KR20170089594A - The heat exchangers using a 3D printer - Google Patents

The heat exchangers using a 3D printer Download PDF

Info

Publication number
KR20170089594A
KR20170089594A KR1020160009990A KR20160009990A KR20170089594A KR 20170089594 A KR20170089594 A KR 20170089594A KR 1020160009990 A KR1020160009990 A KR 1020160009990A KR 20160009990 A KR20160009990 A KR 20160009990A KR 20170089594 A KR20170089594 A KR 20170089594A
Authority
KR
South Korea
Prior art keywords
heat transfer
transfer tubes
heat
tubes
branch pipes
Prior art date
Application number
KR1020160009990A
Other languages
Korean (ko)
Other versions
KR101992482B1 (en
Inventor
유제덕
박천수
Original Assignee
주식회사 한울
박천수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한울, 박천수 filed Critical 주식회사 한울
Priority to KR1020160009990A priority Critical patent/KR101992482B1/en
Publication of KR20170089594A publication Critical patent/KR20170089594A/en
Application granted granted Critical
Publication of KR101992482B1 publication Critical patent/KR101992482B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • B22F3/1055
    • B29C67/0051
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention relates to a heat exchanger using a three-dimensional printer in which a plurality of heat transfer tubes penetrating an upper plate and a lower plate are arranged in a column and a line inside a frame surrounded by the upper plate, the lower plate and both side plates, the heat transfer tubes arranged in the transverse direction are formed of a plurality of branch pipes, which are divided in both directions and joined together, in multiple stages to allow the outside air to pass through the branch pipes, and each adjacent branch pipes of the heat transfer tubes are combined such that objects to be heat-exchanged are spread to each of the heat transfer tubes, thereby expanding the heat dissipation area and enabling the components thereof to be simultaneously formed by electron beam melting (EBM) or selective laser sintering (SLS) printing techniques. To achieve this, the heat exchanger is configured such that a frame having an upper plate, a lower plate and both side plates three-dimensionally printed such that the outside air horizontally passes therethrough is integrally formed; a plurality of heat transfer tubes are three-dimensionally printed in a column and a line inside the frame, and are integrally provided such that upper ends and lower ends thereof penetrate the upper plate and the lower plate to allow the objects to be heat-exchanged to flow therethrough; and the heat transfer tubes are formed of a plurality of branch pipes which are divided in both directions and joined again in multiple stages, and have merging portions to allow portions of the transverse branch pipes in contact with each other to communicate with each other, and are three-dimensionally printed such that the transverse heat transfer tubes are connected into one tube.

Description

3D프린터를 이용한 열교환기{The heat exchangers using a 3D printer}[0001] The present invention relates to a heat exchanger using a 3D printer,

본 발명은 3D프린터를 이용한 기체용 열교환기에 관한 것으로서, 더욱 상세하게는 상판 및 하판과 양쪽의 측판으로 감싸진 틀체 내부에 전열관들이 상기 상판 및 하판을 관통하여 일렬종대 및 일렬횡대로 다수개 나열되고, 상기 전열관들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관들이 다단으로 형성되어 분기관들의 중앙으로 외기가 통과되고, 상기 횡방향의 전열관들은 서로 이웃한 각 분기관들이 합쳐져서 하나로 연결되도록 함으로써, 방열면적이 확대되고, 또한 이들 구성요소들이 전자빔용해법(EBM) 또는 선택 레이저소결(SLS) 프린팅 기법에 의해 동시에 성형되도록 한 3D프린터를 이용한 열교환기에 관한 것이다.[0001] The present invention relates to a heat exchanger for a gas using a 3D printer, and more particularly, to a heat exchanger for a gas using a 3D printer, in which a plurality of heat transfer tubes are arranged in a row and a row by passing through the upper plate and the lower plate inside a frame surrounded by upper and lower plates and side plates The heat transfer tubes are divided into two and joined together to form a multistage so that outside air passes through the center of the branch tubes. The transverse heat transfer tubes are joined to each other so as to be connected to each other, The present invention relates to a heat exchanger using a 3D printer in which an area is enlarged and these components are simultaneously formed by electron beam melting (EBM) or selective laser sintering (SLS) printing techniques.

일반적으로 기체용 판형 열교환기는 폐 가스 및 배기 가스 등의 고온 가스를 이용하여 차가운 공기 등의 급기 유체를 뜨겁게 데우는 열교환기를 의미하는 것으서 데우고자하는 공기와 열 매개 가스는 전열판재가 형성하는 가로통로와 세로통로에서 교차되면서 열교환되는 구조이다. 이러한 판형 열교환기는 전열판재를 적층하여 가로통로와 세로통로가 교차되는 구조를 형성하는데, 상기 전열판재의 사방 모서리부는 상기 가로통로와 세로통로의 끝단이 서로 엇갈리게 마주 접하는 부분이다. 상기 모서리부는 가로측의 가로통로와 세로측의 세로통로가 직각으로 교차되며 상하 엇갈리는 입체적인 형태로 개방된 부분이므로 이 모서리부분을 막아 열교환 중인 가스의 누설을 막을 필요가 있다.In general, a plate-type heat exchanger for a gas means a heat exchanger for warming a supply air such as cold air using a hot gas such as waste gas and exhaust gas. The air and the heat-mediated gas to be heated are discharged through a horizontal passage formed by the heat transfer plate material It is a structure that is heat exchanged while intersecting in vertical passage. The plate heat exchanger forms a structure in which the horizontal passage and the vertical passage cross each other by stacking the heat transfer plates. The four corners of the heat transfer plate are portions where the ends of the horizontal passage and the vertical passage face each other. The corner portion is a portion that is opened in a three-dimensional form in which the horizontal passage on the horizontal side intersects with the vertical passage on the vertical side at right angles and is vertically staggered, so it is necessary to prevent the leakage of the gas during heat exchange by blocking the corner portion.

종래에는 직각으로 절곡된 모서리밀폐수단을 상기 전열판재의 사방 모서리에 대고 세로통로 또는 가로통로의 안쪽에서 용접하는 방법을 사용하였다. 따라서 작업자가 용접봉을 가로통로 및 세로통로의 내부로 넣고 작업하다 보니 작업자세가 불편하고 용접부위가 안쪽으로 향하여 직접 확인하기 어려운 단점이 있었다. 특히 가로통로 및 세로통로가 1mm 이내의 소형이고, 전열판재 역시 0.1mm ∼ 0.15mm의 두께를 갖는 소형 박판일 경우 용접으로 모서리부를 밀폐시킨다는 것은 불가능하였다.Conventionally, a method of welding a corner sealing means bent at a right angle to the four corners of the heat transfer plate and welding it from the inside of the vertical passage or the horizontal passage was used. Therefore, when the worker inserts the welding rod into the horizontal passage and the vertical passage, the work posture is inconvenient and it is difficult to directly confirm the welding position toward the inside. Especially, in case of a small thin plate having a side passage and a vertical passage of less than 1 mm and a heat transfer plate having a thickness of 0.1 mm to 0.15 mm, it was impossible to seal the corner portion by welding.

본 발명자는 이러한 문제를 해소하고자 국내특허 제1356474호에 판형열교환기를 제안한 바 있다. 이는 소형 박판의 전열판재를 다수개 나열하여 서로 교차되는 가로통로와 세로통로가 반복 형성되도록 하되, 상기 전열판재의 상단 및 하단을 안정되게 고정하는 끼움자리가 마련된 상부틀 및 하부틀을 구비함으로써, 압력 및 온도차로 인하여 전열판재의 팽창변화가 방지되고 전열판재를 상부틀 및 하부틀에 꼽으면 가로 및 세로통로의 간격이 일정하게 유지되고 또한 전열판재가 꼽힌 끼움자리는 브레이징 또는 레이저로 쉽게 용접할 수 있다.The present inventor has proposed a plate heat exchanger in Korean Patent No. 1356474 in order to solve this problem. This has an upper frame and a lower frame provided with a fitting seat for stably fixing the upper and lower ends of the heat transfer plate so that a plurality of small heat transfer plates of the thin flat plates are arranged to repeatedly form transverse passages and vertical passages crossing each other, The pressure and temperature difference prevent the expansion of the heating plate. If the heating plate is inserted into the upper frame and the lower frame, the gap between the horizontal and vertical passages can be kept constant and the fitting seat with the heating plate can be easily welded with brazing or laser .

그러나 소형 박판의 전열판재를 절곡하고, 이를 상,하부틀에 꼽아 고정시키는 기술은 정밀도를 요하는 작업으로 대량생산이 어렵다. 특히 기체의 유속이 빠를 경우 전열면적 또는 전열길이를 늘려 열교환효율이 떨어지지 않도록 해야되나, 제한된 크기 내에서 전열면적이나 길이를 키우는데 한계가 있었다.However, the technique of bending a small thin plate of the heat transfer plate and fixing it by fixing it to the upper and lower frames is difficult to mass-produce because it requires precision. Particularly, when the gas velocity is high, the heat transfer area or heat transfer length should be increased so as not to lower the heat exchange efficiency. However, there is a limit to increase the heat transfer area or length within a limited size.

최근에는 소형이면서 내부 구조가 복잡한 형태이더라도 일체로 생산가능한 3D프린터들이 개발되고 있다. 연속적인 층들을 증착하여 제품을 생산하기 위한 두 가지 잘 알려진 방법으로 선택 레이저 소결(SLS)법 및 전자빔용해법(EBM)이 있다. 이 방법들은 모두 재료의 연속적인 얇은 단면들을 증착하여 3차원의 제품들을 제조한다. 평평한 표면 위에 분말의 얇은 층을 분산하는 것을 수반한다. 층이 표면 위에 분산된 후, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 융합(fuse)한다. 분말의 연속적인 층들은 선행 층들 위에 분산되고 레이저 또는 전자빔에 의한 소결 또는 융합에 의해 3차원 제품이 만들어진다.In recent years, 3D printers are being developed which can be integrally produced even if they are compact and have complicated internal structures. Two well known methods for depositing successive layers to produce a product are Selective Laser Sintering (SLS) and Electron Beam Melting (EBM). All of these methods deposit continuous thin sections of material to produce three-dimensional products. Which involves dispersing a thin layer of the powder on a flat surface. After the layer is dispersed on the surface, a laser or electron beam contacts the selected powder region to fuse these regions. Continuous layers of the powder are dispersed on the preceding layers and a three-dimensional product is made by sintering or fusing by laser or electron beam.

이러한 3D프린터를 이용하면 제한된 크기의 틀체 내부에 전열관을 종횡방향으로 배치하고 전열관들을 서로 연결하며, 또한 전열관을 복잡한 형태의 격자형 방열구조로 만들어서 열교환면적을 증가시키는 것이 가능해진다.With such a 3D printer, it becomes possible to arrange heat transfer tubes in longitudinal and transverse directions within a frame of a limited size, to connect the heat transfer tubes to each other, and to make the heat transfer tube into a complicated lattice type heat radiation structure, thereby increasing the heat exchange area.

본 발명은 종래의 문제점을 감안하여 개발한 것으로서, 본 발명의 목적은 상판 및 하판과 양쪽의 측판으로 감싸진 틀체 내부에 전열관들이 상기 상판 및 하판을 관통하여 일렬종대 및 일렬횡대로 다수개 나열되고, 상기 전열관들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관들이 다단으로 형성되어 분기관들의 중앙으로 외기가 통과되고, 상기 횡방향의 전열관들은 서로 이웃한 분기관들이 합쳐져서 하나로 연결되도록 함으로써, 방열면적이 확대되고, 또한 이들 구성요소들이 전자빔용해법(EBM) 또는 선택 레이저소결(SLS) 프린팅 기법에 의해 동시에 성형되도록 한 3D프린터를 이용한 열교환기를 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been developed in consideration of the conventional problems, and an object of the present invention is to provide a heat exchanger having a plurality of heat transfer tubes passing through the upper plate and the lower plate within a frame surrounded by upper and lower plates and side plates, The heat transfer tubes are divided into two and joined together to form a multistage so that the outside air passes through the center of the branch tubes and the heat transfer tubes in the lateral direction are joined to each other so that the heat transfer tubes are connected to each other, And also to provide a heat exchanger using a 3D printer in which these components are simultaneously formed by electron beam melting (EBM) or selective laser sintering (SLS) printing techniques.

이를 위하여 본 발명은 상판, 하판 및 양쪽의 측판이 3D프린팅되어 외기가 수평으로 통과하는 틀체가 일체로 구성되고; 상기 틀체 내부에는 다수의 전열관이 일렬종대 및 일렬횡대로 다수열 3D프린팅 되는데, 상기 전열관들은 상단 및 하단이 상기 상판 및 하판을 관통하여서 열교환대상물체가 흘러가게 일체로 구비되고; 상기 전열관들은 양쪽으로 갈라진 뒤 다시 합쳐지는 분기관들이 다단으로 다수개 구비되고, 상기 횡방향의 분기관들은 서로 접하는 부분이 통하게 합류부로 구성되어서 상기 횡방향의 전열관들이 하나로 연결되도록 3D프린팅되는 특징이 있다.To this end, the present invention is characterized in that a top plate, a bottom plate, and side plates of both sides are 3D-printed and a frame through which the outside air passes horizontally is integrally formed; In the frame, a plurality of heat transfer tubes are printed in a row and a row by a plurality of columns of 3D heat transfer tubes, the upper and lower ends penetrating the upper and lower plates to integrally flow the object to be heat exchanged; The heat transfer tubes are provided with a plurality of branch tubes which are divided into two parts and then joined together in a multi-stage manner, and the horizontal branch tubes are formed by merging sections so that the horizontal heat pipes are connected to one another. have.

본 발명에 따르면 직경 1mm 내외의 소형 전열관이 틀체 내부에 일렬종대 및 일렬횡대로 다수개 나열되는데, 이들 전열관들의 상,하단은 틀체의 상판 및 하판을 관통한다. 따라서 상판으로부터 공급되는 열교환대상물이 각각의 전열관들에 동시에 공급된 뒤 각 전열관들의 하단으로 빠져나간다.According to the present invention, a plurality of small heat transfer tubes having a diameter of about 1 mm are arranged in a row in a row and a row in a row, and the upper and lower ends of the heat transfer tubes pass through the upper and lower plates of the frame. Therefore, the heat exchange objects supplied from the upper plate are simultaneously supplied to the respective heat transfer tubes, and then, the heat transfer objects escape to the lower ends of the respective heat transfer tubes.

횡방향으로 나열된 전열관들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관들이 다단으로 구비되는데, 이들 분기관들은 육각형의 모양으로 구성된다. 그리고 각 분기관들의 육각형 중앙에는 외가가 빠져나가는 통로가 형성되어 전열관 및 분기관들의 내부로 흐르는 열교환대상물과 열교환된다. 또한 각 전열관들의 서로 이웃한 분기관들은 합쳐져서 열교환대상물이 각 전열관들의 내부로 넓게 퍼져 확산된다.The heat transfer tubes arranged in the transverse direction are provided with a plurality of branch pipes which are divided into two parts and joined together, and these branch pipes are formed into a hexagonal shape. In the hexagonal center of each of the branch pipes, a passageway for escaping the outer edge is formed, and heat exchange is performed with the heat exchange object flowing into the heat transfer pipe and the branch pipes. Further, the adjacent branches of the respective heat transfer tubes are combined so that the object to be heat exchanged spreads widely inside the heat transfer tubes.

결국 열교환대상물이 각 전열관들 마다 단독으로 통과되는 것이 아니라 횡방향으로 나열된 다수의 전열관들의 내부로 지그재그 형태로 퍼져 나가면서 통과 길이가 늘어나므로 열교환 면적이 증가되는 효과가 있다. 또한 횡방향으로 나열된 각 전열관들의 사이에도 외기가 통과되는 보조통로가 만들어지므로 열교환효율이 향상되는 이점이 있다.As a result, the object to be heat exchanged does not pass through each of the heat transfer tubes alone, but the heat transfer area is increased because the passage length is increased while spreading in the zigzag form into the plurality of heat transfer tubes arranged in the transverse direction. In addition, since auxiliary passages through which the outside air passes are formed between the heat transfer tubes arranged in the transverse direction, there is an advantage that heat exchange efficiency is improved.

그리고 상기 틀체, 전열관 및 분기관들은 선택 레이저 소결(SLS) 또는 전자빔용해법(EBM)의 프린팅 기법에 의해 형성되는데, 평평한 표면 위에 금속분말의 얇은 층을 형성하고, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 융합(fuse)하고, 분말의 연속적인 층들은 선행 층들 위에 분산되고 레이저에 의한 소결 또는 융합에 의해 3차원의 틀체, 전열관 및 분기관들이 일체로 완성되어 복잡한 형상의 열교환기를 빠르게 생산할 수 있는 이점이 있다.The framework, heat transfer tubes and branching tubes are formed by selective laser sintering (SLS) or electron beam melting (EBM) printing techniques, in which a thin layer of metal powder is formed on a flat surface and a laser or electron beam By fusing these regions, successive layers of the powder are dispersed on the preceding layers and sintered or fused by a laser, whereby the three-dimensional frame, heat transfer tube and branch tubes are integrally completed and a complicated heat exchanger can be produced rapidly There is an advantage.

도 1은 본 발명 한 실시예의 열교환기의 조립 사시도
도 2는 본 발명 한 실시예의 열교환기의 일부 사시도
도 3은 본 발명 한 실시예의 열교환기의 정면도
도 4는 본 발명 한 실시예의 열교환기의 일부 확대 정단면도
도 5는 도 3의 A - A선 단면도
도 6는 도 3의 B - B선 단면도
1 is an assembled perspective view of a heat exchanger according to an embodiment of the present invention;
Figure 2 is a partial perspective view of a heat exchanger of one embodiment of the present invention;
3 is a front view of a heat exchanger of an embodiment of the present invention;
4 is a partially enlarged section of a heat exchanger of an embodiment of the present invention
5 is a sectional view taken along line A-A in Fig. 3
6 is a sectional view taken along the line B - B in Fig. 3

도 1 내지 도 6에서 본 발명 한 실시예의 열교환기는 상판(11), 하판(12) 및 양쪽의 측판(13)으로 직사각형태의 중공상 틀체(10)가 일체로 3D프린팅 되는데, 상기 틀체(10)의 내부 공간은 외기가 수평으로 통과되는 부분이다. 이 틀체(10)의 내부에 열교환대상물이 수직으로 통과되는 다수의 전열관(30)들이 일체로 3D프린팅된다. 상기 전열관(30)들의 상,하단은 상기 상판(11) 및 하판(12)을 관통하여 틀체(10)의 외부로 연결되게 3D프린팅 되는데, 상기 전열관(30)들은 내경이 1mm 내외이고, 외경이 3mm 내외로써, 소형으로 제작된다.The heat exchanger of the embodiment of the present invention as shown in FIGS. 1 to 6 is a three-dimensional printed hollow body 10 having a rectangular shape with an upper plate 11, a lower plate 12 and both side plates 13, ) Is a portion where the outside air passes horizontally. A plurality of heat transfer tubes 30 through which the heat exchange object passes vertically is integrally 3D-printed inside the frame 10. The upper and lower ends of the heat transfer tubes 30 are 3D printed so as to pass through the upper plate 11 and the lower plate 12 and connected to the outside of the frame 10. The heat transfer tubes 30 have an inner diameter of about 1 mm, It is 3mm in size, and it is made compact.

상기 전열관(30)들은 상기 틀체(10)의 내부에 일렬종대 및 일렬횡대 방향으로 다수개 나열되는데, 횡방향으로 나열된 전열관(30)들은 양쪽으로 갈라졌다가 합쳐지는 다수의 분기관(31)들이 다단으로 구비된다. 이들 분기관(31)들은 원호형 또는 다각형으로 갈라지는데, 이들 갈라진 틈새로 통로(40)가 형성되어 외기가 통과된다. 바람직하게는 분기관(31)들은 육각형으로 갈라지고 합쳐지는 모양을 구성하며, 육각형의 중앙에는 외기가 관통하는 통로(40)가 형성된다. 또한 분기관(31) 및 전열관(30)들은 단면이 육각형으로 구성되어 표면적이 원형 파이프에 비하여 늘어나도록 구성된다.The heat transfer tubes 30 are arranged in a row in a row and in a row in a row in the transverse direction of the frame 10. The heat transfer tubes 30 arranged in a transverse direction are divided into a plurality of branch tubes 31 And is provided in multiple stages. These branch pipes 31 are divided into an arcuate shape or a polygonal shape, and the passage 40 is formed by these cracks to allow the outside air to pass through. Preferably, the branches 31 form a shape which is divided into hexagons and merged, and a passage 40 through which the outside air passes is formed at the center of the hexagons. In addition, the branch pipe (31) and the heat transfer pipe (30) are configured to have a hexagonal cross section and have a surface area that is larger than that of the circular pipe.

또한 횡방향으로 나열된 전열관(30)들은 서로 이웃한 분기관(31)들이 하나로 합쳐지는 합류부(32)를 가지는데, 상기 횡방향의 전열관(30)들이 합류부(32)를 통하여 하나로 연결된다. 따라서 횡방향의 전열관(30)들의 상단으로 유입된 열교환대상물은 합류부(32)로 인하여 모든 전열관(30)의 내부로 퍼지면서 열교환길이가 늘어난다. 그리고 횡방향 전열관(30)들의 서로 이웃한 부분은 상,하측의 합류부(32)로 인하여 보조통로(41)가 형성되는데, 이 보조통로(41) 역시 육각형의 벌집 모양으로 형성된다.The heat transfer tubes 30 arranged in the transverse direction have a merging portion 32 in which the adjacent branches 31 are merged into one unit and the transverse heat transfer tubes 30 are connected to each other through the merging portion 32 . Therefore, the heat exchange object flowing into the upper end of the heat transfer tubes 30 in the lateral direction spreads into all of the heat transfer tubes 30 due to the merging portion 32, thereby increasing the heat exchange length. The auxiliary passage 41 is formed by the upper and lower merging portions 32 adjacent to each other of the lateral heat transfer tubes 30. The auxiliary passage 41 is also formed into a hexagonal honeycomb shape.

결국 횡방향의 전열관(30)들은 다단의 분기관(31)들이 합류부(32)와 합쳐지면서 육각형의 벌집모양을 형성하고, 분기관(31)들의 중앙 및 전열관(30)들의 사이에는 벌집모양의 육각형 통로(40) 및 보조통로(41)가 형성된다.As a result, the heat transfer tubes 30 in the lateral direction have a hexagonal honeycomb shape with the multi-stage branch tubes 31 merging with the merging section 32, and a honeycomb shape is formed between the center of the branch tubes 31 and the heat transfer tubes 30. [ The hexagonal passage 40 and the auxiliary passage 41 are formed.

그리고 상기 상판(11) 및 하판(12)에는 반구형의 상부커버(20) 및 하부커버(21)가 각각 3D프린팅 되어 일체로 구비되고, 상부커버(20)의 내부에는 상기 각 전열관(30)들의 상단으로 열교환대상물을 공급하기 위한 투입공간부(23)가 마련되고, 상기 상부커버(20)에는 상기 투입공간부(23)와 통하는 입구(22)가 3D프린팅 과정에서 형성된다. 그리고 상기 하부커버(21)에는 상기 전열관(30)들의 하단과 통하는 배출공간부(24)가 마련되고, 상기 하부커버(21)에는 상기 배출공간부(24)와 통하는 출구(25)가 3D프린팅 과정에서 형성된다. 미설명부호 33은 측판(13)과 근접된 분기관(31)을 잡아주는 지지부이다.The hemispherical upper cover 20 and the lower cover 21 are integrally formed by 3D printing on the upper and lower plates 11 and 12, An inlet space 23 for supplying a heat exchange object to the upper portion of the upper cover 20 and an inlet 22 communicating with the input space portion 23 are formed in the upper cover 20 in a 3D printing process. The lower cover 21 is provided with a discharge space portion 24 communicating with a lower end of the heat transfer tubes 30. An outlet 25 communicating with the discharge space portion 24 is provided in the lower cover 21, . Reference numeral 33 denotes a support for holding the branch pipe 31 adjacent to the side plate 13. [

이처럼 구성된 본 발명 한 실시예는 상기 틀체(10), 커버(20)(21) 및 전열관(30)들이 선택 레이저 소결(SLS) 또는 전자빔용해법(EBM)의 프린팅 기법에 의해 형성된다. 3D프린팅과정에서 상기 틀체(10)를 세우거나 또는 눕혀서 제작할 수 있는데, 작업의 효율성을 및 3D프린터 장치의 크기에 맞게 작업자가 판단하여 제작한다.The frame 10, the covers 20 and 21 and the heat transfer tubes 30 are formed by a selective laser sintering (SLS) or electron beam melting (EBM) printing technique. In the 3D printing process, the frame 10 may be raised or laid down. The operator may determine the efficiency of the 3D printer according to the size of the 3D printer device.

만약 상기 틀체(10)를 세워서 제작할 경우 3D프린팅 과정을 살펴보면, 평평한 표면 위에 금속분말의 얇은 층을 형성하고, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 융합(fuse)하고, 분말의 연속적인 층들은 선행 층들 위에 분산되고 레이저/전자빔에 의한 소결/융합되는데, 하부커버(21)가 먼저 형성되고, 하판(12), 측판(13), 전열관(30), 상판(11), 및 상부커버(20)의 순으로 제작되어 3차원의 열교환기가 완성된다.In the case of the 3D printing process, a thin layer of metal powder is formed on a flat surface, and a laser or an electron beam is contacted with a selected powder region to fuse these regions, The layers are dispersed on the preceding layers and sintered / fused by the laser / electron beam. The lower cover 21 is first formed and the lower cover 12, side plate 13, heat transfer tube 30, upper plate 11, (20) in this order to complete a three-dimensional heat exchanger.

상기 전열관(30)들은 상,하단이 상판(11) 및 하판(12)의 외부로 통하는데, 상판(11) 및 하판(12)에는 상부커버(20) 및 하부커버(21)가 구비되어 열교환대상물체가 상기 전열관(30) 내부로 공급된다. 또한 상기 각 전열관(30)들의 횡방향으로 나열된 부분은 다단으로 분기관(31)들이 형성되고, 또한 이웃한 분기관(31)들은 서로 통하는 합류부(32)로 구성된다. 따라서 횡방향의 전열관(30)들은 모두 연결되어 전열길이가 늘어나는 효과가 있다.The upper and lower ends of the heat transfer tubes 30 communicate with the outside of the upper and lower plates 11 and 12. The upper and lower plates 11 and 12 are provided with an upper cover 20 and a lower cover 21, The object is supplied to the inside of the heat transfer pipe 30. In addition, the transversely arranged portions of the respective heat transfer tubes 30 are formed with multi-stage branch tubes 31, and the adjacent tubes 31 are composed of merging portions 32 communicating with each other. Therefore, all of the heat transfer tubes 30 in the lateral direction are connected to each other to increase the heat transfer length.

본 발명 한 실시예의 열교환과정을 설명하면, 먼저 입구(22)를 통하여 투입공간부(23)로 열교환대상물체가 투입된다. 상기 투입공간부(23)에는 일렬종대 및 일렬횡대로 나열된 다수의 전열관(30)들의 상단이 연결되어 있으므로, 이들 전열관(30)들의 내부로 열교환대상물체가 들어간다.The heat exchange process of the embodiment of the present invention will be described. First, an object to be heat-exchanged is introduced into the input space portion 23 through the inlet 22. Since the upper ends of a plurality of heat transfer tubes 30 arranged in a row and a row are connected to the input space portion 23, the object to be heat-exchanged enters the heat transfer tubes 30.

상기 횡방향으로 나열된 전열관(30)들은 합류부(32)를 통하여 서로 연결된다. 따라서 횡방향으로 나열된 전열관(30)들의 내부로 유입된 열교환대상물체는 분기관(31)과 합류부(32)를 거치면서 열교환길이가 늘어난다. 또한 분기관(31)의 중앙 및 전열관(30)들의 사이에는 통로(40) 및 보조통로(41)가 형성되어 외기가 통과된다. 따라서 열교환대상물체와 외기가 서로 교차되면서 열교환된다. 상기 전열관(30) 및 분기관(31)들은 단면이 육각형으로 구성되어 표면적이 늘어난 형태이므로 열교환성이 향상된다.The heat transfer tubes 30 arranged in the transverse direction are connected to each other through the merging portion 32. Therefore, the length of the heat exchange object is increased by passing through the branch pipe (31) and the confluent portion (32), which are introduced into the heat transfer pipes (30) arranged in the transverse direction. Further, a passage 40 and an auxiliary passage 41 are formed between the center of the branch pipe 31 and the heat transfer pipes 30 to allow outside air to pass therethrough. Therefore, the heat exchange object and the outside air intersect with each other to perform heat exchange. Since the heat transfer tubes 30 and the branch tubes 31 have hexagonal cross sections and have increased surface area, the heat exchange performance is improved.

그리고 각 전열관(30)을 통과한 열교환대상물체는 상기 전열관(30)의 하단을 통하여 배출공간부(24)로 모인 뒤 하부커버(21)의 출구(25)를 따라 다음 공정으로 공급된다.The heat exchange object having passed through each heat transfer pipe 30 is collected in the discharge space portion 24 through the lower end of the heat transfer pipe 30 and then supplied to the next process along the outlet 25 of the lower cover 21.

10 : 틀체 11 : 상판
12 : 하판 13 : 측판
20 : 상부커버 21 : 하부커버
22 : 입구 23 : 투입공간부
24 : 배출공간부 25 : 출구
30 : 전열관 31 : 분기관
32 : 합류부 40 : 통로
41 : 보조통로
10: frame 11: top plate
12: lower plate 13: side plate
20: upper cover 21: lower cover
22: inlet 23:
24: exhaust space part 25: outlet
30: heat transfer pipe 31: branch pipe
32: merging section 40: passage
41: auxiliary passage

Claims (4)

상판, 하판 및 양쪽의 측판이 3D프린팅되어 외기가 수평으로 통과하는 틀체가 일체로 구성되고;
상기 틀체 내부에는 다수의 전열관이 일렬종대 및 일렬횡대로 다수열 3D프린팅 되는데, 상기 전열관들은 상단 및 하단이 상기 상판 및 하판을 관통하여서 열교환대상물체가 흘러가게 일체로 구비되고;
상기 전열관들은 양쪽으로 갈라진 뒤 다시 합쳐지는 분기관들이 다단으로 다수개 구비되고, 상기 횡방향의 분기관들은 서로 접하는 부분이 통하게 합류부로 구성되어서 상기 횡방향의 전열관들이 하나로 연결되도록 3D프린팅됨을 특징으로 하는 3D프린터를 이용한 열교환기.
A top plate, a bottom plate and side plates of both sides are 3D-printed so that a frame through which the outside air passes horizontally is integrally formed;
In the frame, a plurality of heat transfer tubes are printed in a row and a row by a plurality of columns of 3D heat transfer tubes, the upper and lower ends penetrating the upper and lower plates to integrally flow the object to be heat exchanged;
The heat transfer tubes are divided into a plurality of tubes and a plurality of tubes are joined in multiple stages. The tubes in the transverse direction are 3D-printed so that the portions in contact with each other are connected to each other and the transverse heat transfer tubes are connected to each other. A heat exchanger using a 3D printer.
제 1 항에 있어서,
상기 횡방향의 분기관들은 다각형으로 구성되고, 상기 분기관들의 중앙에는 외기가 지나가는 통로가 형성되며,
상기 횡방향의 전열관들은 상기 상,하측의 합류부와의 사이마다 외기가 통하는 보조통로가 일체로 3D프린팅됨을 특징으로 하는 3D프린터를 이용한 열교환기.
The method according to claim 1,
Wherein the lateral branch pipes are formed in a polygonal shape, a passage through which the outside air passes is formed at the center of the branch pipes,
Wherein the heat transfer tubes in the lateral direction are 3D-printed together with the auxiliary passages through which the outside air passes between the upper and lower merging portions.
제 2 항에 있어서,
상기 전열관 및 분기관들은 단면이 육각형으로 구성되고,
상기 통로 및 보조통로는 육각형이 되도록 상기 분기관 및 합류부가 일체로 3D프린팅됨을 특징으로 하는 3D프린터를 이용한 열교환기.
3. The method of claim 2,
Wherein the heat transfer tubes and the branch tubes have a hexagonal cross section,
Wherein the branch pipe and the joining portion are integrally 3D-printed so that the passage and the auxiliary passage are hexagonal.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 3D프린팅은 선택 레이저 소결(SLS) 또는 전자빔용해법(EBM)의 프린팅 기법을 이용한 것으로서,
금속분말의 얇은 층을 형성하고, 레이저 또는 전자빔이 선택된 분말 영역에 닿아 이 영역들을 소결 또는 융합한 것임을 특징으로 하는 3D프린터를 이용한 열교환기.
4. The method according to any one of claims 1 to 3,
The 3D printing uses selective laser sintering (SLS) or electron beam melting (EBM) printing,
Wherein a thin layer of metal powder is formed and a laser or an electron beam is contacted with a selected powder region to sinter or fuse these regions.
KR1020160009990A 2016-01-27 2016-01-27 The heat exchangers using a 3D printer KR101992482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160009990A KR101992482B1 (en) 2016-01-27 2016-01-27 The heat exchangers using a 3D printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160009990A KR101992482B1 (en) 2016-01-27 2016-01-27 The heat exchangers using a 3D printer

Publications (2)

Publication Number Publication Date
KR20170089594A true KR20170089594A (en) 2017-08-04
KR101992482B1 KR101992482B1 (en) 2019-06-24

Family

ID=59654582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160009990A KR101992482B1 (en) 2016-01-27 2016-01-27 The heat exchangers using a 3D printer

Country Status (1)

Country Link
KR (1) KR101992482B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307613A (en) * 2018-10-18 2019-02-05 中国石油天然气股份有限公司 A kind of method and device preparing artificial core
US20220205735A1 (en) * 2020-12-18 2022-06-30 Hamilton Sundstrand Corporation Multi-scale heat exchanger core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248196A (en) * 1994-03-11 1995-09-26 Daikin Ind Ltd Heat exchanger
KR20030042708A (en) * 2001-11-23 2003-06-02 주식회사 엘지이아이 Heat exchanger for air conditioner
JP2014520004A (en) * 2011-06-02 2014-08-21 ア レイモン エ シー Connectors manufactured by 3D printing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248196A (en) * 1994-03-11 1995-09-26 Daikin Ind Ltd Heat exchanger
KR20030042708A (en) * 2001-11-23 2003-06-02 주식회사 엘지이아이 Heat exchanger for air conditioner
JP2014520004A (en) * 2011-06-02 2014-08-21 ア レイモン エ シー Connectors manufactured by 3D printing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307613A (en) * 2018-10-18 2019-02-05 中国石油天然气股份有限公司 A kind of method and device preparing artificial core
CN109307613B (en) * 2018-10-18 2021-07-02 中国石油天然气股份有限公司 Method and device for preparing artificial rock core
US20220205735A1 (en) * 2020-12-18 2022-06-30 Hamilton Sundstrand Corporation Multi-scale heat exchanger core
US11555659B2 (en) * 2020-12-18 2023-01-17 Hamilton Sundstrand Corporation Multi-scale heat exchanger core

Also Published As

Publication number Publication date
KR101992482B1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
CN107427920B (en) Plate heat exchanger and method for manufacturing a plate heat exchanger
KR102103780B1 (en) Method of making a plate package for a plate heat exchanger
JP2547231B2 (en) Double-walled plate heat exchanger and manufacturing method thereof
KR101655889B1 (en) Heat exchange reactor and method for producing the same
EP3339793B1 (en) Heat-exchanger with header welded to the core
JPH08200977A (en) Flat tube for heat exchanger and manufacture thereof
JP6701376B2 (en) Heat exchanger plate, plate heat exchanger, and method of making plate heat exchanger
CN102939509A (en) Plate type heat exchanger, oil cooling system and method for cooling oil
CN110822954B (en) Heat exchanger
US10605536B2 (en) Plate heat exchanger with several modules connected by sections
KR102189897B1 (en) The heat exchangers using a 3D printer
DK178441B1 (en) Method of producing a heat exchanger and a heat exchanger
KR101992482B1 (en) The heat exchangers using a 3D printer
CN104776736A (en) Novel high-efficiency heat exchanger and molding method thereof
JP7256951B2 (en) Plate heat exchanger and water heater equipped with same
CN104089498A (en) Novel micro-channel heat exchanger
US20150144309A1 (en) Flattened Envelope Heat Exchanger
US20070235174A1 (en) Heat exchanger
JPH0634283A (en) Manufacture of heat exchanger for use in space
CN104215101B (en) Plate-fin heat exchanger
KR20160139725A (en) Heat exchanger and nuclear reactor having the same
JP2018017424A (en) Manufacturing method of heat exchanger
TWI470181B (en) Heat exchanger
JP2009074772A (en) Heat exchanger
JP7164893B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2017101004573; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20170925

Effective date: 20190521

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant