KR20170075444A - 영상 처리 장치 및 영상 처리 방법 - Google Patents
영상 처리 장치 및 영상 처리 방법 Download PDFInfo
- Publication number
- KR20170075444A KR20170075444A KR1020150185099A KR20150185099A KR20170075444A KR 20170075444 A KR20170075444 A KR 20170075444A KR 1020150185099 A KR1020150185099 A KR 1020150185099A KR 20150185099 A KR20150185099 A KR 20150185099A KR 20170075444 A KR20170075444 A KR 20170075444A
- Authority
- KR
- South Korea
- Prior art keywords
- image
- information
- detected
- candidate region
- threshold value
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims description 19
- 230000002123 temporal effect Effects 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims 1
- 238000003672 processing method Methods 0.000 abstract description 12
- 238000001514 detection method Methods 0.000 description 41
- 238000006073 displacement reaction Methods 0.000 description 9
- 230000006641 stabilisation Effects 0.000 description 9
- 238000011105 stabilization Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H04N5/232—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- G06K9/00335—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/17—Terrestrial scenes taken from planes or by drones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
-
- H04N5/225—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Geometry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Image Analysis (AREA)
- Human Computer Interaction (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Image Processing (AREA)
Abstract
본 실시예들은 영상 처리 장치 및 영상 처리 방법을 개시한다.
본 발명의 일 실시예에 따른 영상 처리 장치는, 카메라를 탑재한 비행체로부터 영상 및 위치 정보를 획득하는 영상획득부; 제1 범위 내에서 가변하는 문턱 값을 적용하여 상기 영상으로부터 적어도 하나의 후보 영역을 검출하고, 상기 후보 영역의 특징 정보를 기초로 객체를 검출하는 검출부; 적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 상기 영상에서 검출된 객체의 위치를 보정하는 추적부; 및 상기 위치 정보를 기초로 상기 비행체에 대한 상기 객체의 위치를 추정하는 추정부;를 포함한다.
본 발명의 일 실시예에 따른 영상 처리 장치는, 카메라를 탑재한 비행체로부터 영상 및 위치 정보를 획득하는 영상획득부; 제1 범위 내에서 가변하는 문턱 값을 적용하여 상기 영상으로부터 적어도 하나의 후보 영역을 검출하고, 상기 후보 영역의 특징 정보를 기초로 객체를 검출하는 검출부; 적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 상기 영상에서 검출된 객체의 위치를 보정하는 추적부; 및 상기 위치 정보를 기초로 상기 비행체에 대한 상기 객체의 위치를 추정하는 추정부;를 포함한다.
Description
본 실시예들은 영상 처리 장치 및 영상 처리 방법에 관한 것으로, 보다 구체적으로 저조도 환경에서 객체를 검출할 수 있는 영상 처리 장치 및 영상 처리 방법에 관한 것이다.
일반적인 감시 시스템용 가시광 카메라, 예를 들어 CCD 카메라는 광범위한 범위에 응용이 되고 있다. 그러나, CCD 카메라는 빛이 있는 곳에서만 감시 기능을 구현할 수 있으며 빛이 없는 곳에서는 감시 기능을 구현하는 것이 불가능하기 때문에 별도의 조명을 사용하지 않는 감시 시스템에 이용하기가 어렵다. 빛이 전혀 없는 환경에서의 감시를 위해 원적외선 카메라를 이용할 수 있다. 원적외선 카메라는 조명이 없는 곳에서의 감시 기능을 구현함은 물론이고 피사체의 열 손실 탐지, 회로 기판의 분석과 같은 열 방출과 관련된 다양한 범위에 응용되고 있다.
본 실시예들은 저조도에서 움직이는 카메라가 획득한 영상으로부터 객체를 검출할 수 있는 영상 처리 장치 및 영상 처리 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 영상 처리 장치는, 카메라를 탑재한 비행체로부터 영상 및 위치 정보를 획득하는 영상획득부; 제1 범위 내에서 가변하는 문턱 값을 적용하여 상기 영상으로부터 적어도 하나의 후보 영역을 검출하고, 상기 후보 영역의 특징 정보를 기초로 객체를 검출하는 검출부; 적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 상기 영상에서 검출된 객체의 위치를 보정하는 추적부; 및 상기 위치 정보를 기초로 상기 비행체에 대한 상기 객체의 위치를 추정하는 추정부;를 포함한다.
상기 검출부는, 상기 영상의 움직임을 추정하고, 상기 추정된 움직임을 기초로 상기 영상의 움직임을 보상하는 안정화부; 상기 움직임 보상된 영상에서 상기 후보 영역을 검출하는 후보 검출부; 및 상기 후보 영역의 특징 정보를 기초로 기 훈련된 분류기를 통해 상기 후보 영역의 객체 여부를 판단하는 분류부;를 포함할 수 있다.
상기 검출부는, 상기 제1 범위 내의 문턱 값에 따라 검출된 후보 영역의 크기가 기준 크기 값에 근사한 기준 문턱 값을 결정하고, 상기 기준 문턱 값에서 검출된 후보 영역을 최종 후보 영역으로 결정할 수 있다.
상기 후보 검출부는, 상기 기준 문턱 값을 포함하는 상기 제1 범위보다 좁은 제2 범위에서 가변하는 문턱 값을 적용하여 다음 영상의 후보 영역을 검출할 수 있다.
상기 제1 범위는 상기 영상 내의 최소 픽셀 값과 최대 픽셀 값 사이일 수 있다.
상기 추적부는, 상기 적어도 하나의 이전 영상의 객체 정보로부터 상기 영상에서 객체 영역을 추정하고, 상기 추정된 객체 영역의 정보를 기초로 상기 검출된 객체의 위치를 보정할 수 있다.
상기 추적부는, 상기 적어도 하나의 이전 영상에서 검출되지 않은 객체가 상기 영상에서 검출된 경우, 상기 검출된 객체의 정보를 일정 시간 동안 임시 정보로서 출력할 수 있다.
상기 추적부는, 상기 적어도 하나의 이전 영상에서 검출된 객체가 상기 영상에서 검출되지 않은 경우, 상기 적어도 하나의 이전 영상의 객체로부터 추정된 객체의 정보를 일정 시간 동안 임시 정보로서 출력할 수 있다.
상기 추정부는, 상기 비행체의 고도별 영상의 실제 거리 정보를 기초로, 상기 비행체와 상기 객체 간의 거리 및 각도를 추정할 수 있다.
본 발명의 일 실시예에 따른 영상 처리 방법은, 카메라를 탑재한 비행체로부터 영상 및 위치 정보를 획득하는 단계; 제1 범위 내에서 가변하는 문턱 값을 적용하여 상기 영상으로부터 적어도 하나의 후보 영역을 검출하고, 상기 후보 영역의 특징 정보를 기초로 객체를 검출하는 단계; 적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 상기 영상에서 검출된 객체의 위치를 보정하는 단계; 및 상기 위치 정보를 기초로 상기 비행체에 대한 상기 객체의 위치를 추정하는 단계;를 포함한다.
상기 객체 검출 단계는, 상기 영상의 움직임을 추정하고, 상기 추정된 움직임을 기초로 상기 영상의 움직임을 보상하는 단계; 상기 움직임 보상된 영상에서 상기 후보 영역을 검출하는 단계; 및 상기 후보 영역의 특징 정보를 기초로 기 훈련된 분류기를 통해 상기 후보 영역의 객체 여부를 판단하는 단계;를 포함할 수 있다.
상기 객체 검출 단계는, 상기 제1 범위 내의 문턱 값에 따라 검출된 후보 영역의 크기가 기준 크기 값에 근사한 기준 문턱 값을 결정하고, 상기 기준 문턱 값에서 검출된 후보 영역을 최종 후보 영역으로 결정하는 단계;를 포함할 수 있다.
상기 객체 검출 단계는, 상기 기준 문턱 값을 포함하는 상기 제1 범위보다 좁은 제2 범위에서 가변하는 문턱 값을 적용하여 다음 영상의 후보 영역을 검출하는 단계;를 포함할 수 있다.
상기 제1 범위는 상기 영상 내의 최소 픽셀 값과 최대 픽셀 값 사이일 수 있다.
상기 객체 위치 보정 단계는, 상기 적어도 하나의 이전 영상의 객체 정보로부터 상기 영상에서 객체 영역을 추정하고, 상기 추정된 객체 영역의 정보를 기초로 상기 검출된 객체의 위치를 보정하는 단계;를 포함할 수 있다.
상기 객체 위치 보정 단계는, 상기 적어도 하나의 이전 영상에서 검출되지 않은 객체가 상기 영상에서 검출된 경우, 상기 검출된 객체의 정보를 일정 시간 동안 임시 정보로서 출력하는 단계;를 포함할 수 있다.
상기 객체 위치 보정 단계는, 상기 적어도 하나의 이전 영상에서 검출된 객체가 상기 영상에서 검출되지 않은 경우, 상기 적어도 하나의 이전 영상의 객체로부터 추정된 객체의 정보를 일정 시간 동안 임시 정보로서 출력하는 단계;를 포함할 수 있다.
상기 객체 위치 추정 단계는, 상기 비행체의 고도별 영상의 실제 거리 정보를 기초로, 상기 비행체와 상기 객체 간의 거리 및 각도를 추정하는 단계;를 포함할 수 있다.
본 발명의 일 실시예에 따른 영상 처리 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체를 제공할 수 있다.
본 실시예들은 저조도에서 움직이는 카메라가 획득한 영상으로부터 정확한 객체 검출 및 추적이 가능한 영상 처리 장치 및 영상 처리 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 객체 검출 시스템의 개략적인 블록도이다.
도 2는 본 발명의 일 실시예에 따른 영상 처리 장치를 개략적으로 도시한 블록도이다.
도 3은 도 2의 검출부를 개략적으로 도시한 블록도이다.
도 4는 영상의 흔들림을 보상하는 영상 안정화를 설명하는 일 예이다.
도 5는 적외선 영상에서 관심 영역을 검출하는 일 예를 도시한다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 문턱 값 가변에 따라 검출되는 후보 영역을 설명하는 도면이다.
도 8은 본 발명의 일 실시예에 따른 분류부를 통해 후보 영역이 분류된 결과를 도시한다.
도 9는 본 발명의 일 실시예에 따른 추적부의 객체 추적의 예를 도시한다.
도 10 및 도 11은 본 발명의 일 실시예에 따른 추적부의 객체 추적의 다른 예를 도시한다.
도 12 내지 도 16은 본 발명의 일 실시예에 따른 추정부의 객체 위치 추정의 예를 도시한다.
도 17 및 도 18은 본 발명의 일 실시예에 따른 객체 위치를 추정하는 영상 처리 방법을 개락적으로 설명하는 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 영상 처리 장치를 개략적으로 도시한 블록도이다.
도 3은 도 2의 검출부를 개략적으로 도시한 블록도이다.
도 4는 영상의 흔들림을 보상하는 영상 안정화를 설명하는 일 예이다.
도 5는 적외선 영상에서 관심 영역을 검출하는 일 예를 도시한다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 문턱 값 가변에 따라 검출되는 후보 영역을 설명하는 도면이다.
도 8은 본 발명의 일 실시예에 따른 분류부를 통해 후보 영역이 분류된 결과를 도시한다.
도 9는 본 발명의 일 실시예에 따른 추적부의 객체 추적의 예를 도시한다.
도 10 및 도 11은 본 발명의 일 실시예에 따른 추적부의 객체 추적의 다른 예를 도시한다.
도 12 내지 도 16은 본 발명의 일 실시예에 따른 추정부의 객체 위치 추정의 예를 도시한다.
도 17 및 도 18은 본 발명의 일 실시예에 따른 객체 위치를 추정하는 영상 처리 방법을 개락적으로 설명하는 흐름도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하의 실시예에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하의 실시예에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하의 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 실시예들은 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩업 테이블(look-up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 본 발명의 실시예의 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있는 것과 유사하게, 본 발명의 실시예는 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한, 본 발명의 실시예들은 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. 매커니즘, 요소, 수단, 구성과 같은 용어는 넓게 사용될 수 있으며, 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 객체 검출 시스템의 개략적인 블록도이다.
도 1을 참조하면, 객체 검출 시스템은 카메라(20)를 탑재한 비행체(10)와 영상 처리 장치(30)를 포함할 수 있다.
비행체(10)는 사람이 탑승하는 유인기 또는 사람이 탑승하지 않는 무인기(UAV : Unmanned Aerial Vehicle)일 수 있다. 무인기는 조종사가 탑승하지 않는 채로, 사전에 입력된 프로그램에 따르거나, 관리장치의 원격제어에 따라 또는 비행체가 스스로 주위 환경을 인식하고 판단하여 비행을 할 수 있다. 비행체(10)는 전방의 영상 정보를 획득하는 카메라(20)를 탑재할 수 있다.
카메라(20)는 야간 등의 어두운 조도 환경, 폭우나 폭설, 안개와 같은 악천후에 객체를 검출할 수 있는 적외선 카메라일 수 있다. 적외선 카메라는 700nm에서 1400nm 대역의 근적외선 파장 영역을 볼 수 있는 근적외선(Near Infra Red: NIR) 카메라와 5~15㎛ 대역의 원적외선 파장 영역을 볼 수 있는 원적외선(Far-Infra-Red: FIR) 카메라를 포함할 수 있다. 원적외선 카메라는 근적외선 카메라보다 보행자 인식의 반응 속도가 더 빠르고 감지 거리가 멀다.
카메라(20)는 다양한 객체(예를 들어, 벽, 장애물 등의 정적 물체나 사람, 동물 등의 동적 물체)를 포함하는 주변 환경에 대한 적외선 영상(열 영상)을 획득할 수 있다. 카메라(20)는 실시간으로 또는 일정 주기 단위로 적외선 영상을 획득할 수 있다. 카메라(20)는 소정 프레임율, 예를 들어 30frames/sec, 60frames/sec 등의 프레임율로 영상을 획득할 수 있다. 카메라(20)는 비행체(10)의 고도마다 캘리브레이션이 미리 수행될 수 있다.
비행체(10)는 관심 영역을 비행하고 카메라(20)는 관심 영역을 촬영한다. 비행체(10)가 관심 영역을 비행하고, 카메라(20)가 정해진 위치 또는 정해진 시간에 영상을 획득한다.
비행체(10)는 유선 통신 인터페이스 및 GPS 모듈을 포함하는 무선 통신 인터페이스를 포함할 수 있다. 비행체(10)는 유선 또는 무선 통신에 의해 카메라(20)로부터 영상을 수신할 수 있다. 비행체(10)는 GPS 모듈을 통해 복수의 GPS 인공위성으로부터 자신의 위치 정보를 수신할 수 있다. 비행체(10)는 영상 처리 장치(30)와 무선 통신 네트워크에 의해 연결될 수 있다. 이때 무선 통신 네트워크는 CDMA, WIFI, WIBRO 또는 LTE 등의 다양한 종류의 다양한 주파수 대역의 네트워크일 수 있다. 비행체(10)는 무선 통신 네트워크를 통해 영상과 위치 정보를 영상 처리 장치(30)로 전송할 수 있다.
영상 처리 장치(30)는 비행체(10)로부터 영상 및 위치 정보를 수신한다. 위치 정보는 GPS 정보 및 고도 정보를 포함할 수 있다. 영상 처리 장치(30)는 수신한 영상에서 문턱 값을 가변하여 객체를 검출할 수 있다. 영상 처리 장치(30)는 객체 추적에 의해 검출된 객체의 위치를 보정할 수 있다. 영상 처리 장치(30)는 비행체(10)의 위치 정보를 기초로 비행체(10)에 대한 검출된 객체의 위치를 추정할 수 있다. 영상의 위치는 비행체(10) 또는 카메라(20)가 위치하는 물리적 환경의 물리적 위치에 대응할 수 있다. 영상 처리 장치(30)는 비행체(10)의 고도마다 수행되는 카메라 캘리브레이션을 통해 고도마다 획득된 영상의 수평 방향(가로 방향) 및 수직 방향(세로 방향)에 대응하는 실세계의 거리 정보를 산출하여 미리 저장할 수 있다.
영상 처리 장치(30)는 입력 장치(40) 및 디스플레이(50)와 연동하여 동작할 수 있다. 영상 처리 장치(30)는 입력 장치(40) 및 디스플레이(50)와 유선 또는 무선으로 연결되어 상호 정보를 송수신할 수 있다.
입력 장치(40)는 키 패드(key pad), 돔 스위치(dome switch), 터치 패드(접촉식 정전 용량 방식, 압력식 저항막 방식, 적외선 감지 방식, 표면 초음파 전도 방식, 적분식 장력 측정 방식, 피에조 효과 방식 등), 마우스, 리모컨, 조그 휠, 조그 스위치 등으로 구성될 수 있다.
디스플레이(50)는 영상 처리 장치(30)로부터 출력되는 결과 영상을 사용자에게 제공함으로써, 사용자가 표시되는 영상을 모니터링할 수 있도록 한다. 디스플레이(50)는 시각적인 정보 및/또는 청각적인 정보를 사용자에게 제공할 수 있다.
도 2는 본 발명의 일 실시예에 따른 영상 처리 장치를 개략적으로 도시한 블록도이다.
도 2를 참조하면, 일 실시예에 따른 영상 처리 장치(30)는 영상 획득부(301), 검출부(303), 추적부(305) 및 추정부(307)를 포함할 수 있다.
영상 획득부(301)는 비행체(10)로부터 영상을 수신할 수 있다. 여기서 영상은 근적외선 영상 또는 원적외선 영상일 수 있다. 영상 획득부(301)는 비행체(10)로부터 비행체(10)의 위치 정보를 더 수신할 수 있다. 위치 정보는 비행체(10)의 GPS 정보 및 고도 정보를 포함할 수 있다.
검출부(303)는 입력된 영상(이하, '입력 영상'이라 함)으로부터 적어도 하나의 후보 영역을 검출하고, 후보 영역이 객체인지 여부를 판단할 수 있다. 검출부(303)의 구체적 설명은 도 3 내지 도 8을 참조하여 후술하겠다.
추적부(305)는 적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 입력 영상에서 검출된 객체의 위치를 보정할 수 있다. 추적부(305)의 구체적 설명은 도 9 내지 도 11을 참조하여 후술하겠다.
추정부(307)는 비행체(10)의 위치 정보를 기초로 비행체(10)에 대한 객체의 위치, 즉 거리 및 각도를 추정할 수 있다. 추정부(307)의 구체적 설명은 도 12 내지 도 16을 참조하여 후술하겠다.
도시되지 않았으나, 영상 처리 장치(30)는 입력 영상 및 위치 정보, 입력 영상으로부터 검출된 객체의 정보를 저장하는 저장 수단을 포함할 수 있다.
도 3은 도 2의 검출부를 개략적으로 도시한 블록도이다. 도 4는 영상의 흔들림을 보상하는 영상 안정화를 설명하는 일 예이다. 도 5는 적외선 영상에서 관심 영역을 검출하는 일 예를 도시한다. 도 6 및 도 7은 본 발명의 일 실시예에 따른 문턱 값 가변에 따라 검출되는 후보 영역을 설명하는 도면이다. 도 8은 본 발명의 일 실시예에 따른 분류부를 통해 후보 영역이 분류된 결과를 도시한다.
도 3을 참조하면, 검출부(303)는 안정화부(323), 후보 검출부(343) 및 분류부(363)를 포함할 수 있다.
안정화부(323)는 입력 영상의 움직임을 추정하고, 추정된 움직임을 기초로 영상의 움직임을 보상할 수 있다. 비행체(10)와 같은 이동체는 기계적인 진동, 구동장치의 가감속, 바람이나 충격 등과 같은 외부의 다양한 요소에 의해 원치 않는 흔들림이 발생된다. 이로 인해 비행체(10)에 장착된 카메라(10)가 획득한 영상 또한 이러한 흔들림에 의해 유사한 흔들림(변위)이 발생될 수 있다. 또한 카메라(10) 자체에 작용된 외부 요소에 의한 카메라(10)의 흔들림에 의해 영상에 흔들림이 발생될 수 있다. 이러한 영상 흔들림은 객체의 정확한 검출을 방해하는 요인이 될 수 있다.
본 실시예에서는 객체를 검출하기 전에 영상에 영상 안정화(image stabilization)를 수행하여 영상의 흔들림을 보상할 수 있다. 안정화부(323)는 입력 영상들 간의 움직임 추정을 통하여 흔들림을 검출하고, 이에 대응하여 움직임이 보상된 영상을 출력할 수 있다.
도 4를 함께 참조하면, 안정화부(323)는 입력 영상(a)과 기준 영상 사이의 움직임을 검출하고, 검출된 움직임에 대응하게 입력 영상(a)을 변환하여 안정된 영상(b)을 생성할 수 있다. 기준 영상은 입력 영상(a) 이전에 입력된 이전 영상들 중 하나의 영상일 수 있다.
후보 검출부(343)는 입력 영상에서 객체의 후보 영역을 검출할 수 있다. 적외선 영상은 촬영한 장면의 열 정보를 포함한다. 본 실시예에서 검출하고자 하는 객체는 야간 환경에서의 보행자이다.
도 5(a)에 도시된 바와 같이, 야간 환경에서 사람의 체온은 배경보다 대체적으로 온도가 높으므로, 적외선 영상에서 보행자 영역은 사람의 체온에 의해 배경에 비해 밝게 나타난다. 따라서 열 정보(온도 정보)를 이용하여 객체에 대응하는 후보 영역을 검출할 수 있다. 그러나, 기온이나 날씨 등의 환경 변화에 의해 도 5(b)에 도시된 바와 같이 오검출(false detection) 또는 미검출(mis-detection) 문제가 발생할 수 있다. 예를 들어, 보행자 근처의 기계 엔진의 열기나 조명의 열기에 의해 보행자 외의 다른 영역이 후보 영역으로 오검출될 수 있다. 또한 보행자의 옷이나 방한도구 등에 의해 체온이 감지되지 않아 보행자를 후보 영역으로 검출하지 못할 수 있다.
본 발명의 실시예에서 후보 검출부(343)는 입력 영상 내 픽셀의 픽셀 값이 문턱 값 이상인 픽셀을 검출하여 후보 영역을 검출할 수 있다. 문턱 값은 고정 값이 아닌 환경에 적응적인 문턱 값(adaptive threshold)이다. 후보 검출부(343)는 제1 값과 제2 값 사이의 제1 범위에서 가변하는 문턱 값을 설정할 수 있다. 후보 검출부(343)는 문턱 값을 점진적으로 낮추면서 검출되는 후보 영역을 확장하는 방식으로 후보 영역을 검출할 수 있다. 설정된 문턱 값들 간의 간격은 동일 또는 상이할 수 있다. 문턱 값이 낮아질수록 문턱 값들 간의 간격이 좁아질 수 있다.
후보 검출부(343)는 문턱 값마다 검출된 후보 영역의 특징값을 기준 값과 비교한다. 여기서 특징값은 검출된 후보 영역의 바운더리 박스(boundary box)의 크기, 즉, 가로세로 비율(aspect ratio) 및/또는 면적(extent)일 수 있다. 후보 검출부(343)는 특징값이 기준 값에 가장 근사한 후보 영역을 검출할 때 적용된 문턱 값을 기준 문턱 값으로 결정할 수 있다. 후보 검출부(343)는 현재 입력 영상에서 결정된 기준 문턱 값을 포함하는 제3 값과 제4 값 사이의 제2 범위에서 가변하는 문턱 값을 설정하여 다음 입력 영상에 대한 후보 영역을 검출할 수 있다. 제2 범위는 제1 범위보다 좁은 범위이다. 제3 값과 제4 값은 제1 범위에서 설정된 문턱 값들 중 하나일 수도 있고, 제1 범위에서 설정된 문턱 값들과 다른 값일 수도 있다.
후보 검출부(343)는, 도 6(a)에 도시된 바와 같이, 입력 영상의 최대 픽셀 값(Max)과 최소 픽셀 값(Min) 사이의 제1 범위(R) 내에서 문턱 값(TH1 내지 THn)을 가변 설정할 수 있다. 설정되는 문턱 값들(TH1 내지 THn) 간의 간격은 동일 또는 상이할 수 있다.
도 7(a)는 원 입력 영상이고, 도 7(b)는 모폴로지(morphology) 연산을 통해 노이즈가 제거된 영상이다. 모폴로지 영상은 비슷한 픽셀 값을 갖는 인접 픽셀들을 그룹화함으로써 명확한 경계를 형성할 수 있다.
후보 검출부(343)는 모폴로지 영상에서 설정된 문턱 값(TH1 내지 THn) 각각을 적용하여, 문턱 값보다 큰 픽셀 값을 갖는 영역을 후보 영역으로 검출한다. 도 7(c)는 높은 문턱 값을 적용하여 획득한 후보 영역의 이진 영상이다. 보행자의 상의로 인해 신체의 하단 부분만 검출되었다.
후보 검출부(343)는 문턱 값을 점진적으로 낮추며 도 7(d) 및 도 7(e)와 같이 새로운 후보 영역을 차례로 검출한다. 문턱 값이 낮아짐에 따라 검출되는 후보 영역이 확장된다. 후보 검출부(343)는 검출된 각 후보 영역의 특징값을 기준 값과 비교하고, 기준 값에 가장 근사한 후보 영역, 예를 들어 기준 값과 소정의 오차 범위의 특징값을 갖는 후보 영역의 검출에 적용된 문턱 값을 기준 문턱 값(THr)으로 결정한다. 도 6 및 도 7에서는 도 7(d)의 후보 영역의 검출에 적용된 도 6(a)의 제4 문턱 값(TH4)이 기준 문턱 값(THr)으로 결정되었다. 후보 검출부(343)는 기준 문턱 값(THr)에서 검출된 후보 영역을 최종 후보 영역으로 결정할 수 있다. 후보 영역이 복수인 경우, 복수의 후보 영역들의 특징값의 평균이 기준 값에 가장 근사한 때의 문턱 값을 기준 문턱 값으로 결정할 수 있다.
후보 검출부(343)는, 도 6(b)에 도시된 바와 같이, 현재 입력 영상에서 결정된 기준 문턱 값(THr)을 포함하는 제2 범위(R')의 문턱 값들(TH1' 내지 THm)을 다음 입력 영상에 대한 후보 영역 검출시에 적용할 수 있다. 이 경우 매 입력 영상마다 최소 픽셀 값과 최대 픽셀 값 사이의 문턱 값들을 이용하는 경우에 비해 후보 영역 검출 시간을 줄일 수 있다. 다음 입력 영상에서 새로운 기준 문턱 값(THr)이 결정될 수 있다.
후보 검출부(343)는 다음 입력 영상이 장면 변환 등으로 판단되면 후보 영역 검출에 적용할 문턱 값의 범위를 제2 범위(R')보다 더 넓게 확장할 수 있으며, 경우에 따라 영상의 최대 픽셀 값과 최소 픽셀 값 사이의 범위로 확장할 수 있다. 후보 검출부(343)는 제2 범위(R')의 문턱 값들로 검출되는 후보 영역의 특징값들 중 기준 값에 근사한 특징값이 없는 경우에도 문턱 값의 범위를 제2 범위(R')보다 더 넓게 확장할 수 있으며, 경우에 따라 영상의 최대 픽셀 값과 최소 픽셀 값 사이의 범위로 확장할 수 있다.
분류부(363)는 후보 영역의 특징 정보를 기초로 기 훈련된 분류기를 통해 후보 영역의 객체 여부를 판단할 수 있다. 분류부(363)는 기준 문턱 값(THr)에서 검출된 적어도 하나의 후보 영역에서 특징 정보를 추출하고, 특징 정보를 객체의 기준 특징 정보와 비교하여 객체 또는 비객체로 분류할 수 있다.
분류부(363)는 기 훈련된 분류기를 포함할 수 있다. 분류기는 보행자가 포함된 영상과 보행자가 포함되지 않은 영상을 포함하는 복수의 훈련 데이터에 의해 보행자의 특징 정보를 훈련한 분류기이다. 분류기는 특징 추출 단계와 훈련 단계를 차례로 수행하는 분류기이거나, 훈련 중 특징 추출이 동시에 수행되는 분류기일 수 있다. 일 예로서, 분류기는 특정 픽셀과 주변 픽셀들 간의 정보를 추출하고, 풀링(pooling) 과정을 통해 대표 정보를 추출하고, 반복적인 풀링 과정을 통해 대표 특징을 생성하며 보행자의 특징 정보를 훈련한다. 기 훈련된 분류기는 후보 영역으로부터 특징 정보를 추출하고, 추출된 특징 정보를 기초로 객체 또는 비객체(예를 들어, 보행자 또는 비보행자)로 후보 영역을 분류할 수 있다.
도 8을 참조하면, 제2 후보 영역(C2)과 제5 후보 영역(C5)은 보행자로 분류되고, 제1 후보 영역(C1), 제3 후보 영역(C3)과 제4 후보 영역(C4)은 비보행자로 분류되었다.
추적부(305)는 적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 입력 영상에서 검출된 객체의 위치를 보정할 수 있다. 조도 변화, 객체의 가림 등의 다양한 요소에 의해 객체 검출 오류가 발생될 수 있다. 추적부(305)는 일정 기간 동안 검출된 객체 검출 결과를 기초로 객체 존재 유무 및 객체 위치를 추정하고, 이를 추적 정보로서 산출할 수 있다. 추적부(305)는 객체 검출 오류가 발생하더라도 이전 영상의 객체 검출 정보를 기초로 객체 위치를 추정함으로써 보다 안정적인 객체 검출이 가능하게 한다. 추적 필터로는 칼만 필터(Kalman Filter), 파티클 필터(Particle Filter) 등이 사용될 수 있다.
추적부(305)는 일정 기간의 이전 영상들에서의 객체 검출 결과로부터 입력 영상에서 객체 검출 위치를 추정한 추적 정보를 생성하고, 검출부(303)에서의 객체 검출 결과를 추적 정보를 기초로 보정하여 업데이트할 수 있다.
도 9는 본 발명의 일 실시예에 따른 추적부의 객체 추적의 예를 도시한다.
추적부(305)는 이전 영상(Ft-1)의 객체 검출 결과로부터 입력 영상(Ft)의 객체 위치를 추정할 수 있다. 도 9(a)의 이전 영상(Ft-1)에서 검출된 중앙부의 객체와 우측의 객체 각각은 도 9(b)의 현재 입력 영상(Ft)에서 오른쪽으로 이동된 위치와 왼쪽으로 이동된 위치로 각각 추정되었다.
추적부(305)에서 추정된 객체의 위치와 검출부(303)에서 검출된 객체의 위치 간의 변위가 임계 변위 이내인 경우, 추적부(305)는 검출부(303)에서 검출된 객체의 위치를 추정된 객체의 위치로 대체하거나, 검출된 객체의 위치를 검출된 객체의 위치와 추정된 객체의 위치의 평균값으로 보정하여 검출된 객체의 위치를 업데이트할 수 있다. 디스플레이(50)에는 업데이트된 객체가 제1 형태의 선(예를 들어, 실선) 및/또는 제1 색상(예를 들어, 붉은색)의 바운더리 박스로 표시될 수 있다.
추적부(305)에서 추정된 객체의 위치와 검출부(303)에서 검출된 객체의 위치 간의 변위가 임계 변위를 초과한 경우, 추적부(305)는 추정된 객체의 위치를 선택하여 검출된 객체의 위치를 업데이트할 수 있다. 디스플레이(50)에는 업데이트된 객체가 제1 형태의 선(예를 들어, 실선) 및/또는 제1 색상(예를 들어, 붉은색)의 바운더리 박스로 표시될 수 있다.
도 10 및 도 11은 본 발명의 일 실시예에 따른 추적부의 객체 추적의 다른 예를 도시한다. Fm은 입력 영상에 대해 검출부(303)에서 검출된 결과, Fe는 입력 영상에 대해 추적부(305)에서 추정된 결과, Fo는 디스플레이(50)에 출력된 영상이다.
도 10을 참조하면, 검출부(303)가 이전 영상(t-1)에서 검출되지 않은 객체(A)를 현재 영상(t)에서 검출한 경우, 추적부(305)는 검출부(303)에서 검출된 객체(A)의 정보를 임시 정보로서 출력할 수 있다. 디스플레이(50)에는 검출부(303)에서 검출된 객체(A)가 제1 형태의 선과 상이한 제2 형태의 선(예를 들어, 점선)이나 제1 색상과 다른 제2 색상(예를 들어, 푸른색)의 바운더리 박스로 표시될 수 있다.
검출부(303)가 현재 영상(t)에서 검출된 객체(A)를 일정 시간 이상 지속적으로, 예를 들어 다음 영상들(t+1, t+2)에서 지속적으로 검출한 경우, 추적부(305)는 검출부(303)에서 검출된 객체(A)를 새로운 객체로 판단하고, 객체 위치를 업데이트할 수 있다. 이에 따라 일정 시간 경과 후, 예를 들어 디스플레이(50)에 표시되는 (t+2)의 영상에는 업데이트된 객체(A")가 제1 형태의 선(예를 들어, 실선) 및/또는 제1 색상(예를 들어, 붉은색)의 바운더리 박스로 변환되어 표시될 수 있다.
도 11을 참조하면, 검출부(303)가 이전 영상(t-1)에서 검출되었던 객체(A)를 현재 영상(t)에서 검출하지 않은 경우, 추적부(305)는 이전 영상(t-1)의 객체 검출 결과로부터 추정된 객체(A')의 정보를 임시 정보로서 출력할 수 있다. 디스플레이(50)에는 추정된 객체(A')가 제2 형태의 선(예를 들어, 점선)이나 제2 색상(예를 들어, 푸른색)의 바운더리 박스로 표시될 수 있다.
검출부(303)가 일정 시간 이상 지속적으로, 예를 들어 다음 영상들(t+1, t+2)에서 객체(A)를 검출하지 않은 경우, 추적부(305)는 객체가 사라진 것으로 판단하고, 객체(A)의 정보를 소멸하여 객체 위치를 업데이트할 수 있다. 이때 일정 시간 경과 후, 예를 들어, 디스플레이(50)에 표시되는 (t+2)의 영상에는 제2 형태의 선(예를 들어, 점선)이나 제2 색상(예를 들어, 푸른색)의 바운더리 박스로 표시되었던 객체가 표시되지 않는다.
도 12 내지 도 16은 본 발명의 일 실시예에 따른 추정부의 객체 위치 추정의 예를 도시한다.
도 12는 본 발명의 일 실시예에 따른 원근맵을 생성하는 예를 설명하는 도면이다. 도 13은 본 발명의 일 실시예에 따른 비행체(10)의 특정 고도에 대해 생성된 원근맵의 예이다.
비행체(10)에 카메라(20)가 장착된 후, 비행체(10)의 고도마다 카메라 캘리브레이션이 수행된다. 카메라 캘리브레이션은 카메라(20)가 획득한 영상과 실제 세계와의 관계를 의미한다. 영상 처리 장치(30)는 카메라 캘리브레이션이 수행되는 기준 고도마다 영상에 실제 거리 정보를 매칭한 원근맵을 생성할 수 있다. 비행체(10)의 물리적인 위치가 변경됨에 따라 비행체(10) 내에 장착된 카메라(20)가 획득한 영상이 나타내는 장면의 범위(면적)가 달라진다. 따라서, 추정부(30)는 비행체(10)의 기준 고도마다 카메라(20)가 획득한 영상에 실제 거리 정보를 매칭한 원근맵을 생성할 수 있다.
도 12를 참조하면, 비행체(10)가 떠 있는 위치의 수직 아래의 지면 상의 지점(S)과 입력 영상의 최하단에 대응하는 지면 상의 지점(L)까지의 거리(X1)와, 지점(S)과 입력 영상의 최상단에 대응하는 지면 상의 지점(H)까지의 거리(X2)를 하기 식(1)과 같이 산출할 수 있다.
식(1)에서 h는 비행체(10)의 고도이고, θ1과 θ2는 각각 카메라(20)로 촬영할 수 있는 장면의 최하단과 최상단이 지면 수직선과 이루는 각도이다.
추정부(305)는 기준 고도마다 영상의 최하단과 최상단 간의 차이(즉, 영상의 세로 크기)에 대응하는 실세계에서의 실제 거리(Y)를 산출하고, 영상의 최하단과 최상단 사이의 세로 방향의 소정 위치마다 대응하는 실제 거리를 산출할 수 있다. 영상의 최하단에서 최상단으로 갈수록 카메라(20)로부터 멀어지는 위치이므로 입력 영상의 최하단에서 최상단으로 갈수록 동일한 실제 거리 간격이라도 세로 방향의 간격이 좁아진다. 도 13에서는 영상에 소정 비율로 증가 또는 감소하는 간격의 임의의 수평선마다 대응하는 실제 거리가 매칭된 원근맵을 예시하고 있다.
추정부(307)는 원근맵을 기초로 비행체(10)와 객체 간의 거리(dx)를 추정할 수 있다. 추정부(307)의 입력 영상이 획득된 시점의 비행체(10)의 고도 정보를 추출하고, 추출된 고도에 매칭된 원근맵의 거리 정보를 추출할 수 있다. 추정부(307)는 원근맵의 수평선들 사이의 위치에 대응하는 거리는 보간법을 사용하여 추정할 수 있다.
도 14(a)는 제1 고도에서 획득한 영상이고, 도 14(b)는 제1 고도와 상이한 제2 고도에서 획득한 영상이다. 고도가 달라짐에 따라 영상의 수평선과 매칭되는 실제 거리가 달라짐을 알 수 있다.
도 14(a)를 참조하면, 추정부(307)는 제1 고도에서 획득된 영상의 객체(A1)가 제1 고도의 30m 수평선과 50m 수평선 사이에 위치하므로, 보간을 통해 객체(A1)의 거리를 40m로 추정할 수 있다.
도 14(b)를 참조하면, 추정부(307)는 제2 고도에서 획득된 영상의 객체(A2)와 객체(A3)가 각각 제2 고도의 120m 수평선과 100m 수평선에 위치하므로, 객체(A2)와 객체(A3) 각각의 거리를 120m와 100m로 추정할 수 있다.
추정부(305)는 도 15에 도시된 바와 같이, 기준 고도마다 영상의 최하단의 실제 좌우 거리(Z1)와 최상단의 실제 좌우 거리(Z2)를 기초로, 영상의 위치별 단위 픽셀의 좌우 크기에 대응하는 실세계에서의 실제 좌우 거리, 즉, 픽셀 당 실제 좌우 거리를 하기 식(2)와 같이 보간법을 적용하여 산출할 수 있다. 영상의 최하단의 실제 좌우 거리(Z1)와 최상단의 좌우 실제 거리(Z2)는 카메라 캘리브레이션으로부터 획득될 수 있다. 단위 픽셀의 좌우 크기는 가로 방향으로 인접하는 픽셀들(P1, P2) 간의 간격일 수 있다.
식(2)에서 Z는 영상의 임의의 위치가 포함되는 가로방향의 실제 좌우 거리, W는 영상의 가로 크기(영상의 가로방향의 픽셀 수), V는 영상의 세로 크기(영상의 세로방향의 픽셀 수), Vx는 영상의 최하단에서 소정 위치(x)까지의 세로방향의 픽셀 수, k는 영상의 픽셀 당 실제 좌우 거리, k1은 영상 최하단의 픽셀 당 실제 좌우 거리, k2는 영상 최상단의 픽셀 당 실제 좌우 거리, kx는 영상의 세로방향의 소정 위치(x)에서 픽셀 당 실제 좌우 거리이다.
영상 최상단의 단위 픽셀 당 실제 좌우 거리(k2)는 영상 최하단의 단위 픽셀 당 실제 좌우 거리(1)와 같거나 더 길다. 영상의 하단에서 상단으로 갈수록 픽셀 당 좌우 거리(k)는 길어지며, 선형적으로 증가한다.
추정부(307)는 도 16에 도시된 바와 같이, 비행체(10)와 객체 간의 실제 거리(dx), 비행체(10)의 고도(h) 및 영상의 정면 기준선(RL)과 객체 간의 실제 거리(dz)를 이용하여 비행체(10)와 객체 간의 각도(θ)를 하기 식(3)과 같이 추정할 수 있다.
정면 기준선(RL)은 비행체(10)가 진행하는 방향의 기준선, 즉 소실점 방향에 대응한다. 추정부(307)는 객체의 위치에서 수평 방향으로 정면 기준선(RL)과 만나는 점(P)까지의 픽셀 개수에 의해 정면 기준선(RL)과 객체 간의 거리(dz)를 산출할 수 있다.
추정부(307)는 고도별 영상의 원근맵 및 실제 좌우 거리를 캘리브레이션을 통해 미리 생성 및 산출하여 저장할 수 있다. 추정부(307)는 영상이 입력되면 대응하는 고도 영상의 실제 거리 정보를 추출하여 하기 비행체(10)와 객체 간의 실제 거리 및 비행체(10)와 객체 간의 각도를 산출할 수 있다. 이 경우 실시간 연산량 및 연산시간을 줄일 수 있다.
도 17 및 도 18은 본 발명의 일 실시예에 따른 객체 위치를 추정하는 영상 처리 방법을 개락적으로 설명하는 흐름도이다.
본 발명의 일 실시예에 따른 객체 위치를 추정하는 영상 처리 방법은 도 1에 도시된 영상 처리 장치(30)에 의해 수행될 수 있다. 따라서, 도 1 내지 도 16을 참조로 설명한 내용이 후술하는 영상 처리 방법에 동일하게 적용될 수 있다.
도 17을 참조하면, 영상 처리 장치(30)는 관심 영역을 비행하는 비행체(10) 또는 비행체(10)에 장착된 카메라(20)로부터 영상 및 위치 정보를 수신할 수 있다(S100). 위치 정보는 카메라(20)가 영상을 획득할 시점의 비행체(10)의 위치 정보일 수 있다. 위치 정보는 비행체(10)의 GPS 정보 및 고도 정보를 포함할 수 있다.
영상 처리 장치(30)는 적응적 문턱 값을 적용하여 입력 영상으로부터 적어도 하나의 후보 영역을 검출하고, 후보 영역의 특징 정보를 기초로 객체를 검출할 수 있다(S300).
도 18을 참조하면, 영상 처리 장치(30)는 영상의 움직임 추정에 의해 영상의 움직임을 보상하는 영상 안정화를 수행할 수 있다(S310).
영상 처리 장치(30)는 안정화된 영상에 문턱 값을 가변하며 후보 영역을 검출할 수 있다(S330). 영상 처리 장치(30)는 안정화된 영상으로부터 모폴로지 연산을 통해 노이즈를 제거할 수 있다. 영상 처리 장치(30)는 노이즈가 제거된 입력 영상으로부터 문턱 값을 제1 범위의 최대 문턱 값에서 최소 문턱 값으로 가변하면서 후보 영역을 확장하는 방식으로 후보 영역을 검출할 수 있다. 제1 범위의 최대 문턱 값은 입력 영상의 최대 픽셀 값이고, 최소 문턱 값은 입력 영상의 최소 픽셀 값일 수 있다.
영상 처리 장치(30)는 각 문턱 값에서 검출된 후보 영역의 바운더리 박스(boundary box)의 가로세로 비율(aspect ratio) 및/또는 면적(extent)이 기준 값에 가장 근사한 후보 영역을 찾고, 이때 적용된 문턱 값을 기준 문턱 값으로 설정할 수 있다. 영상 처리 장치(30)는 기준 문턱 값에서 검출된 후보 영역을 최종 후보 영역으로 결정할 수 있다. 영상 처리 장치(30)는 기준 문턱 값을 포함하는 제2 범위의 최대 문턱 값과 최소 문턱 값 사이에서 문턱 값을 가변하며 다음 입력 영상에서 후보 영역을 검출할 수 있다.
영상 처리 장치(30)는 훈련된 분류기를 이용하여 후보 영역을 객체 또는 비객체로 분류함으로써 객체를 검출할 수 있다(S350). 분류기는 특징 추출 및 훈련에 의해 객체의 특징을 훈련한 분류기이다. 분류기는 특징 추출 단계와 훈련 단계를 차례로 수행하는 분류기이거나, 훈련 중 특징 추출이 동시에 수행되는 분류기일 수 있다.
영상 처리 장치(30)는 적어도 하나의 이전 영상에서 검출된 객체 정보를 기초로 입력 영상에서 검출된 객체의 위치를 보정할 수 있다(S500). 영상 처리 장치(30)는 입력 영상에서 검출된 객체의 위치와 이전 영상으로부터 추정된 객체의 위치 간의 변위가 임계 변위 이내이면, 검출된 객체의 위치를 추정된 객체의 위치로 업데이트하거나, 검출된 객체의 위치와 추정된 객체의 위치의 평균 위치로 검출된 객체의 위치를 업데이트할 수 있다. 영상 처리 장치(30)는 입력 영상에서 검출된 객체의 위치와 이전 영상으로부터 추정된 객체의 위치 간의 변위가 임계 변위를 초과하면, 검출된 객체의 위치를 추정된 객체의 위치로 업데이트할 수 있다. 영상 처리 장치(30)는 이전 영상에서 검출되지 않은 객체가 입력 영상에서 일정 시간 이상 지속적으로 검출된 경우, 검출된 객체가 임시 정보임을 나타내는 선 및/또는 색상으로 디스플레이(50)에 표시하다가 일정 시간 경과 후에는 새로운 객체로서 선 및/또는 색상을 변경하여 객체를 표시할 수 있다.
할 수 있다. 영상 처리 장치(30)는 이전 영상에서 검출되었던 객체가 입력 영상에서 일정 시간 이상 지속적으로 검출되지 않은 경우, 이전 영상의 객체 정보를 기초로 추정된 객체를 임시 정보임을 나타내는 선 또는 색상으로 디스플레이(50)에 표시하다가 일정 시간 경과 후에는 사라진 객체로서 객체를 표시하지 않는다.
영상 처리 장치(30)는 비행체(10)의 위치 정보를 기초로 비행체(10)와 객체 간의 거리 및 고도를 추정할 수 있다(S700). 영상 처리 장치(30)는 비행체(10)의 기준 고도마다 수행되는 카메라 캘리브레이션을 통해 영상의 고도별 가로 방향 및 세로 방향의 소정 위치에 대응하는 실제 거리를 추정할 수 있다. 영상 처리 장치(30)는 비행체(10)의 기준 고도마다 영상 내 위치에 대응하는 실세계의 위치 정보를 기초로 비행체(10)와 객체 간의 거리 및 각도를 추정할 수 있다. 영상 처리 장치(30)는 영상의 고도별 원근을 생성하고, 원근맵의 거리 정보로부터 영상의 세로 방향을 따라 특정 위치에 대응하는 실세계에서의 비행체(10)와 객체 간의 실제 거리를 추정할 수 있다. 영상 처리 장치(30)는 영상의 가로 방향을 따라 배열된 픽셀의 좌우 거리(폭) 또는 가로 방향으로 인접하는 픽셀들의 간격에 대응하는 실세계에서의 실제 좌우 거리 및 비행체(10)와 객체 간의 실제 거리를 기초로 비행체(10)와 객체 간의 각도를 추정할 수 있다.
본 발명의 실시예들은 비행체(10)에 탑재된 카메라(20)가 획득한 적외선 영상을 중심으로 설명하였으나, 본 발명의 실시예들은 이에 한정되지 않는다. 예를 들어, 차량 등의 이동체에 탑재된 카메라(20)가 획득한 적외선 영상과 같이, 저조도 환경에서 움직이는 카메라가 획득한 적외선 영상에서 객체를 검출하는 경우에 모두 적용할 수 있다.
본 발명의 실시예에 따른 보행자 등의 객체 검출을 위한 영상 처리 방법은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명의 일 측면들은 첨부된 도면에 도시된 실시예들을 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
Claims (19)
- 카메라를 탑재한 비행체로부터 영상 및 위치 정보를 획득하는 영상획득부;
제1 범위 내에서 가변하는 문턱 값을 적용하여 상기 영상으로부터 적어도 하나의 후보 영역을 검출하고, 상기 후보 영역의 특징 정보를 기초로 객체를 검출하는 검출부;
적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 상기 영상에서 검출된 객체의 위치를 보정하는 추적부; 및
상기 위치 정보를 기초로 상기 비행체에 대한 상기 객체의 위치를 추정하는 추정부;를 포함하는 영상 처리 장치. - 제1항에 있어서, 상기 검출부는,
상기 영상의 움직임을 추정하고, 상기 추정된 움직임을 기초로 상기 영상의 움직임을 보상하는 안정화부;
상기 움직임 보상된 영상에서 상기 후보 영역을 검출하는 후보 검출부; 및
상기 후보 영역의 특징 정보를 기초로 기 훈련된 분류기를 통해 상기 후보 영역의 객체 여부를 판단하는 분류부;를 포함하는 영상 처리 장치. - 제1항에 있어서,
상기 검출부는, 상기 제1 범위 내의 문턱 값에 따라 검출된 후보 영역의 크기가 기준 크기 값에 근사한 기준 문턱 값을 결정하고, 상기 기준 문턱 값에서 검출된 후보 영역을 최종 후보 영역으로 결정하는, 영상 처리 장치. - 제3항에 있어서,
상기 후보 검출부는, 상기 기준 문턱 값을 포함하는 상기 제1 범위보다 좁은 제2 범위에서 가변하는 문턱 값을 적용하여 다음 영상의 후보 영역을 검출하는, 영상 처리 장치. - 제1항에 있어서,
상기 제1 범위는 상기 영상 내의 최소 픽셀 값과 최대 픽셀 값 사이인, 영상 처리 장치. - 제1항에 있어서, 상기 추적부는,
상기 적어도 하나의 이전 영상의 객체 정보로부터 상기 영상에서 객체 영역을 추정하고, 상기 추정된 객체 영역의 정보를 기초로 상기 검출된 객체의 위치를 보정하는, 영상 처리 장치. - 제6항에 있어서, 상기 추적부는,
상기 적어도 하나의 이전 영상에서 검출되지 않은 객체가 상기 영상에서 검출된 경우, 상기 검출된 객체의 정보를 일정 시간 동안 임시 정보로서 출력하는, 영상 처리 장치. - 제6항에 있어서, 상기 추적부는,
상기 적어도 하나의 이전 영상에서 검출된 객체가 상기 영상에서 검출되지 않은 경우, 상기 적어도 하나의 이전 영상의 객체로부터 추정된 객체의 정보를 일정 시간 동안 임시 정보로서 출력하는, 영상 처리 장치. - 제1항에 있어서, 상기 추정부는,
상기 비행체의 고도별 영상의 실제 거리 정보를 기초로, 상기 비행체와 상기 객체 간의 거리 및 각도를 추정하는, 영상 처리 장치. - 카메라를 탑재한 비행체로부터 영상 및 위치 정보를 획득하는 단계;
제1 범위 내에서 가변하는 문턱 값을 적용하여 상기 영상으로부터 적어도 하나의 후보 영역을 검출하고, 상기 후보 영역의 특징 정보를 기초로 객체를 검출하는 단계;
적어도 하나의 이전 영상에서 검출된 객체의 정보를 기초로 상기 영상에서 검출된 객체의 위치를 보정하는 단계; 및
상기 위치 정보를 기초로 상기 비행체에 대한 상기 객체의 위치를 추정하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서, 상기 객체 검출 단계는,
상기 영상의 움직임을 추정하고, 상기 추정된 움직임을 기초로 상기 영상의 움직임을 보상하는 단계;
상기 움직임 보상된 영상에서 상기 후보 영역을 검출하는 단계; 및
상기 후보 영역의 특징 정보를 기초로 기 훈련된 분류기를 통해 상기 후보 영역의 객체 여부를 판단하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서, 상기 객체 검출 단계는,
상기 제1 범위 내의 문턱 값에 따라 검출된 후보 영역의 크기가 기준 크기 값에 근사한 기준 문턱 값을 결정하고, 상기 기준 문턱 값에서 검출된 후보 영역을 최종 후보 영역으로 결정하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제12항에 있어서, 상기 객체 검출 단계는,
상기 기준 문턱 값을 포함하는 상기 제1 범위보다 좁은 제2 범위에서 가변하는 문턱 값을 적용하여 다음 영상의 후보 영역을 검출하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서,
상기 제1 범위는 상기 영상 내의 최소 픽셀 값과 최대 픽셀 값 사이인, 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서, 상기 객체 위치 보정 단계는,
상기 적어도 하나의 이전 영상의 객체 정보로부터 상기 영상에서 객체 영역을 추정하고, 상기 추정된 객체 영역의 정보를 기초로 상기 검출된 객체의 위치를 보정하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서, 상기 객체 위치 보정 단계는,
상기 적어도 하나의 이전 영상에서 검출되지 않은 객체가 상기 영상에서 검출된 경우, 상기 검출된 객체의 정보를 일정 시간 동안 임시 정보로서 출력하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서, 상기 객체 위치 보정 단계는,
상기 적어도 하나의 이전 영상에서 검출된 객체가 상기 영상에서 검출되지 않은 경우, 상기 적어도 하나의 이전 영상의 객체로부터 추정된 객체의 정보를 일정 시간 동안 임시 정보로서 출력하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항에 있어서, 상기 객체 위치 추정 단계는,
상기 비행체의 고도별 영상의 실제 거리 정보를 기초로, 상기 비행체와 상기 객체 간의 거리 및 각도를 추정하는 단계;를 포함하는 영상 처리 장치에 의한 영상 처리 방법. - 제10항의 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150185099A KR102491638B1 (ko) | 2015-12-23 | 2015-12-23 | 영상 처리 장치 및 영상 처리 방법 |
PCT/KR2016/010005 WO2017111257A1 (ko) | 2015-12-23 | 2016-09-07 | 영상 처리 장치 및 영상 처리 방법 |
KR1020230006923A KR102561309B1 (ko) | 2015-12-23 | 2023-01-17 | 영상 처리 장치 및 영상 처리 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150185099A KR102491638B1 (ko) | 2015-12-23 | 2015-12-23 | 영상 처리 장치 및 영상 처리 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230006923A Division KR102561309B1 (ko) | 2015-12-23 | 2023-01-17 | 영상 처리 장치 및 영상 처리 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170075444A true KR20170075444A (ko) | 2017-07-03 |
KR102491638B1 KR102491638B1 (ko) | 2023-01-26 |
Family
ID=59090599
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150185099A KR102491638B1 (ko) | 2015-12-23 | 2015-12-23 | 영상 처리 장치 및 영상 처리 방법 |
KR1020230006923A KR102561309B1 (ko) | 2015-12-23 | 2023-01-17 | 영상 처리 장치 및 영상 처리 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230006923A KR102561309B1 (ko) | 2015-12-23 | 2023-01-17 | 영상 처리 장치 및 영상 처리 방법 |
Country Status (2)
Country | Link |
---|---|
KR (2) | KR102491638B1 (ko) |
WO (1) | WO2017111257A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102456083B1 (ko) | 2022-04-19 | 2022-10-19 | 한국생산기술연구원 | 영상기반 주행 속도 및 방향 추론 장치 및 이를 이용한 영상기반 주행 속도 및 방향 추론 방법 |
US11715216B2 (en) | 2021-03-25 | 2023-08-01 | Samsung Electronics Co., Ltd. | Method and apparatus with object tracking |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102008503B1 (ko) * | 2017-11-06 | 2019-10-21 | 전자부품연구원 | 지능형 협업 서버, 시스템 및 이의 협업 기반 분석 방법 |
KR102030736B1 (ko) * | 2017-11-24 | 2019-10-10 | 주식회사 리얼타임테크 | 다중 분산 영상 데이터 분석 장치 |
CN113658196B (zh) * | 2021-08-18 | 2024-07-30 | 北京中星天视科技有限公司 | 红外图像中船舶的检测方法、装置、电子设备和介质 |
CN117079166B (zh) * | 2023-10-12 | 2024-02-02 | 江苏智绘空天技术研究院有限公司 | 一种基于高空间分辨率遥感图像的边缘提取方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060177097A1 (en) * | 2002-06-14 | 2006-08-10 | Kikuo Fujimura | Pedestrian detection and tracking with night vision |
KR100612858B1 (ko) | 2004-08-23 | 2006-08-14 | 삼성전자주식회사 | 로봇을 이용하여 사람을 추적하는 방법 및 장치 |
US8649917B1 (en) * | 2012-09-26 | 2014-02-11 | Michael Franklin Abernathy | Apparatus for measurement of vertical obstructions |
KR20140119989A (ko) * | 2013-04-01 | 2014-10-13 | 중앙대학교 산학협력단 | 불안정한 카메라 환경에서의 이동 객체 검출 장치 및 방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110037486A (ko) * | 2009-10-07 | 2011-04-13 | (주)아구스 | 지능형 영상 감시 장치 |
JP5287702B2 (ja) * | 2009-12-25 | 2013-09-11 | ソニー株式会社 | 画像処理装置および方法、並びにプログラム |
KR102021152B1 (ko) * | 2013-05-07 | 2019-09-11 | 현대모비스 주식회사 | 원적외선 카메라 기반 야간 보행자 인식 방법 |
-
2015
- 2015-12-23 KR KR1020150185099A patent/KR102491638B1/ko active IP Right Grant
-
2016
- 2016-09-07 WO PCT/KR2016/010005 patent/WO2017111257A1/ko active Application Filing
-
2023
- 2023-01-17 KR KR1020230006923A patent/KR102561309B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060177097A1 (en) * | 2002-06-14 | 2006-08-10 | Kikuo Fujimura | Pedestrian detection and tracking with night vision |
KR100612858B1 (ko) | 2004-08-23 | 2006-08-14 | 삼성전자주식회사 | 로봇을 이용하여 사람을 추적하는 방법 및 장치 |
US8649917B1 (en) * | 2012-09-26 | 2014-02-11 | Michael Franklin Abernathy | Apparatus for measurement of vertical obstructions |
KR20140119989A (ko) * | 2013-04-01 | 2014-10-13 | 중앙대학교 산학협력단 | 불안정한 카메라 환경에서의 이동 객체 검출 장치 및 방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11715216B2 (en) | 2021-03-25 | 2023-08-01 | Samsung Electronics Co., Ltd. | Method and apparatus with object tracking |
KR102456083B1 (ko) | 2022-04-19 | 2022-10-19 | 한국생산기술연구원 | 영상기반 주행 속도 및 방향 추론 장치 및 이를 이용한 영상기반 주행 속도 및 방향 추론 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20230015487A (ko) | 2023-01-31 |
KR102561309B1 (ko) | 2023-07-28 |
KR102491638B1 (ko) | 2023-01-26 |
WO2017111257A1 (ko) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102561309B1 (ko) | 영상 처리 장치 및 영상 처리 방법 | |
US10515271B2 (en) | Flight device and flight control method | |
US9483952B2 (en) | Runway surveillance system and method | |
KR102400452B1 (ko) | 이동 경로 메타데이터를 이용한 항공 사진/비디오에서의 상황 인식 객체 검출 | |
CN106910229B (zh) | 图像处理设备和方法 | |
KR101647370B1 (ko) | 카메라 및 레이더를 이용한 교통정보 관리시스템 | |
US10032283B2 (en) | Modification of at least one parameter used by a video processing algorithm for monitoring of a scene | |
US8761445B2 (en) | Method and system for detection and tracking employing multi-view multi-spectral imaging | |
CN105005758B (zh) | 图像处理装置 | |
KR101071352B1 (ko) | 좌표맵을 이용한 팬틸트줌 카메라 기반의 객체 추적 장치 및 방법 | |
US20200143179A1 (en) | Infrastructure-free nlos obstacle detection for autonomous cars | |
JP5127531B2 (ja) | 画像監視装置 | |
WO2015117072A1 (en) | Systems and methods for detecting and tracking objects in a video stream | |
KR20180041524A (ko) | 차량의 보행자 인식 방법 및 차량의 보행자 인식 시스템 | |
CN103366155B (zh) | 通畅路径检测中的时间相干性 | |
US20200088831A1 (en) | Mobile body detection device, mobile body detection method, and mobile body detection program | |
JP5917303B2 (ja) | 移動体検出装置、移動体検出システム、および、移動体検出方法 | |
EP4089649A1 (en) | Neuromorphic cameras for aircraft | |
KR101704471B1 (ko) | 낙상 검출 장치 및 그 방법 | |
KR101050730B1 (ko) | 활주로 보조선 기반의 무인 항공기 위치 제어장치 및 그 제어방법 | |
JP2021103410A (ja) | 移動体及び撮像システム | |
JP5836774B2 (ja) | 俯瞰映像生成装置、俯瞰映像生成方法、映像表示システムおよびナビゲーション装置 | |
US9970766B2 (en) | Platform-mounted artificial vision system | |
AU2008293060B2 (en) | Runway surveillance system and method | |
JP2020067795A (ja) | 画像処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |