KR20170088250A - Method and apparatus for refining magnetic domains grain-oriented electrical steel - Google Patents

Method and apparatus for refining magnetic domains grain-oriented electrical steel Download PDF

Info

Publication number
KR20170088250A
KR20170088250A KR1020160008401A KR20160008401A KR20170088250A KR 20170088250 A KR20170088250 A KR 20170088250A KR 1020160008401 A KR1020160008401 A KR 1020160008401A KR 20160008401 A KR20160008401 A KR 20160008401A KR 20170088250 A KR20170088250 A KR 20170088250A
Authority
KR
South Korea
Prior art keywords
steel plate
cooling
laser
steel sheet
laser beam
Prior art date
Application number
KR1020160008401A
Other languages
Korean (ko)
Other versions
KR102428853B1 (en
Inventor
김경석
이소연
이규택
홍성철
천명식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020160008401A priority Critical patent/KR102428853B1/en
Publication of KR20170088250A publication Critical patent/KR20170088250A/en
Application granted granted Critical
Publication of KR102428853B1 publication Critical patent/KR102428853B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/047Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Abstract

The present invention relates to a method of refining a magnetic domain of a grain-oriented electrical steel sheet, capable of improving processing ability by improving efficiency of refining a magnetic domain and workability by optimizing facilities and process. To this end, the method of refining the magnetic domain of the grain-oriented electrical steel sheet comprises: a step of adjusting a location of a steel sheet support roll controlling a vertical direction location of the steel sheet while supporting the steel sheet proceeding along a production line; a step of irradiating a laser to form a groove on a surface of the steel sheet by melting the steel sheet by irradiating a laser beam on the surface of the steel sheet; and a step of cooling to cool a surface of a light concentration mirror of an optical system which reflects the laser beam to the surface of the steel sheet in a process of irradiating the laser wherein the cooling step includes a step of primarily cooling the light concentration mirror through a cooling jacket disposed on a rear surface of the light concentration mirror of an optical system; and a step of secondarily cooling the light concentration mirror through an auxiliary cooling block installed in the light concentration mirror.

Description

방향성 전기강판의 자구미세화 방법과 그 장치{METHOD AND APPARATUS FOR REFINING MAGNETIC DOMAINS GRAIN-ORIENTED ELECTRICAL STEEL} [0001] METHOD AND APPARATUS FOR REFINING MAGNETIC DOMAINS [0002] GRAIN-ORIENTED ELECTRICAL STEEL [

방향성 전기강판에 레이저를 조사하여 영구적으로 강판의 자구를 미세화 처리하는 방향성 전기강판의 자구미세화 방법과 그 장치에 관한 것이다.The present invention relates to a method of microminiaturizing a magnetic steel sheet and a method of micromachining the directional electric steel sheet.

예를 들어, 변압기와 같은 전기기기의 전력손실을 줄이고 효율을 향상시키기 위해, 철손이 낮고 자속밀도가 높은 자기적 특성을 지닌 방향성 전기강판이 요구된다. For example, a directional electric steel sheet with low iron loss and high magnetic flux density is required in order to reduce power loss and improve efficiency of electric devices such as a transformer.

방향성 전기강판의 철손을 줄이기 위해, 강판 표면에 기계적 방법이나 레이저 빔을 조사하여 압연 방향에 대해 수직방향으로 자구를 미세화함으로써, 철손을 감소시키는 기술이 개시되어 있다.In order to reduce the iron loss of the grain-oriented electrical steel sheet, there is disclosed a technique of reducing the iron loss by irradiating the surface of the steel sheet with a mechanical method or a laser beam to miniaturize a magnetic domain in a direction perpendicular to the rolling direction.

자구 미세화 방법은 응력 제거 소둔 후 자구 미세화 개선 효과를 유지하는지 여부에 따라 일시 자구미세화와 영구 자구미세화로 크게 구분할 수 있다.The magnetic microfabrication method can be broadly classified into microstructure of the temporary magnetic domain and microstructure of the permanent magnetic domain depending on whether the effect of improving the magnetic domain refinement after the stress relief annealing is maintained or not.

일시 자구미세화 방법은 응력 제거 소둔 후 자구미세화 효과를 상실하는 단점이 있다. 일시 자구미세화 방법은, 강판 표면에 국부적인 압축 응력부를 형성시킴으로써 자구를 미세화시킨다. 그러나, 이러한 방법은 강판 표면의 절연 코팅층 손상을 일으키기 때문에 재코팅이 요구되며, 최종 제품이 아닌 중간 공정에서 자구미세화 처리를 하기 때문에 제조 비용이 높은 단점이 있다.The method of microminiaturization of the temporary magnetic domain has a disadvantage of losing the effect of miniaturization of the magnetic domain after stress relieving annealing. In the method of microminiaturizing the temporary magnetic domain, a local compressive stress portion is formed on the surface of the steel sheet to miniaturize the magnetic domain. However, such a method requires re-coating because it causes damage to the insulating coating layer on the surface of the steel sheet, and there is a disadvantage that the manufacturing cost is high because the micro-processing is performed in the intermediate process, not the final product.

영구 자구미세화 방법은 열처리 후에도 철손 개선 효과를 유지할 수 있다. 영구 자구미세화 처리를 위해, 에칭 공법이나 롤 공법, 레이저 공법을 이용한 기술이 주로 사용되고 있다. 에칭 공법의 경우 홈 형성 깊이나 폭 제어가 어렵고, 최종 제품의 철손 특성의 보증이 어려우며 산용액을 사용하기 때문에 환경친화적이지 못한 단점이 있다. 롤을 이용한 공법의 경우, 기계 가공에 대한 안정성, 신뢰성 및 프로세스가 복잡한 단점이 있다.The permanent magnet finer method can maintain the iron loss improving effect even after the heat treatment. Techniques using an etching technique, a roll technique, and a laser technique are mainly used for the permanent magnetic microfabrication process. In the case of the etching method, it is difficult to control the groove forming depth and width, it is difficult to guarantee the iron loss characteristic of the final product, and it is disadvantageous in that it is not environmentally friendly because an acid solution is used. In the case of a roll-based method, there is a disadvantage in that the stability, reliability, and process for machining are complicated.

레이저를 이용하여 강판을 영구 자구미세화하는 공법은, 강판을 지지하고 장력을 조절한 상태에서 강판의 표면에 레이저빔을 조사하여 강판 표면에 용융 홈을 형성하여 자구를 미세화시킬 수 있다. 이와 같이, 레이저를 이용하여 자구를 미세화함에 있어서, 고속 처리가 가능하면서, 전기강판의 철손을 낮추고 자속밀도를 높일 수 있도록 보다 효과적인 공정의 개선과 최적화가 요구된다.In the method of making the steel sheet finer by using a laser, a laser beam is irradiated to the surface of the steel sheet while the steel sheet is supported and the tension is adjusted, thereby forming a molten groove on the surface of the steel sheet. As described above, in order to miniaturize the magnetic domain using the laser, it is required to improve and optimize the process more effectively so that high-speed processing can be performed, iron loss of the electric steel sheet can be lowered, and magnetic flux density can be increased.

설비와 공정을 최적화함으로써, 이를 통해 자구 미세화 효율을 높이고 작업성을 개선하여 처리 능력을 증대시킬 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.The present invention provides a method of miniaturizing a magnetic steel sheet for directional electric steel sheet, which is capable of increasing the miniaturization efficiency of the magnetic steel sheet and improving the workability by optimizing the equipment and the process.

레이저를 반사하는 집광 미러를 보다 효과적으로 냉각할 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다. Provided is a method for miniaturizing a magnetic field of a directional electric steel sheet and an apparatus for cooling the condensing mirror that reflects a laser more effectively.

레이저를 반사하는 집광 미러의 온도 편차를 최소화할 수 있도록 된 방향성 전기강판의 자구미세화 방법 및 그 장치를 제공한다.Provided is a method for miniaturizing a magnetic field of a directional electric steel sheet and an apparatus for minimizing a temperature deviation of a condensing mirror that reflects a laser.

레이저 조사에 따라 형성된 힐업과 스패터 등의 오염물질을 보다 효과적으로 제거하여 제품의 품질을 높일 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.Provided is a method of miniaturizing a magnetic steel sheet for directional electric steel sheet and an apparatus for removing contaminants such as heal-up and spatter formed by laser irradiation more effectively to improve the quality of a product.

공정에 필요한 최적의 동작 환경을 제공할 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.The present invention also provides a method of miniaturizing a magnetic field of a directional electric steel sheet and an apparatus therefor, which are capable of providing an optimal operating environment necessary for the process.

본 구현예의 자구 미세화 방법은, 생산라인을 따라 진행하는 강판을 지지하면서 상기 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절단계, 강판 표면에 레이저빔을 조사하여 상기 강판을 용융시켜 강판의 표면에 홈을 형성하는 레이저 조사 단계, 및 레이저 조사 과정에서 레이저 빔을 강판 표면으로 반사시키는 광학계의 집광 미러 표면을 냉각시키는 냉각 단계를 포함할 수 있다. The method includes a step of adjusting a position of a steel plate supporting roll to control a position of the steel plate in the vertical direction while supporting a steel plate running along a production line, a step of irradiating a laser beam on the surface of the steel plate to melt the steel plate, And a cooling step of cooling the condensing mirror surface of the optical system for reflecting the laser beam to the surface of the steel sheet in the laser irradiation process.

상기 냉각 단계는 광학계의 집광 미러 후면에 배치된 냉각자켓을 통해 집광 미러를 1차 냉각하는 단계와, 상기 집광 미러에 설치되는 보조 냉각블럭을 통해 집광 미러를 2차 냉각하는 단계를 포함할 수 있다.The cooling step may include a step of first cooling the condensing mirror through the cooling jacket disposed on the rear side of the condensing mirror of the optical system and a step of second cooling the condensing mirror through the auxiliary cooling block installed in the condensing mirror .

상기 냉각단계는 1차 냉각 과정에서 냉각 자켓 입구측과 출구측의 온도 차를 검출하는 단계와, 상기 온도차가 기설정된 온도 편차 범위를 벗어난 경우 상기 보조 냉각블럭에 의한 집광 미러 2차 냉각 온도를 조절하는 단계를 더 포함할 수 있다.The cooling step includes the steps of: detecting a temperature difference between the inlet side and the outlet side of the cooling jacket in a first cooling process; and controlling the secondary cooling temperature of the condensing mirror by the auxiliary cooling block when the temperature difference is out of a predetermined temperature deviation range The method comprising the steps of:

상기 냉각 단계는 레이저 조사 방향을 따라 집광 미러의 양 측단 사이의 온도 편차가 0 내지 2℃로 유지되도록 집광 미러를 냉각할 수 있다.The cooling step may cool the condensing mirror so that a temperature deviation between both ends of the condensing mirror is maintained at 0 to 2 DEG C along the laser irradiation direction.

상기 레이저 조사단계는, 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에, 레이저 빔을 조사할 수 있다. Wherein the laser irradiating step irradiates the surface of the steel sheet contacting and advancing in the form of a circular arc on the surface of the steel sheet supporting roll with the laser beam irradiation position when the irradiation direction of the laser beam passes the central axis of the steel sheet supporting roll as a reference point, It is possible to irradiate the laser beam at a position at an angle apart from the center of the support roll along the outer circumferential surface.

상기 레이저 조사단계에서, 레이저 빔은 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에서 조사될 수 있다.In the laser irradiation step, the laser beam may be irradiated to the reference point in a range of 3 to 7 degrees apart from the center of the steel plate supporting roll along the outer circumferential surface.

상기 자구 미세화 방법은, 레이저 조사가 진행되는 레이저룸의 내부 동작 환경을 설정하고 유지하는 설정유지단계를 더 포함할 수 있다.The magnetic domain refinement method may further include setting and maintaining an internal operating environment of the laser room in which laser irradiation is performed.

상기 자구 미세화 방법은, 상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계를 더 포함할 수 있다.The magnetic domain refinement method may further include a tension control step of applying a tension to the steel plate so that the steel plate is kept flat and spread.

상기 자구 미세화 방법은, 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어단계를 더 포함할 수 있다.The magnetic domain refinement method may further include a skew control step of causing the steel strip to move left and right along the center of the production line without shifting.

상기 설정유지단계는, 레이저룸 내부를 외부와 격리시켜 외부 오염물질의 유입을 차단하는 단계와, 레이저룸 내부 온도와 압력 및 습도를 제어하는 단계를 포함할 수 있다.The setting maintenance step may include isolating the inside of the laser room from the outside to block the inflow of external contaminants, and controlling the laser room internal temperature, pressure, and humidity.

상기 자구 미세화 방법은, 레이저 조사단계를 거쳐 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 단계를 더 포함할 수 있다.The magnetic domain refining method may further include a post-processing step for removing a hill up and a spatter formed on a surface of the steel plate through a laser irradiation step.

상기 후처리 단계는 브러쉬롤로 강판 표면에 묻은 힐업과 스패터를 제거하는 브러쉬 단계를 포함할 수 있다. The post-treatment step may include a step of healing the surface of the steel sheet with a brush roll and a brush step of removing the spatter.

상기 후처리 단계는, 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정단계와, 청정 단계에서 강판으로부터 제거되어 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링 단계를 더 포함할 수 있다.The post-treatment step may include a cleaning step of electrolytically reacting the steel sheet with an alkali solution to further remove the healing and spatter remaining on the surface of the steel sheet, a step of removing foreign substances contained in the alkali solution, And a filtering step for receiving the data.

상기 사행 제어단계는, 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 사행량을 측정하는 사행량 측정단계, 및 상기 사행량 측정단계에서 측정된 강판의 사행량에 따라 스티어링 롤(Steering Roll)의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정하여 강판의 사행량을 제어하는 사행량 제어단계를 포함할 수 있다.The meandering control step may include a meander amount measuring step of measuring a meandering amount of the central position of the steel plate which is deviated from the center of the production line and a meandering amount measuring step of measuring the amount of meandering of the steered roll, And controlling a direction in which the steel sheet moves by rotating and moving the steel sheet so as to control the amount of meander of the steel sheet.

상기 사행량 제어단계는 강판의 사행량을 ±1mm 이내로 제어할 수 있다.The amount of meandering of the steel sheet can be controlled within +/- 1 mm.

상기 장력 제어단계는, 상기 텐션 브라이들 롤(Tension Bridle Roll)에 의하여 강판에 장력을 인가하는 강판 장력 인가단계, 상기 강판 장력 인가단계를 행한 상기 강판의 장력을 측정하기 위한 강판 장력 측정단계, 및 상기 강판 장력 측정단계에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하여 강판 장력을 제어하는 강판 장력 제어단계를 포함할 수 있다. The tension control step may include a steel plate tension applying step of applying a tension to the steel plate by the tension bridle roll, a steel plate tension measuring step of measuring a tension of the steel plate subjected to the steel plate tension application step, And a steel plate tension control step of controlling the steel plate tension by adjusting the speed of the tension brick roll according to the tension of the steel plate measured in the steel plate tension measuring step.

상기 강판지지롤 위치 조절단계는, 상기 레이저 조사단계에 위치하는 강판을 강판지지롤로 지지하는 강판 지지단계, 상기 레이저 조사단계에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하는 휘도 측정 단계, 및 상기 휘도 측정 단계에서 측정된 불꽃의 밝기에 따라 강판지지롤 위치 제어계에 의하여 강판지지롤의 위치를 조정하여 레이저의 초점심도(Depth of Focus) 내에 강판이 위치하도록 제어하는 강판지지롤 위치 제어단계를 포함할 수 있다.The step of adjusting the position of the steel plate supporting roll may include a step of supporting a steel plate positioned in the laser irradiation step with a steel plate supporting roll, a brightness measuring step of measuring brightness of a flame generated upon laser irradiation of the steel plate in the laser irradiation step, A step of controlling the position of the steel plate supporting roll by the steel plate supporting roll position control system according to the brightness of the flame measured in the brightness measuring step and controlling the position of the steel plate in the depth of focus of the laser .

상기 레이저 조사단계는, 레이저 발진기에서 조사된 레이저 빔을 전달받은 광학계에 의하여 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛의 홈을 형성시킴과 동시에 레이저 빔 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0 내지 5.0 J/㎟ 범위내의 레이저 빔 에너지 밀도를 강판에 전달하는 레이저 조사 및 에너지 전달단계를 포함할 수 있다.The laser irradiating step irradiates the laser beam irradiated by the laser oscillator onto the surface of the steel sheet by the optical system to form grooves having an upper width, a lower width and a depth of not more than 70 μm, not more than 10 μm, and 3 to 30 μm, respectively And a laser irradiation energy transfer step of transferring a laser beam energy density within a range of 1.0 to 5.0 J / mm 2 required for melting the steel sheet to the steel sheet so that a re-welding portion remaining on the inner wall surface of the groove of the molten portion during the laser beam irradiation is generated .

상기 레이저 조사단계는, 레이저 발진기 제어기에 의하여 정상적인 작업조건 하에서는 레이저 빔을 발진하는 레이저 발진기를 온(On) 상태로 하고 강판의 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 빔 발진 제어단계를 포함할 수 있다.The laser irradiating step includes turning on a laser oscillator for oscillating a laser beam under normal operation conditions by a laser oscillator controller and controlling the laser oscillator to be turned off when a steel sheet meandering amount of 15 mm or more occurs And a beam oscillation control step.

상기 레이저 조사단계에서 레이저 발진기는 싱글 모드(Single mode) 연속파 레이저 빔을 발진할 수 있다.In the laser irradiation step, the laser oscillator can oscillate a single mode continuous wave laser beam.

상기 레이저 조사단계에서 광학계는 레이저 주사속도를 제어하여 레이저 빔 조사선의 간격을 압연방향으로 2 내지 30 mm로 조정할 수 있다.In the laser irradiation step, the optical system controls the laser scanning speed to adjust the interval of the laser beam irradiation lines to 2 to 30 mm in the rolling direction.

상기 레이저 조사단계는, 강판 표면에 조사되는 레이저빔의 조사선 각도를 변환하는 각도 변환 단계를 더 포함할 수 있다.The laser irradiation step may further include an angle conversion step of converting the angle of the irradiation line of the laser beam irradiated on the surface of the steel sheet.

상기 각도 변환 단계는, 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 ±4°의 범위로 변환할 수 있다.The angle conversion step may convert the angle of the irradiation line of the laser beam to the range of +/- 4 degrees with respect to the width direction of the steel sheet.

상기 레이저 조사 단계는 레이저 빔의 산란광과 열이 레이저 조사설비의 광학계로 유입되는 것을 차단하는 차단 단계를 더 포함할 수 있다.The laser irradiation step may further include a blocking step for blocking the scattered light and the heat of the laser beam from entering the optical system of the laser irradiation facility.

상기 레이저 조사 단계는, 레이저 빔 조사시 발생된 흄(fume)과 용융철을 흡입하여 제거하는 집진단계를 더 포함할 수 있다. 상기 집진 단계는 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하기 위한 분사 단계를 포함할 수 있다.The laser irradiation step may further include a dust collecting step of sucking and removing fumes and molten iron generated when the laser beam is irradiated. The dust collecting step may include a spraying step of spraying compressed dry air into the grooves of the steel sheet to remove molten iron remaining in the grooves.

본 구현예의 자구 미세화 장치는, 생산라인을 따라 이동되는 강판을 지지하면서 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절설비, 및 레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비, 및 상기 레이저 조사설비의 광학계에 구비되어 레이저 빔을 강판 표면으로 반사시키는 집광 미러에 설치되어 집광 미러 표면을 냉각시키는 냉각부를 포함할 수 있다.The magnetic domain refining apparatus of this embodiment includes a steel plate support roll position adjusting device for controlling the position of the steel plate in the vertical direction while supporting the steel plate moved along the production line and a laser beam irradiating device for melting the steel plate, And a cooling unit provided in a condensing mirror provided in an optical system of the laser irradiation equipment for reflecting the laser beam onto the surface of the steel sheet and cooling the surface of the condensing mirror.

상기 냉각부는 광학계의 집광 미러 후면에 배치되어 집광 미러를 1차 냉각하는 냉각자켓, 및 상기 집광 미러의 측면에 배치되어 집광 미러를 2차 냉각하는 보조 냉각블럭을 포함할 수 있다.The cooling section may include a cooling jacket disposed on a rear surface of the condensing mirror of the optical system for primarily cooling the condensing mirror, and an auxiliary cooling block disposed on a side surface of the condensing mirror to cool the condensing mirror secondarily.

상기 보조 냉각블럭은 집광 미러의 각 측면에 배치되어 집광 미러의 측면을 냉각하는 복수개의 측면냉각부, 각 측면냉각부를 연결하는 연결부, 및 상기 측면냉각부와 연결부 내부를 따라 형성되어 냉각매체가 이동하는 유로를 포함할 수 있다.Wherein the auxiliary cooling block includes a plurality of side cooling portions disposed on each side of the condensing mirror for cooling the side surface of the condensing mirror, a connecting portion connecting the side cooling portions, and a cooling portion formed along the inside of the side cooling portion, And the like.

상기 냉각부는 보조 냉각블럭으로 냉각매체를 순환 공급하는 공급부를 더 포함할 수 있다.The cooling unit may further include a supply unit for circulating and supplying the cooling medium to the auxiliary cooling block.

상기 공급부는 냉각매체 순환라인 상에 설치되어 보조 냉각블럭을 거친 냉각 매체를 냉각하는 열교환기와, 열교환기를 거친 냉각 매체를 냉각블럭으로 공급하는 공급펌프, 상기 냉각자켓의 입구측과 출구측 온도 편차를 검출하여 상기 온도 편차가 기준 범위를 벗어난 경우 상기 열교환기를 제어하여 보조 냉각블럭으로 공급되는 냉각매체의 온도를 조절하는 제어부를 포함할 수 있다.The supply unit includes a heat exchanger installed on the cooling medium circulation line for cooling the cooling medium passed through the auxiliary cooling block, a supply pump for supplying the cooling medium passed through the heat exchanger to the cooling block, and a temperature difference between the inlet side and the outlet side of the cooling jacket And controlling the temperature of the cooling medium supplied to the auxiliary cooling block by controlling the heat exchanger when the temperature deviation is out of the reference range.

상기 레이저 조사설비는 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여, 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에 레이저 빔이 조사하는 구조일 수 있다.The laser irradiating equipment has a laser beam irradiating position when the irradiation direction of the laser beam passes through the central axis of the steel plate supporting roll as a reference point with respect to the surface of the steel plate contacting and advancing in the form of an arc on the surface of the steel plate supporting roll, It may be a structure in which a laser beam is irradiated at a position spaced apart at an angle from the center of the support roll along the outer circumferential surface.

상기 레이저 조사설비는 레이저 빔을 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에 조사하는 구조일 수 있다.The laser irradiation equipment may be configured to irradiate the laser beam to the reference point in a range of 3 to 7 degrees apart from the center of the steel sheet supporting roll along the outer circumferential surface.

상기 강판지지롤 위치 조절설비와 레이저조사설비를 외부로부터 격리 수용하며 레이저 조사를 위한 동작 환경을 제공하는 레이저룸을 더 포함할 수 있다.The apparatus may further include a laser room for isolating the steel plate supporting roll position adjusting device and the laser irradiation equipment from the outside and providing an operating environment for laser irradiation.

강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비를 더 포함할 수 있다.And a tension control device for applying a tension to the steel sheet so as to maintain the steel sheet flatly spread.

강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어설비를 더 포함할 수 있다.The steel sheet may further include a skew control device that allows the steel sheet to move left and right along the center of the production line without tilting.

상기 레이저룸은 상기 레이저 조사설비와 강판지지롤 위치 제어설비를 수용하여 외부와 격리시키도록 내부 공간을 형성하고, 강판의 진행방향을 따라 양 측면에는 입구와 출구가 형성되고, 내부에는 레이저룸 내부 압력을 외부보다 높이기 위한 양압장치, 레이저 조사설비의 광학계가 위치한 상부공간을 강판이 지나가는 하부공간과 분리시키는 광학계 하부프레임, 및 레이저룸 내부 온도와 습도를 제어하는 항온항습제어기를 포함할 수 있다.The laser room accommodates the laser irradiation equipment and the steel plate support roll position control equipment to form an inner space to isolate the laser irradiation equipment and the steel plate support roll position control equipment from each other. An optical system lower frame for separating the upper space where the optical system of the laser irradiation equipment is located from the lower space through which the steel sheet passes, and a constant temperature and humidity controller for controlling the laser room internal temperature and humidity.

상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함할 수 있다.And a post-treatment facility for removing hill-up and spatter formed on the surface of the steel sheet.

상기 후처리 설비는 레이저룸 후단에 배치되어 강판 표면의 힐업과 스패터를 제거하는 브러쉬롤을 포함할 수 있다.The post-treatment equipment may include a brush roll disposed at a rear end of the laser room to remove the heel-up and spatters of the steel sheet surface.

상기 후처리 설비는 브러쉬롤 후단에 배치되어 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정유닛과, 청정유닛에 연결되어 청정유닛의 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링부를 더 포함할 수 있다.The post-treatment facility includes a clean unit disposed at the rear end of the brush roll and electrolytically reacting the steel plate with the alkali solution to further remove the healing and spatter remaining on the surface of the steel plate, and a clean unit connected to the clean unit, And a filtering unit for filtering foreign matters from the alkali solution.

상기 사행 제어설비는 상기 강판의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll), 상기 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서, 및 상기 사행 측정센서의 출력값에 따라 상기 스티어링 롤의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System)를 포함할 수 있다.Wherein the meander control facility comprises a steering roll for switching the moving direction of the steel strip, a meander measuring sensor for measuring the degree of deviation of the central position of the steel strip from the center of the production line (meandering amount) And a strip center position control system for adjusting a moving direction of the steel sheet by rotating and moving the axis of the steering roll according to an output value of the sensor.

상기 장력 제어설비는 상기 강판에 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll), 상기 텐션 브라이들 롤을 통과한 상기 강판의 장력을 측정하기 위한 강판 장력 측정센서, 및 상기 강판 장력 측정센서에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하기 위한 강판(Strip) 장력 제어계를 포함할 수 있다.The tension control device includes a tension bridge roll for guiding movement of the steel plate while applying tension to the steel plate, a steel plate tension measuring sensor for measuring a tension of the steel plate passed through the tension brick roll, And a steel strip control system for adjusting the speed of the tension brick roll according to the tension of the steel strip measured by the tension measuring sensor.

상기 강판지지롤 위치 조절설비는, 상기 레이저 조사설비 위치에서 강판을 지지하는 강판지지롤, 상기 레이저 조사설비에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서, 및 상기 휘도 측정센서에서 측정된 불꽃의 밝기에 따라 상기 강판지지롤의 위치를 제어하기 위한 강판지지롤 위치 제어계를 포함할 수 있다.Wherein the steel plate supporting roll position adjusting device includes a steel plate supporting roll for supporting the steel plate at the position of the laser irradiation equipment, a brightness measuring sensor for measuring the brightness of the flame generated upon laser irradiation of the steel plate in the laser irradiation equipment, And a steel plate support roll position control system for controlling the position of the steel plate support roll according to the brightness of the flame measured by the sensor.

상기 레이저 조사설비는, 연속파 레이저 빔을 발진하기 위한 레이저 발진기, 상기 레이저 발진기로부터 발진된 상기 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0 내지 5.0 J/㎟ 범위내의 레이저 에너지 밀도를 강판에 전달하는 광학계를 포함할 수 있다.The laser irradiating equipment includes a laser oscillator for oscillating a continuous wave laser beam, a laser oscillator for irradiating the laser beam onto the surface of the steel plate, And an optical system for transferring the laser energy density within a range of 1.0 to 5.0 J / mm 2 required for melting the steel sheet to the steel sheet so as to form a groove having a thickness of 30 탆 and to generate a re-welded portion remaining on the inner wall surface of the groove of the molten portion during laser irradiation .

상기 레이저 조사설비는, 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 발진기 제어기를 더 포함할 수 있다.The laser irradiation equipment may further include a laser oscillator controller that turns on the laser oscillator under normal working conditions and controls the laser oscillator to be off when the steel sheet steepness exceeds 15 mm.

상기 레이저 발진기는 싱글 모드(Single mode) 연속파 레이저 빔을 발진할 수 있다.The laser oscillator may oscillate a single mode continuous wave laser beam.

상기 광학계는 레이저 주사속도를 제어하여 레이저 조사선의 간격을 압연방향을 따라 2 내지 30mm로 조정할 수 있다.The optical system controls the laser scanning speed so that the interval of the laser irradiation lines can be adjusted to 2 to 30 mm along the rolling direction.

상기 레이저 조사설비는 강판에 레이저 빔을 조사하는 광학계가 구동부에 의해 회전 가능한 구조로 이루어져, 상기 광학계가 강판에 대해 회전하여 강판의 폭방향에 대해 레이저빔의 조사선 각도를 변환하는 구조일 수 있다.The laser irradiation equipment may have a structure in which an optical system for irradiating a laser beam to a steel plate is rotatable by a driving unit and the optical system rotates with respect to the steel plate to change the angle of the irradiation line of the laser beam with respect to the width direction of the steel plate.

상기 레이저 조사설비는 레이저 산란광과 열이 광학계로 유입되는 것을 차단하는 차폐부를 더 포함할 수 있다.The laser irradiation equipment may further include a shielding part for shielding laser scattered light and heat from flowing into the optical system.

상기 레이저 조사설비는, 상기 강판에 레이저빔 조사에 따라 생성된 흄과 스패터를 제거하기 위한 용융철 제거설비를 더 포함할 수 있다.The laser irradiation equipment may further include a molten iron removing facility for removing fumes and spatter generated by the laser beam irradiation on the steel plate.

상기 용융철 제거설비는 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하는 에어나이프, 흄과 용융철을 흡입하여 제거하는 집진후드를 포함할 수 있다.The apparatus for removing molten iron may include an air knife for removing the molten iron remaining in the grooves by spraying compressed dry air into the grooves of the steel sheet, and a dust collecting hood for sucking and removing fumes and molten iron.

이상 설명한 바와 같이 본 구현예에 의하면, 강판을 2m/sec 이상의 고속으로 진행시키면서도, 안정적으로 레이저에 의한 자구 미세화 공정을 진행하여, 전기강판의 열처리 전,후의 철손 개선율을 각각 5% 이상, 10% 이상 확보할 수 있다.As described above, according to the present embodiment, the magnetic iron oxide microfabrication process is stably performed at a high speed of 2 m / sec or more, and the iron loss reduction rates before and after the heat treatment of the electrical steel sheet are respectively 5% Or more.

또한, 레이저 빔을 반사하는 집광 미러를 보다 효과적으로 냉각하여 집광 미러가 열변형되어 손상되는 것을 방지할 수 있게 된다.Further, it becomes possible to cool the condensing mirror for reflecting the laser beam more effectively, thereby preventing the condensing mirror from being thermally deformed and being damaged.

또한, 집광 미러 전체의 온도 편차를 최소화하여 균일한 온도를 유지함으로써, 집광 미러 열변형차를 줄이고 레이저 빔의 조사 경로가 변경되는 것을 방지할 수 있다. 이에, 초기 운전 상태를 유지하여 강판의 자구 미세화 품질을 안정화시킬 수 있게 된다.In addition, the temperature deviation of the entire condensing mirror is minimized to maintain a uniform temperature, thereby reducing the condensed mirror thermal distortion and preventing the irradiation path of the laser beam from being changed. Thus, it is possible to maintain the initial operating state and to stabilize the magnetic billet quality of the steel sheet.

또한, 자구 미세화 효율을 높이고 작업성을 개선하여 자구 미세화 처리 능력을 증대시킬 수 있게 된다.In addition, it is possible to increase the microfabrication efficiency of the magnetic domain and improve the workability.

또한, 레이저 조사에 따라 형성된 힐업과 스패터 등의 오염물질을 보다 효과적으로 제거하여 제품의 품질을 높일 수 있게 된다.In addition, it is possible to more effectively remove contaminants such as heal-up and spatter formed by laser irradiation, thereby improving the quality of the product.

또한, 공정에 필요한 최적의 동작 환경을 제공함으로써, 고품질의 제품을 대량으로 생산할 수 있게 된다.In addition, by providing an optimum operating environment necessary for the process, it is possible to mass-produce high-quality products.

도 1은 본 실시예에 따른 방향성 전기강판의 자구미세화 장치의 구성을 개략적으로 도시한 도면이다.
도 2는 본 실시예에 따라 자구 미세화 처리된 강판을 도시한 개략적인 도면이다.
도 3은 본 실시예에 따라 흡수부를 구비한 레이저 조사설비의 광학계 구성을 도시한 개략적인 도면이다.
도 4는 본 실시예에 따라 광학계 하부에 냉각블럭이 설치된 구성을 도시한 개략적인 도면이다.
도 5는 본 실시예에 따라 광학계의 집광 미러에 보조 냉각블럭이 설치된 구조를 도시한 도면이다.
도 6과 도 7은 본 실시예에 따른 보조 냉각블럭을 도시한 개략적인 도면이다.
도 8은 본 실시예에 따라 보조 냉각블럭으로 냉각매체를 공급하는 구조를 도시한 개략적인 구성도이다.
Fig. 1 is a view schematically showing a configuration of a magnetic domain refinement apparatus of a grain-oriented electrical steel sheet according to the present embodiment.
Fig. 2 is a schematic view showing a steel plate subjected to the micro-finishing process according to the present embodiment.
Fig. 3 is a schematic view showing an optical system configuration of a laser irradiation equipment having an absorption part according to the present embodiment.
Fig. 4 is a schematic view showing a configuration in which a cooling block is installed in an optical system under the present embodiment.
5 is a view showing a structure in which an auxiliary cooling block is installed in a condensing mirror of an optical system according to the present embodiment.
6 and 7 are schematic views showing an auxiliary cooling block according to the present embodiment.
8 is a schematic configuration diagram showing a structure for supplying a cooling medium to the auxiliary cooling block according to the present embodiment.

이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. The singular forms as used herein include plural forms as long as the phrases do not expressly express the opposite meaning thereto. Means that a particular feature, region, integer, step, operation, element and / or component is specified, and that other specific features, regions, integers, steps, operations, elements, components, and / And the like.

이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 이에, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Accordingly, the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

이하 설명에서 본 실시예는 변압기 철심 소재 등에 사용되는 방향성 전기강판의 영구 자구미세화를 위한 설비를 예로서 설명한다.In the following description, the present embodiment will be described by taking as an example a facility for finer permanent magnetic ball of a grain-oriented electrical steel sheet used for iron core material of a transformer.

도 1은 본 실시예에 따른 방향성 전기강판의 자구미세화 장치를 개략적으로 도시하고 있고, 도 2는 본 실시예에 따라 자구 미세화 처리된 강판을 도시하고 있다. 이하 설명에서, 압연방향 또는 강판 이동방향은 도 2에서 x축 방향을 의미하며, 폭방향은 압연방향에 직각인 방향으로 도 2에서 y축 방향을 의미하고, 폭은 y축 방향에 대한 강판의 길이를 의미한다. 도 2에서 도면부호 31은 레이저 빔에 의해 홈 형태로 파여져 강판(1) 표면에 연속적으로 형성된 조사선을 가리킨다.FIG. 1 schematically shows a magnetic microfabrication apparatus for a directional electrical steel sheet according to the present embodiment, and FIG. 2 shows a steel plate subjected to magnetic microfabrication according to the present embodiment. In the following description, the rolling direction or the steel sheet moving direction means the x-axis direction in Fig. 2, the width direction means the y-axis direction in Fig. 2 in a direction orthogonal to the rolling direction, and the width in the y- Length. In Fig. 2, reference numeral 31 denotes a radiation line continuously formed on the surface of the steel plate 1 by being cut into a groove shape by a laser beam.

도 1을 참고하면, 본 실시예에 따른 방향성 전기 강판의 자구 미세화 장치는 강판(1)이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 수행한다. Referring to FIG. 1, the magnetic field refinement apparatus for a directional electric steel sheet according to the present embodiment stably performs permanent magnetic domain refinement even if the steel sheet 1 advances at a high speed of 2 m / s or higher.

본 실시예의 자구 미세화 장치는 생산라인을 따라 이동되는 강판(1)을 지지하면서 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절설비, 및 레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비, 및 상기 레이저 조사설비의 광학계에 구비되어 레이저 빔을 강판 표면으로 반사시키는 집광 미러(도 3의 35 참조)에 설치되어 집광 미러 표면을 냉각시키는 냉각부를 포함할 수 있다.The magnetic domain refining apparatus of the present embodiment includes a steel plate supporting roll position adjusting device for controlling the position of the steel plate in the vertical direction while supporting the steel plate 1 moved along the production line, And a cooling unit provided on a condensing mirror (see 35 in FIG. 3) provided in the optical system of the laser irradiation equipment for reflecting the laser beam onto the surface of the steel sheet and cooling the surface of the condensing mirror .

또한, 상기 자구 미세화 장치는 상기 강판지지롤 위치 조절설비와 레이저조사설비를 외부로부터 격리 수용하며 레이저 조사를 위한 동작 환경을 제공하는 레이저룸(20)을 더 포함할 수 있다.In addition, the magnetic domain refining apparatus may further include a laser room 20 for isolating the steel plate supporting roll position adjusting facility and the laser irradiation facility from the outside and providing an operating environment for laser irradiation.

또한, 상기 자구 미세화 장치는 강판이 쳐지지 않고 평평하게 펼쳐진 상태로 유지되도록 강판에 장력을 부여하는 장력 제어설비를 더 포함할 수 있다. In addition, the magnetic domain refinement apparatus may further include a tension control device for applying a tension to the steel strip so that the steel strip is not struck but spread flat.

또한, 상기 자구 미세화 장치는 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어설비를 더 포함할 수 있다.In addition, the magnetic domain refinement apparatus may further include a warp control device for allowing the steel strip to move left and right along the center of the production line without tilting.

또한, 상기 자구 미세화 장치는 레이저 빔 조사에 따라 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함할 수 있다. In addition, the magnetic domain refining apparatus may further include a post-treatment facility for removing hill-up and spatter formed on the surface of the steel sheet in accordance with the laser beam irradiation.

힐업(hill up)은 강판 표면에 레이저 빔을 조사하여 홈을 형성할 때, 강판에서 용융된 철이 홈 부위의 양 옆에 일정 높이 이상으로 쌓여 형성되는 부분을 의미한다. 스패터(spatter)는 레이저 빔 조사시 발생되어 강판 표면에 응고된 용융철을 의미한다.The hill up refers to a portion where molten iron is accumulated on both sides of the groove portion at a predetermined height or more when the groove is formed by irradiating the surface of the steel sheet with a laser beam. Spatter refers to molten iron generated during laser beam irradiation and solidified on the surface of a steel sheet.

상기 사행 제어설비는 상기 강판(1)의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll)(2A, 2B), 상기 강판(1)의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서(4), 상기 사행 측정센서(4)의 검출 신호를 연산하여 상기 스티어링 롤(2A, 2B)의 축을 회전 및 이동시켜 강판(1)이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System)(3)를 포함할 수 있다.Steering rolls 2A and 2B for switching the direction of movement of the steel strip 1 are disposed at the center of the width of the steel strip 1, (4) for calculating a detection signal of the meandering measurement sensor (4) and for rotating and moving the axis of the steering rolls (2A, 2B) to adjust the moving direction of the steel plate (1) And a position control system (Strip Center Position Control System) 3.

사행 측정센서(4)는 스티어링 롤(2B) 후단에 배치되어 스티어링 롤을 거친 강판의 실제 사행량을 실시간으로 검출하게 된다. The meandering measurement sensor 4 is disposed at the rear end of the steering roll 2B to detect in real time the actual meandering amount of the steel plate passed through the steering roll.

상기 사행 제어설비에 의해 강판이 생산라인의 중앙을 따라 좌우 치우침 없이 똑바로 이동됨으로써, 강판의 전 폭에 걸쳐서 강판 표면에 홈을 형성할 수 있게 된다.It is possible to form grooves on the surface of the steel sheet over the full width of the steel sheet by moving the steel sheet straightly along the center of the production line without side-to-side bias.

상기 사행 제어설비는 레이저 조사에 의한 강판 표면 홈 형성 전 공정에서, 사행 측정센서(4)에 의해 강판의 사행량이 측정된다. 사행 측정센서(4)에 의해 측정된 값은 강판 중앙위치 제어계로 출력되고, 강판 중앙위치 제어계는 사행 측정센서의 출력값을 연산하여 연산된 사행 정도에 따라 스티어링 롤(2A, 2B)의 축을 회전 및 이동시키게 된다. 이와 같이, 스티어링 롤(2A, 2B)이 회전 및 이동됨으로써, 스티어링 롤에 감겨져 이동되는 강판의 움직이는 방향이 조정된다. 이에, 상기 강판의 사행량이 제어되어 강판(1)의 사행량을 ±1mm 이내로 제어할 수 있다.In the meander control facility, the meandering amount of the steel sheet is measured by the meander measuring sensor 4 in the pre-formation step of the steel sheet surface by laser irradiation. The value measured by the meander measurement sensor 4 is output to the steel plate central position control system. The steel plate central position control system calculates the output value of the meander measurement sensor and rotates and rotates the axes of the steering rolls 2A, 2B according to the calculated degree of meandering. . As described above, the steering rolls 2A and 2B are rotated and moved, whereby the moving direction of the steel sheet wound around the steering roll is adjusted. Therefore, the meandering amount of the steel sheet is controlled, and the meandering amount of the steel sheet 1 can be controlled within +/- 1 mm.

상기 장력 제어설비는 상기 강판(1)에 일정한 크기의 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B), 상기 텐션 브라이들 롤을 통과한 상기 강판(1)의 장력을 측정하기 위한 강판 장력 측정센서(7), 및 상기 강판 장력 측정센서(7)에서 측정된 강판(1)의 장력에 따라 상기 텐션 브라이들 롤(5A, 5B)의 속도를 조정하기 위한 강판(Strip) 장력 제어계(6)를 포함할 수 있다.The tension control facility includes tension braille rolls (TBR) 5A and 5B for guiding movement of the steel strip 1 while applying a predetermined tension to the steel strip 1, 5B according to the tension of the steel strip 1 measured by the steel strip tension measuring sensor 7 and the steel strip tension measuring sensor 7 for measuring the tension of the tension bridle rolls 5A, And a steel strip control system 6 for controlling the tension of the steel strip.

상기 강판 장력 측정센서(7)는 텐션 브라이들롤(5B) 후단에 배치되어 텐션 브라이들롤(5B)을 거쳐 장력이 부여된 강판의 실제 장력을 실시간으로 측정한다.The steel plate tension measuring sensor 7 is disposed at the rear end of the tension bridle roll 5B and measures the actual tension of the steel plate subjected to the tension via the tension bridle roll 5B in real time.

본 실시예에서, 강판의 장력은 레이저 조사설비의 레이저 조사 위치에서의 강판 표면 형상을 평평하게 만들게 하면서 너무 과도한 장력으로 인해 강판의 파단이 발생되지 않도록 설정될 수 있다.In the present embodiment, the tensile force of the steel sheet can be set so that the surface of the steel sheet at the laser irradiation position of the laser irradiation equipment is made flat, and the steel sheet is not broken due to excessive tension.

상기 장력 제어설비는 설정된 범위 내의 강판 장력으로 조업하기 위해, 강판 장력 측정센서(7)에서 측정된 강판의 장력에 따라 강판(Strip) 장력 제어계(6)에 의하여 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B)의 속도를 조정한다. 이에, 상기 장력 제어설비는 강판(1)의 장력오차가 상기 설정 범위 이내가 되도록 제어하여 강판에 장력을 부여한다.In order to operate the steel plate tension within a predetermined range, the tension control facility is controlled by a steel strip tension control system 6 according to the tension of the steel plate measured by the steel plate tension measurement sensor 7, TBR) (5A, 5B). Thus, the tension control device controls the tension error of the steel strip 1 to be within the set range to apply tension to the steel strip.

상기 장력 제어설비를 통과한 강판은 레이저룸(20) 내부로 유입되어 강판지지롤 위치 조절설비와 레이저 조사설비를 거쳐 자구 미세화 가공된 후 레이저룸(20) 외부로 빠져나가게 된다. 상기 레이저룸에 대해서는 뒤에서 다시 설명하도록 한다.The steel plate having passed through the tension control facility flows into the laser room 20, is finely processed through the steel plate supporting roll position adjusting facility and the laser irradiation equipment, and then exits to the outside of the laser room 20. The laser room will be described later.

본 실시예에서, 레이저룸(20) 내부에는 레이저 조사설비 바로 아래쪽에 강판지지롤(9)이 배치되고, 강판지지롤을 사이에 두고 양쪽에 각각 디플렉터롤(Deflector Roll)(8A, 8B)이 배치된다. In this embodiment, a steel plate supporting roll 9 is disposed in the laser room 20 immediately below the laser irradiation equipment, and deflector rolls 8A and 8B are provided on both sides of the steel plate supporting roll, .

강판(1)의 이동방향은 디플렉터 롤(Deflector Roll)(8A, 8B)에 의해 강판지지롤(9)로 향하도록 전환된다. 강판(1)은 디플렉터 롤(8A)를 지나면서 강판지지롤(9)쪽으로 이동방향이 전환되어 강판지지롤(9)에 접한 후 다시 디플렉터 롤(8B)쪽으로 방향이 전환되어 디플렉터 롤(8B)를 지나 이동된다.The moving direction of the steel strip 1 is switched to the steel strip supporting roll 9 by the deflector rolls 8A and 8B. The steel plate 1 is moved to the side of the steel plate supporting roll 9 through the deflector roll 8A so as to be moved toward the deflector roll 8B after the steel plate 1 is contacted with the steel plate supporting roll 9, Lt; / RTI >

디플렉터 롤에 의해 강판(1)은 강판지지롤(9)을 따라 원호형태로 감겨져 강판지지롤에 면접촉되면서 지나가게 된다. 레이저 빔 조사시 강판의 진동 및 웨이브에 의한 레이저 빔 초점 거리 변동을 최소화하기 위해서는, 강판이 강판지지롤에 충분히 면접촉되어 지나가야 하고, 이 상태에서 강판지지롤을 따라 진행되는 강판에 레이저 빔을 조사해야 한다. 본 실시예에서는 상기와 같이 강판지지롤에 강판이 면접촉됨에 따라 강판에 대해 레이저빔을 정확히 조사할 수 있게 된다.The steel plate 1 is wound in the form of an arc along the steel plate supporting roll 9 by the deflector roll and passes over the steel plate supporting roll while being in surface contact. In order to minimize the fluctuation of the laser beam focal length due to the vibration of the steel sheet and the wave during the irradiation of the laser beam, the steel sheet must sufficiently contact the surface of the steel sheet supporting roll. In this state, You must investigate. In this embodiment, since the steel plate is in surface contact with the steel plate supporting roll as described above, the laser beam can be accurately irradiated to the steel plate.

상기 강판지지롤 위치 조절설비는, 상기 레이저 조사설비의 레이저 조사 위치로 강판(1)을 지지하는 강판지지롤(9), 상기 레이저 조사설비에서 강판(1)에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서(10), 및 상기 휘도 측정센서(10)에서 측정된 불꽃의 밝기에 따라 상기 강판지지롤(9)의 위치를 제어하기 위한 강판지지롤(SPR) 위치 제어계(12)를 포함할 수 있다.The steel plate supporting roll position adjusting device includes a steel plate supporting roll 9 for supporting the steel plate 1 to the laser irradiation position of the laser irradiation equipment, And a steel plate support roll (SPR) position control system 12 for controlling the position of the steel plate support roll 9 according to the brightness of the flame measured by the brightness measurement sensor 10 ).

상기 강판지지롤 위치 조절설비는, 강판지지롤(9)에 의하여 레이저 조사부 위치로 강판(1)을 지지하고, 레이저 강판조사 효율이 높은 초점심도(Depth of Focus)내에 강판이 위치하도록, 강판에 레이저 조사 시 발생하는 불꽃의 밝기가 가장 좋은 상태가 되게 강판지지롤(9) 위치를 전체적으로 상하로 조정한다. 또한, 강판에 레이저 조사 시 발생하는 불꽃의 밝기는 휘도 측정센서(10)를 이용하여 측정한다.The steel plate supporting roll position adjusting apparatus is configured such that the steel plate 1 is supported by the steel plate supporting roll 9 to the position of the laser irradiation portion and the steel plate 1 is supported on the steel plate so that the steel plate is positioned within the depth of focus The position of the steel plate supporting roll 9 is adjusted up and down as a whole so that the brightness of the flame generated in the laser irradiation becomes the best. The brightness of the flame generated when the steel plate is laser-irradiated is measured by using the luminance measurement sensor 10. [

본 실시예에서 상기 강판지지롤 위치 조절설비는 레이저 조사설비의 광학계로부터 강판 표면 사이의 실제 거리를 측정하기 위한 거리측정센서(11)를 더 포함할 수 있다. 상기 강판지지롤 위치 제어계(12)는 휘도 측정센서(10)로부터 검출된 불꽃의 밝기와 거리측정센서(11)로부터 실제 측정된 광학계와 강판 표면간의 거리를 연산하여 강판지지롤(9)의 위치를 보다 정밀하게 제어한다.In this embodiment, the steel plate supporting roll position adjusting device may further include a distance measuring sensor 11 for measuring an actual distance between the optical system of the laser irradiation equipment and the steel plate surface. The steel plate supporting roll position control system 12 calculates the brightness of the flame detected from the brightness measuring sensor 10 and the distance between the optical system and the surface of the steel sheet actually measured from the distance measuring sensor 11, As shown in FIG.

상기 사행 제어설비, 장력 제어설비 및 강판지지롤 위치조절설비는 레이저 조사설비에 의해 정밀하게 강판에 레이저 홈을 형성시킬 수 있도록 레이저 조사 위치에서의 강판 조건을 만들어주는 역할을 한다. 레이저 조사 위치에서의 강판은 강판 중앙위치가 생산라인의 중앙 위치에 있어야 하고 광학계와의 거리가 설정된 값으로 유지되어야 한다.The meander control facility, the tension control facility, and the steel plate support roll position adjustment facility serve to make the steel plate condition at the laser irradiation position so that the laser groove can be precisely formed by the laser irradiation equipment. The steel plate at the laser irradiation position should have the center position of the steel plate at the center position of the production line and the distance from the optical system should be maintained at the set value.

상기 레이저 조사설비는, 레이저 발진기 제어기(13), 연속파 레이저 빔(16)을 발진하기 위한 레이저 발진기(14), 광학계(15)를 포함할 수 있다.The laser irradiation equipment may include a laser oscillator controller 13, a laser oscillator 14 for oscillating the continuous wave laser beam 16, and an optical system 15.

도 3과 도 4에 도시된 바와 같이, 상기 광학계(15)는 회전가능하게 설치되어 강판 폭방향에 대한 레이저빔 조사선의 각도를 부여하는 모듈 플레이트(37)와, 상기 모듈 플레이트(37)를 회전시키기 위한 구동부(36), 상기 모듈 플레이트(37)에 설치되고 레이저 발진기(14)로부터 인가된 레이저 빔을 광학계(15) 내부로 출사하는 헤더(39), 모듈 플레이트(37)에 회전가능하게 설치되어 헤더(39)로부터 출사된 레이저 빔을 반사시키는 폴리곤 미러(32), 상기 폴리곤 미러(32)를 회전 구동시키는 회전모터(33), 상기 모듈 플레이트(37)에 설치되어 상기 폴리곤 미러(32)에서 반사된 레이저 빔(16)을 강판 쪽으로 반사시켜 강판에 집광시키는 집광 미러(35), 상기 집광 미러(35)에 연결되어 집광 미러(35)를 이동시켜 레이저 빔의 초점 거리를 조절하는 구동모터(34), 상기 모듈 플레이트(37)에 설치되어 레이저 빔 조사 여부에 따라 모듈 플레이트(37)를 선택적으로 차단하는 셔터(38)를 포함할 수 있다.3 and 4, the optical system 15 includes a module plate 37 rotatably installed to impart an angle of the laser beam irradiation line with respect to the width direction of the steel plate, A header 39 provided on the module plate 37 and adapted to emit a laser beam applied from the laser oscillator 14 to the inside of the optical system 15, A polygon mirror 32 for reflecting the laser beam emitted from the header 39, a rotation motor 33 for rotating the polygon mirror 32, a polygon mirror 32 mounted on the module plate 37, A condenser mirror 35 for reflecting the laser beam 16 reflected by the condenser lens 35 toward the steel plate and condensing the condensed laser beam onto a steel plate, (34), the module plate And a shutter 38 which is installed in the shutter 37 and selectively blocks the module plate 37 according to whether the laser beam is irradiated or not.

상기 광학계(15)는 광학 박스를 이루는 모듈 플레이트(37) 내에 헤더(39), 폴리곤 미러(32), 집광 미러(35) 및 셔트가 배치되어 한 몸체를 이룬다. 레이저 발진기(14)와 헤더(39)는 예를 들어 광케이블(41)로 연결된다. 이에, 레이저 발진기(14)에서 나온 레이저는 광케이블(41)을 타고 헤더(39)로 보내진다. 상기 광학박스를 이루는 모듈 플레이트(37) 내부에서 헤더(39)와 폴리곤 미러(32) 및 집광 미러(35)는 레이저 빔(16)을 원하는 위치로 반사시키기 위해 정 위치에 배치된다. 도 3에 도시된 바와 같이, 예를 들어 상기 헤더(39)는 폴리곤 미러(32)를 사이에 두고 양 쪽에 배치되어 각각 폴리곤 미러(32)를 향해 레이저 빔을 각각 출사하는 구조일 수 있다. 폴리곤 미러(32)에서 반사되는 각각의 레이저 빔에 맞춰 두 개의 집광 미러(35)가 배치된다. 헤더(39)에서 출사된 레이저 빔은 회전모터(33)의 구동에 따라 회전하는 폴리곤 미러(32)에서 반사되어 집광 미러(35)로 보내진다. 집광 미러(35)로 반사된 레이저 빔(16)은 집광 미러(35)에서 셔터(38)를 통해 강판쪽으로 반사되고 강판(1) 표면에 집광된다. 이에, 강판 표면에 레이저 빔이 주기적으로 조사되어 폭방향으로 연속홈을 형성하게 된다.The optical system 15 is a body in which a header 39, a polygon mirror 32, a condenser mirror 35 and a shutter are disposed in a module plate 37 constituting an optical box. The laser oscillator 14 and the header 39 are connected to the optical cable 41, for example. Thus, the laser beam emitted from the laser oscillator 14 is transmitted to the header 39 via the optical cable 41. A header 39, a polygon mirror 32 and a condensing mirror 35 are disposed in a correct position to reflect the laser beam 16 to a desired position inside the module plate 37 constituting the optical box. 3, for example, the header 39 may be disposed on both sides of the polygon mirror 32, and may emit a laser beam toward the polygon mirror 32, respectively. Two condenser mirrors 35 are arranged in accordance with the respective laser beams reflected by the polygon mirror 32. [ The laser beam emitted from the header 39 is reflected by the polygon mirror 32 which rotates in accordance with the driving of the rotation motor 33 and is sent to the condensing mirror 35. The laser beam 16 reflected by the condenser mirror 35 is reflected from the condenser mirror 35 to the steel plate through the shutter 38 and condensed on the surface of the steel plate 1. [ Thus, the surface of the steel sheet is irradiated with the laser beam periodically to form continuous grooves in the width direction.

광학계(15)에 의한 레이저 빔(16)의 전체적인 초점 거리는 강판지지롤(9)의 상하 이동에 의해 조정되며, 좌우 초점거리가 맞지 않는 것은 집광 미러(35)에 연결설치되어 있는 구동모터(34)에 의해 조정된다.The entire focal distance of the laser beam 16 by the optical system 15 is adjusted by the upward and downward movement of the steel plate supporting roll 9 and the right and left focal lengths are not matched by the drive motor 34 ).

상기 셔터(38)는 모듈 플레이트(37) 하부에 설치되어 모듈 플레이트(37)를 개폐한다. 상기 셔터(38)는 집광 미러(35)로부터 레이저 빔이 하부로 조사될 때 개방되어 레이저 빔과 간섭을 방지하며, 레이저 빔이 조사되지 않을 때는 폐쇄되어 외부의 흄이나 이물질이 광학계(15) 내부로 유입되는 것을 차단한다.The shutter 38 is installed under the module plate 37 to open and close the module plate 37. The shutter 38 is opened when the laser beam is irradiated downward from the condensing mirror 35 to prevent interference with the laser beam. When the laser beam is not irradiated, the shutter 38 is closed so that external fumes or foreign substances are generated inside the optical system 15 .

상기 광학계(15)의 집광 미러(35)는 레이저를 반사시키는 반사면이 구비된 미러판(351)을 포함하며, 미러판(351)의 후면에는 미러판(351)을 냉각하는 냉각자켓(352)이 결합된 구조로 되어 있다.The condensing mirror 35 of the optical system 15 includes a mirror plate 351 having a reflecting surface for reflecting the laser beam and a cooling jacket 352 for cooling the mirror plate 351 ) Are combined with each other.

상기 미러판(351)은 레이저 빔과 직접적으로 접촉하여 반사시키는 부분으로 구리 재질로 이루어질 수 있다. 집광 미러(35)는 15kW급의 레이저를 강판에 집중해서 반사시켜야 하기 때문에 작은 변형에도 레이저 빔의 초점이 달라질 수 있다. 그런데, 상기 집광 미러(35)는 레이저에 의한 직가열과 강판에서 반사되는 반사광에 의해 계속 고열에 노출되어 있어 열변형이 발생될 가능성이 매우 높다. 집광 미러(35)가 열변형되면 레이저 빔의 초점이 달라지게 된다. 강판에 대한 레이저 빔의 초점이 달라지는 경우 강판에 형성되는 홈 깊이의 불균일을 유발하여 제품의 성능을 떨어뜨리게 된다.The mirror plate 351 may be made of a copper material as a portion that directly contacts and reflects the laser beam. Since the condensing mirror 35 must focus and reflect the 15 kW class laser on the steel sheet, the focal point of the laser beam may be varied even with small deformation. However, since the condensing mirror 35 is continuously exposed to high heat by the direct heating by the laser and the reflected light reflected by the steel plate, the possibility of thermal deformation is very high. When the condensing mirror 35 is thermally deformed, the focus of the laser beam is changed. If the focal point of the laser beam on the steel sheet is changed, the groove depth formed on the steel sheet may be uneven and the performance of the product may be deteriorated.

이에, 본 실시예에서 상기 집광 미러(35)는 냉각자켓(352)과 더불어 보조 냉각블럭(140)을 포함하는 냉각부를 구비하여 집광 미러(35)의 열변형을 최소화하게 된다.Accordingly, in the present embodiment, the condensing mirror 35 includes a cooling part including the cooling jacket 352 and the auxiliary cooling block 140, thereby minimizing thermal deformation of the condensing mirror 35.

상기 냉각자켓(352)은 미러판(351)의 후면에 접하여 1차적으로 미러판(351)을 냉각할 수 있도록 설치된다. 상기 냉각자켓(352)은 내부에 유로가 형성되어 냉각매체가 유로를 따라 순환되는 구조일 수 있다. 상기 냉각자켓(352)의 내부 유로 형성 구조는 다양하게 변형가능하며 특별히 한정되지 않는다. 상기 냉각매체는 예를 들어 냉각수 일 수 있으며 열교환가능한 유체면 특별히 한정되지 않고 모두 적용가능하다. 상기 냉각자켓(352)으로 냉각매체가 흐르면서 미러판(351)과 냉각자켓(352) 사이 열교환이 이루어진다. 미러판(351)을 포함한 집광 미러(35)는 냉각자켓(352)과 열교환되어 냉각된다.The cooling jacket 352 is installed to cool the mirror plate 351 primarily in contact with the rear surface of the mirror plate 351. The cooling jacket 352 may have a structure in which a flow path is formed in the inside of the cooling jacket 352 to circulate the cooling medium along the flow path. The internal flow path forming structure of the cooling jacket 352 may be variously modified and is not particularly limited. The cooling medium may be, for example, cooling water, and any heat-exchangeable fluid is applicable without any particular limitation. As the cooling medium flows into the cooling jacket 352, heat exchange is performed between the mirror plate 351 and the cooling jacket 352. The condenser mirror 35 including the mirror plate 351 is heat-exchanged with the cooling jacket 352 to be cooled.

상기 보조 냉각블럭(140)은 1차적으로 냉각자켓(352)이 커버하지 못하는 집광 미러(35)의 양 측단쪽을 냉각시켜 집광 미러(35)의 양측단부 사이의 온도 편차를 최소화하게 된다.The auxiliary cooling block 140 minimizes the temperature deviation between the opposite ends of the condensing mirror 35 by cooling both ends of the condensing mirror 35 that the cooling jacket 352 can not cover primarily.

도 5 내지 도 7은 집광 미러(35)에 설치되는 보조 냉각블럭(140)의 구조를 예시하고 있다. 이하, 도 5 내지 도 7을 참조하여 보조 냉각블럭(140)을 설명한다.Figs. 5 to 7 illustrate the structure of the auxiliary cooling block 140 installed in the condensing mirror 35. Fig. Hereinafter, the auxiliary cooling block 140 will be described with reference to FIGS.

상기 보조 냉각블럭(140)은 강판의 폭방향을 따라 집광 미러(35)의 양 선단의 측면에 배치되어 집광 미러(35)의 측면을 냉각하는 복수개의 측면냉각부(141), 각 측면냉각부(141)를 연결하는 연결부(142), 및 상기 측면냉각부(141)와 연결부(142) 내부를 따라 형성되어 냉각매체가 이동하는 유로를 포함할 수 있다.The auxiliary cooling block 140 includes a plurality of side cooling portions 141 disposed on both sides of both ends of the condensing mirror 35 along the width direction of the steel plate for cooling the side surface of the condensing mirror 35, A connection part 142 connecting the side surface cooling part 141 and the side surface cooling part 141, and a flow path formed along the inside of the side surface cooling part 141 and the connection part 142 to move the cooling medium.

언급한 바와 같이, 집광 미러(35)는 레이저의 직가열과 반사광의 복사열에 의해 가열되며, 1차적으로 냉각자켓(352)에 의해 열교환되어 냉각된다. 그러나, 냉각자켓(352)의 입구쪽으로 유입된 냉각매체는 냉각자켓(352)의 출구쪽으로 이동되면서 점차적으로 가열되어 온도가 올라가게 된다. 이에, 냉각매체가 유입되는 냉각자켓(352)의 입구쪽과 냉각매체 배출되는 출구쪽 사이 영역에서 온도 편차가 발생된다. As mentioned above, the condensing mirror 35 is heated by direct heating of the laser and radiant heat of the reflected light, and is primarily heat-exchanged by the cooling jacket 352 to be cooled. However, the cooling medium flowing into the inlet of the cooling jacket 352 is gradually heated while moving toward the outlet of the cooling jacket 352, so that the temperature rises. Accordingly, a temperature deviation occurs in an area between the inlet side of the cooling jacket 352 into which the cooling medium flows and the outlet side from which the cooling medium is discharged.

특히, 레이저를 강판의 폭방향으로 조사하기 위해 집광 미러(35) 역시 강판의 폭방향으로 길게 연장 형성된 구조이므로, 냉각자켓(352)에 의해 냉각이 된다 하더라도 강판 폭방향을 따라 집광 미러(35)의 양 측단 사이에 온도 편차가 크게 발생하게 된다. In particular, since the condensing mirror 35 is also elongated in the width direction of the steel plate so as to irradiate the laser in the width direction of the steel plate, the condensing mirror 35 is formed along the steel plate width direction even if cooled by the cooling jacket 352, A large temperature deviation occurs between the both side ends of the heater.

집광 미러(35)의 온도가 불균일해지는 경우 집광 미러(35)가 뒤틀리는 등 열변형이 크게 발생되어 레이저 빔 조사가 제대로 이루어지지 못하게 된다.When the temperature of the condensing mirror 35 becomes non-uniform, the condensing mirror 35 is distorted such that the laser beam is not irradiated properly.

이에, 상기 보조 냉각블럭(140)은 집광 미러(35)의 양쪽 선단 측면을 집중적으로 냉각하여 양쪽 선단간 온도 편차를 최소화하게 된다.Accordingly, the auxiliary cooling block 140 cools both side surfaces of the condensing mirror 35 to minimize the temperature deviation between both ends.

상기 연결부(142)는 복수개의 측면냉각부(141)를 연결하여 지지하며 측면냉각부(141)로 흐르는 냉각매체가 이동되는 통로의 역할을 수행한다. 상기 연결부(142)는 집광 미러(35)를 따라 길게 연장 형성된다. 상기 측면냉각부(141)는 연결부(142)에 연결되어 한 몸체를 이루며, 연결부(142)에서 직각으로 배치되어 집광 미러(35)의 측면쪽으로 연장된다. 상기 측면냉각부(141)는 집광 미러(35)의 측면과 면접촉되도록 집광 미러(35)의 측면에 대응되는 형태로 이루어질 수 있다. The connection portion 142 connects and supports the plurality of side cooling portions 141 and serves as a passage through which the cooling medium flowing to the side cooling portion 141 moves. The connection portion 142 is formed to extend along the condensing mirror 35. The side cooling part 141 is connected to the connection part 142 to form a body and extends at a right angle to the side of the condensing mirror 35 at the connection part 142. The side cooling part 141 may be formed to correspond to the side surface of the condensing mirror 35 so as to be in surface contact with the side surface of the condensing mirror 35.

냉각자켓(352)이 집광 미러(35)의 후면에서 미러판(351)을 냉각하는 구조와 대비하여, 상기 측며냉각부는 집광 미러(35)의 양 측면쪽에서 집광 미러(35)를 냉각한다. 여기서, 상기 측면냉각부(141)가 접하여 열교환되는 집광 미러(35)의 측면이라 함은 예를 들어, 미러판(351)의 후면에 배치된 냉각자켓(352)의 측면일 수 있다. 또는 집광 미러(35)의 미러판(351)과 결합된 브라켓의 측면일 수 있다.The side cooling section cools the condensing mirror 35 on both sides of the condensing mirror 35 in contrast to the structure in which the cooling jacket 352 cools the mirror plate 351 on the rear surface of the condensing mirror 35. The side surface of the condensing mirror 35 where the side cooling portion 141 is in contact with and heat-exchanged may be a side surface of the cooling jacket 352 disposed on the rear surface of the mirror plate 351, for example. Or the side surface of the bracket coupled with the mirror plate 351 of the condensing mirror 35.

본 실시예에서, 도 5와 도 6에 도시된 바와 같이, 집광 미러(35)는 강판의 폭방향을 따라 두 개가 간격을 두고 배치되므로, 상기 보조 냉각블럭(140)은 3개의 측면냉각부(141)를 구비한다. 중간에 배치된 측면냉각부(141)는 두 개의 집광 미러(35) 사이에 끼워져 두 집광 미러(35)의 마주하는 선단 측면에 접하여 집광 미러(35) 측면을 냉각한다. 상기 중간에 배치된 측면냉각부(141)는 두 집광 미러(35) 사이 공간 크기에 대응되는 크기로 형성될 수 있다. 양 끝에 배치된 측면냉각부(141)는 각 집광 미러(35)의 바깥쪽 선단의 측면에 접하여 각 집광 미러(35) 측면을 냉각한다. 상기 측면냉각부(141)의 개수는 집광 미러(35)의 배열 개수에 따라 달라질 수 있으며, 모든 집광 미러(35)의 양 측면에 모두 배치될 수 있으면 다양하게 변형가능하다.In this embodiment, as shown in FIGS. 5 and 6, the condensing mirrors 35 are disposed at two intervals along the width direction of the steel plate, so that the auxiliary cooling block 140 is divided into three side cooling portions 141). The side cooling portion 141 disposed in the middle is sandwiched between the two condenser mirrors 35 to come in contact with the opposite side surfaces of the two condenser mirrors 35 to cool the side of the condenser mirror 35. The intermediate cooling unit 141 may be formed to have a size corresponding to the size of the space between the two condenser mirrors 35. The side cooling portion 141 disposed at both ends is in contact with the side surface of the outer end of each condensing mirror 35 to cool the side surface of each condensing mirror 35. The number of the side cooling units 141 may vary according to the number of the condensing mirrors 35 and may be variously modified as long as they can be disposed on both sides of all the condensing mirrors 35.

도 7은 상기 보조 냉각블럭(140) 내부에 형성되는 유로를 예시하고 있다.FIG. 7 illustrates a flow path formed in the auxiliary cooling block 140. FIG.

본 실시예에서, 유로는 보조 냉각블럭(140)의 각 측면냉각부(141) 전면을 순환하도록 형성된 냉각유로(143)와 연결부(142)에 형성되어 냉각유로(143) 사이를 연결하는 연결유로(144)를 포함한다. 이에, 냉각매체는 보조 냉각블럭(140)의 일측 선단쪽에 배치된 측면냉각부(141)를 통해 유입되어 냉각유로(143)를 따라 측면냉각부(141)를 순환한 후 연결부(142)에 형성된 연결유로(144)를 통해 다음 측면냉각부(141)로 이동하여, 차례로 각 측면냉각부(141)의 냉각유로(143)로 이동된다. 상기 유로의 형성 구조는 다양하게 변형가능하다.In this embodiment, the flow path is formed by a cooling flow path 143 formed to circulate the front surface of each side cooling portion 141 of the auxiliary cooling block 140 and a connection path 142 formed in the connection portion 142, (144). The cooling medium flows through the side cooling portion 141 disposed on one side of the auxiliary cooling block 140 and circulates the side cooling portion 141 along the cooling flow passage 143, And then to the next side cooling part 141 through the connecting flow path 144 and then to the cooling flow path 143 of each side cooling part 141 in turn. The formation structure of the flow path may be variously modified.

도 8에 도시된 바와 같이, 상기 냉각부는 상기 유로에 연결되어 보조 냉각블럭(140)으로 냉각매체를 순환 공급하는 공급부를 더 포함할 수 있다.As shown in FIG. 8, the cooling unit may further include a supply unit connected to the flow path to circulate and supply the cooling medium to the auxiliary cooling block 140.

상기 공급부는 냉각매체 순환라인(150) 상에 설치되어 보조 냉각블럭(140)을 거친 냉각 매체를 냉각하는 열교환기(151)와, 열교환기(151)를 거친 냉각 매체를 냉각블럭(140)으로 공급하는 공급펌프(152), 상기 냉각자켓(352)의 입구측과 출구측 온도 편차를 검출하여 상기 온도 편차가 기준범위를 벗어난 경우 상기 열교환기(151)를 제어하여 보조 냉각블럭(140)으로 공급되는 냉각매체의 온도를 조절하는 제어부(154)를 포함할 수 있다.The supply unit includes a heat exchanger 151 installed on the cooling medium circulation line 150 to cool the cooling medium passed through the auxiliary cooling block 140 and a cooling medium passing through the heat exchanger 151 to the cooling block 140 A supply pump 152 for supplying cooling water to the cooling jacket 352 and a temperature difference between the inlet side and the outlet side of the cooling jacket 352 and controlling the heat exchanger 151 when the temperature deviation is out of the reference range, And a control unit 154 for controlling the temperature of the supplied cooling medium.

상기 공급부는 순환라인(150) 상에 설치되어 열교환기(151)를 거쳐 냉각된 냉각매체가 수용되어 온도를 유지하는 항온조(156)를 더 포함할 수 있다.The supply unit may further include a thermostat (156) installed on the circulation line (150) to receive the cooled cooling medium through the heat exchanger (151) to maintain the temperature.

상기 공급부의 공급펌프(152)는 항온조(156) 후단에 설치되며 적어도 두 개가 병렬로 배치되어 순환라인(150) 상에 설치된다. 이에, 일측 공급펌프가 고장난 경우 나머지 공급펌프가 구동되어 냉각매체를 계속 순환 공급할 수 있게 된다. 상기 냉각매체는 예를 들어 냉각수 일 수 있으며 열교환가능한 유체면 특별히 한정되지 않고 모두 적용가능하다.The supply pump 152 of the supply unit is installed at the rear end of the thermostatic chamber 156 and at least two of them are arranged in parallel and installed on the circulation line 150. Accordingly, when the one-side supply pump fails, the remaining supply pump is driven to continuously circulate and supply the cooling medium. The cooling medium may be, for example, cooling water, and any heat-exchangeable fluid is applicable without any particular limitation.

냉각자켓(352)의 입구측과 출구측에는 각각 냉각매체의 온도를 검출하기 위한 온도센서(153)가 설치된다. 상기 각 온도센서(153)는 냉각자켓(352)의 입구로 유입되는 냉각매체의 온도와 냉각자켓(352) 내부의 유로를 지나 출구를 통해 배출되는 냉각매체의 온도를 실시간으로 검출한다. 상기 제어부(154)는 각 온도센서(153)의 검출값을 비교하여 냉각자켓(352)의 입구쪽과 출구쪽의 온도 편차를 연산한다. 상기 냉각자켓(352)은 집광 미러(35)를 따라 설치되어 있고 입구와 출구는 냉각자켓(352)의 양 끝쪽에 위치하므로, 냉각자켓(352)의 입구쪽과 출구쪽 사이의 온도 편차는 바로 집광 미러(35)의 양 선단간 온도 편차를 의미한다.On the inlet side and the outlet side of the cooling jacket 352, a temperature sensor 153 for detecting the temperature of the cooling medium is provided, respectively. Each of the temperature sensors 153 detects the temperature of the cooling medium flowing into the inlet of the cooling jacket 352 and the temperature of the cooling medium discharged through the outlet through the flow path inside the cooling jacket 352 in real time. The control unit 154 compares the detected values of the respective temperature sensors 153 and calculates a temperature deviation between the inlet side and the outlet side of the cooling jacket 352. Since the cooling jacket 352 is provided along the condensing mirror 35 and the inlet and the outlet are located at both ends of the cooling jacket 352, the temperature deviation between the inlet side and the outlet side of the cooling jacket 352 is Means a temperature deviation between both ends of the condensing mirror 35. [

제어부(154)는 내부에 허용가능한 온도 편차값에 대한 기준 범위를 갖는다. 본 실시예에서, 상기 기준 범위는 0 내지 2℃일 수 있다. 온도 편차가 상기 범위를 벗어난 경우 집광 미러(35)의 양 선단부쪽의 온도 차차에 의한 열변형량이 허용 범위를 넘게 되고 레이저 빔의 조사가 제대로 이루어지지 못한다.The control unit 154 has a reference range for an allowable temperature deviation value therein. In this embodiment, the reference range may be 0 to 2 占 폚. When the temperature deviation is out of the above range, the thermal deformation amount due to the temperature difference between the both ends of the condensing mirror 35 exceeds the allowable range, and irradiation of the laser beam is not properly performed.

상기 제어부(154)는 두 온도센서(153)를 통해 검출된 온도의 편차값이 설정되어 있는 허용가능한 기준범위를 벗어나는 지 여부를 연산하여 보조 냉각블럭(140)으로 공급되는 냉각매체의 온도를 낮추도록 열교환기(151)를 제어작동한다. 열교환기(151)의 제어 구동에 따라 온도가 보다 낮춰진 냉각매체가 보조 냉각블럭(140)으로 공급됨으로써, 광학계(15) 양 선단간의 온도 편차를 줄일 수 있게 된다.The control unit 154 calculates whether the deviation value of the temperature detected through the two temperature sensors 153 is out of an allowable reference range to lower the temperature of the cooling medium supplied to the auxiliary cooling block 140 And controls the heat exchanger 151 to operate. The temperature difference between both ends of the optical system 15 can be reduced by supplying the cooling medium whose temperature is lowered in accordance with the control drive of the heat exchanger 151 to the auxiliary cooling block 140. [

이와 같이, 본 실시예의 공급부는 집광 미러(35)의 온도 편차를 지속적으로 모니터링하고 보조 냉각블럭(140)의 냉각매체 온도를 제어함으로써, 광학계(15)의 집광 미러(35) 양 선단관의 온도 편차를 줄여 열변형을 최소화하고 강판의 품질이 저하되는 것을 방지한다.As described above, the supply unit of the present embodiment continuously monitors the temperature deviation of the condensing mirror 35 and controls the temperature of the cooling medium of the auxiliary cooling block 140, thereby controlling the temperature of both ends of the condensing mirror 35 of the optical system 15 Minimize the deviation to minimize thermal deformation and prevent the quality of the steel sheet from deteriorating.

공급펌프(152)에 의해 인출된 냉각 매체는 순환라인(150) 상에 설치된 필터(157)를 거치면서 불순물이 제거되고 보조 냉각블럭(140) 전에서 갑압밸브(158)를 통해 감압된 후, 보조 냉각블럭(140)으로 공급된다.The cooling medium drawn by the supply pump 152 is removed from the impurities through the filter 157 installed on the circulation line 150 and is depressurized through the auxiliary valve 158 before the auxiliary cooling block 140, And is supplied to the auxiliary cooling block 140.

보조 냉각블럭(140)으로 공급된 냉각매체는 냉각유로(143)를 따라 측면냉각부(141)를 지나면서 집광 미러(35)의 양 선단부 측면을 집중적으로 냉각시키게 된다. 집광 미러(35)의 후면은 냉각자켓(352)에 의해 냉각되고, 냉각자켓(352)에 의한 냉각 효과가 미미한 집광 미러(35)의 양 선단쪽의 측면은 보조 냉각블럭(140)에 의해 추가적으로 냉각됨으로써, 집광 미러(35) 전체에 걸쳐 고르게 냉각이 이루어지게 된다. 또한, 보조 냉각블럭(140)으로 공급된 냉각매체는 바로 집광 미러(35)의 양 선단쪽 측면으로 이동되어 측면냉각부(141)를 통해 냉각이 이루어짐으로써, 집광 미러(35)의 양 선단부 간의 온도차를 줄이게 된다. 이에, 집광 미러의 양 선단간 온도 편차가 기 설정된 기준 범위 이내로 줄어들어, 집광 미러의 열변형을 최소화할 수 있게 된다.The cooling medium supplied to the auxiliary cooling block 140 passes through the side cooling part 141 along the cooling flow path 143 to intensively cool the opposite side surfaces of the condensing mirror 35. The rear surface of the condensing mirror 35 is cooled by the cooling jacket 352 and both side surfaces of the condensing mirror 35 having a small cooling effect by the cooling jacket 352 are additionally provided by the auxiliary cooling block 140 The cooling is uniformly performed over the entire light-collecting mirror 35. As a result, The cooling medium supplied to the auxiliary cooling block 140 is directly transferred to both side ends of the condensing mirror 35 and is cooled through the side cooling part 141 so that the cooling medium is supplied to the auxiliary cooling block 140 between the both ends of the condensing mirror 35 The temperature difference is reduced. Accordingly, the temperature deviation between both ends of the condensing mirror is reduced to within the predetermined reference range, and thermal deformation of the condensing mirror can be minimized.

강판 사행량이 과도하면 강판이 레이저 조사위치에서 벗어나게 되어 강판지지롤(9)에 레이저가 조사되면서 손상이 발생한다. 이에, 강판지지롤 손상을 방지하기 위해, 상기 레이저 발진기 제어기(13)는 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어한다.If the steel sheet meandering amount is excessive, the steel sheet is deviated from the laser irradiation position, and the steel sheet support roll 9 is irradiated with a laser, and damage occurs. In order to prevent damage to the steel plate supporting roll, the laser oscillator controller 13 turns on the laser oscillator under normal working conditions and controls the laser oscillator to turn off when the steel sheet steepness exceeds 15 mm do.

상기 레이저 발진기(14)는 싱글 모드(Single mode) 연속파 레이저 빔을 발진하여 상기 광학계(15)에 전달할 수 있다. 광학계(15)는 전달된 레이저 빔(16)을 강판 표면에 조사한다. The laser oscillator 14 can oscillate a single mode continuous wave laser beam and transmit it to the optical system 15. The optical system 15 irradiates the transferred laser beam 16 onto the surface of the steel sheet.

레이저 발진기(14)와 광학계(15)는, 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛의 홈을 형성시킴과 동시에, 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록 강판의 용융에 필요한 1.0 내지 5.0 J/㎟ 범위내의 레이저 에너지 밀도를 강판에 전달할 수 있다.The laser oscillator 14 and the optical system 15 irradiate the surface of the steel sheet with a laser beam to form grooves with an upper width, a lower width and a depth of 70 mu m or less, 10 mu m or less, 3 to 30 mu m, The laser energy density in the range of 1.0 to 5.0 J / mm 2 necessary for melting the steel sheet can be transmitted to the steel sheet so that a re-welded portion remaining on the inner wall surface of the groove in the molten portion during irradiation is generated.

상기 광학계(15)는 레이저 주사속도를 제어하는 기능이 있어 레이저 조사선(도 2의 31)의 간격을 압연방향으로 2 내지 30 mm로 조정할 수 있다. 이에, 레이저 빔에 의한 열영향부(HAZ, Heat Affected Zone)의 영향을 최소화하여 강판의 철손을 개선할 수 있다.The optical system 15 has a function of controlling the laser scanning speed so that the interval of the laser radiation (31 in FIG. 2) can be adjusted to 2 to 30 mm in the rolling direction. Thus, the influence of the heat affected zone (HAZ, heat affected zone) by the laser beam can be minimized and the iron loss of the steel sheet can be improved.

또한, 상기 레이저 조사설비는 강판 표면에 조사되는 레이저빔의 조사선 각도를 강판의 폭방향에 대해 변환하는 구조일 수 있다. 본 실시예에서 상기 레이저 조사설비는 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 ±4°의 범위로 변환할 수 있다. Further, the laser irradiation equipment may be a structure for converting the angle of the irradiation line of the laser beam irradiated on the surface of the steel sheet with respect to the width direction of the steel sheet. In this embodiment, the laser irradiation equipment can convert the angle of the irradiation line of the laser beam in the width direction of the steel plate into the range of +/- 4 degrees.

이를 위해, 상기 레이저 조사설비는 강판에 레이저 빔을 조사하는 광학계(15)가 구동부(36)에 의해 회전 가능한 구조로 이루어져, 강판 표면에 형성되는 레이저빔의 조사선 각도를 강판의 폭방향에 대해 변환하는 구조일 수 있다. 이와 같이 광학계에 의한 레이저빔의 조사선 각도가 변환됨으로써, 레이저빔에 의한 조사선(31)은 강판의 압연 방향에 대해 직각인 방향에서 ±4°의 범위로 기울어져 형성된다. 따라서, 레이저에 의한 홈 형성에 따른 자속밀도 저하를 최소화할 수 있게 된다.To this end, the laser irradiation equipment is structured such that the optical system 15 for irradiating the steel plate with a laser beam is rotatable by the drive unit 36, and the angle of the irradiation line of the laser beam formed on the surface of the steel plate is changed Lt; / RTI > As the angle of the irradiation line of the laser beam by the optical system is changed as described above, the irradiation line 31 by the laser beam is formed by inclining in the range of +/- 4 degrees in the direction perpendicular to the rolling direction of the steel sheet. Therefore, it is possible to minimize the decrease in the magnetic flux density due to the groove formation by the laser.

또한, 본 실시예에서, 상기 레이저 조사설비는 강판(1)에 대한 레이저 빔의 조사 위치를 제어하여, 강판에 조사되는 레이저빔이 강판에서 반사되어 광학계나 레이저 발진기로 들어가는 백 리플렉션 현상을 방지하는 구조로 되어 있다. Further, in this embodiment, the laser irradiation equipment controls the irradiating position of the laser beam on the steel plate 1 so as to prevent a back reflection phenomenon in which the laser beam irradiated on the steel plate is reflected by the steel plate and enters the optical system or the laser oscillator Structure.

이를 위해, 도 4에 도시된 바와 같이 상기 레이저 조사설비는 강판지지롤(9) 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 광학계(15)에서 조사되는 레이저 빔의 조사방향이 강판지지롤(9)의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점(P)으로 하여, 상기 기준점(P)으로부터 강판지지롤(9) 중심에서 외주면을 따라 각도(이하 설명의 편의를 위해 이격각도(R)이라 한다)를 두고 이격된 위치에 레이저 빔을 조사하는 구조일 수 있다.4, the laser irradiating equipment is arranged such that the irradiation direction of the laser beam irradiated by the optical system 15 is applied to the surface of the steel sheet which contacts the surface of the steel plate supporting roll 9 in the form of an arc, The laser beam irradiation position when passing the central axis of the roll 9 is set as a reference point P and an angle from the reference point P to the center along the outer peripheral surface at the center of the steel plate supporting roll 9 R) (hereinafter referred to as " R ").

상기 기준점(P)이란 도 4에서 강판지지롤(9) 중심축을 지나는 선과 강판이 만나는 지점이다. 레이저 빔의 조사방향이 강판지지롤(9)의 중심축을 지나는 경우 레이저 빔의 초점은 기준점(P)에 맞춰진다. 이 경우, 레이저 빔의 조사방향이 기준점(P)에서의 강판지지롤(9) 접선과 직각을 이룸에 따라, 강판에 맞아 반사되는 레이저 빔이 그대로 광학계와 레이저 발진기로 들어가 손상을 입히는 백 리플렉션 현상이 발생된다.The reference point P is a point at which a line passing through the central axis of the steel plate supporting roll 9 meets the steel plate in FIG. When the irradiation direction of the laser beam passes the central axis of the steel plate supporting roll 9, the focal point of the laser beam is adjusted to the reference point P. In this case, as the irradiation direction of the laser beam is orthogonal to the tangent to the steel plate supporting roll 9 at the reference point P, the laser beam reflected by the steel plate is directly incident on the optical system and the laser oscillator, Lt; / RTI >

본 실시예에 따른 레이저 조사설비는 상기와 같이, 기준점(P)에서 이격각도(R) 만큼 이격된 위치에 레이저 빔을 조사함으로써, 강판에서 되반사되는 레이저 빔이 광학계로 입사되지 않게 된다. 따라서, 상기한 백 리플렉션 현상을 방지하고 레이저 빔에 의해 형성되는 홈 형상의 품질을 유지할 수 있게 된다.As described above, the laser irradiation apparatus according to this embodiment irradiates the laser beam at a position spaced apart from the reference point P by the spacing angle R, so that the laser beam reflected back from the steel plate is not incident on the optical system. Therefore, the above-described back reflection phenomenon can be prevented and the groove quality formed by the laser beam can be maintained.

본 실시예에서, 상기 이격 각도(R)는 상기 기준점(P)에 대해 강판지지롤(9) 중심에서 외주면을 따라 3 내지 7°의 범위로 설정될 수 있다.In the present embodiment, the spacing angle R may be set in the range of 3 to 7 degrees along the outer peripheral surface at the center of the steel plate supporting roll 9 with respect to the reference point P. [

상기 레이저 빔이 조사되는 위치인 이격 각도(R)가 3°보다 작은 경우에는 강판에서 되반사 되는 레이저 빔의 일부가 광학계나 레이저 발진기로 유입될 수 있다. 상기 이격각도(R)가 7°를 넘게 되면 레이저 빔에 의한 홈 형성 제대로 이루어지지 않고 홈의 형성 불량이 발생할 수 있다.When the spacing angle R, which is a position at which the laser beam is irradiated, is smaller than 3 DEG, a part of the laser beam reflected back from the steel sheet may be introduced into the optical system or the laser oscillator. If the spacing angle (R) exceeds 7, grooves formed by the laser beam may not be formed properly and grooves may be formed defective.

이와 같이, 본 실시에의 레이저 조사설비는 기준점(P)을 중심으로 소정 각도 이격된 지점에서 강판에 레이저를 조사함으로써, 백 리플렉션 현상을 방지하고 레이저 빔 반사시 입사 광로와 간섭되지 않으며 레이저 빔에 의해 형성되는 홈 형상의 품질을 안정적으로 유지할 수 있게 된다.As described above, the laser irradiation equipment according to the present embodiment prevents the back reflection phenomenon by irradiating the steel plate with the laser beam at a position spaced by a predetermined angle around the reference point P, and does not interfere with the incident optical path during laser beam reflection, So that it is possible to stably maintain the quality of the groove shape formed by the groove.

또한, 상기 레이저 조사설비는 상기 강판에 레이저빔 조사에 따라 생성된 흄과 스패터를 제거하기 위한 용융철 제거설비를 더 포함할 수 있다.The laser irradiation equipment may further include a molten iron removing facility for removing fumes and spatter generated by the laser beam irradiation on the steel plate.

상기 용융철 제거설비는 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하는 에어나이프(17), 흄과 용융철을 흡입하여 제거하는 집진후드(19A, 19B)를 포함할 수 있다. 상기 에어나이프와 집진후드를 통해 레이저 조사시 생성된 흄이 제거되어 광학계 내부로 흄이 유입되는 것을 방지할 수 있다. 상기 에어나이프(17)는 상기 강판(1)의 홈 내부로 일정한 크기의 압력(Pa)을 갖는 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거한다. 상기 에어 나이프(17)에서 상기 압축 건조공기는 0.2 kg/cm2 이상의 압력(Pa)을 가지는 것이 바람직하다. 상기 압축 건조공기의 압력이 0.2 kg/cm2 보다 작은 경우에서는 홈 내부의 용융철 제거가 불가하여 철손 개선 효과를 확보할 수 없기 때문이다. 에어나이프에 의해 제거된 흄과 스패터는 레이저 조사 위치 전후에 배치된 집진 후드(19A, 19B)에 의해 제거된다.The molten iron removing apparatus includes an air knife 17 for spraying compressed dry air into the grooves of the steel sheet to remove molten iron remaining in the grooves, and dust collecting hoods 19A and 19B for sucking and removing fumes and molten iron . The fume generated during the laser irradiation through the air knife and the dust-collecting hood is removed and the fume can be prevented from being introduced into the optical system. The air knife 17 injects compressed dry air having a predetermined pressure Pa into the groove of the steel plate 1 to remove the molten iron remaining in the groove. The compressed dry air in the air knife 17 preferably has a pressure (Pa) of 0.2 kg / cm 2 or more. When the pressure of the compressed dry air is smaller than 0.2 kg / cm 2 , it is impossible to remove the molten iron in the groove and the iron loss improving effect can not be secured. The fumes and spatters removed by the air knife are removed by the dust collecting hoods 19A and 19B disposed before and after the laser irradiation position.

또한, 상기 레이저 조사설비는 레이저 빔의 반사광과 산란광 및 복사열이 광학계로 유입되는 것을 차단하는 차폐부(18)를 더 포함할 수 있다. 상기 차폐부(18)는 강판에 조사된 레이저 빔(16)의 반사와 산란에 의해 광학계로 유입되는 반사광과 산란광을 차단함으로써, 반사광과 산란광에 의한 복사열에 의해 광학계가 가열되어 열변형되는 것을 방지한다. In addition, the laser irradiation equipment may further include a shielding portion 18 for shielding reflected light, scattered light, and radiant heat of the laser beam from entering the optical system. The shielding portion 18 shields the reflected light and the scattered light introduced into the optical system by reflection and scattering of the laser beam 16 irradiated on the steel plate to prevent the optical system from being thermally deformed by the radiant heat due to the reflected light and scattered light do.

상기 레이저룸(20)은 내부 공간을 갖는 룸 구조물로, 내부에는 상기 레이저 조사설비와 강판지지롤(9) 위치 제어설비를 수용하여 외부와 격리시키고, 이들의 원활한 구동을 위한 적절한 동작 환경을 제공한다. The laser room 20 is a room structure having an internal space. The laser irradiation facility and the steel plate supporting roll 9 are accommodated in the inside of the room structure to isolate it from the outside and provide an appropriate operating environment for smooth driving do.

강판 진행방향을 따라 상기 레이저룸(20)의 입측과 출측에는 각각 입구와 출구가 형성된다. 상기 레이저룸(20)은 외부의 먼지 등에 의해 내부 공간이 오염되지 않도록 오염물질 유입을 차단하는 시설을 구비한다. 이를 위해, 상기 레이저룸(20)은 내부 압력을 외부보다 높이기 위한 양압장치(23)를 구비한다. 상기 양압장치(23)는 레이저룸(20) 내부 압력을 외부 압력보다 상대적으로 높게 유지한다. 이에, 외부의 이물질이 레이저룸(20) 내부로 유입되는 것을 방지할 수 있게 된다. 또한, 강판이 출입되는 상기 입구와 출구에는 에어커튼(22A,22B,22C,22D)이 설치된다. 상기 에어커튼은 강판이 레이저룸(20)으로 들어오고 빠져나가는 통로인 입구와 출구에 공기를 분사하여 막을 형성함으로써, 입구와 출구를 통해 먼지 등이 유입되는 것을 차단한다. 또한, 상기 레이저룸(20) 내부 오염을 방지하기 위해, 레이저룸(20)의 출입구인 도어에는 샤워부스(21)가 설치될 수 있다. 상기 샤워부스(21)는 레이저룸(20)으로 들어오는 출입자의 몸에 묻은 이물질을 제거하게 된다. The entrance and exit of the laser room 20 are formed at the entrance and exit sides of the laser room 20 along the direction of the steel plate. The laser room 20 has a facility for blocking inflow of contaminants so that the internal space is not contaminated by external dust or the like. To this end, the laser room 20 is provided with a positive pressure device 23 for raising the internal pressure beyond the outside. The positive pressure device 23 maintains the pressure inside the laser room 20 relatively higher than the external pressure. Accordingly, it is possible to prevent foreign substances from entering into the laser room 20. In addition, air curtains 22A, 22B, 22C, and 22D are provided at the entrance and exit of the steel sheet. The air curtain blows air to the inlet and the outlet, which are passages through which the steel sheet enters and exits the laser room 20 to form a film, thereby blocking dust and the like from entering through the inlet and the outlet. In order to prevent contamination of the inside of the laser room 20, a shower booth 21 may be installed on the door, which is an entrance of the laser room 20. The shower booth 21 removes foreign matter adhering to the body of the passerby entering the laser room 20. [

상기 레이저룸(20)은 실질적으로 레이저 빔에 의한 강판 자구 미세화 공정이 진행되는 공간으로, 내부 환경의 변화를 최소화하고 적정 환경을 유지시킬 필요가 있다. 이를 위해, 상기 레이저룸(20)은 레이저 조사설비의 레이저 발진기(14)와 광학계(15) 등이 위치한 상부공간을 강판(1)이 지나가는 하부공간과 분리시키는 광학계 하부프레임(24), 및 레이저룸(20) 내부 온도와 습도를 제어하는 항온항습제어기(25)를 구비한다. The laser room 20 is a space in which the steel plate self-ballast finishing process by the laser beam proceeds, and it is necessary to minimize the change of the internal environment and maintain the proper environment. The laser room 20 includes an optical system lower frame 24 for separating the upper space in which the laser oscillator 14 and the optical system 15 of the laser irradiation facility are located from the lower space through which the steel plate 1 passes, And a constant temperature and humidity controller 25 for controlling the internal temperature and humidity of the room 20.

상기 광학계 하부프레임(24)은 레이저 발진기(14)와 광학계(15) 등의 주요 설비 동작 환경을 보다 철저히 관리할 수 있도록 한다. 상기 광학계 하부프레임(24)은 레이저룸(20) 내부에서 강판이 지나가는 광학계 하부 공간과 레이저 발진기와 광학계 미러 들이 위치한 광학계 상부 공간을 분리하도록 설치된다. 광학계 하부프레임(24)에 의해 레이저룸(20) 내부에서도 광학계 상부 공간이 별도로 분리되어 레이저 발진기나 광학계 등의 주요 설비에 대한 오염 방지와 온도 및 습도 제어가 보다 용이해진다.The optical system lower frame 24 makes it possible to more thoroughly manage the operation environment of the main equipment such as the laser oscillator 14 and the optical system 15. The optical system lower frame 24 is installed in the laser room 20 so as to separate the lower space of the optical system through which the steel plate passes, and the upper space of the optical system where the laser oscillator and the optical system mirrors are located. The upper space of the optical system is also separated from the inside of the laser room 20 by the optical system lower frame 24 to prevent contamination and temperature and humidity control of major facilities such as a laser oscillator and an optical system.

상기 항온항습제어기(25)는 레이저룸(20) 내부의 온도와 습도를 조절하여 적정 환경을 제공한다. 본 실시예에서 상기 항온항습제어기(25)는 레이저룸(20)의 내부 온도를 20 내지 25℃로 유지하고, 습도를 50% 이하로 유지할 수 있다.The constant temperature and humidity controller 25 adjusts the temperature and humidity inside the laser room 20 to provide a proper environment. In the present embodiment, the temperature and humidity controller 25 can maintain the internal temperature of the laser room 20 at 20 to 25 DEG C and maintain the humidity at 50% or less.

이와 같이, 레이저룸(20)의 내부 공간은 작업 환경에 적합한 온도와 습도로 계속 유지되어, 최적의 상태에서 강판에 대해 자구 미세화 공정이 진행될 수 있게 된다. 따라서, 공정에 필요한 최적의 동작 환경하에서 고품질의 제품을 대량으로 생산할 수 있게 된다.As described above, the inner space of the laser room 20 is maintained at a temperature and a humidity suitable for the working environment, so that the micro-miniaturization process can be performed on the steel sheet in the optimum condition. Therefore, a high-quality product can be mass-produced under the optimal operating environment required for the process.

본 실시예의 자구 미세화 장치는, 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함할 수 있다.The magnetic domain refining apparatus of the present embodiment may further include a post-treatment facility for removing hill-up and spatter formed on the surface of the steel sheet.

힐업과 스패터는 제품의 절연성과 점적률 저하의 원인이 되므로, 상기 후처리 설비를 통해 완전히 제거함으로써 제품의 품질을 높일 수 있다. Since the heel-up and spatter cause deterioration of the insulation and viscosity of the product, the quality of the product can be improved by completely removing the product through the post-treatment equipment.

상기 후처리 설비는 강판 이동방향을 따라 레이저룸(20) 후단에 배치되어 강판 표면의 힐업과 스패터를 제거하는 브러쉬롤(26A,26B)을 포함할 수 있다. 상기 브러쉬롤(26A,26B)은 구동모터에 의해 고속으로 회전되며, 동작시 발생되는 구동모터의 전류치를 설정된 목표치로 제어하는 전류제어계와, 브러쉬롤과 강판 사이의 간격을 조절하여 제어하는 브러쉬 위치제어계에 의해 회전속도와 강판과의 간격이 제어된다. 상기 브러쉬롤은 레이저 빔에 의한 홈이 형성된 강판의 일면에만 배치되거나, 강판의 양면에 배치될 수 있다. 상기 브러쉬롤(26A,26B)은 강판 표면에 밀착되어 고속으로 회전하면서 강판 표면에 부착되어 있는 힐업과 스패터 등을 제거하게 된다. 도 1에 도시된 바와 같이, 상기 브러쉬롤(26A,26B)에 근접하여 브러쉬롤에 의해 제거된 힐업과 스패터를 배출하기 위한 집진후드(19C)가 더 설치된다. 상기 집진후드(19C)는 브러쉬롤(26A,26B)에 의해 강판에서 떨어져나간 힐업과 스패터 등의 용융철을 흡입하여 외부로 배출하게 된다.The post-treatment equipment may include brush rolls 26A and 26B disposed at the rear end of the laser room 20 along the steel sheet moving direction to remove the heel-up and spatters of the steel sheet surface. The brush rolls 26A and 26B are rotated at a high speed by a driving motor. The brush rolls 26A and 26B are controlled by a current control system that controls the current value of the driving motor generated during operation to a predetermined target value, The rotation speed and the distance between the steel plate are controlled by the control system. The brush roll may be disposed on only one side of the steel plate having grooves formed by the laser beam, or on both sides of the steel plate. The brush rolls 26A and 26B come into close contact with the surface of the steel sheet and rotate at a high speed to remove the heel-up and spatter attached to the surface of the steel sheet. As shown in Fig. 1, a dust-collecting hood 19C for discharging the heel-up and the spatters removed by the brush roll in the vicinity of the brush rolls 26A and 26B is further provided. The dust-collecting hood 19C sucks the heel-up and the molten iron which are separated from the steel plate by the brush rolls 26A and 26B and spatters and discharges the molten iron to the outside.

또한, 상기 후처리 설비는 브러쉬롤(26A,26B) 후단에 배치되어 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정유닛(29)과, 청정유닛에 연결되어 청정유닛의 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링부(30)를 더 포함할 수 있다.The post-treatment facility includes a cleaning unit 29 disposed at the rear end of the brush rolls 26A and 26B for electrolytically reacting the steel sheet with the alkali solution to further remove the healing and spatter remaining on the surface of the steel sheet, And a filtering unit 30 for filtering foreign substances contained in the alkali solution of the clean unit from the alkali solution.

강판은 브러쉬롤(26A,26B)을 거쳐 1차적으로 힐업과 스패터가 제거되고, 청정유닛(29)을 지나면서 2차적으로 잔존 힐업과 스패터가 제거된다. 이에, 강판 표면에 부착된 힐업과 스패터를 보다 완벽하게 제거하여 제품 품질을 높일 수 있게 된다. The steel sheet is primarily healed and spatters are removed through the brush rolls 26A and 26B, and the remaining heal-up and spatters are secondarily removed through the clean unit 29. [ Thus, it is possible to more completely remove the heel-up and spatter attached to the surface of the steel sheet, thereby enhancing the product quality.

상기 청정유닛(29)은 내부에 알칼리용액이 채워지고, 일측에 필터링부(30)가 연결된다. 상기 청정유닛을 통해 강판을 처리함에 따라 내부 알칼리용액에 강판에서 제거된 힐업과 스패터가 누적되어, 강판의 청정 성능이 떨어지게 된다. 상기 필터링부(30)는 청정유닛의 알칼리용액을 순환시키면서 알칼리용액에 포함되어 있는 힐업과 스패터를 제거한다. 상기 필터링부(30)는 힐업과 스패터를 제거하여 알칼리용액의 철분 함유량을 500ppm 이하로 관리한다. 이와 같이, 청정 유닛의 청정 성능 저하를 방지하여 연속적으로 강판을 처리할 수 있게 된다.The clean unit 29 is filled with an alkali solution, and the filtering unit 30 is connected to one side. As the steel sheet is processed through the clean unit, the heel-up and spatters removed from the steel sheet are accumulated in the internal alkali solution, thereby deteriorating the cleaning performance of the steel sheet. The filtering unit 30 circulates the alkali solution of the cleaning unit and removes the healing and spatter contained in the alkali solution. The filtering unit 30 removes the heal-up and the spatter to control the iron content of the alkali solution to 500 ppm or less. In this way, deterioration of the cleaning performance of the clean unit can be prevented, and the steel sheet can be continuously treated.

이하, 본 실시예에 따른 전기강판의 자구 미세화 과정에 대해 설명하면 다음과 같다.Hereinafter, the process of miniaturization of the electric steel sheet according to the present embodiment will be described.

연속적으로 이송되는 강판은 사행제어설비와 장력제어설비를 거쳐 레이저룸 내부로 진입되어 2m/sec 이상의 속도로 진행되며, 자구 미세화 처리된다. 레이저룸 내부로 진입된 강판은 레이저 조사설비를 통해 영구 자구 미세화 처리 된 후 레이저룸 밖으로 인출된다. 레이저룸 외부로 인출된 강판은 후처리 설비를 거쳐 표면에 잔존하는 힐업과 스패터 등이 제거되어 후 공정으로 보내진다.Continuous steel plates are passed through the meandering control equipment and the tension control equipment, enter the laser room, proceed at a speed of 2 m / sec or more, and finely processed. The steel sheet entering the laser room is finely processed through the laser irradiation equipment and then drawn out of the laser room. The steel sheet drawn to the outside of the laser room is passed through the post-treatment facility and the heal-up and spatter remaining on the surface are removed and sent to the post-process.

이 과정에서, 강판 표면에 대한 레이저 조사가 진행되는 레이저룸은 자구 미세화를 위한 최적의 환경을 제공할 수 있도록 내부 동작 환경을 알맞게 설정하고 유지하게 된다.In this process, the laser room in which laser irradiation is performed on the surface of the steel sheet appropriately sets and maintains the internal operating environment so as to provide an optimum environment for microfabrication.

상기 레이저룸은 내부를 외부와 격리시켜 외부 오염물질의 유입을 차단하고, 레이저룸 내부 온도와 압력 및 습도를 자구 미세화 형성을 위한 동작 환경에 맞춰 제어하게 된다.The laser room isolates the inside of the laser room from the outside and blocks the inflow of external contaminants, and controls the internal temperature, pressure, and humidity of the laser room according to the operating environment for miniaturization.

레이저룸은 내부의 압력을 외부와 비교하여 높게 설정하여 유지함으로써, 외부의 먼지 등 이물질이 레이저룸 내부로 유입되는 것을 방지할 수 있다. 또한, 강판이 이동되는 통로인 입구와 출구에 공기에 의한 막을 형성함으로써, 입구와 출구를 통해서 강판이 진행하는 과정에서 먼지 등 이물질이 레이저룸 내부로 유입되는 것을 차단할 수 있게 된다. The inner pressure of the laser room is set higher than the external pressure, so that foreign substances such as dust can be prevented from entering into the laser room. In addition, by forming a film of air on the entrance and the exit, which are passages through which the steel sheet is moved, foreign substances such as dust can be prevented from flowing into the laser room during the process of the steel sheet through the entrance and exit.

또한, 레이저룸에 설치된 항온항습제어기는 레이저룸 내부의 온도를 20 내지 25℃로 유지하고, 습도를 50% 이하로 유지함으로써, 레이저 조사에 의한 자구 미세화 처리에 최적의 조건을 제공한다.The constant temperature and humidity controller installed in the laser room maintains the temperature inside the laser room at 20 to 25 DEG C and maintains the humidity at 50% or less, thereby providing an optimum condition for the magnetic domain refining treatment by laser irradiation.

이와 같이 레이저룸에 의해 레이저 빔 조사를 위한 최적의 환경이 제공되며, 강판은 사행 제어설비, 장력 제어설비, 그리고 강판지지롤 위치 조절설비를 거치면서 레이저 조사 위치에 정확히 위치하게 된다. In this way, the laser room provides the optimal environment for laser beam irradiation, and the steel sheet is accurately positioned at the laser irradiation position through the meander control facility, the tension control facility, and the steel plate support roll position adjustment facility.

먼저, 자구 미세화 처리를 위해 강판은 사행제어설비를 통해 진행 방향이 제어되어 생산라인 중앙을 따라 좌우로 치우침 없이 똑바로 이동하게 된다.First, the steel plate is controlled in a straight line through the meander control facility, and moves straight along the center of the production line.

사행 측정센서는 강판의 사행량을 지속적으로 검출하며, 강판이 사행하게 되면, 사행 측정센서에서 검출된 신호를 연산하여 강판 중앙위치 제어계가 스티어링롤의 축을 회전 및 이동시켜 강판을 정위치로 이동시키게 된다. 이와 같이 강판의 위치에 따라 지속적으로 스티어링 롤을 제어함으로써, 강판을 계속해서 생산라인 중앙을 벗어나지 않고 연속적으로 이동시킬 수 있게 된다.The meander detection sensor continuously detects the meandering amount of the steel sheet. When the steel sheet meanders, the signal detected by the meandering sensor is calculated, and the steel plate central position control system rotates and moves the shaft of the steering roll to move the steel plate to the correct position do. By continuously controlling the steering roll according to the position of the steel sheet, the steel sheet can be continuously moved continuously without departing from the center of the production line.

강판은 스티어링 롤을 지나 장력 조절을 위한 텐션 브라이들롤을 거쳐 이동하게 된다. 텐션 브라이들롤을 지난 강판의 장력은 장력 측정센서에 의해 검출된다. 강판 장력 제어계는 장력 측정센서에 의해 검출된 측정값을 연산하여 설정된 장력에 맙춰 텐션 브라이들롤의 속도를 제어한다. 이에, 이동되는 강판의 장력을 설정된 범위에 맞춰 지속적으로 유지할 수 있게 된다.The steel plate is moved past the steering roll through the tension bridle roll for controlling the tension. Tension The tension of the steel plate past the bridle roll is detected by the tension measuring sensor. The steel plate tension control system calculates the measured value detected by the tension measuring sensor and controls the speed of the tension bridle roll with the set tension. Thus, the tension of the steel sheet to be moved can be maintained constantly in accordance with the set range.

텐션 브라이들롤을 거친 강판은 레이저룸의 입구를 통해 레이저룸 내부로 유입된다. 강판은 레이저룸 내부에서 브라이들롤에 의해 방향이 전환되어 두 개의 브라이들롤 사이에 위치한 강판지지롤에 밀착된 상태로 이동된다.The steel plate passed through the tensile bridle roll enters the laser room through the entrance of the laser room. The steel sheet is turned inside the laser room by the bridle roll and moved in a state of being in close contact with the steel plate supporting roll located between the two bridle rolls.

상기 강판지지롤은 강판을 상하로 이동시켜 레이저 빔의 초점심도 내에 강판을 위치시키게 된다. The steel plate supporting roll moves the steel plate up and down to position the steel plate in the depth of focus of the laser beam.

레이저 조사설비로부터 강판에 레이저 빔이 조사되면 휘도 측정센서는 강판 표면의 불꽃 밝기를 실시간으로 검출하고, 휘도 측정센서에서 검출된 측정값에 따라 강판지지롤 위치 제어계가 강판지지롤을 상하로 이동시켜 레이저 빔의 초점 심도 내에 강판이 위치하도록 한다. 이에, 강판 표면에 레이저 빔이 효과적으로 조사되어 고품질의 조사선을 형성할 수 있게 된다.When the laser beam is irradiated from the laser irradiation equipment to the steel plate, the brightness measuring sensor detects the brightness of the flame on the steel plate in real time, and the steel plate supporting roll position control system moves the steel plate supporting roll up and down according to the measured value detected by the luminance measuring sensor So that the steel sheet is positioned within the focal depth of the laser beam. Thus, the surface of the steel sheet is effectively irradiated with the laser beam, and high quality radiation can be formed.

상기 레이저 발진기 제어기는 강판의 사행 정도에 따라 레이저 발진기를 온/오프 시킨다. 상기 레이저 발진기 제어기는 사행 측정센서와 연결되어 사행 측정센서로부터 측정된 강판의 사행량이 예를 들어, 15mm 이상이 되면 강판이 강판지지롤에서 너무 많이 벗어난 것으로 판단하여 레이저 발진기를 오프(off)시킨다. 이에, 레이저 빔이 사행된 강판을 지나 강판지지롤 표면에 조사되어 롤이 손상되는 것을 방지할 수 있다.The laser oscillator controller turns on / off the laser oscillator according to the degree of skew of the steel sheet. The laser oscillator controller is connected to the meander measurement sensor, and determines that the steel plate has deviated too much from the steel plate supporting roll when the amount of meander of the steel sheet measured by the meander measurement sensor is 15 mm or more, for example, and turns off the laser oscillator. Thus, it is possible to prevent the laser beam from being irradiated to the surface of the steel plate supporting roll through the meandered steel plate to damage the roll.

레이저 발진기 제어기의 명령에 따라 레이저 발진기에서 생성된 레이저 빔은 광학계를 거쳐 강판 표면에 조사된다. 레이저 발진기는 TEM00 연속파 레이저빔을 발진하여 광학계로 전달한다. The laser beam generated by the laser oscillator is irradiated onto the surface of the steel plate through the optical system in response to the command from the laser oscillator controller. The laser oscillator oscillates the TEM 00 continuous wave laser beam and transmits it to the optical system.

광학계는 레이저 빔의 방향을 전환하여 강판의 표면에 레이저를 조사함으로써, 강판 표면에 연속적으로 용융 홈을 형성하여 자구 미세화 처리한다. The optical system changes the direction of the laser beam and irradiates the surface of the steel sheet with a laser to continuously form a molten groove on the surface of the steel sheet to carry out micro-finishing.

광학계를 거쳐 강판에 조사되는 레이저 빔에 의해 강판 표면이 용융되면서 조사선을 따라 용융 홈이 형성된다. 본 실시예에서, 레이저 빔 조사를 통해 강판 표면에 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛인 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 레이저 발진기와 광학계는 강판의 용융에 필요한 1.0 내지 5.0J/㎟ 범위내의 레이저 에너지 밀도를 강판에 전달한다. The surface of the steel sheet is melted by the laser beam irradiated to the steel sheet through the optical system, and a melted groove is formed along the irradiation line. In this embodiment, grooves having an upper width, a lower width and a depth of not more than 70 mu m, not more than 10 mu m, and 3 to 30 mu m, respectively, are formed on the surface of the steel sheet through laser beam irradiation, The laser oscillator and the optical system transmit the laser energy density within the range of 1.0 to 5.0 J / mm 2 to the steel sheet necessary for melting the steel sheet so that the re-irradiated portion is formed.

또한, 광학계를 통한 레이저빔 조사 과정에서 기준점에서 이격된 위치에 레이저 빔을 조사함으로써, 강판에서 되반사되는 레이저 빔이 광학계로 입사되지 않게 된다. 따라서, 상기한 백 리플렉션 현상을 방지하고 반사광에 의해 레이저 빔의 입사 광로가 간섭받지 않아 레이저 빔에 의해 형성되는 홈 형상의 품질을 유지할 수 있게 된다.Also, by irradiating the laser beam at a position spaced apart from the reference point in the laser beam irradiation process through the optical system, the laser beam reflected back from the steel plate is not incident on the optical system. Therefore, the above-described back reflection phenomenon can be prevented, and the incident light path of the laser beam is not interfered by the reflected light, so that the groove quality formed by the laser beam can be maintained.

본 실시예는 레이저 조사 과정에서, 광학계의 집광 미러를 냉각하여, 레이저의 직가열이나 강판 표면에서 반사되는 반사광의 복사열에 의해 집광 미러가 열변형되는 것을 방지한다.In this embodiment, in the laser irradiation process, the condensing mirror of the optical system is cooled to prevent the condensing mirror from being thermally deformed by the direct heating of the laser or the radiant heat of the reflected light reflected from the surface of the steel plate.

집광 미러에 대한 냉각은 광학계의 집광 미러 후면에 배치된 냉각자켓을 통해 집광 미러를 1차 냉각하고, 상기 집광 미러에 설치되는 보조 냉각블럭을 통해 집광 미러를 2차 냉각하여 이루어진다.The cooling of the condensing mirror is performed by first cooling the condensing mirror through the cooling jacket disposed on the rear side of the condensing mirror of the optical system and secondly cooling the condensing mirror through the auxiliary cooling block installed in the condensing mirror.

1차 냉각 과정에서 냉각 자켓 입구측과 출구측의 온도 차를 검출하여, 상기 온도차가 기설정된 온도 편차 범위를 벗어난 경우 상기 보조 냉각블럭에 의한 집광 미러 2차 냉각 온도를 조절하게 된다.The temperature difference between the inlet side and the outlet side of the cooling jacket is detected in the primary cooling process and the secondary cooling temperature of the condensing mirror by the auxiliary cooling block is adjusted when the temperature difference is out of the predetermined temperature deviation range.

집광 미러를 통한 레이저 빔의 조사 경로가 변하지 않으려면 강판 폭방향에 대한 집광 미러의 변형량이 16㎛ 이하로 작아야 하고, 집광 미러의 양 선단간 온도 편차가 0 내지 2℃의 범위로 유지되어야 한다.In order that the irradiation path of the laser beam through the condensing mirror does not change, the deformation amount of the condensing mirror with respect to the steel plate width direction should be 16 μm or less and the temperature deviation between both ends of the condensing mirror must be maintained within the range of 0 to 2 ° C.

이에, 보조 냉각블럭을 통해 집광 미러를 추가적으로 냉각함으로써, 레이저 조사 방향을 따라 집광 미러의 양 측단 사이의 온도 편차가 0 내지 2℃가 되도록 집광 미러를 냉각할 수 있다. 따라서, 집광 미러의 변형량을 16㎛이하로 낮춰 레이저 빔의 조사 불량을 방지할 수 있게 된다.Thus, by further cooling the condensing mirror through the auxiliary cooling block, it is possible to cool the condensing mirror so that the temperature deviation between both ends of the condensing mirror is 0 to 2 占 폚 along the laser irradiation direction. Therefore, the amount of deformation of the condensing mirror can be reduced to 16 mu m or less to prevent defective irradiation of the laser beam.

아래 표 1은 본 실시예에 따른 집광 미러 변형량을 종래와 비교하여 도시한 것이다.Table 1 below shows the condensed mirror deformation amount according to this embodiment in comparison with the conventional one.

집광 미러 온도편차(℃)Deviation of temperature of condensing mirror (℃) 세로 변형량(㎛)Vertical deformation (탆) 가로 변형량(㎛)Transverse strain (탆) 허용범위Allowable range 비교예1Comparative Example 1 77 13.8713.87 17.4817.48 벗어남Departure 비교예2Comparative Example 2 55 13.7813.78 16.6916.69 벗어남Departure 실시예1Example 1 22 13.6413.64 15.5215.52 허용permit 실시예2Example 2 00 13.5513.55 14.7714.77 허용permit

상기 표 1에서 나타낸 바와 같이, 본 실시예들의 경우 반복적인 실험 결과 집광 미러의 온도 편차가 기준범위인 0 내지 2℃ 이내로 유지되어 강판의 폭방향에 대한 변형량(표 1에서 가로 변형량으로 표시됨)이 모두 16㎛ 이하로 나타났다.As shown in Table 1, in the case of the embodiments of the present invention, the temperature variation of the condensing mirror is maintained within the reference range of 0 to 2 DEG C so that the deformation amount (indicated by the horizontal deformation amount in Table 1) All were less than 16 ㎛.

비교예들은 모두 본 실시예와 달리 냉각자켓에 의한 1차 냉각만 수행되거나 냉각이 전혀 되지 않는 구조로, 실험 결과 집고아미러의 온도 편차가 기준범위를 벗어나 강판 폭방향에 대한 변형량이 모두 16㎛를 초과하는 것으로 나타났다.In the comparative examples, unlike the present embodiment, only the first cooling by the cooling jacket is performed or the cooling is not performed at all. As a result, the temperature deviation of the orphaned mirror deviates from the reference range, Respectively.

따라서, 본 실시예의 경우 집광 미러에 대한 효과적인 냉각으로 집광 미러의 온도 편차를 줄이고 열변형량을 최소화할 수 있음을 확인할 수 있다.Therefore, in the case of this embodiment, it can be confirmed that the effective cooling of the condensing mirror can reduce the temperature deviation of the condensing mirror and minimize the thermal deformation amount.

상기 광학계는 레이저 주사속도를 제어하는 기능이 있어 압연 방향에 대해 레이저 조사선의 간격을 조정할 수 있다. 또한, 광학계는 회전기능을 구비하여 레이저 조사선의 각도를 변경할 수 있다. 본 실시예에서, 광학계에 의해 레이저 조사선의 간격을 압연방향으로 2 내지 30mm로 조정 가능하게 함으로써 레이저 빔에 의한 열영향부 (HAZ, Heat Affected Zone)의 영향을 최소화하여 강판의 철손을 개선할 수 있다. 또한, 레이저 빔 조사 과정에서 상기 광학계의 회전을 통해 강판 표면에 조사되는 레이저빔의 조사선 각도를 변환할 수 있다. 본 실시예에서, 상기 광학계는 레이저 빔의 조사선 각도를 강판의 폭방향에 대해 ±4°의 범위로 변환할 수 있다. 즉, 도 2에서 y축 방향에 대해 ±4°범위에서 기울어지도록 하여 레이저 빔의 조사선(31)을 형성할 수 있다. 이에 강판 표면에 형성되는 조사선은 압연 방향에 대해 86 내지 94°의 범위에서 기울어져 형성될 수 있다. 이와 같이 조사선을 y축 방향에 대해 기울어지게 형성함으로써, 레이저에 의한 홈 형성에 따른 자속밀도 저하를 최소화할 수 있게 된다.The optical system has a function of controlling the laser scanning speed so that the interval of the laser irradiation lines with respect to the rolling direction can be adjusted. Further, the optical system has a rotation function and can change the angle of the laser radiation line. In the present embodiment, the distance between the laser irradiation lines can be adjusted to 2 to 30 mm in the rolling direction by the optical system, thereby minimizing the influence of the heat affected zone (HAZ, heat affected zone) have. Further, in the laser beam irradiation process, the angle of the irradiation line of the laser beam irradiated on the surface of the steel sheet can be changed through the rotation of the optical system. In this embodiment, the optical system can convert the angle of the irradiation line of the laser beam into a range of +/- 4 degrees with respect to the width direction of the steel sheet. In other words, the irradiation line 31 of the laser beam can be formed so as to be inclined in the range of ± 4 degrees with respect to the y-axis direction in FIG. Therefore, the radiation rays formed on the surface of the steel sheet can be formed by inclining in the range of 86 to 94 degrees with respect to the rolling direction. By forming the irradiation line inclined with respect to the y-axis direction in this manner, it is possible to minimize the decrease in the magnetic flux density due to the formation of grooves by the laser.

상기 레이저 빔 조사 과정에서, 강판이 레이저 빔에 의해 용융되면서 다량의 흄과 용융철인 스패터가 발생된다. 흄과 스패터는 광학계를 오염시키며, 홈 내부에 용융철이 잔존하는 경우 정확한 홈의 형성이 어렵고 철손의 개손이 이루어지지 않아 제품 품질을 저해하게 된다. 이에, 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하고, 집진후드를 통해 흄과 용융철을 바로 흡입하여 제거한다. 따라서, 강판 자구 미세화 과정에서 흄이 광학계 쪽으로 유입되는 것을 차단하고, 흄과 스패터를 신속하게 제거하여 자구 미세화 처리 효율을 높일 수 있게 된다. 또한, 상기 레이저 빔 조사 과정에서 레이저 빔의 산란광과 열이 레이저 조사설비의 광학계로 유입되는 것을 더 차단할 수 있다. In the laser beam irradiation process, a steel sheet is melted by a laser beam, and a large amount of fume and molten iron spatter are generated. The fume and spatter contaminate the optical system, and if molten iron remains in the groove, it is difficult to form a precise groove and damage of the iron loss is not made and the product quality is deteriorated. Thus, compressed dry air is sprayed into the grooves of the steel sheet to remove the residual iron in the grooves, and the fumes and molten iron are immediately sucked through the dust collecting hood to be removed. Accordingly, it is possible to prevent the fume from flowing into the optical system in the process of finishing the steel plate magnetic domain, and to rapidly remove the fume and the spatter, thereby improving the efficiency of microfabrication. In addition, it is possible to further prevent the scattered light and the heat of the laser beam from being introduced into the optical system of the laser irradiation equipment during the laser beam irradiation process.

레이저 빔 조사를 통해 강판 표면에 홈이 형성되면서 자구 미세화 처리되고, 자구 미세화 처리된 강판은 연속적으로 이동되어 레이저룸의 출구를 통해 외부로 배출된다. Grooves are formed on the surface of the steel sheet through the laser beam irradiation, and the steel plate subjected to the micro-finishing process is continuously moved and discharged to the outside through the exit of the laser room.

레이저룸에서 배출된 강판은 후처리 과정을 거쳐 강판 표면에 부착된 힐업과 스패터를 제거하는 과정을 거치게 된다.The steel sheet discharged from the laser room is subjected to a post-treatment process to remove the heel-up and spatters attached to the surface of the steel sheet.

강판은 먼저 레이저룸 외측에 배치된 브러쉬롤을 지나면서, 강판에 밀착되어 고속으로 회전하는 브러쉬롤에 의해 일차적으로 힐업과 스패터가 제거된다. The steel plate is firstly passed through the brush roll disposed outside the laser room, and is firstly heel-up and spatters are removed by the brush roll which is closely attached to the steel plate and rotates at high speed.

브러쉬롤을 거친 강판은 이차적으로 청정 유닛을 거치면서 강판과 알칼리용액과의 전기분해반응을 통해 잔존하는 힐업과 스패터가 최종적으로 제거된다. 청정유닛을 거치면서 힐업과 스패터가 제거된 강판은 후공정으로 이송된다. The steel plate after the brush roll is finally passed through the clean unit, and the remaining healing and spatter are finally removed through the electrolysis reaction between the steel sheet and the alkali solution. The steel plate with the heel-up and spatter removed through the clean unit is transferred to the post-process.

철손
개선율(%)
Iron loss
Improvement rate (%)
레이저 조사후After laser irradiation 열처리후After heat treatment 9.59.5 11.611.6 9.79.7 12.912.9 11.511.5 13.513.5 8.48.4 11.611.6 8.68.6 11.811.8 8.58.5 11.711.7

상기 표 2는 본 실시예에 따른 연속파 레이저 빔 조사에 의해 0.27mm 두께의 강판 표면에 형성된 홈에 의한 방향성 전기강판의 철손 개선율을 나타내고 있다. 표 2에 도시된 바와 같이, 본 실시예를 통해 자구 미세화 처리된 강판의 경우 레이저 조사 후와, 레이저로 자구 미세화하고 열처리한 후 모두 철손이 개선됨을 확인할 수 있다.Table 2 shows the iron loss improvement ratio of the grain-oriented electrical steel sheet by grooves formed on the surface of the steel sheet of 0.27 mm thickness by the continuous wave laser beam irradiation according to the present embodiment. As shown in Table 2, it can be seen that, in the case of the steel sheet subjected to the micro-finishing treatment in the present embodiment, iron loss is improved both after the laser irradiation and after the heat treatment.

이상 설명한 바와 같이 본 발명의 예시적인 실시예가 도시되어 설명되었지만, 다양한 변형과 다른 실시예가 본 분야의 숙련된 기술자들에 의해 행해질 수 있을 것이다. 이러한 변형과 다른 실시예들은 첨부된 청구범위에 모두 고려되고 포함되어, 본 발명의 진정한 취지 및 범위를 벗어나지 않는다 할 것이다.While the illustrative embodiments of the present invention have been shown and described, various modifications and alternative embodiments may be made by those skilled in the art. Such variations and other embodiments will be considered and included in the appended claims, all without departing from the true spirit and scope of the invention.

1 : 강판 2A,2B : 스티어링 롤(SR)
3 : 강판 중앙위치 제어계 4 : 사행 측정센서
5A,5B : 텐션 브라이들롤 6 : 강판 장력 제어계
7 : 강판 장력 측정센서 8A : 디플렉터 롤
8B : 디플렉터 롤 8C : 중간 디플렉터 롤
9 : 강판지지롤 10 : 휘도 측정센서
11 : 거리 측정센서 12 : 강판지지롤 위치 제어계
13 : 레이저 발진기 제어기 14 : 레이저 발진기
15 : 광학계 16 : 레이저 빔
17 : 에어 나이프 18 : 흡수부
19A,19B,19C : 집진후드 20 : 레이저룸
21 : 샤워부스 22A,22B,22C,22D : 에어커튼
23 : 양압장치 24 : 광학계 하부프레임
25 : 항온항습제어기 26A,26B : 브러쉬롤
27 : 모터전류 제어계 28 : 브러쉬 위치 제어계
29 : 청정유닛 30 : 필터링부
31 : 조사선 32 : 폴리곤 미러
33 : 회전모터 34 : 구동모터
35 : 집광 미러 36 : 구동부
37 : 모듈 플레이트 38 : 셔터
39 : 헤더 140: 보조 냉각블럭
141: 측면냉각부 142: 연결부
143: 냉각유로 144: 연결유로
150: 순환라인 151: 열교환기
152: 공급펌프 153: 온도센서
154: 제어부 156: 항온조
157: 필터 158: 감압밸브
351: 미러판 352: 냉각자켓
1: steel plate 2A, 2B: steering roll (SR)
3: Steel plate center position control system 4: Meander measurement sensor
5A, 5B: tension bridle roll 6: steel plate tension control system
7: Steel plate tension measuring sensor 8A: Deflector roll
8B: Deflector roll 8C: Medium deflector roll
9: steel plate supporting roll 10: luminance measuring sensor
11: distance measuring sensor 12: steel plate supporting roll position control system
13: laser oscillator controller 14: laser oscillator
15: optical system 16: laser beam
17: air knife 18: absorption part
19A, 19B, 19C: dust collecting hood 20: laser room
21: Shower booth 22A, 22B, 22C, 22D: Air curtain
23: positive pressure device 24: optical system lower frame
25: Constant temperature and humidity controller 26A, 26B: Brush roll
27: motor current control system 28: brush position control system
29: clean unit 30: filtering unit
31: Survey line 32: Polygon mirror
33: rotation motor 34: drive motor
35: condensing mirror 36:
37: module plate 38: shutter
39: Header 140: Auxiliary cooling block
141: side cooling section 142:
143: cooling channel 144: connecting channel
150: circulation line 151: heat exchanger
152: Feed pump 153: Temperature sensor
154: control unit 156: thermostatic chamber
157: Filter 158: Pressure reducing valve
351: mirror plate 352: cooling jacket

Claims (22)

생산라인을 따라 진행하는 강판을 지지하면서 상기 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절단계, 강판 표면에 레이저빔을 조사하여 상기 강판을 용융시켜 강판의 표면에 홈을 형성하는 레이저 조사 단계, 및 레이저 조사 과정에서 레이저 빔을 강판 표면으로 반사시키는 광학계의 집광 미러 표면을 냉각시키는 냉각 단계를 포함하고,
상기 냉각 단계는 광학계의 집광 미러 후면에 배치된 냉각자켓을 통해 집광 미러를 1차 냉각하는 단계, 및 상기 집광 미러에 설치되는 보조 냉각블럭을 통해 집광 미러를 2차 냉각하는 단계를 포함하는 방향성 전기강판의 자구미세화 방법.
A step of adjusting a position of a steel plate supporting roll to control a position of the steel plate in a vertical direction while supporting a steel plate running along a production line, a laser irradiation step of forming a groove on the surface of the steel plate by irradiating a laser beam onto the surface of the steel plate, And a cooling step of cooling the condensing mirror surface of the optical system reflecting the laser beam to the surface of the steel sheet in the laser irradiation process,
Wherein the cooling step includes a step of first cooling the condensing mirror through a cooling jacket disposed on the rear side of the condensing mirror of the optical system, and a step of secondarily cooling the condensing mirror through the auxiliary cooling block installed in the condensing mirror A method of finely dividing a steel plate.
제 1 항에 있어서,
상기 레이저 조사단계는, 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에, 레이저 빔을 조사하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 1,
Wherein the laser irradiating step irradiates the surface of the steel sheet contacting and advancing in the form of a circular arc on the surface of the steel sheet supporting roll with the laser beam irradiation position when the irradiation direction of the laser beam passes the central axis of the steel sheet supporting roll as a reference point, And irradiating a laser beam at a position spaced apart at an angle from the center of the support roll along the outer circumferential surface.
제 2 항에 있어서,
상기 레이저 조사단계에서, 레이저 빔은 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에서 조사되는 방향성 전기강판의 자구미세화 방법.
3. The method of claim 2,
Wherein the laser beam is irradiated to the reference point in a range of 3 to 7 degrees apart from the center of the steel plate supporting roll along the outer circumferential surface thereof in the laser irradiation step.
제 1 항에 있어서,
상기 레이저 조사단계는, 강판 표면에 조사되는 레이저빔의 조사선 각도를 변환하는 각도 변환 단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 1,
Wherein the laser irradiation step further comprises an angle conversion step of converting an angle of an irradiation line of the laser beam irradiated on the surface of the steel sheet.
제 4 항에 있어서,
상기 각도 변환 단계는, 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 ±4°의 범위로 변환하는 방향성 전기강판의 자구미세화 방법.
5. The method of claim 4,
Wherein the angle conversion step converts the angle of the irradiation line of the laser beam in the width direction of the steel sheet into a range of +/- 4 degrees.
제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
상기 냉각단계는 1차 냉각 과정에서 냉각 자켓 입구측과 출구측의 온도 차를 검출하는 단계, 및 상기 온도차가 기설정된 온도 편차 범위를 벗어난 경우 상기 보조 냉각블럭에 의한 집광 미러 2차 냉각 온도를 조절하는 단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
6. The method according to any one of claims 1 to 5,
Wherein the cooling step comprises the steps of: detecting a temperature difference between a cooling jacket inlet side and an outlet side in a primary cooling process; and controlling a secondary cooling temperature of the condensing mirror by the auxiliary cooling block when the temperature difference is out of a predetermined temperature deviation range The method further comprising the step of:
제 6 항에 있어서,
상기 냉각 단계는 레이저 조사 방향을 따라 집광 미러의 양 측단 사이의 온도 편차가 0 내지 2℃로 유지되도록 집광 미러를 냉각하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 6,
Wherein the cooling step cools the condensing mirror so that the temperature deviation between both ends of the condensing mirror is maintained at 0 to 2 占 폚 along the laser irradiation direction.
제 6 항에 있어서,
레이저 조사가 진행되는 레이저룸의 내부 동작 환경을 설정하고 유지하는 설정유지단계를 더 포함하고,
상기 설정유지단계는, 레이저룸 내부를 외부와 격리시켜 외부 오염물질의 유입을 차단하는 단계, 및 레이저룸 내부 온도와 압력 및 습도를 제어하는 단계를 포함하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 6,
Further comprising a setting maintaining step of setting and maintaining an internal operating environment of the laser room in which laser irradiation is performed,
Wherein the setting and maintaining step includes the step of isolating the inside of the laser room from the outside to block inflow of external contaminants, and controlling the internal temperature, pressure, and humidity of the laser room.
제 6 항에 있어서,
상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 6,
Further comprising a tension control step of applying a tension to the steel plate so as to maintain the steel plate in a flattened unfolded state.
제 6 항에 있어서,
상기 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 6,
And a skew control step of causing the steel sheet to move left and right along the center of the production line without tilting.
제 6 항에 있어서,
상기 레이저 조사단계를 거쳐 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
The method according to claim 6,
Further comprising a post-treatment step of removing hill-up and spatter formed on a surface of the steel sheet through the laser irradiation step.
생산라인을 따라 이동되는 강판을 지지하면서 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절설비, 및 레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비, 및 상기 레이저 조사설비의 광학계에 구비되어 레이저 빔을 강판 표면으로 반사시키는 집광 미러에 설치되어 집광 미러 표면을 냉각시키는 냉각부를 포함하고,
상기 냉각부는 광학계의 집광 미러 후면에 배치되어 집광 미러를 1차 냉각하는 냉각자켓, 및 상기 집광 미러의 측면에 배치되어 집광 미러를 2차 냉각하는 보조 냉각블럭을 포함하는 방향성 전기강판의 자구미세화 장치.
A steel plate support roll position adjusting device for controlling the position of the steel plate in the vertical direction while supporting the steel plate moved along the production line, and a laser irradiation equipment for forming a groove on the surface of the steel plate by melting the steel plate by irradiating the laser beam, And a cooling unit provided in an optical system of the laser irradiation equipment and provided in a condensing mirror for reflecting the laser beam onto the surface of the steel plate to cool the surface of the condensing mirror,
Wherein the cooling section includes a cooling jacket disposed on a rear surface of the condensing mirror of the optical system for primarily cooling the condensing mirror and an auxiliary cooling block disposed on a side of the condensing mirror for cooling the condensing mirror to secondarily cool the condensing mirror, .
제 12 항에 있어서,
상기 레이저 조사설비는 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여, 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에 레이저 빔이 조사하는 구조의 방향성 전기강판의 자구미세화 장치.
13. The method of claim 12,
The laser irradiating equipment has a laser beam irradiating position when the irradiation direction of the laser beam passes through the central axis of the steel plate supporting roll as a reference point with respect to the surface of the steel plate contacting and advancing in the form of an arc on the surface of the steel plate supporting roll, Wherein the laser beam is irradiated at a position spaced at an angle from the center of the support roll along the outer circumferential surface.
제 13 항에 있어서,
상기 레이저 조사설비는 레이저 빔을 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에 조사하는 구조의 방향성 전기강판의 자구미세화 장치.
14. The method of claim 13,
Wherein the laser irradiation equipment irradiates the laser beam to the reference point in a range of 3 to 7 degrees apart from the center of the steel plate supporting roll along the outer circumferential surface thereof.
제 12 항에 있어서,
상기 광학계는 구동부에 의해 회전 가능한 구조로 이루어져, 강판에 대해 회전하여 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 변환하는 구조의 방향성 전기강판의 자구미세화 장치.
13. The method of claim 12,
Wherein the optical system has a structure rotatable by a driving unit and rotates with respect to the steel plate to change the angle of the irradiation line of the laser beam with respect to the width direction of the steel plate.
제 12 항 내지 제 15 항 중 어느 한 항에 있어서,
상기 보조 냉각블럭은 집광 미러의 각 측면에 배치되어 집광 미러의 측면을 냉각하는 복수개의 측면냉각부, 각 측면냉각부를 연결하는 연결부, 및 상기 측면냉각부와 연결부 내부를 따라 형성되어 냉각매체가 이동하는 유로를 포함하는 방향성 전기강판의 자구미세화 장치.
16. The method according to any one of claims 12 to 15,
Wherein the auxiliary cooling block includes a plurality of side cooling portions disposed on each side of the condensing mirror for cooling the side surface of the condensing mirror, a connecting portion connecting the side cooling portions, and a cooling portion formed along the inside of the side cooling portion, And a flow path for flowing the magnetic field of the directional electric steel plate.
제 16 항에 있어서,
상기 냉각부는 보조 냉각블럭으로 냉각매체를 순환 공급하는 공급부를 더 포함하고,
상기 공급부는 냉각매체 순환라인 상에 설치되어 보조 냉각블럭을 거친 냉각 매체를 냉각하는 열교환기와, 열교환기를 거친 냉각 매체를 냉각블럭으로 공급하는 공급펌프, 상기 냉각자켓의 입구측과 출구측 온도 편차를 검출하여 상기 온도 편차가 기준 범위를 벗어난 경우 상기 열교환기를 제어하여 보조 냉각블럭으로 공급되는 냉각매체의 온도를 조절하는 제어부를 포함하는 방향성 전기강판의 자구미세화 장치.
17. The method of claim 16,
Wherein the cooling section further comprises a supply section for circulating and supplying the cooling medium to the auxiliary cooling block,
The supply unit includes a heat exchanger installed on the cooling medium circulation line for cooling the cooling medium passed through the auxiliary cooling block, a supply pump for supplying the cooling medium passed through the heat exchanger to the cooling block, and a temperature difference between the inlet side and the outlet side of the cooling jacket And controlling the temperature of the cooling medium supplied to the auxiliary cooling block by controlling the heat exchanger when the temperature deviation is out of the reference range.
제 16 항에 있어서,
상기 강판지지롤 위치 조절설비와 레이저조사설비를 외부로부터 격리 수용하며 레이저 조사를 위한 동작 환경을 제공하는 레이저룸을 더 포함하는 방향성 전기강판의 자구미세화 장치.
17. The method of claim 16,
Further comprising a laser room for isolating the steel plate supporting roll position adjusting facility and the laser irradiation facility from the outside and providing an operating environment for laser irradiation.
제 18 항에 있어서,
상기 레이저룸은 상기 레이저 조사설비와 강판지지롤 위치 제어설비를 수용하여 외부와 격리시키도록 내부 공간을 형성하고, 강판의 진행방향을 따라 양 측면에는 입구와 출구가 형성되며, 내부에는 레이저룸 내부 압력을 외부보다 높이기 위한 양압장치, 레이저 조사설비의 광학계가 위치한 상부공간을 강판이 지나가는 하부공간과 분리시키는 광학계 하부프레임, 및 레이저룸 내부 온도와 습도를 제어하는 항온항습제어기를 포함하는 방향성 전기강판의 자구미세화 장치.
19. The method of claim 18,
The laser room accommodates the laser irradiation equipment and the steel plate support roll position control equipment to form an inner space for isolating the laser irradiation equipment and the steel plate support roll position control equipment from each other. The entrance and exit are formed on both sides along the progress direction of the steel plate, A directional electric steel plate including an optical system lower frame for separating the upper space in which the optical system of the laser irradiation equipment is located from the lower space through which the steel sheet passes, and a constant temperature and humidity controller for controlling the laser room internal temperature and humidity, .
제 16 항에 있어서,
상기 강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비를 더 포함하는 방향성 전기강판의 자구미세화 장치.
17. The method of claim 16,
And a tensile force control device for applying a tensile force to the steel plate so as to maintain the steel plate in a flattened unfolded state.
제 16 항에 있어서,
상기 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어설비를 더 포함하는 방향성 전기강판의 자구미세화 장치.
17. The method of claim 16,
Further comprising a warp control device for causing the steel strip to move left and right along the center of the production line without tilting.
제 16 항에 있어서,
상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함하는 방향성 전기강판의 자구미세화 장치.
17. The method of claim 16,
Further comprising post-treatment equipment for removing hill-up and spatter formed on the surface of the steel sheet.
KR1020160008401A 2016-01-22 2016-01-22 Method and apparatus for refining magnetic domains grain-oriented electrical steel KR102428853B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160008401A KR102428853B1 (en) 2016-01-22 2016-01-22 Method and apparatus for refining magnetic domains grain-oriented electrical steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160008401A KR102428853B1 (en) 2016-01-22 2016-01-22 Method and apparatus for refining magnetic domains grain-oriented electrical steel

Publications (2)

Publication Number Publication Date
KR20170088250A true KR20170088250A (en) 2017-08-01
KR102428853B1 KR102428853B1 (en) 2022-08-02

Family

ID=59650432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160008401A KR102428853B1 (en) 2016-01-22 2016-01-22 Method and apparatus for refining magnetic domains grain-oriented electrical steel

Country Status (1)

Country Link
KR (1) KR102428853B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115070344A (en) * 2022-03-23 2022-09-20 胡凌山 Electrode current collector and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272587A (en) * 1997-03-28 1998-10-13 Nippon Steel Corp Method for preventing diffusion of laser beam
KR20120073913A (en) * 2010-12-27 2012-07-05 주식회사 포스코 Apparatus and method for miniaturizing magnetic domain of a grain-oriented electrical steel sheets
JP5606923B2 (en) * 2007-12-26 2014-10-15 ポスコ Magnetic domain refinement apparatus and method for grain-oriented electrical steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272587A (en) * 1997-03-28 1998-10-13 Nippon Steel Corp Method for preventing diffusion of laser beam
JP5606923B2 (en) * 2007-12-26 2014-10-15 ポスコ Magnetic domain refinement apparatus and method for grain-oriented electrical steel sheet
KR20120073913A (en) * 2010-12-27 2012-07-05 주식회사 포스코 Apparatus and method for miniaturizing magnetic domain of a grain-oriented electrical steel sheets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115070344A (en) * 2022-03-23 2022-09-20 胡凌山 Electrode current collector and preparation method thereof
CN115070344B (en) * 2022-03-23 2024-01-19 胡凌山 Electrode current collector preparation method and electrode current collector

Also Published As

Publication number Publication date
KR102428853B1 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
KR102148383B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101739868B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101739866B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101739865B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101739870B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101693513B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101693511B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102466498B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102427574B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101892230B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR20180074388A (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR20170088250A (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102011767B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101885326B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101944900B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102046496B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101739869B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101739867B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102012887B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102538119B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR102024548B1 (en) Method and apparatus for refining magnetic domains grain-oriented electrical steel
KR101978448B1 (en) Apparatus for refining magnetic domains grain-oriented electrical steel and method for the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant