KR20170089597A - The heat exchangers using a 3D printer - Google Patents

The heat exchangers using a 3D printer Download PDF

Info

Publication number
KR20170089597A
KR20170089597A KR1020160009998A KR20160009998A KR20170089597A KR 20170089597 A KR20170089597 A KR 20170089597A KR 1020160009998 A KR1020160009998 A KR 1020160009998A KR 20160009998 A KR20160009998 A KR 20160009998A KR 20170089597 A KR20170089597 A KR 20170089597A
Authority
KR
South Korea
Prior art keywords
heat transfer
heat
printed
plate
transfer tubes
Prior art date
Application number
KR1020160009998A
Other languages
Korean (ko)
Other versions
KR102189897B1 (en
Inventor
박천수
Original Assignee
박천수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박천수 filed Critical 박천수
Priority to KR1020160009998A priority Critical patent/KR102189897B1/en
Publication of KR20170089597A publication Critical patent/KR20170089597A/en
Application granted granted Critical
Publication of KR102189897B1 publication Critical patent/KR102189897B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0058Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium
    • B22F3/1055
    • B29C67/0085
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • B22F2003/1056
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

The present invention relates to a heat exchanger using a 3D printer. In a frame body wrapped by a top plate, a bottom plate, and both side plates, multiple heat transfer pipes are arranged in a single lengthwise file and in a single widthwise file by penetrating the top plate and the bottom plate. The heat transfer pipes arranged in a widthwise direction has multiple branch pipes formed in multilayers to be separated to both sides and to be then gathered, and thus a heat exchange length is extended. The neighboring branch pipes are connected to a heat radiant plate while being separated from each other, and thus a heat radiant area is extended. Moreover, the components are simultaneously produced by means of an electron beam dissolving method (EBM) or a selection laser sintering (SLS) printing technique. To this end, a frame body is integrally formed to have a top plate, a bottom plate, and both side plates which are 3D-printed and to allow external air to horizontally pass therethrough. Multiple heat transfer pipes are made to fall arranged in a single lengthwise file and in a single widthwise file in the frame body to be 3D-printed in multiple rows, and the heat transfer pipes are integrally formed by having top ends and bottom ends which penetrate the top plate and the bottom plate so as to make a heat exchange object flow therethrough. Each of the heat transfer pipes has multiple branch pipes formed in multilayers to be separated to both sides and to be then gathered. At a neighboring part of the branch pipes with each other, heat exchange plates are integrally 3D-printed.

Description

3D프린터를 이용한 열교환기{The heat exchangers using a 3D printer}[0001] The present invention relates to a heat exchanger using a 3D printer,

본 발명은 3D프린터를 이용한 열교환기에 관한 것으로서, 더욱 상세하게는 상판 및 하판과 양쪽의 측판으로 감싸진 틀체 내부에 전열관들이 상기 상판 및 하판을 관통하여 일렬종대 및 일렬횡대로 다수개 나열되고, 상기 전열관들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관들이 다단으로 형성되어 열교환길이가 늘어나고, 상기 서로 이웃한 분기관들은 서로 떨어진 상태에서 방열판으로 연결되어서 방열면적이 확대되며, 또한 이들 구성요소들이 전자빔용해법(EBM) 또는 선택 레이저소결(SLS) 프린팅 기법에 의해 동시에 성형되도록 한 3D프린터를 이용한 열교환기에 관한 것이다.The present invention relates to a heat exchanger using a 3D printer, and more particularly, to a heat exchanger using a 3D printer, in which a plurality of heat transfer tubes are arranged in a row and a row by passing through the upper and lower plates in a frame surrounded by upper and lower plates, The heat transfer tubes are divided into two and joined together to form a multistage so that the heat exchange length is increased and the adjacent branches are connected to the heat sink in a state of being separated from each other to expand the heat radiation area, (EBM) or a selective laser sintering (SLS) printing technique.

일반적으로 기체용 판형 열교환기는 폐 가스 및 배기 가스 등의 고온 가스를 이용하여 차가운 공기 등의 급기 유체를 뜨겁게 데우는 열교환기를 의미하는 것으서 데우고자하는 공기와 열 매개 가스는 전열판재가 형성하는 가로통로와 세로통로에서 교차되면서 열교환되는 구조이다. 이러한 판형 열교환기는 전열판재를 적층하여 가로통로와 세로통로가 교차되는 구조를 형성하는데, 상기 전열판재의 사방 모서리부는 상기 가로통로와 세로통로의 끝단이 서로 엇갈리게 마주 접하는 부분이다. 상기 모서리부는 가로측의 가로통로와 세로측의 세로통로가 직각으로 교차되며 상하 엇갈리는 입체적인 형태로 개방된 부분이므로 이 모서리부분을 막아 열교환 중인 가스의 누설을 막을 필요가 있다.In general, a plate-type heat exchanger for a gas means a heat exchanger for warming a supply air such as cold air using a hot gas such as waste gas and exhaust gas. The air and the heat-mediated gas to be heated are discharged through a horizontal passage formed by the heat transfer plate material It is a structure that is heat exchanged while intersecting in vertical passage. The plate heat exchanger forms a structure in which the horizontal passage and the vertical passage cross each other by stacking the heat transfer plates. The four corners of the heat transfer plate are portions where the ends of the horizontal passage and the vertical passage face each other. The corner portion is a portion that is opened in a three-dimensional form in which the horizontal passage on the horizontal side intersects with the vertical passage on the vertical side at right angles and is vertically staggered, so it is necessary to prevent the leakage of the gas during heat exchange by blocking the corner portion.

종래에는 직각으로 절곡된 모서리밀폐수단을 상기 전열판재의 사방 모서리에 대고 세로통로 또는 가로통로의 안쪽에서 용접하는 방법을 사용하였다. 따라서 작업자가 용접봉을 가로통로 및 세로통로의 내부로 넣고 작업하다 보니 작업자세가 불편하고 용접부위가 안쪽으로 향하여 직접 확인하기 어려운 단점이 있었다. 특히 가로통로 및 세로통로가 1mm 이내의 소형이고, 전열판재 역시 0.1mm ∼ 0.15mm의 두께를 갖는 소형 박판일 경우 용접으로 모서리부를 밀폐시킨다는 것은 불가능하였다.Conventionally, a method of welding a corner sealing means bent at a right angle to the four corners of the heat transfer plate and welding it from the inside of the vertical passage or the horizontal passage was used. Therefore, when the worker inserts the welding rod into the horizontal passage and the vertical passage, the work posture is inconvenient and it is difficult to directly confirm the welding position toward the inside. Especially, in case of a small thin plate having a side passage and a vertical passage of less than 1 mm and a heat transfer plate having a thickness of 0.1 mm to 0.15 mm, it was impossible to seal the corner portion by welding.

본 발명자는 이러한 문제를 해소하고자 국내특허 제1356474호에 판형열교환기를 제안한 바 있다. 이는 소형 박판의 전열판재를 다수개 나열하여 서로 교차되는 가로통로와 세로통로가 반복 형성되도록 하되, 상기 전열판재의 상단 및 하단을 안정되게 고정하는 끼움자리가 마련된 상부틀 및 하부틀을 구비함으로써, 압력 및 온도차로 인하여 전열판재의 팽창변화가 방지되고 전열판재를 상부틀 및 하부틀에 꼽으면 가로 및 세로통로의 간격이 일정하게 유지되고 또한 전열판재가 꼽힌 끼움자리는 브레이징 또는 레이저로 쉽게 용접할 수 있다.The present inventor has proposed a plate heat exchanger in Korean Patent No. 1356474 in order to solve this problem. This has an upper frame and a lower frame provided with a fitting seat for stably fixing the upper and lower ends of the heat transfer plate so that a plurality of small heat transfer plates of the thin flat plates are arranged to repeatedly form transverse passages and vertical passages crossing each other, The pressure and temperature difference prevent the expansion of the heating plate. If the heating plate is inserted into the upper frame and the lower frame, the gap between the horizontal and vertical passages can be kept constant and the fitting seat with the heating plate can be easily welded with brazing or laser .

그러나 소형 박판의 전열판재를 절곡하고, 이를 상,하부틀에 꼽아 고정시키는 기술은 정밀도를 요하는 작업으로 대량생산이 어렵다. 특히 기체의 유속이 빠를 경우 전열면적 또는 전열길이를 늘려 열교환효율이 떨어지지 않도록 해야되나, 제한된 크기 내에서 전열면적이나 길이를 키우는데 한계가 있었다.However, the technique of bending a small thin plate of the heat transfer plate and fixing it by fixing it to the upper and lower frames is difficult to mass-produce because it requires precision. Particularly, when the gas velocity is high, the heat transfer area or heat transfer length should be increased so as not to lower the heat exchange efficiency. However, there is a limit to increase the heat transfer area or length within a limited size.

최근에는 소형이면서 내부 구조가 복잡한 형태이더라도 일체로 생산가능한 3D프린터들이 개발되고 있다. 연속적인 층들을 증착하여 제품을 생산하기 위한 두 가지 잘 알려진 방법으로 선택 레이저 소결(SLS)법 및 전자빔용해법(EBM)이 있다. 이 방법들은 모두 재료의 연속적인 얇은 단면들을 증착하여 3차원의 제품들을 제조한다. 평평한 표면 위에 분말의 얇은 층을 분산하는 것을 수반한다. 층이 표면 위에 분산된 후, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 융합(fuse)한다. 분말의 연속적인 층들은 선행 층들 위에 분산되고 레이저 또는 전자빔에 의한 소결 또는 융합에 의해 3차원 제품이 만들어진다.In recent years, 3D printers are being developed which can be integrally produced even if they are compact and have complicated internal structures. Two well known methods for depositing successive layers to produce a product are Selective Laser Sintering (SLS) and Electron Beam Melting (EBM). All of these methods deposit continuous thin sections of material to produce three-dimensional products. Which involves dispersing a thin layer of the powder on a flat surface. After the layer is dispersed on the surface, a laser or electron beam contacts the selected powder region to fuse these regions. Continuous layers of the powder are dispersed on the preceding layers and a three-dimensional product is made by sintering or fusing by laser or electron beam.

이러한 3D프린터를 이용하면 제한된 크기의 틀체 내부에 전열관을 종횡방향으로 배치하고 전열관들을 서로 연결하며, 또한 전열관을 복잡한 형태의 격자형 방열구조로 만들어서 열교환면적을 증가시키는 것이 가능해진다.With such a 3D printer, it becomes possible to arrange heat transfer tubes in longitudinal and transverse directions within a frame of a limited size, to connect the heat transfer tubes to each other, and to make the heat transfer tube into a complicated lattice type heat radiation structure, thereby increasing the heat exchange area.

본 발명은 종래의 문제점을 감안하여 개발한 것으로서, 본 발명의 목적은 상판 및 하판과 양쪽의 측판으로 감싸진 틀체 내부에 전열관들이 상기 상판 및 하판을 관통하여 일렬종대 및 일렬횡대로 다수개 나열되고, 상기 횡방향으로 나열된 전열관들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관들이 다단으로 형성되어 열교환길이가 늘어나고, 상기 서로 이웃한 분기관들은 서로 떨어진 상태에서 방열판으로 연결되어서 방열면적이 확대되며, 또한 이들 구성요소들이 전자빔용해법(EBM) 또는 선택 레이저소결(SLS) 프린팅 기법에 의해 동시에 성형되도록 한 3D프린터를 이용한 열교환기를 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been developed in consideration of the conventional problems, and an object of the present invention is to provide a heat exchanger having a plurality of heat transfer tubes passing through the upper plate and the lower plate within a frame surrounded by upper and lower plates and side plates, And a plurality of branch pipes which are divided into two and joined together are formed in a plurality of stages to increase the heat exchange length and the adjacent branch pipes are connected to the heat sink in a state where they are separated from each other, And to provide a heat exchanger using a 3D printer in which these components are simultaneously formed by electron beam melting (EBM) or selective laser sintering (SLS) printing techniques.

이를 위하여 본 발명은 상판, 하판 및 양쪽의 측판이 3D프린팅되어 외기가 수평으로 통과하는 틀체가 일체로 구성되고; 상기 틀체 내부에는 다수의 전열관들이 일렬종대 및 일렬횡대로 떨어져서 다수열 3D프린팅 되는데, 상기 전열관들은 상단 및 하단이 상기 상판 및 하판을 관통하여서 열교환대상물체가 흘러가게 일체로 구비되고; 상기 각 전열관들은 양쪽으로 갈라진 뒤 다시 합쳐지는 분기관들이 다단으로 다수개 구비되고, 상기 분기관들의 서로 이웃한 부분은 열교환판이 일체로 3D프린팅되는 특징이 있다.To this end, the present invention is characterized in that a top plate, a bottom plate, and side plates of both sides are 3D-printed and a frame through which the outside air passes horizontally is integrally formed; In the frame, a plurality of heat transfer tubes are divided into a row of columns and a row of columns so as to be printed in a multi-row 3D, wherein the heat transfer tubes are integrally provided with upper and lower ends passing through the upper and lower plates to flow heat- Each of the heat transfer tubes has a plurality of branch tubes divided into two and joined together at a plurality of stages, and neighboring portions of the branch tubes are characterized by 3D printing of the heat exchange plate integrally.

본 발명에 따르면 직경 1mm 내외의 소형 전열관이 틀체 내부에 일렬종대 및 일렬횡대로 다수개 나열되는데, 이들 전열관들의 상,하단은 틀체의 상판 및 하판을 관통한다. 따라서 상판으로부터 공급되는 열교환대상물이 각각의 전열관들에 동시에 공급된 뒤 각 전열관들의 하단으로 빠져나간다.According to the present invention, a plurality of small heat transfer tubes having a diameter of about 1 mm are arranged in a row in a row and a row in a row, and the upper and lower ends of the heat transfer tubes pass through the upper and lower plates of the frame. Therefore, the heat exchange objects supplied from the upper plate are simultaneously supplied to the respective heat transfer tubes, and then, the heat transfer objects escape to the lower ends of the respective heat transfer tubes.

*각 전열관들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관들이 다단으로 구비되는데, 이들 분기관들은 육각형의 모양으로 구성된다. 그리고 각 분기관들의 육각형 중앙에는 외가가 빠져나가는 통로가 형성되어 전열관 및 분기관들의 내부로 흐르는 열교환대상물과 열교환된다. 또한 각 전열관들이 분기관들로 인하여 열교환길이가 늘어나는 효과가 있다.* Each tube is divided into two parts, and a number of branch tubes are arranged in a multi-stage. These tubes are formed in hexagonal shape. In the hexagonal center of each of the branch pipes, a passageway for escaping the outer edge is formed, and heat exchange is performed with the heat exchange object flowing into the heat transfer pipe and the branch pipes. Also, each heat pipe has the effect of increasing heat exchange length due to the branch pipes.

또한 서로 이웃한 각 분기관들은 일정간격 떨어져 구비되며, 이들 떨어진 분기관들은 방열판으로 연결되어서 방열면적이 늘어나며 또한 구조적으로 안정된다.In addition, the adjacent branch pipes are spaced apart from each other at a predetermined distance, and these separated branch pipes are connected to the heat sink to increase the heat dissipation area and also to be structurally stable.

그리고 상기 틀체, 전열관 및 분기관들은 선택 레이저 소결(SLS) 또는 전자빔용해법(EBM)의 프린팅 기법에 의해 형성되는데, 평평한 표면 위에 금속분말의 얇은 층을 형성하고, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 융합(fuse)하고, 분말의 연속적인 층들은 선행 층들 위에 분산되고 레이저에 의한 소결 또는 융합에 의해 3차원의 틀체, 전열관 및 분기관들이 일체로 완성되어 복잡한 형상의 열교환기를 빠르게 생산할 수 있는 이점이 있다.The framework, heat transfer tubes and branching tubes are formed by selective laser sintering (SLS) or electron beam melting (EBM) printing techniques, in which a thin layer of metal powder is formed on a flat surface and a laser or electron beam By fusing these regions, successive layers of the powder are dispersed on the preceding layers and sintered or fused by a laser, whereby the three-dimensional frame, heat transfer tube and branch tubes are integrally completed and a complicated heat exchanger can be produced rapidly There is an advantage.

도 1은 본 발명 한 실시예의 열교환기의 사시도
도 2는 본 발명 한 실시예의 열교환기의 일부 사시도
도 3은 본 발명 한 실시예의 열교환기의 정면도
도 4는 본 발명 한 실시예의 열교환기의 일부확대 정단면도
도 5는 도 3의 A - A선 단면도
도 6는 도 3의 B - B선 단면도
1 is a perspective view of a heat exchanger according to an embodiment of the present invention;
Figure 2 is a partial perspective view of a heat exchanger of one embodiment of the present invention;
3 is a front view of a heat exchanger of an embodiment of the present invention;
4 is a partially enlarged section of a heat exchanger of an embodiment of the present invention
5 is a sectional view taken along line A-A in Fig. 3
6 is a sectional view taken along the line B - B in Fig. 3

도 1 내지 도 6에서 본 발명 한 실시예의 열교환기는 상판(11), 하판(12) 및 양쪽의 측판(13)으로 직사각형태의 중공상 틀체(10)가 일체로 3D프린팅 되는데, 상기 틀체(10)의 내부 공간은 외기가 수평으로 통과되는 부분이다. 이 틀체(10)의 내부에 열교환대상물이 수직으로 통과되는 다수의 전열관(30)들이 일체로 3D프린팅된다. 상기 전열관(30)들의 상,하단은 상기 상판(11) 및 하판(12)을 관통하여 틀체(10)의 외부로 연결되게 3D프린팅 되는데, 상기 전열관(30)들은 내경이 1mm 내외이고, 외경이 3mm 내외로써, 소형으로 제작된다.The heat exchanger of the embodiment of the present invention as shown in FIGS. 1 to 6 is a three-dimensional printed hollow body 10 having a rectangular shape with an upper plate 11, a lower plate 12 and both side plates 13, ) Is a portion where the outside air passes horizontally. A plurality of heat transfer tubes 30 through which the heat exchange object passes vertically is integrally 3D-printed inside the frame 10. The upper and lower ends of the heat transfer tubes 30 are 3D printed so as to pass through the upper plate 11 and the lower plate 12 and connected to the outside of the frame 10. The heat transfer tubes 30 have an inner diameter of about 1 mm, It is 3mm in size, and it is made compact.

상기 전열관(30)들은 상기 틀체(10)의 내부에 일렬종대 및 일렬횡대 방향으로 다수개 나열되는데, 각 전열관(30)들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관(31)들이 다단으로 구비된다. 이들 분기관(31)들은 원호형 또는 다각형으로 갈라지는데, 이들 갈라진 틈새로 통로(40)가 형성되어 외기가 수평방향으로 통과된다. 바람직하게는 분기관(31)들은 육각형으로 갈라지고 합쳐지는 모양을 구성하며, 육각형의 중앙에는 외기가 관통하는 통로(40)가 형성된다. 또한 분기관(31) 및 전열관(30)들은 단면이 육각형으로 구성되어 표면적이 원형 파이프에 비하여 늘어나도록 구성되고, 각 전열관(30)들은 분기관(31)들에 의하여 전열길이가 늘어나는 이점이 있다.A plurality of heat transfer tubes (30) are arranged in a row in the longitudinal direction of the frame body (10) and in a longitudinal direction of the frame body. The heat transfer tubes (30) do. These branch pipes 31 are divided into an arcuate shape or a polygonal shape, and the passage 40 is formed by these cracks to allow the outside air to pass in the horizontal direction. Preferably, the branches 31 form a shape which is divided into hexagons and merged, and a passage 40 through which the outside air passes is formed at the center of the hexagons. The branch pipe 31 and the heat transfer pipe 30 are configured to have a hexagonal cross section and have a surface area that is larger than that of the circular pipe and each heat transfer pipe 30 has an advantage that the heat transfer length is increased by the branch pipes 31 .

또한 각 전열관(30)들은 서로 이웃한 분기관(31)들이 서로 떨어져 구비되고, 이들 떨어진 사이로 방열판(32)이 일체로 결합된다. 그리고 횡방향의 전열관(30)들 사이에는 상,하측의 분기관(31)들로 인하여 보조통로(41)가 형성되는데, 이 보조통로(41) 역시 육각형의 벌집 모양으로 형성된다. 결국 분기관(31)들의 중앙 및 전열관(30)들의 사이에는 벌집모양의 육각형 통로(40) 및 보조통로(41)가 형성된다.Further, each of the heat transfer tubes (30) is provided with mutually adjacent branch tubes (31) separated from each other, and the heat sink (32) is integrally coupled to the heat transfer tubes (30). Between the heat transfer tubes 30 in the lateral direction, the auxiliary passages 41 are formed by the upper and lower branch tubes 31. The auxiliary passages 41 are also formed in a hexagonal honeycomb shape. As a result, a honeycomb-shaped passage 40 and an auxiliary passage 41 are formed between the center of the branch pipes 31 and the heat transfer pipes 30.

그리고 상기 상판(11) 및 하판(12)에는 반구형의 상부커버(20) 및 하부커버(21)가 각각 3D프린팅 되어 일체로 구비되고, 상부커버(20)의 내부에는 상기 각 전열관(30)들의 상단으로 열교환대상물을 공급하기 위한 투입공간부(23)가 마련되고, 상기 상부커버(20)에는 상기 투입공간부(23)와 통하는 입구(22)가 3D프린팅 과정에서 형성된다. 그리고 상기 하부커버(21)에는 상기 전열관(30)들의 하단과 통하는 배출공간부(24)가 마련되고, 상기 하부커버(21)에는 상기 배출공간부(24)와 통하는 출구(25)가 3D프린팅 과정에서 형성된다.The hemispherical upper cover 20 and the lower cover 21 are integrally formed by 3D printing on the upper and lower plates 11 and 12, An inlet space 23 for supplying a heat exchange object to the upper portion of the upper cover 20 and an inlet 22 communicating with the input space portion 23 are formed in the upper cover 20 in a 3D printing process. The lower cover 21 is provided with a discharge space portion 24 communicating with a lower end of the heat transfer tubes 30. An outlet 25 communicating with the discharge space portion 24 is provided in the lower cover 21, .

이처럼 구성된 본 발명 한 실시예는 상기 틀체(10), 커버(20)(21) 및 전열관(30)들이 선택 레이저 소결(SLS) 또는 전자빔용해법(EBM)의 프린팅 기법에 의해 형성된다. 3D프린팅과정에서 상기 틀체(10)를 세우거나 또는 눕혀서 제작할 수 있는데, 작업의 효율성을 및 3D프린터 장치의 크기에 맞게 작업자가 판단하여 제작한다.The frame 10, the covers 20 and 21 and the heat transfer tubes 30 are formed by a selective laser sintering (SLS) or electron beam melting (EBM) printing technique. In the 3D printing process, the frame 10 may be raised or laid down. The operator may determine the efficiency of the 3D printer according to the size of the 3D printer device.

만약 상기 틀체(10)를 세워서 제작할 경우 3D프린팅 과정을 살펴보면, 평평한 표면 위에 금속분말의 얇은 층을 형성하고, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 융합(fuse)하고, 분말의 연속적인 층들은 선행 층들 위에 분산되고 레이저/전자빔에 의한 소결/융합되는데, 하부커버(21)가 먼저 형성되고, 하판(12), 측판(13), 전열관(30), 상판(11), 및 상부커버(20)의 순으로 제작되어 3차원의 열교환기가 완성된다.In the case of the 3D printing process, a thin layer of metal powder is formed on a flat surface, and a laser or an electron beam is contacted with a selected powder region to fuse these regions, The layers are dispersed on the preceding layers and sintered / fused by the laser / electron beam. The lower cover 21 is first formed and the lower cover 12, side plate 13, heat transfer tube 30, upper plate 11, (20) in this order to complete a three-dimensional heat exchanger.

상기 전열관(30)들은 상,하단이 상판(11) 및 하판(12)의 외부로 통하는데, 상판(11) 및 하판(12)에는 상부커버(20) 및 하부커버(21)가 구비되어 열교환대상물체가 상기 전열관(30) 내부로 공급된다. 또한 상기 각 전열관(30)들은 다단으로 분기관(31)들이 형성되어 전열길이가 늘어나고, 또한 서로 이웃한 분기관(31)들은 방열판(32)으로 연결되어 방열면적이 증가되는 효과가 있다.The upper and lower ends of the heat transfer tubes 30 communicate with the outside of the upper and lower plates 11 and 12. The upper and lower plates 11 and 12 are provided with an upper cover 20 and a lower cover 21, The object is supplied to the inside of the heat transfer pipe 30. In addition, each of the heat transfer tubes 30 has branch tubes 31 formed in multiple stages to increase the heat transfer length, and adjacent branches 31 are connected to the heat sink 32 to increase the heat radiation area.

본 발명 한 실시예의 열교환과정을 설명하면, 먼저 입구(22)를 통하여 투입공간부(23)로 열교환대상물체가 투입된다. 상기 투입공간부(23)에는 일렬종대 및 일렬횡대로 나열된 다수의 전열관(30)들의 상단이 연결되어 있으므로, 이들 전열관(30)들의 내부로 열교환대상물체가 들어간다.The heat exchange process of the embodiment of the present invention will be described. First, an object to be heat-exchanged is introduced into the input space portion 23 through the inlet 22. Since the upper ends of a plurality of heat transfer tubes 30 arranged in a row and a row are connected to the input space portion 23, the object to be heat-exchanged enters the heat transfer tubes 30.

상기 전열관(30)들의 내부로 유입된 열교환대상물체는 분기관(31)을 거치면서 열교환길이가 늘어난다. 또한 분기관(31)의 중앙 및 전열관(30)들의 사이에는 통로(40) 및 보조통로(41)가 형성되어 외기가 통과된다. 따라서 열교환대상물체와 외기가 서로 교차되면서 열교환된다. 상기 전열관(30) 및 분기관(31)들은 단면이 육각형으로 구성되어 표면적이 늘어난 형태이므로 열교환성이 향상되며, 상기 분기관(31)들의 사이로 방열판(32)들이 구비되므로 외기와의 접촉면적이 증가되어 방열성이 향상된다.The object to be heat-exchanged into the heat transfer tubes (30) passes through the branch pipe (31) to increase the heat exchange length. Further, a passage 40 and an auxiliary passage 41 are formed between the center of the branch pipe 31 and the heat transfer pipes 30 to allow outside air to pass therethrough. Therefore, the heat exchange object and the outside air intersect with each other to perform heat exchange. Since the heat transfer tubes 30 and the branch tubes 31 have a hexagonal cross section and an increased surface area, the heat exchange performance is improved. Since the heat dissipation plates 32 are provided between the branch tubes 31, And the heat radiation performance is improved.

그리고 각 전열관(30)을 통과한 열교환대상물체는 상기 전열관(30)의 하단을 통하여 배출공간부(24)로 모인 뒤 하부커버(21)의 출구(25)를 따라 다음 공정으로 공급된다.The heat exchange object having passed through each heat transfer pipe 30 is collected in the discharge space portion 24 through the lower end of the heat transfer pipe 30 and then supplied to the next process along the outlet 25 of the lower cover 21.

10 : 틀체 11 : 상판
12 : 하판 13 : 측판
20 : 상부커버 21 : 하부커버
22 : 입구 23 : 투입공간부
24 : 배출공간부 25 : 출구
30 : 전열관 31 : 분기관
32 : 방열판 40 : 통로
41 : 보조통로
10: frame 11: top plate
12: lower plate 13: side plate
20: upper cover 21: lower cover
22: inlet 23:
24: exhaust space part 25: outlet
30: heat transfer pipe 31: branch pipe
32: heat sink 40: passage
41: auxiliary passage

Claims (4)

상판, 하판 및 양쪽의 측판이 3D프린팅되어 외기가 수평으로 통과하는 틀체가 일체로 구성되고;
상기 틀체 내부에는 다수의 전열관들이 일렬종대 및 일렬횡대로 떨어져서 다수열 3D프린팅 되는데, 상기 전열관들은 상단 및 하단이 상기 상판 및 하판을 관통하여서 열교환대상물체가 흘러가게 일체로 구비되고;
상기 각 전열관들은 양쪽으로 갈라진 뒤 다시 합쳐지는 분기관들이 다단으로 다수개 구비되고, 상기 분기관들의 서로 이웃한 부분은 열교환판이 일체로 3D프린팅됨을 특징으로 하는 3D프린터를 이용한 열교환기.
A top plate, a bottom plate and side plates of both sides are 3D-printed so that a frame through which the outside air passes horizontally is integrally formed;
In the frame, a plurality of heat transfer tubes are divided into a row of columns and a row of columns so as to be printed in a multi-row 3D, wherein the heat transfer tubes are integrally provided with upper and lower ends passing through the upper and lower plates to flow heat-
Wherein the heat transfer tubes are provided with a plurality of branch tubes divided into two and joined together at a plurality of stages, and neighboring portions of the branch tubes are 3D-printed together with the heat exchange plate integrally.
제 1 항에 있어서,
상기 분기관들은 다각형으로 구성되고, 상기 분기관들의 중앙에는 외기가 지나가는 통로가 형성되며,
상기 전열관들은 상기 상,하측의 분기관들과의 사이로 외기가 통하는 보조통로가 일체로 3D프린팅됨을 특징으로 하는 3D프린터를 이용한 열교환기.
The method according to claim 1,
Wherein the branch pipes are formed in a polygonal shape, a passage through which the outside air passes is formed at the center of the branch pipes,
Wherein the heat transfer tubes are integrally 3D-printed with auxiliary passages through which the outside air passes between the upper and lower branches.
제 2 항에 있어서,
상기 전열관 및 분기관들은 단면이 육각형으로 구성되고,
상기 통로 및 보조통로는 육각형이 되도록 상기 분기관이 3D프린팅됨을 특징으로 하는 3D프린터를 이용한 열교환기.
3. The method of claim 2,
Wherein the heat transfer tubes and the branch tubes have a hexagonal cross section,
Wherein the passage and the auxiliary passage are 3D-printed so as to be hexagonal.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 3D프린팅은 선택 레이저 소결(SLS) 또는 전자빔용해법(EBM)의 프린팅 기법을 이용한 것으로서,
금속분말의 얇은 층을 형성하고, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 소결 또는 융합한 것임을 특징으로 하는 3D프린터를 이용한 열교환기.
4. The method according to any one of claims 1 to 3,
The 3D printing uses selective laser sintering (SLS) or electron beam melting (EBM) printing,
Wherein a thin layer of metal powder is formed and a laser or an electron beam is contacted with a selected powder region to sinter or fuse these regions.
KR1020160009998A 2016-01-27 2016-01-27 The heat exchangers using a 3D printer KR102189897B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160009998A KR102189897B1 (en) 2016-01-27 2016-01-27 The heat exchangers using a 3D printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160009998A KR102189897B1 (en) 2016-01-27 2016-01-27 The heat exchangers using a 3D printer

Publications (2)

Publication Number Publication Date
KR20170089597A true KR20170089597A (en) 2017-08-04
KR102189897B1 KR102189897B1 (en) 2020-12-11

Family

ID=59654224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160009998A KR102189897B1 (en) 2016-01-27 2016-01-27 The heat exchangers using a 3D printer

Country Status (1)

Country Link
KR (1) KR102189897B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692896A (en) * 2020-05-09 2020-09-22 同济大学 Hot melt type gas-liquid two-phase heat exchange core structure
CN114136124A (en) * 2021-12-08 2022-03-04 浙江微流纳米生物技术有限公司 Sanitary-grade microporous heat exchanger based on 3D printing
CN115371479A (en) * 2022-08-22 2022-11-22 新疆华奕新能源科技有限公司 Bionic spider web wall-dividing type heat exchanger arranged in high mountain canyon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248196A (en) * 1994-03-11 1995-09-26 Daikin Ind Ltd Heat exchanger
KR20030042708A (en) * 2001-11-23 2003-06-02 주식회사 엘지이아이 Heat exchanger for air conditioner
JP2014520004A (en) * 2011-06-02 2014-08-21 ア レイモン エ シー Connectors manufactured by 3D printing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248196A (en) * 1994-03-11 1995-09-26 Daikin Ind Ltd Heat exchanger
KR20030042708A (en) * 2001-11-23 2003-06-02 주식회사 엘지이아이 Heat exchanger for air conditioner
JP2014520004A (en) * 2011-06-02 2014-08-21 ア レイモン エ シー Connectors manufactured by 3D printing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692896A (en) * 2020-05-09 2020-09-22 同济大学 Hot melt type gas-liquid two-phase heat exchange core structure
CN114136124A (en) * 2021-12-08 2022-03-04 浙江微流纳米生物技术有限公司 Sanitary-grade microporous heat exchanger based on 3D printing
CN115371479A (en) * 2022-08-22 2022-11-22 新疆华奕新能源科技有限公司 Bionic spider web wall-dividing type heat exchanger arranged in high mountain canyon

Also Published As

Publication number Publication date
KR102189897B1 (en) 2020-12-11

Similar Documents

Publication Publication Date Title
US20170089643A1 (en) Heat Exchanger
EP3469289B1 (en) 3d spiral heat exchanger
KR101655889B1 (en) Heat exchange reactor and method for producing the same
CN101310156B (en) Method for the production of a plate type heat exchanger and related heat exchanger
EP3339793B1 (en) Heat-exchanger with header welded to the core
JP2018511767A (en) 3D printed heated surface element for plate heat exchanger
JP6701376B2 (en) Heat exchanger plate, plate heat exchanger, and method of making plate heat exchanger
KR20170089597A (en) The heat exchangers using a 3D printer
US9657999B2 (en) Alternating channel heat exchanger
JP2012527596A (en) Method of manufacturing a heat exchanger plate bundle
US20130277027A1 (en) Plate heat exchanger with several modules connected by sections
US20140305620A1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
CN102939509A (en) Plate type heat exchanger, oil cooling system and method for cooling oil
KR101992482B1 (en) The heat exchangers using a 3D printer
JP7256951B2 (en) Plate heat exchanger and water heater equipped with same
CN104776736A (en) Novel high-efficiency heat exchanger and molding method thereof
JP7357208B2 (en) Heat exchanger and water heating equipment equipped with the same
CN104089498A (en) Novel micro-channel heat exchanger
ITBO20130632A1 (en) PLATE HEAT EXCHANGER, IN PARTICULAR FOR CONDENSING BOILERS
CA3057757A1 (en) Heat exchanger
JP2021134971A (en) Heat exchanger and water heater having the same
JP2018017424A (en) Manufacturing method of heat exchanger
KR101579540B1 (en) Improved Primary Surface Heat Exchanger for Micro Gas Turbine
JP2008039309A (en) Heat exchanger
JP2009074772A (en) Heat exchanger

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant