KR20170089083A - Method for manufacturing metal grid structure and metal grid structure manufactured by the method - Google Patents

Method for manufacturing metal grid structure and metal grid structure manufactured by the method Download PDF

Info

Publication number
KR20170089083A
KR20170089083A KR1020160008804A KR20160008804A KR20170089083A KR 20170089083 A KR20170089083 A KR 20170089083A KR 1020160008804 A KR1020160008804 A KR 1020160008804A KR 20160008804 A KR20160008804 A KR 20160008804A KR 20170089083 A KR20170089083 A KR 20170089083A
Authority
KR
South Korea
Prior art keywords
metal
electrode
grid structure
metal grid
lattice
Prior art date
Application number
KR1020160008804A
Other languages
Korean (ko)
Inventor
이원영
변도영
최민기
황상연
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020160008804A priority Critical patent/KR20170089083A/en
Publication of KR20170089083A publication Critical patent/KR20170089083A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8832Ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a production method of a metal lattice structure, and a metal lattice structure produced therefrom. The metal lattice structure can be precisely controlled by depositing a metal lattice-patterned structure on an interface between an electrolyte and an electrode using an electrohydraulic jet printing method, the amount of a deposition material is relatively simple.

Description

금속 격자구조체의 제조방법 및 그로부터 제조된 금속 격자구조체 {METHOD FOR MANUFACTURING METAL GRID STRUCTURE AND METAL GRID STRUCTURE MANUFACTURED BY THE METHOD}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for manufacturing a metal grid structure, and a metal grid structure formed therefrom,

본 발명은 금속 격자구조체의 제조방법 및 그로부터 제조된 금속 격자구조체에 관한 것으로, 전해질과 전극의 계면에 금속으로 된 격자무늬 구조체를 전기수력학 젯 프린팅 방법을 이용하여 증착함으로써, 전류집전/분배 성능이 우수하여 전지 등에 전기화학적 성능을 향상시킬 수 있는 금속 격자구조체의 제조방법 및 그로부터 제조된 금속 격자구조체에 관한 것이다.The present invention relates to a method of manufacturing a metal grid structure and a metal grid structure formed therefrom, wherein a grid pattern structure made of metal at the interface between the electrolyte and the electrode is deposited using an electrohydraulic jet printing method, The present invention relates to a method for manufacturing a metal lattice structure capable of improving electrochemical performance in a battery and the like, and a metal lattice structure fabricated therefrom.

고체산화물 연료전지는 높은 효율과 화력발전소와의 병합발전 가능성 그리고 환경 친화적인 이점 때문에 전도 유망한 에너지 전환 장치로 각광받고 있다. 그러나 고체산화물 연료전지의 성능은 단일전지의 성능뿐만 아니라, 중간 집전체와 양극층 또는 음극층 사이의 접촉저항에 의해 결정되기 때문에, 다양한 장비와의 혼합을 위해서는 효과적인 전류집전/분배에 대한 연구가 필요하다. Solid oxide fuel cells are emerging as promising energy conversion devices due to their high efficiency, potential for merging with thermal power plants, and environmentally friendly advantages. However, since the performance of a solid oxide fuel cell is determined not only by the performance of a single cell but also by the contact resistance between the intermediate current collector and the anode layer or the cathode layer, studies on effective current collection / need.

면방향의 전도성과 접촉저항에 의한 성능 감소는 연료전지의 스택 시스템을 어렵게 하는 실질적인 이유가 된다. 더욱이 단일전지에서도 전류집전/분배장치 없이는 정확한 전기화학적 성능 평가는 어려울 것이다. 그러므로, 많은 연구팀에서는 전류집전/분배장치와 전기화학적 성능 평가에 대한 연구를 진행해왔다. 그 예로, Jiang과 Noh의 연구팀은 전류집전/분배장치와 양극의 접촉면적이 증가함에 따라 성능이 증가함을 보고하였다(비특허문헌 1 및 2). 또한, Jiang의 연구팀은 전해질/전극 계면에서의 불균일한 전류분배는 오믹과 분극화저항을 증가시킨다고 보고하였고(비특허문헌 1), Guillodo의 연구팀은 재료와 전류집전체의 종류가 전기화학적 성능에 영향을 미침을 보였다(비특허문헌 3). 그러나, 전기화학적 성능과의 관계뿐만 아니라, 최적화된 전류집전/분배장치의 구조와 그것의 역할에 대한 체계적인 실험이 아직까지 이루어지지 않고 있다.The reduction in performance due to surface conductance and contact resistance is a practical reason to make the stack system of the fuel cell difficult. Moreover, even in a single cell, accurate electrochemical performance evaluation would be difficult without current collection / distribution devices. Therefore, many researchers have been working on current collectors / distributors and electrochemical performance evaluation. For example, Jiang and Noh's team reported that the performance increases as the contact area of the current collecting / distributing device and the anode increases (Non-Patent Documents 1 and 2). In addition, Jiang's team reported that uneven current distribution at the electrolyte / electrode interface increases ohmic and polarization resistance (Non-Patent Document 1), and Guillodo's team observed that the type of material and current collector affects electrochemical performance (Non-Patent Document 3). However, systematic experiments on the structure of the optimized current collecting / distributing device and its role have not yet been conducted, as well as the relationship with the electrochemical performance.

백금(Pt) 또는 은(Ag) 페이스트(Paste) 그리고 격자는 전류집전/분배장치를 구성하기 위한 전형적인 방법이나, 이러한 방법들은 전류집전/분배장치 구조의 정밀한 조절에는 적합하지 않다. 더욱이, 전해질/전극 계면에 증착하게 되면 실 반응 면적을 막아버리게 되므로, 계면에서의 적용은 불가능한 방법이다. 이에 대한 대체 방법으로, Choi의 연구팀은 DC 스퍼터 방법을 이용하여 전해질/전극 계면에 다공성의 Ag층을 증착하여 전류집전/분배장치를 구성하였다(비특허문헌 4). Platinum (Pt) or silver (Ag) paste and gratings are typical methods for constructing current collectors / distributors, but these methods are not suitable for precise control of current collector / distributor structures. Furthermore, deposition on the electrolyte / electrode interface will block the actual reaction area, so application at the interface is not possible. As an alternative to this, Choi's team formed a current collecting / distributing device by depositing a porous Ag layer at the electrolyte / electrode interface using a DC sputtering method (Non-Patent Document 4).

그러나, 전류집전/분배장치의 정밀한 조절은 아직까지도 어려운 실정이고, 증착된 Ag층은 연료전지의 작동환경에서 다공성을 잃고 전기화학적 성능의 감소를 야기한다. 따라서, 전해질과 전극의 계면에 증착하여 전류집전/분배장치로서 연료전지 등에 전기화학적 성능을 향상시킬 수 있는 기술이 여전히 요구되고 있는 실정이다. However, precise control of the current collecting / distributing device is still difficult, and the deposited Ag layer loses porosity in the operating environment of the fuel cell and causes a decrease in electrochemical performance. Therefore, there is still a need for a technique capable of improving the electrochemical performance of a fuel cell or the like as a current collecting / distributing device by depositing it on the interface between an electrolyte and an electrode.

S.P. Jiang, J.G. Love, and L.Apateanu, “Effect of Contact Between Electrode and Current Collector on the Performance of Solid Oxide Fuel Cells,” Solid State Ion., 160, 15-26 (2003) S.P. Jiang, J.G. , &Quot; Solid State Ion., &Quot; 160, 15-26 (2003), " Love, and L.Apateanu, " Effect of Contact Between Electrode and Current Collector on the Performance of Solid Oxide Fuel Cells, H.S. Noh, J. Hwang, K. Yoon, B.-K. Kim, H.-W. Lee, J.-H. Lee, and J.-W. Son, “Optimization of Current Collection to Reduce the Lateral Conduction Loss of Thin-Film-Processed Cathodes,” J. Power Sources, 230, 109-114 (2013) H.S. Noh, J. Hwang, K. Yoon, B.-K. Kim, H.-W. Lee, J.-H. Lee, and J.-W. Son, "Optimization of Current Collection to Reduce the Lateral Conduction Loss of Thin-Film-Processed Cathodes," J. Power Sources, 230, 109-114 (2013) M. Guillodo, P. Vernoux, and J. Fouletier, “Electrochemical Properties of Ni-YSZ Cermet in Solid Oxide Fuel Cells,” Solid State Ion., 127, 99-107 (2000) M. Guillodo, P. Vernoux, and J. Fouletier, "Electrochemical Properties of Ni-YSZ Cermet in Solid Oxide Fuel Cells," Solid State Ion., 127, 99-107 (2000) S.H. Choi, C.S. Hwang, and M.H. Lee, “Performance Enhancement of Freestanding Micro-SOFCs with Ceramic Electrodes by the Insertion of a YSZ-Ag Interlayer,” ECS Electrochem. Lett., 3, 57-59 (2014) S.H. Choi, C.S. Hwang, and M.H. Lee, " Performance Enhancement of Freestanding Micro-SOFCs with Ceramic Electrodes by the Insertion of a YSZ-Ag Interlayer, " ECS Electrochem. Lett., 3, 57-59 (2014)

본 발명은 전해질과 전극의 계면에 전기수력학 젯 프린팅 기법을 이용하여, 금속 격자구조를 정밀하게 조절하여 증착시킨 금속 격자구조체의 제조방법 및 그로부터 제조된 금속 격자구조체를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for manufacturing a metal grid structure in which a metal grid structure is precisely deposited by using an electrohydraulic jet printing technique at the interface between an electrolyte and an electrode, and a metal grid structure manufactured thereby.

상기의 목적을 달성하기 위한 본 발명에 따른 금속 격자구조체의 제조방법은, 금속을 포함하는 잉크용액을 제조하는 단계; 및 상기 잉크용액을 전기수력학 젯 프린팅하여 격자무늬 구조를 형성하는 단계를 포함할 수 있다.According to another aspect of the present invention, there is provided a method of fabricating a metal grid structure, including: preparing an ink solution containing a metal; And electrohydraulic jet printing the ink solution to form a lattice pattern structure.

상기 금속은, 타이타니움(Ti), 니켈(Ni), 구리(Cu), 금(Au), 은(Ag), 백금(Pt), 철(Fe), 및 팔라디움(Pd) 중 적어도 하나를 포함할 수 있고, 상기 잉크용액은 잉크용액 100 중량%에 대하여, 폴리머 1 내지 80 중량%, 용매 5 내지 90 중량%, 및 금속 분말 5 내지 90 중량%를 포함할 수 있다.Wherein the metal is at least one of titanium (Ti), nickel (Ni), copper (Cu), gold (Au), silver (Ag), platinum (Pt), iron (Fe), and palladium And the ink solution may contain 1 to 80% by weight of the polymer, 5 to 90% by weight of the solvent, and 5 to 90% by weight of the metal powder, based on 100% by weight of the ink solution.

상기 전기수력학 젯 프린팅은 유량 0.1 내지 10 ㎕/min, 전압 0.5 내지 10 kV, 프린팅 속도 10 내지 2000 ㎜/s로 수행될 수 있다.The electrohydraulic jet printing can be performed at a flow rate of 0.1 to 10 ㎕ / min, a voltage of 0.5 to 10 kV, and a printing speed of 10 to 2000 / / s.

상기 격자무늬 구조는 10 내지 2000 ㎛ 격자 간격을 형성할 수 있다.The lattice structure may form a lattice spacing of 10-2000 [mu] m.

본 발명은 상기 제조방법으로 제조된 금속 격자구조체를 제공할 수 있고, 상기 금속 격자구조체는 전류집전 및 분배장치로서 사용될 수 있다.The present invention can provide a metal grid structure manufactured by the above manufacturing method, and the metal grid structure can be used as a current collecting and distributing device.

또한, 본 발명은 전해질, 전극, 및 상기 전해질과 전극의 계면에 증착된 금속 격자구조체를 포함하는 전지를 제공할 수 있다. 상기 전극은 양극 또는 음극일 수 있다.In addition, the present invention can provide a battery including an electrolyte, an electrode, and a metal grid structure deposited on an interface between the electrolyte and the electrode. The electrode may be a cathode or a cathode.

상기 전지는 일차전지, 이차전지, 연료전지, 및 태양전지 중 어느 하나일 수 있다.The battery may be any one of a primary battery, a secondary battery, a fuel cell, and a solar cell.

본 발명에 따른 금속 격자구조체의 제조방법은 전기수력학 젯 프린팅 방법을 이용함으로써, 금속 격자구조의 정밀한 조절이 가능하고, 증착 재료의 양 조절이 상대적으로 간편한 장점이 있다. The method of manufacturing a metal lattice structure according to the present invention is advantageous in that the metal grid structure can be precisely controlled and the amount of the evaporation material can be controlled by using the electrohydraulic jet printing method.

또한, 전기수력한 젯 프린팅은 높은 재현성과 향상된 품질, 신속한 공정, 및 대면적 생산이 가능하므로, 고도의 산업화된 증착 기법을 제공하는 장점이 있다.Electrohydraulic jet printing also has the advantage of providing a highly industrialized deposition technique because it allows for high reproducibility, improved quality, rapid process, and large area production.

또한, 본 발명의 제조방법으로 제조된 금속 격자구조체는 전기화학적 성능을 향상시키므로, 전지 등의 다양한 분야에서 전류집전/분배장치로서 적용가능한 장점이 있다. In addition, since the metal grid structure manufactured by the manufacturing method of the present invention improves the electrochemical performance, it can be applied as a current collecting / distributing device in various fields such as batteries.

도 1은 본 발명의 일 실시예에 따라 제조된 은 격자무늬 구조체를 주사전자현미경(scanning electron microscope, SEM)으로 관찰한 결과이다(격자 간격- (a) 100㎛, (b) 200 ㎛, (c) 400 ㎛).
도 2는 본 발명의 일 실시예에 따라 제조된 반전지의 단면을 SEM으로 관찰한 결과이다.
도 3은 본 발명의 일 실시예에 따라 제조된 반전지의 전기화학적 성능을 측정하고, 그 결과를 나타낸 임피던스 그래프이다.
도 4는 본 발명의 일 실시예에 따라 제조된 반전지의 전기화학적 성능을 측정하고, 그 결과를 나타낸 Arrhenius 그래프이다.
도 5는 본 발명의 일 실시예에 따라 제조된 반전지의 전기화학적 성능을 측정하고, 그 결과를 나타낸 보드 그래프이다.
FIG. 1 shows a result of observing a silver lattice pattern structure according to an embodiment of the present invention with a scanning electron microscope (SEM) (lattice spacing - (a) 100 μm, (b) 200 μm, c) 400 [mu] m).
FIG. 2 is a SEM image of a cross section of a semi-conductive paper produced according to an embodiment of the present invention.
3 is an impedance graph showing the results of measuring the electrochemical performance of a half-cell produced according to an embodiment of the present invention.
4 is an Arrhenius graph showing the results of measuring the electrochemical performance of a half-cell produced according to an embodiment of the present invention.
5 is a graph showing the results of measuring the electrochemical performance of a half-cell produced according to an embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless defined otherwise, all terms (including technical and scientific terms) used herein may be used in a sense commonly understood by one of ordinary skill in the art to which this invention belongs. In addition, commonly used predefined terms are not ideally or excessively interpreted unless explicitly defined otherwise.

본 발명은 금속 격자구조체의 제조방법 및 그로부터 제조된 금속 격자구조체에 관한 것으로, 전해질과 전극의 계면에 금속으로 된 격자무늬 구조체를 전기수력학 젯 프린팅 방법을 이용하여 격자구조를 정밀하게 조절하여 증착시킴으로써, 전류집전/분배 성능이 우수하여 전지 등의 다양한 분야에서 전기화학적 성능을 향상시킬 수 있는 금속 격자구조체의 제조방법 및 그로부터 제조된 금속 격자구조체를 제공할 수 있다.The present invention relates to a method of manufacturing a metal lattice structure and a metal lattice structure fabricated therefrom, and precisely adjusting the lattice structure of the metal lattice structure at the interface between the electrolyte and the electrode using an electrohydraulic jet printing method, A method of manufacturing a metal grid structure capable of improving electrochemical performance in various fields such as batteries and the like, and a metal grid structure fabricated therefrom can be provided.

전기수력학 젯 프린팅 방법은 높은 재현가능성과 퀄리티 때문에 금속 격자를 이용하여 투명전극을 구성하는데에 널리 사용되고 있고, 또한 빠른 공정과 대면적 생산이 가능하므로 높은 산업화 가능성을 내재하고 있다. 그러므로, 본 발명에서는 이 방법을 이용하여 금속 격자구조를 정밀히 조절하여 금속 격자구조체를 제조할 수 있다.The electrohydraulic jet printing method is widely used for forming a transparent electrode using a metal grid due to its high reproducibility and quality, and has a high industrialization potential because it can be processed rapidly and can be produced in a large area. Therefore, in the present invention, the metal lattice structure can be manufactured by precisely controlling the metal lattice structure using this method.

먼저 본 발명에 따른 금속 격자구조체의 제조방법은, 금속을 포함하는 잉크용액을 제조하는 단계; 및 상기 잉크용액을 전기수력학 젯 프린팅하여 격자무늬 구조를 형성하는 단계를 포함할 수 있다.First, a method for fabricating a metal grid structure according to the present invention includes the steps of: preparing an ink solution containing a metal; And electrohydraulic jet printing the ink solution to form a lattice pattern structure.

상기 잉크용액을 제조하는 단계는, 전기수력학 젯 프린팅을 위한 잉크용액을 준비하는 단계이다.The step of preparing the ink solution is a step of preparing an ink solution for electrohydraulic jet printing.

본 발명의 잉크용액에 포함되는 금속의 종류는 전기수력학 젯 프린팅에 적용될 수 있는 금속이라면 특별히 그 종류를 제한하지 않으며, 바람직하게 상기 금속은 타이타니움(Ti), 니켈(Ni), 구리(Cu), 금(Au), 은(Ag), 백금(Pt), 철(Fe), 및 팔라디움(Pd) 중 적어도 하나, 더욱 바람직하게는 은(Ag) 및 백금(Pt) 중 적어도 하나를 포함할 수 있다.The type of metal contained in the ink solution of the present invention is not particularly limited as long as it is a metal that can be applied to electrohydraulic jet printing. Preferably, the metal is titanium (Ti), nickel (Ni), copper At least one of silver (Ag), platinum (Cu), gold (Au), silver (Ag), platinum (Pt), iron (Fe), and palladium can do.

상기 잉크용액은 잉크용액 100 중량%에 대하여, 폴리머 1 내지 80 중량%, 용매 5 내지 90 중량%, 및 금속 분말 5 내지 90 중량%, 바람직하게는 폴리머 1 내지 10 중량%, 용매 60 내지 85 중량%, 및 금속 분말 10 내지 30 중량%를 포함할 수 있다. 각 성분의 함량이 상기 범위를 벗어나는 경우에는 원활한 전기수력학 젯이 이루어지지 않고, 금속 격자구조체의 형상이 제대로 형성되지 않는 문제가 있다.The ink solution contains 1 to 80 wt% of a polymer, 5 to 90 wt% of a solvent, 5 to 90 wt% of a metal powder, preferably 1 to 10 wt% of a polymer, 60 to 85 wt% of a solvent %, And 10 to 30 wt% of the metal powder. When the content of each component is out of the above range, a smooth electrohydraulic jet can not be formed and the shape of the metal grid structure is not formed properly.

상기 폴리머는 전기수력학 젯 프린팅에 적용될 수 있는 폴리머라면 특별히 제한하지 않으며, 바람직하게는 폴리에틸렌옥사이드(PEO), 폴리비닐피롤리돈(PVP), 및 폴리아크릴로나이트릴(PAN) 중 적어도 하나를 포함할 수 있다.The polymer is not particularly limited as long as it is a polymer that can be applied to electrohydraulic jet printing and preferably at least one of polyethylene oxide (PEO), polyvinyl pyrrolidone (PVP), and polyacrylonitrile (PAN) .

상기 용매는 프린팅에 적용될 수 있는 용매라면 특별히 제한하지 않으며, 바람직하게는 물 및 유기용매 중 적어도 하나를 포함할 수 있다. 상기 유기용매는 알코올 또는 클로로포름일 수 있고, 상기 알코올은 바람직하게는 에탄올일 수 있다.The solvent is not particularly limited as long as it is a solvent that can be applied to printing, and preferably it may include at least one of water and an organic solvent. The organic solvent may be alcohol or chloroform, and the alcohol may preferably be ethanol.

상기 전기수력학 젯 프린팅은, 유량 0.1 내지 10 ㎕/min, 전압 0.5 내지 10 kV, 프린팅 속도 10 내지 2000 ㎜/s, 바람직하게는 유량 0.1 내지 0.5 ㎕/min, 전압 1.2 내지 1.6 kV, 프린팅 속도 150 내지 700 ㎜/s로 수행될 수 있다. 상기 범위를 벗어나는 경우에는 원활한 전기수력학 젯이 이루어지지 않고, 금속 격자구조체의 형상이 제대로 형성되지 않는 문제가 있다.The electrohydraulic jet printing is carried out at a flow rate of 0.1 to 10 / / min, a voltage of 0.5 to 10 kV, a printing speed of 10 to 2000 / / s, preferably a flow rate of 0.1 to 0.5 / / min, a voltage of 1.2 to 1.6 kV, 150 to 700 mm / s. If the thickness is out of the above range, there is a problem that a smooth electrohydraulic jet is not formed and the shape of the metal grid structure is not formed properly.

본 발명의 금속 격자구조체는 격자 간격 10 내지 2000 ㎛, 바람직하게는 50 내지 500 ㎛, 더욱 바람직하게는 100 내지 400 ㎛인 격자무늬 구조를 형성할 수 있다. 격자 간격이 10 ㎛ 미만인 경우에는 전해질 표면을 덮어 실질적인 전기화학반응이 일어나는 장소를 줄이는 문제가 있고, 2000 ㎛를 초과하는 경우에는 격자구조체의 효과가 떨어진다는 문제가 있다.The metal lattice structure of the present invention can form a lattice pattern having a lattice spacing of 10 to 2000 μm, preferably 50 to 500 μm, more preferably 100 to 400 μm. When the lattice spacing is less than 10 탆, there is a problem of covering the surface of the electrolyte and a place where a substantial electrochemical reaction occurs. If the lattice spacing is more than 2000 탆, the effect of the lattice structure is deteriorated.

상기 금속 격자구조체는 전해질과 전극의 계면에 증착되는 것을 특징으로 한다.And the metal grid structure is deposited on the interface between the electrolyte and the electrode.

상기 전해질은 전지에 이용가능한 종류라면 특별히 제한하지 않으며, 바람직하게는 고체 전해질인 YSZ, GDC 등이 있을 수 있고, 상기 전극은 양극 또는 음극으로 이용가능한 종류라면 특별히 제한하지 않으며, 바람직하게는 LSCF, BSCF, LSM, LSC, SSC 등을 포함하는 양극과, Ni-YSZ, Ni-GDC 등을 포함하는 음극일 수 있다.The electrolyte is not particularly limited as long as it can be used in a battery. Preferably, the electrolyte is YSZ or GDC, which is a solid electrolyte, and the electrode is not particularly limited as long as it can be used as a positive electrode or a negative electrode. BSCF, LSM, LSC, SSC and the like, and Ni-YSZ, Ni-GDC and the like.

본 발명은 상기 제조방법으로 제조된 금속 격자구조체를 제공할 수 있고, 상기 금속 격자구조체는 전류집전 및 분배장치로서 사용될 수 있다.The present invention can provide a metal grid structure manufactured by the above manufacturing method, and the metal grid structure can be used as a current collecting and distributing device.

또한, 본 발명은 전해질, 전극, 및 상기 전해질과 전극의 계면에 증착된 금속 격자구조체를 포함하는 전지를 제공할 수 있다. 상기 전극은 양극 또는 음극일 수 있고, 바람직하게는 양극일 수 있다. In addition, the present invention can provide a battery including an electrolyte, an electrode, and a metal grid structure deposited on an interface between the electrolyte and the electrode. The electrode may be a positive electrode or a negative electrode, and may preferably be a positive electrode.

상기 전지는 일차전지, 이차전지, 연료전지, 및 태양전지 중 어느 하나일 수 있고, 바람직하게는 연료전지, 더욱 바람직하게는 고체산화물 연료전지일 수 있다.The battery may be any one of a primary cell, a secondary battery, a fuel cell, and a solar cell, and may be preferably a fuel cell, more preferably a solid oxide fuel cell.

이하, 본 발명의 구체적인 내용을 하기 실시예를 통하여 상세히 설명하고자 하나 이는 본 발명의 예시목적을 위한 것으로, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, which should not be construed as limiting the scope of protection defined by the appended claims.

실시예Example 1:  One: 전기수력학Electrohydrodynamics  Jet 프린팅용For printing 잉크용액 제조 Ink solution preparation

전기 수력학 젯 프린팅을 위한 잉크용액을 제조하기 위하여, 폴리머로는 폴리에틸렌옥사이드(PEO, 1,300,000 MW)를, 용매로는 물과 에탄올을 3:2의 부피비로 혼합한 혼합용매를, 금속 분말로는 은 나노분말을 준비하였다. 먼저, 혼합용매에 폴리에틸렌옥사이드 3 중량%를 섞은 다음, 은 나노분말 25 중량%를 첨가하여 전자기적 교반기구를 사용하여 교반하였다.In order to produce an ink solution for electrohydraulic jet printing, a mixed solvent obtained by mixing polyethylene oxide (PEO, 1,300,000 MW) as a polymer and water and ethanol in a volume ratio of 3: 2 as a solvent was used, Silver nano powder was prepared. First, 3 wt% of polyethylene oxide was mixed with the mixed solvent, and 25 wt% of silver nanopowder was added thereto, followed by stirring using an electromagnetic stirring device.

실시예Example 2: 은 격자구조 형성 2: formation of silver lattice structure

전기수력학 젯 프린팅을 위해서는 주위 환경의 조절이 필요한데, 본 발명에서는 습도 45-47%, 온도 20-25℃로 유지하여 프린팅을 실시하였다. 프린팅은 전통적인 전해질 재료로 사용되는 Y0 .16Zr0 .92O2(YSZ, 8 mol%, 두께 500 ㎛) 기판 위와 아래에 대칭적으로 증착되었다. 프린팅 실시조건은, 유량 0.3 ㎕/min, 전압 1.45 kV, 노즐과 기판의 간격은 500 ㎛, 프린팅 속도 500 ㎜/s을 유지하여 프린팅 하였다. In the present invention, printing was performed while maintaining the humidity at 45 to 47% and the temperature at 20 to 25 ° C. Printing was deposited symmetrically on and below the Y 0 .16 Zr 0 .92 O 2 (YSZ, 8 mol%, 500 ㎛ thick) substrate used as a traditional electrolyte material. Printing was performed under conditions of a flow rate of 0.3 / / min, a voltage of 1.45 kV, a gap between the nozzle and the substrate of 500 쨉 m, and a printing speed of 500 ㎜ / s.

격자 간격에 따른 연료전지의 전기화학적 성능 변화를 관찰하기 위하여, 격자 간격을 100 ㎛에서 400 ㎛까지 100 ㎛간격으로 조절하였다. 증착된 은 격자구조체의 입자 결속과 용매 및 폴리머의 증발을 위하여 200℃에서 2시간 동안 소결과정을 거쳤다. In order to observe the electrochemical performance change of the fuel cell according to the lattice spacing, the lattice spacing was adjusted from 100 μm to 400 μm at intervals of 100 μm. The sintering process was carried out at 200 ° C for 2 hours to bond the particles of the silver lattice structure and to evaporate the solvent and the polymer.

상기 전기수력학 젯 프린팅 방법에 의하여 증착된 은 격자무늬의 구조체를 주사전자현미경(JSM700F, JEOL)으로 관찰하였다. 도 1에 나타낸 바와 같이, 격자 간격 100 ㎛(a), 200 ㎛(b), 및 400 ㎛(c)별로 격자무늬 구조가 잘 형성되어 있었다.The silver lattice structure deposited by the electrohydraulic jet printing method was observed with a scanning electron microscope (JSM700F, JEOL). As shown in Fig. 1, the lattice pattern was well formed for each of the lattice spacings 100 (a), 200 (b), and 400 (c).

실시예Example 3: 양극의 증착 3: Deposition of anode

격자 간격 100-400 ㎛의 은 격자구조체가 증착된 YSZ 기판 위에 양극(cathode)을 증착하기 위하여, 스크린프린팅 기법을 이용하였다. 스크린프린팅용 양극 잉크 제작을 위하여 양극 재료 분말과 스크린프린팅용 바인더를 1:1 질량비로 섞었다. 양극의 재료로는 Sm0 .5Sr0 .5CoO3(SSC)를 사용하였고, 양극의 마이크로구조 형성과 스크린프린팅용 바인더의 증발을 위하여 800℃에서 8시간 동안 소결과정을 거쳐 전지를 제조하였다.A screen printing technique was used to deposit a cathode on a YSZ substrate with a lattice spacing of 100-400 ㎛ deposited with a silver lattice structure. For the preparation of positive electrode ink for screen printing, the anode material powder and the binder for screen printing were mixed at a ratio of 1: 1 by mass. Sm 0 .5 Sr 0 .5 CoO 3 (SSC) was used as a material of the anode, and a sintering process was performed at 800 ° C. for 8 hours to form a microstructure of the anode and to evaporate the binder for screen printing. .

상기 제조된 전지의 은 격자구조체와 SSC 양극층의 마이크로 구조 및 형상을 주사전자현미경으로 관찰한 결과, 스크린프린팅 방법에 의하여 SSC 양극층이 38 ㎛ 증착되었음을 확인할 수 있었다. 격자구조가 없는 전지와 있는 전지의 두께와 마이크로 구조가 같은 것으로 보아, 전지의 두께와 마이크로 구조에 의한 전기화학적 성능 차이는 없다고 할 수 있다(도 2).The microstructure and shape of the silver lattice structure and the SSC anode layer of the prepared battery were observed by a scanning electron microscope. As a result, it was confirmed that the SSC anode layer was deposited by 38 탆 by the screen printing method. It can be said that there is no difference in the electrochemical performance due to the thickness of the cell and the microstructure in view of the same thickness and microstructure of the cell having no lattice structure (FIG. 2).

<전기화학적 임피던스 측정><Electrochemical Impedance Measurement>

은 격자구조체가 증착된 반전지의 전기화학적 성능을 측정하기 위하여, 전기화학적 임피던스 측정법이 이용되었다. 임피던스는 분석 장비(GAMRY reference 600, GMARY INC.)를 통하여 주파수 0.01부터 106 Hz 범위까지 측정되었고, 측정하는 동안 반전지는 위 아래 양쪽 모두 공기 중에 노출되어 있는 전기로 안에서 작동되었다. An electrochemical impedance measurement method was used to measure the electrochemical performance of a silver halide deposited silver lattice structure. Impedance was measured from frequency 0.01 to 10 6 Hz through an analytical instrument (GAMRY reference 600, GMARY INC.) And during the measurement, the inverting cell was operated in an electric furnace where both the top and bottom were exposed to air.

도 3에 나타낸 바와 같이, 은 격자 간격이 줄어듦에 따라 전해질과 양극층의 계면에서 전자공급이 원활해져 시트저항이 감소함으로 오믹저항(반원의 x축 첫 교점에 해당하는 저항값)이 감소하였다. 또한, 전자공급이 원활하지 않았던 곳에 전자공급이 원활해지면서 분극화가 활발히 일어나므로 분극화저항(반원의 x축 교점들 사이값의 반에 해당하는 저항값)도 감소하였다.As shown in FIG. 3, as the silver lattice spacing decreases, the supply of electrons at the interface between the electrolyte and the anode layer becomes smooth and the sheet resistance decreases, so that the ohmic resistance (the resistance value corresponding to the first intersection point of the x axis of the semicircle) decreases. In addition, the polarizing resistance (the resistance value corresponding to half of the value between the x-axis intersections of the semicircle) also decreased because the polarity was actively generated due to the smooth supply of electrons in the place where the electron supply was not smooth.

도 4의 Arrhenius 그래프는 산소 이온확산의 활성화 에너지를 나타내는 것으로, 100 ㎛ 간격의 격자구조체가 증착된 반전지, 격자구조체가 없는 반전지, 및 이론값의 활성화 에너지가 동일하므로, 전해질에서의 확산 메커니즘이 변하지 않았음을 알 수 있었고, 도 3의 오믹저항 감소가 전해질의 확산 메커니즘의 변화가 아닌 시트저항의 감소 때문임을 알 수 있었다.The Arrhenius graph of FIG. 4 shows the activation energy of oxygen ion diffusion. The activation energy of the oxygen ion diffusion is the same as the activation energy of a half-cell with a lattice structure deposited at intervals of 100 탆, a half cell without a lattice structure, And that the decrease in the ohmic resistance of FIG. 3 is due to a decrease in the sheet resistance, not a change in the diffusion mechanism of the electrolyte.

도 5는 격자 간격 100 ㎛(P100), 200 ㎛(P200), 및 400 ㎛(P400)의 격자구조체가 증착된 반전지와 격자구조체가 없는 반전지의 보드 그래프를 나타낸 것으로, 중간주파수 영역(100-10000 Hz)의 값에 해당하는 저항이 격자 간격이 줄어듦에 따라 감소하였다. 중간주파수 영역은 전자전이현상 메커니즘에 해당하는 것을 대표함으로, 상기 결과로부터 격자 간격이 줄어듦에 따라 전자가 원활히 분배되어 전자전이현상이 향상되었음을 알 수 있었다. FIG. 5 shows a board graph of a half-cell without a lattice structure and a half-cell with a lattice interval of 100 μm (P100), 200 μm (P200), and 400 μm (P400) 10000 Hz) decreased with decreasing lattice spacing. The intermediate frequency region represents a mechanism corresponding to the mechanism of electron transfer phenomenon. From the above results, it can be seen that electrons are distributed smoothly as the lattice spacing decreases, thereby improving the electron transfer phenomenon.

따라서, 전해질과 전극의 계면에 금속 격자구조체를 증착함에 따라 전자공급이 원활히 되어 전기화학적 성능이 향상됨을 확인할 수 있다.Therefore, it can be confirmed that the electrochemical performance is improved by facilitating the electron supply by depositing the metal lattice structure at the interface between the electrolyte and the electrode.

본 발명의 구성은 상기의 실시예를 통해 그 우수성이 입증되었지만 상기의 구성에 의해서만 반드시 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변경 및 변형이 가능하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.Although the configuration of the present invention has been proven by the above embodiments, the present invention is not necessarily limited to the above configuration, and various permutations, modifications and variations are possible without departing from the technical idea of the present invention. Therefore, the above description does not limit the scope of the present invention, which is defined by the limitations of the following claims.

Claims (10)

금속을 포함하는 잉크용액을 제조하는 단계; 및
상기 잉크용액을 전기수력학 젯 프린팅하여 격자무늬 구조를 형성하는 단계를 포함하는 금속 격자구조체의 제조방법.
Preparing an ink solution containing a metal; And
And forming a lattice pattern structure by electrohydraulic jet printing the ink solution.
제1항에 있어서,
상기 금속은, 타이타니움(Ti), 니켈(Ni), 구리(Cu), 금(Au), 은(Ag), 백금(Pt), 철(Fe), 및 팔라디움(Pd) 중 적어도 하나를 포함하는 금속 격자구조체의 제조방법.
The method according to claim 1,
Wherein the metal is at least one of titanium (Ti), nickel (Ni), copper (Cu), gold (Au), silver (Ag), platinum (Pt), iron (Fe), and palladium Wherein the metal lattice structure is formed by a method comprising the steps of:
제1항에 있어서,
상기 잉크용액은 잉크용액 100 중량%에 대하여, 폴리머 1 내지 80 중량%, 용매 5 내지 90 중량%, 및 금속 분말 5 내지 90 중량%를 포함하는 금속 격자구조체의 제조방법.
The method according to claim 1,
Wherein the ink solution comprises 1 to 80 wt% of a polymer, 5 to 90 wt% of a solvent, and 5 to 90 wt% of a metal powder, based on 100 wt% of the ink solution.
제1항에 있어서,
상기 전기수력학 젯 프린팅은 유량 0.1 내지 10 ㎕/min, 전압 0.5 내지 10 kV, 프린팅 속도 10 내지 2000 ㎜/s로 수행되는 금속 격자구조체의 제조방법.
The method according to claim 1,
Wherein the electrohydraulic jet printing is performed at a flow rate of 0.1 to 10 ㎕ / min, a voltage of 0.5 to 10 kV, and a printing rate of 10 to 2000 / / s.
제1항에 있어서,
상기 격자무늬 구조는 10 내지 2000 ㎛ 격자 간격을 형성하는 금속 격자구조체의 제조방법.
The method according to claim 1,
Wherein the lattice structure forms a lattice spacing of between 10 and 2000 &lt; RTI ID = 0.0 &gt; um. &Lt; / RTI &gt;
제1항 내지 제5항 중 어느 한 항의 방법으로 제조되는 금속 격자구조체.A metal lattice structure produced by the method of any one of claims 1 to 5. 제6항에 있어서,
상기 금속 격자구조체는 전류집전 및 분배장치로서 사용되는 것인 금속 격자구조체.
The method according to claim 6,
Wherein the metal grid structure is used as a current collecting and distributing device.
전해질, 전극, 및 상기 전해질과 전극의 계면에 증착된 제6항의 금속 격자구조체를 포함하는 전지.A battery comprising the electrolyte, the electrode, and the metal grid structure of claim 6 deposited at the interface of the electrolyte and the electrode. 제8항에 있어서,
상기 전극은 양극 또는 음극인 전지.
9. The method of claim 8,
Wherein the electrode is a positive electrode or a negative electrode.
제8항에 있어서,
상기 전지는 일차전지, 이차전지, 연료전지, 및 태양전지 중 어느 하나인 전지.
9. The method of claim 8,
Wherein the battery is any one of a primary cell, a secondary battery, a fuel cell, and a solar cell.
KR1020160008804A 2016-01-25 2016-01-25 Method for manufacturing metal grid structure and metal grid structure manufactured by the method KR20170089083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160008804A KR20170089083A (en) 2016-01-25 2016-01-25 Method for manufacturing metal grid structure and metal grid structure manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160008804A KR20170089083A (en) 2016-01-25 2016-01-25 Method for manufacturing metal grid structure and metal grid structure manufactured by the method

Publications (1)

Publication Number Publication Date
KR20170089083A true KR20170089083A (en) 2017-08-03

Family

ID=59655672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160008804A KR20170089083A (en) 2016-01-25 2016-01-25 Method for manufacturing metal grid structure and metal grid structure manufactured by the method

Country Status (1)

Country Link
KR (1) KR20170089083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009764A (en) * 2018-07-05 2020-01-16 アルモール Grid current collector, and related device and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009764A (en) * 2018-07-05 2020-01-16 アルモール Grid current collector, and related device and methods

Similar Documents

Publication Publication Date Title
Chen et al. Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells
Tan et al. Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review
Pei et al. Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating
Shimada et al. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis
KR101395770B1 (en) Anode for direct carbon fuel cell, and direct carbon fuel cell comprising the same
Han et al. Fabrication of metal-supported tubular solid oxide fuel cell by phase-inversion method and in situ reduction
Yang et al. High performance intermediate temperature micro-tubular SOFCs with Ba0. 9Co0. 7Fe0. 2Nb0. 1O3− δ as cathode
Wang et al. Desirable performance of intermediate-temperature solid oxide fuel cell with an anode-supported La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte membrane
JP2013540167A (en) Aqueous ink for manufacturing high temperature electrochemical cell electrodes
Jiang et al. Sm0. 5Sr0. 5CoO3–Sm0. 2Ce0. 8O1. 9 composite oxygen electrodes for solid oxide electrolysis cells
US9174841B2 (en) Solid oxide fuel cell anode with high stability and high efficiency and method for manufacturing the same
JP2008010411A (en) Electrolyte membrane for electrochemical cell, and manufacturing method therefor
Malik et al. Effect of nickel oxide-Modified BaCe0. 54Zr0. 36Y0. 1O2. 95 as composite anode on the performance of proton-conducting solid oxide fuel cell
CN103985888B (en) The preparation method of ceramic membrane fuel cells connecting material film and electrolytic thin-membrane
Jiang et al. Compositionally continuously graded cathode layers of (Ba0. 5Sr0. 5)(Fe0. 91Al0. 09) O3− δ–Gd0. 1Ce0. 9O2 by wet powder spraying technique for solid oxide fuel cells
TW201131875A (en) Assembly for a fuel cell and method for the production thereof
Celikbilek et al. State-of-the-Art La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ cathode for SOFC: Microstructural and electrochemical properties
KR20100062456A (en) Dense complex oxides films comprising conductive oxides and non-conductive oxides, method for preparing the same, and metallic interconnector using the same
Yang et al. Fabrication of YSZ/GDC bilayer electrolyte thin film for solid oxide fuel cells
KR20170089083A (en) Method for manufacturing metal grid structure and metal grid structure manufactured by the method
KR101346807B1 (en) The method for preparation of electrolyte film for solid oxide fuel cell and solid oxide fuel cell using the same
Li et al. Performance studies of solid oxide fuel cell cathodes in the presence of bare and cobalt coated E-brite alloy interconnects
KR101104117B1 (en) Mesh type cathode current collector of tubular solid oxide fuel cell
Sasaki et al. Ag thin film cathode for LSGM electrolyte LT-SOFCs
Kang et al. Development of thin-film solid oxide fuel cells supported on anode/metal substrates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment