA-HF1 CGAGTTAGACGGCATCAAACCGAGTTAGACGGCATCAAAC talA-HR1talA-HR1 GAAGCAGCTCCAGCCTACACCAGTTTGTCACACGCTGCGAGAAGCAGCTCCAGCCTACACCAGTTTGTCACACGCTGCGA FR-F(talA)FR-F(talA) GTGTAGGCTGGAGCTGCTTCGTGTAGGCTGGAGCTGCTTC FR-R(talA)FR-R(talA) CTGTCAAACATGAGAATTAACTGTCAAACATGAGAATTAA talA-HF2talA-HF2 TTAATTCTCATGTTTGACAGCGCACCGAATTTACTGAAGGTTAATTCTCATGTTTGACAGCGCACCGAATTTACTGAAGG talA-HR2talA-HR2 GTTTGGCGGCAAGAAGATCTGTTTGGCGGCAAGAAGATCT talA-CFtalA-CF ATGCCTGTCTGCTATGCTTTATGCCTGTCTGCTATGCTTT talA-CRtalA-CR GGATGACCAGAGTTGGCTTTGGATGACCAGAGTTGGCTTT

프라이머primer 염기서열 (5'-3')Base sequence (5'-3') talB-HF1talB-HF1 CAAATTGACCTCCCTTCGTCCAAATTGACCTCCCTTCGTC talB-HR1talB-HR1 GAAGCAGCTCCAGCCTACACCCAGACCAATATTTACTGCCGAAGCAGCTCCAGCCTACACCCAGACCAATATTTACTGCC FR-F(talB)FR-F(talB) GTGTAGGCTGGAGCTGCTTCGTGTAGGCTGGAGCTGCTTC FR-R(talB)FR-R(talB) CTGTCAAACATGAGAATTAACTGTCAAACATGAGAATTAA talB-HF2talB-HF2 TTAATTCTCATGTTTGACAGCGTAAACTGTCTTACACCGGTTAATTCTCATGTTTGACAGCGTAAACTGTCTTACACCGG talB-HR2talB-HR2 CAGCAGATCGCCGATCATTTCAGCAGATCGCCGATCATTT talB-CFtalB-CF GCTGACGTTGCGTCGTGATAGCTGACGTTGCGTCGTGATA talB-CRtalB-CR CAGAATGATACACTGCGAAGCAGAATGATACACTGCGAAG

실시예4: Example 4: tktAtktA , , talAtalA 또는 or talBtalB 유전자 결실 균주의 L-히스티딘 생산량 평가 Evaluation of L-histidine production of gene deletion strains

실시예 3에서 얻어진 tktA, talA 또는 talB 유전자 결실 균주의 L-히스티딘 생성량을 확인하기 위하여 모주인 에스케리치아 콜라이 DS9H(Escherichia coli, DS9H; KCTC 18430P)와 tktA, talA 또는 talB가 각각 결실 균주인 DS9HtktA, DS9H△talA 및 DS9HtalB의 L-히스티딘 생성량을 비교하였다.In order to confirm the L-histidine production amount of the tktA , talA or talB gene deletion strain obtained in Example 3, the parent strains Escherichia coli DS9H (Escherichia coli, DS9H; KCTC 18430P) and tktA , talA, or talB are the deletion strains, respectively, DS9HtktA. , The amount of L-histidine production of DS9HΔtalA and DS9HtalB was compared.

상기 균주를 실시예 2와 동일한 배지 조성 및 배양조건을 이용하여 배양하였다.The strain was cultured using the same medium composition and culture conditions as in Example 2.

균주명Strain name L-히스티딘(%)L-histidine (%) 배양시간(hr)Incubation time (hr) DS9HDS9H 0.770.77 7272 DS9HtktADS9HtktA 0.860.86 7272 DS9HtalADS9HtalA 0.890.89 7272 DS9HtalBDS9HtalB 0.870.87 7272

표 8의 결과와 같이 본 발명에 의해 모균주에 비해 L-히스티딘 생산성이 약 11~15% 향상되는 것을 확인할 수 있었다. DS9HtktA, DS9H△talA 및 DS9HtalB는 각각 모균주와 비교하여 약 12%, 15%, 13% L-히스티딘 생산성이 증가하였다.As shown in the results of Table 8, it was confirmed that the productivity of L-histidine was improved by about 11 to 15% compared to the parent strain by the present invention. DS9HtktA, DS9HΔtalA and DS9HtalB increased L-histidine productivity by about 12%, 15%, and 13%, respectively, compared to the parent strain.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it is obvious that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto for those of ordinary skill in the art. Therefore, it will be said that the practical scope of the present invention is defined by the appended claims and their equivalents.

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC18430PKCTC18430P 2015120120151201

<110> DAESANG CORPORATION <120> Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme <130> PN150580D <150> KR 10-2015-0181822 <151> 2015-12-18 <160> 5 <170> KopatentIn 2.0 <210> 1 <211> 1650 <212> DNA <213> phosphoglucose isomerase(pgi) <400> 1 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag acggcgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 600 acgctgttct tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaaa aacacgttgc aaaacacttt 720 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc agcagccacg atagctcgac caatggtctg 1620 attaaccgct ataaagcgtg gcgcggttaa 1650 <210> 2 <211> 2004 <212> DNA <213> transketolase B <400> 2 atgtcccgaa aagaccttgc caatgcgatt cgcgcactca gtatggatgc ggtacaaaaa 60 gccaactctg gtcatcccgg cgcgccgatg ggcatggctg atattgccga agtgctgtgg 120 aacgattttc ttaaacataa ccctaccgac ccaacctggt atgatcgcga ccgctttatt 180 ctttccaacg gtcacgcgtc gatgctgctc tacagtttgc tacatctgac cggttacgac 240 ctgccgctgg aagaactgaa gaacttccgt cagttgcatt cgaaaacccc aggccacccg 300 gagattggct atacgccagg cgttgaaacc accaccggcc cgcttggaca aggtttggcg 360 aacgccgtcg ggctggcgat agcagagcgt acactggcgg cgcagtttaa ccagccagac 420 catgagatcg tcgatcactt cacctatgtg tttatgggcg acggctgcct gatggaaggt 480 atttcccacg aagtctgttc gctggcaggc acgctgggac tgggcaagct gattggtttt 540 tacgatcaca acggtatttc catcgacggt gaaacagaag gctggtttac cgacgatacg 600 gcaaaacgtt ttgaagccta tcactggcat gtgatccatg aaatcgacgg tcacgatccg 660 caggcggtga aggaagcgat ccttgaagcg caaagcgtga aagataagcc gtcgctgatt 720 atctgccgta cggtgattgg ctttggttcg ccgaataaag caggtaagga agaggcgcac 780 ggcgcaccac tgggggaaga agaagtggcg ctggcacggc aaaaactggg ctggcaccat 840 ccgccatttg agatccctaa agagatttat cacgcctggg atgcccgtga aaaaggcgaa 900 aaagcgcagc agagctggaa tgagaagttt gccgcctata aaaaggctca tccgcaactg 960 gcagaagagt ttacccgacg gatgagcggt ggtttaccga aggactggga gaaaacgact 1020 cagaaatata tcaatgagtt acaggcaaat ccggcgaaaa tcgctacccg taaggcttcg 1080 caaaatacgc ttaacgctta cgggccgatg ctgcctgagt tgctcggcgg ttcggcggat 1140 ctggctccca gcaacctgac catctggaaa ggttctgttt cgctgaagga agatccagcg 1200 ggcaactaca ttcactacgg ggtgcgtgaa tttggcatga ccgctatcgc caacggcatc 1260 gcgcaccacg gcggctttgt gccgtatacc gcgacgttcc tgatgtttgt tgaatacgcc 1320 cgtaacgccg cgcggatggc ggcactgatg aaagcgcggc agattatggt ttatacccac 1380 gactcaattg gcctgggcga agatggtccg acgcaccagg ctgttgagca actggccagc 1440 ctgcgcttaa cgccaaattt cagcacctgg cgaccgtgcg atcaggtgga agcggcggtg 1500 ggctggaagc tggcggttga gcgccacaac ggaccgacgg cactgatcct ctcaaggcag 1560 aatctggccc aggtggaacg tacgccggat caggttaaag agattgctcg tggcggttat 1620 gtgctgaaag acagcggcgg taagccagat attattctga ttgccaccgg ttcagagatg 1680 gaaattaccc tgcaagcggc agagaaatta gcaggagaag gtcgcaatgt acgcgtagtt 1740 tccctgccct cgaccgatat tttcgacgcc caggatgagg aatatcggga gtcggtgttg 1800 ccttctaacg ttgcggctcg cgtggcggtg gaagcaggta ttgccgatta ctggtacaag 1860 tatgttggtc tgaaaggggc aattgtcggg atgacgggtt acggggaatc tgctccggcg 1920 gataagctgt tcccgttctt tggctttacc gccgagaata ttgtggcaaa agcgcataag 1980 gtgctgggag tgaaaggtgc ctga 2004 <210> 3 <211> 1992 <212> DNA <213> transketolase A <400> 3 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1200 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt 1260 atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc 1380 cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt 1560 cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt 1620 tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa 1680 gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg 1740 gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg tgaatccgta 1800 ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga ctactggtac 1860 aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga atctgctccg 1920 gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc gaaagcaaaa 1980 gaactgctgt aa 1992 <210> 4 <211> 951 <212> DNA <213> transaldolase A <400> 4 atgaacgagt tagacggcat caaacagttc accactgtcg tggcagacag cggcgatatt 60 gagtccattc gccattatca tccccaggat gccaccacca atccttcgct gttactcaaa 120 gctgccggat tatcacaata tgagcattta atagacgatg ctatcgcctg gggtaaaaaa 180 aatggcaaga cccaggaaca acaggtggtc gcagcgtgtg acaaactggc ggtcaatttc 240 ggtgctgaaa tcctcaaaat cgtacccggt cgcgtgtcaa cagaagttga tgcacgcctc 300 tcttttgata aagaaaagag tattgagaag gcgcgccatc tggtggactt gtatcagcaa 360 caaggcgttg agaaatcacg cattctgatc aagctggctt cgacctggga aggaattcgc 420 gcggcagaag agctggaaaa agaaggtatt aactgcaacc tgacgctgct gttttctttt 480 gcacaggcac gggcctgtgc ggaagcaggc gtttttctga tttcgccgtt tgtcgggcgt 540 atttatgact ggtatcaggc acgcaagccg atggacccgt atgtggtgga agaagatccg 600 ggcgttaaat cggtgcgcaa tatctacgac tactataagc aacaccacta tgaaaccatt 660 gtgatgggcg cgagcttccg tcgcaccgaa caaatcctcg ccttaaccgg ctgcgatcga 720 ctgactatcg caccgaattt actgaaggag ctgcaggaaa aagtttcgcc agtggtacgt 780 aaattaatcc caccttctca gacgttccca cgcccagctc ccatgagcga agcggagttc 840 cgttgggagc acaatcagga tgcgatggcg gtagaaaaac tgtctgaagg cattcgtctg 900 ttcgccgttg atcaacgcaa actggaagat cttcttgccg ccaaactata a 951 <210> 5 <211> 954 <212> DNA <213> transaldolase B <400> 5 atgacggaca aattgacctc ccttcgtcag tacaccaccg tagtggccga cactggggac 60 atcgcggcaa tgaagctgta tcaaccgcag gatgccacaa ccaacccttc tctcattctt 120 aacgcagcgc agattccgga ataccgtaag ttgattgatg atgctgtcgc ctgggcgaaa 180 cagcagagca acgatcgcgc gcagcagatc gtggacgcga ccgacaaact ggcagtaaat 240 attggtctgg aaatcctgaa actggttccg ggccgtatct caactgaagt tgatgcgcgt 300 ctttcctatg acaccgaagc gtcaattgcg aaagcaaaac gcctgatcaa actctacaac 360 gatgctggta ttagcaacga tcgtattctg atcaaactgg cttctacctg gcagggtatc 420 cgtgctgcag aacagctgga aaaagaaggc atcaactgta acctgaccct gctgttctcc 480 ttcgctcagg ctcgtgcttg tgcggaagcg ggcgtgttcc tgatctcgcc gtttgttggc 540 cgtattcttg actggtacaa agcgaatacc gataagaaag agtacgctcc ggcagaagat 600 ccgggcgtgg tttctgtatc tgaaatctac cagtactaca aagagcacgg ttatgaaacc 660 gtggttatgg gcgcaagctt ccgtaacatc ggcgaaattc tggaactggc aggctgcgac 720 cgtctgacca tcgcaccggc actgctgaaa gagctggcgg agagcgaagg ggctatcgaa 780 cgtaaactgt cttacaccgg cgaagtgaaa gcgcgtccgg cgcgtatcac tgagtccgag 840 ttcctgtggc agcacaacca ggatccaatg gcagtagata aactggcgga aggtatccgt 900 aagtttgcta ttgaccagga aaaactggaa aaaatgatcg gcgatctgct gtaa 954 <110> DAESANG CORPORATION <120> Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme <130> PN150580D <150> KR 10-2015-0181822 <151> 2015-12-18 <160> 5 <170> KopatentIn 2.0 <210> 1 <211> 1650 <212> DNA <213> phosphoglucose isomerase (pgi) <400> 1 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag acggcgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 600 acgctgttct tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaaa aacacgttgc aaaacacttt 720 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc agcagccacg atagctcgac caatggtctg 1620 attaaccgct ataaagcgtg gcgcggttaa 1650 <210> 2 <211> 2004 <212> DNA <213> transketolase B <400> 2 atgtcccgaa aagaccttgc caatgcgatt cgcgcactca gtatggatgc ggtacaaaaa 60 gccaactctg gtcatcccgg cgcgccgatg ggcatggctg atattgccga agtgctgtgg 120 aacgattttc ttaaacataa ccctaccgac ccaacctggt atgatcgcga ccgctttatt 180 ctttccaacg gtcacgcgtc gatgctgctc tacagtttgc tacatctgac cggttacgac 240 ctgccgctgg aagaactgaa gaacttccgt cagttgcatt cgaaaacccc aggccacccg 300 gagattggct atacgccagg cgttgaaacc accaccggcc cgcttggaca aggtttggcg 360 aacgccgtcg ggctggcgat agcagagcgt acactggcgg cgcagtttaa ccagccagac 420 catgagatcg tcgatcactt cacctatgtg tttatgggcg acggctgcct gatggaaggt 480 atttcccacg aagtctgttc gctggcaggc acgctgggac tgggcaagct gattggtttt 540 tacgatcaca acggtatttc catcgacggt gaaacagaag gctggtttac cgacgatacg 600 gcaaaacgtt ttgaagccta tcactggcat gtgatccatg aaatcgacgg tcacgatccg 660 caggcggtga aggaagcgat ccttgaagcg caaagcgtga aagataagcc gtcgctgatt 720 atctgccgta cggtgattgg ctttggttcg ccgaataaag caggtaagga agaggcgcac 780 ggcgcaccac tgggggaaga agaagtggcg ctggcacggc aaaaactggg ctggcaccat 840 ccgccatttg agatccctaa agagatttat cacgcctggg atgcccgtga aaaaggcgaa 900 aaagcgcagc agagctggaa tgagaagttt gccgcctata aaaaggctca tccgcaactg 960 gcagaagagt ttacccgacg gatgagcggt ggtttaccga aggactggga gaaaacgact 1020 cagaaatata tcaatgagtt acaggcaaat ccggcgaaaa tcgctacccg taaggcttcg 1080 caaaatacgc ttaacgctta cgggccgatg ctgcctgagt tgctcggcgg ttcggcggat 1140 ctggctccca gcaacctgac catctggaaa ggttctgttt cgctgaagga agatccagcg 1200 ggcaactaca ttcactacgg ggtgcgtgaa tttggcatga ccgctatcgc caacggcatc 1260 gcgcaccacg gcggctttgt gccgtatacc gcgacgttcc tgatgtttgt tgaatacgcc 1320 cgtaacgccg cgcggatggc ggcactgatg aaagcgcggc agattatggt ttatacccac 1380 gactcaattg gcctgggcga agatggtccg acgcaccagg ctgttgagca actggccagc 1440 ctgcgcttaa cgccaaattt cagcacctgg cgaccgtgcg atcaggtgga agcggcggtg 1500 ggctggaagc tggcggttga gcgccacaac ggaccgacgg cactgatcct ctcaaggcag 1560 aatctggccc aggtggaacg tacgccggat caggttaaag agattgctcg tggcggttat 1620 gtgctgaaag acagcggcgg taagccagat attattctga ttgccaccgg ttcagagatg 1680 gaaattaccc tgcaagcggc agagaaatta gcaggagaag gtcgcaatgt acgcgtagtt 1740 tccctgccct cgaccgatat tttcgacgcc caggatgagg aatatcggga gtcggtgttg 1800 ccttctaacg ttgcggctcg cgtggcggtg gaagcaggta ttgccgatta ctggtacaag 1860 tatgttggtc tgaaaggggc aattgtcggg atgacgggtt acggggaatc tgctccggcg 1920 gataagctgt tcccgttctt tggctttacc gccgagaata ttgtggcaaa agcgcataag 1980 gtgctgggag tgaaaggtgc ctga 2004 <210> 3 <211> 1992 <212> DNA <213> transketolase A <400> 3 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1200 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt 1260 atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc 1380 cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt 1560 cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt 1620 tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa 1680 gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg 1740 gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg tgaatccgta 1800 ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga ctactggtac 1860 aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga atctgctccg 1920 gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc gaaagcaaaa 1980 gaactgctgt aa 1992 <210> 4 <211> 951 <212> DNA <213> transaldolase A <400> 4 atgaacgagt tagacggcat caaacagttc accactgtcg tggcagacag cggcgatatt 60 gagtccattc gccattatca tccccaggat gccaccacca atccttcgct gttactcaaa 120 gctgccggat tatcacaata tgagcattta atagacgatg ctatcgcctg gggtaaaaaa 180 aatggcaaga cccaggaaca acaggtggtc gcagcgtgtg acaaactggc ggtcaatttc 240 ggtgctgaaa tcctcaaaat cgtacccggt cgcgtgtcaa cagaagttga tgcacgcctc 300 tcttttgata aagaaaagag tattgagaag gcgcgccatc tggtggactt gtatcagcaa 360 caaggcgttg agaaatcacg cattctgatc aagctggctt cgacctggga aggaattcgc 420 gcggcagaag agctggaaaa agaaggtatt aactgcaacc tgacgctgct gttttctttt 480 gcacaggcac gggcctgtgc ggaagcaggc gtttttctga tttcgccgtt tgtcgggcgt 540 atttatgact ggtatcaggc acgcaagccg atggacccgt atgtggtgga agaagatccg 600 ggcgttaaat cggtgcgcaa tatctacgac tactataagc aacaccacta tgaaaccatt 660 gtgatgggcg cgagcttccg tcgcaccgaa caaatcctcg ccttaaccgg ctgcgatcga 720 ctgactatcg caccgaattt actgaaggag ctgcaggaaa aagtttcgcc agtggtacgt 780 aaattaatcc caccttctca gacgttccca cgcccagctc ccatgagcga agcggagttc 840 cgttgggagc acaatcagga tgcgatggcg gtagaaaaac tgtctgaagg cattcgtctg 900 ttcgccgttg atcaacgcaa actggaagat cttcttgccg ccaaactata a 951 <210> 5 <211> 954 <212> DNA <213> transaldolase B <400> 5 atgacggaca aattgacctc ccttcgtcag tacaccaccg tagtggccga cactggggac 60 atcgcggcaa tgaagctgta tcaaccgcag gatgccacaa ccaacccttc tctcattctt 120 aacgcagcgc agattccgga ataccgtaag ttgattgatg atgctgtcgc ctgggcgaaa 180 cagcagagca acgatcgcgc gcagcagatc gtggacgcga ccgacaaact ggcagtaaat 240 attggtctgg aaatcctgaa actggttccg ggccgtatct caactgaagt tgatgcgcgt 300 ctttcctatg acaccgaagc gtcaattgcg aaagcaaaac gcctgatcaa actctacaac 360 gatgctggta ttagcaacga tcgtattctg atcaaactgg cttctacctg gcagggtatc 420 cgtgctgcag aacagctgga aaaagaaggc atcaactgta acctgaccct gctgttctcc 480 ttcgctcagg ctcgtgcttg tgcggaagcg ggcgtgttcc tgatctcgcc gtttgttggc 540 cgtattcttg actggtacaa agcgaatacc gataagaaag agtacgctcc ggcagaagat 600 ccgggcgtgg tttctgtatc tgaaatctac cagtactaca aagagcacgg ttatgaaacc 660 gtggttatgg gcgcaagctt ccgtaacatc ggcgaaattc tggaactggc aggctgcgac 720 cgtctgacca tcgcaccggc actgctgaaa gagctggcgg agagcgaagg ggctatcgaa 780 cgtaaactgt cttacaccgg cgaagtgaaa gcgcgtccgg cgcgtatcac tgagtccgag 840 ttcctgtggc agcacaacca ggatccaatg gcagtagata aactggcgga aggtatccgt 900 aagtttgcta ttgaccagga aaaactggaa aaaatgatcg gcgatctgct gtaa 954

Claims (4)

(a) 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 포스포글루코오스 이성화효소(phosphoglucoseisomerase); (b) 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 트랜스알돌라아제(transaldolase) A; (c) 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 트랜스알돌라아제 B; 또는 (d) 상기 (a)의 포스포글루코오스 이성화효소 및 서열목록 제2서열의 뉴클레오타이드 서열에 의해 인코딩되는 트랜스케톨라아제(transketolase) B의 조합이 불활성화되고 히스티딘 생산능이 5-50% 증가된 에스케리치아(Escherichia) 속 변이 균주.
(a) a phosphoglucose isomerase encoded by a nucleotide sequence of the first sequence of the sequence listing; (b) transaldolase A encoded by the nucleotide sequence of Sequence Listing 4; (c) a transaldolase B encoded by the nucleotide sequence of SEQ ID NO: 5; Or (d) a combination of transposolase B encoded by the nucleotide sequence of the phosphoglucose isomerase of (a) and the nucleotide sequence of Sequence Listing 2 is inactivated and the ability to produce histidine is increased by 5-50% Escherichia genus mutant.
제 1 항에 있어서, 상기 에스케리치아 속 균주는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii), 에스케리치아 헤르마니(Escherichia hermannii) 또는 에스케리치아 불네리스(Escherichia vulneris) 균주인 것을 특징으로 하는 변이 균주.
The Escherichia coli strain according to claim 1, wherein the strain of Escherichia is Escherichia coli , Escherichia albertii , Escherichia blattae , Escherichia fergusonii , , Escherichia hermannii or Escherichia vulneris strain. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
(a) 서열목록 제1서열의 뉴클레오타이드 서열에 의해 인코딩되는 포스포글루코오스 이성화효소(phosphoglucoseisomerase); (b) 서열목록 제4서열의 뉴클레오타이드 서열에 의해 인코딩되는 트랜스알돌라아제(transaldolase) A; (c) 서열목록 제5서열의 뉴클레오타이드 서열에 의해 인코딩되는 트랜스알돌라아제 B; 또는 (d) 상기 (a)의 포스포글루코오스 이성화효소 및 서열목록 제2서열의 뉴클레오타이드 서열에 의해 인코딩되는 트랜스케톨라아제(transketolase) B의 조합을 불활성화 시키는 단계를 포함하는 히스티딘 생산능이 5-50% 증가된 에스케리치아 속 변이 균주의 제조방법.
(a) a phosphoglucose isomerase encoded by a nucleotide sequence of the first sequence of the sequence listing; (b) transaldolase A encoded by the nucleotide sequence of Sequence Listing 4; (c) a transaldolase B encoded by the nucleotide sequence of SEQ ID NO: 5; Or (d) inactivating the combination of transposolase B encoded by the nucleotide sequence of the phosphoglucose isomerase of (a) and the nucleotide sequence of the second sequence of SEQ ID &lt; RTI ID = 0.0 &gt; A method for producing an Escherichia genus mutant increased by 50%.
제 1 항 또는 제 2 항의 변이 균주를 배양하는 단계를 포함하는 히스티딘(histidine) 제조방법.A method for producing histidine comprising culturing the mutant strain of claim 1 or 2.
KR1020170102594A 2017-08-11 2017-08-11 Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme KR101887821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170102594A KR101887821B1 (en) 2017-08-11 2017-08-11 Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170102594A KR101887821B1 (en) 2017-08-11 2017-08-11 Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150181822A Division KR101821401B1 (en) 2015-12-18 2015-12-18 Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme

Publications (2)

Publication Number Publication Date
KR20170096617A true KR20170096617A (en) 2017-08-24
KR101887821B1 KR101887821B1 (en) 2018-08-13

Family

ID=59758272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170102594A KR101887821B1 (en) 2017-08-11 2017-08-11 Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme

Country Status (1)

Country Link
KR (1) KR101887821B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139523A1 (en) * 2020-12-24 2022-06-30 씨제이제일제당 (주) L-histidine export protein and method of producing l-histidine using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258554B1 (en) * 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258554B1 (en) * 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139523A1 (en) * 2020-12-24 2022-06-30 씨제이제일제당 (주) L-histidine export protein and method of producing l-histidine using same

Also Published As

Publication number Publication date
KR101887821B1 (en) 2018-08-13

Similar Documents

Publication Publication Date Title
CN110804577B (en) Construction method and application of recombinant bacteria for efficiently producing 2&#39; -fucosyllactose
JP2023093683A (en) Improved process for production of fucosylated oligosaccharides
KR101324369B1 (en) Bacterium capable of producing 2-deoxy-scyllo-inosose(doi), and process for producing 2-deoxy-scyllo-inosose(doi) by using same
JP6195668B2 (en) Microorganism having improved L-lysine production ability and method for producing L-lysine using the same
TW201945535A (en) Microorganism having increased glycine productivity and method for producing fermented composition using the same
JP7372329B2 (en) Microorganisms that produce purine nucleotides and methods for producing purine nucleotides using the same
JP6860565B2 (en) Corynebacterium microorganisms capable of producing L-lysine and L-lysine production methods using them
CA2808140A1 (en) Improved glycolic acid fermentative production with a modified microorganism
KR101830001B1 (en) Strain overexpressing l-tryptophan by improving prpp synthesis pathway and process for producing l-tryptophan using the same
KR101887821B1 (en) Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme
JP2016515400A (en) Microorganism having L-tryptophan production ability and method for producing L-tryptophan using the same
KR100701319B1 (en) Escherichia coli capable of producing lycopene with enhanced productivity and method for producing lycopene using the same
KR101751967B1 (en) Mutant Strain with improved isoleucine production having reduced by-product
JP3399993B2 (en) Microorganisms for stabilizing plasmids
KR102026934B1 (en) A Novel host stain Leuconostoc citreum EFEL2701 for production of recombinant target protein and uses thereof
CN113957027B (en) Genetically engineered bacterium for improving lactoyl-N-fucose yield and production method thereof
CN113956992B (en) L-homoserine tolerant escherichia coli and application thereof
KR101821401B1 (en) Mutant Strain with Improved Histidine Production by Inactivating Non-oxidative Pentose Phosphate Pathway-related Enzyme
KR102269642B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation
JP6806895B2 (en) Corynebacterium microorganisms that produce L-arginine and L-arginine production methods using them
WO2023098308A1 (en) A genetically engineered bacterium and its application in the preparation of sialyllactose
KR100964078B1 (en) Corynebacterium ammoniagenes having enhanced 5&#39;-inosinic acid productivity and method of producing 5&#39;-inosinic acid using the same
CN113846041A (en) Method for enhancing expression of transporter gene to improve salinomycin fermentation level
CN103333928B (en) The method of L-Trp is produced with the fermentation using bacteria that fbp expression of enzymes weakens and/or enzymic activity reduces
CN115029289A (en) Genetic engineering bacterium for high yield of L-threonine and construction method and application thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant