KR20170059661A - Power factor improving circuit and charger for vehicle adapting the same - Google Patents

Power factor improving circuit and charger for vehicle adapting the same Download PDF

Info

Publication number
KR20170059661A
KR20170059661A KR1020150163879A KR20150163879A KR20170059661A KR 20170059661 A KR20170059661 A KR 20170059661A KR 1020150163879 A KR1020150163879 A KR 1020150163879A KR 20150163879 A KR20150163879 A KR 20150163879A KR 20170059661 A KR20170059661 A KR 20170059661A
Authority
KR
South Korea
Prior art keywords
electrolytic capacitor
inductor
power factor
input
capacitor
Prior art date
Application number
KR1020150163879A
Other languages
Korean (ko)
Other versions
KR101848611B1 (en
Inventor
전호태
전창한
양진영
한승현
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020150163879A priority Critical patent/KR101848611B1/en
Priority to US15/058,437 priority patent/US10150372B2/en
Priority to CN201610228241.0A priority patent/CN106787670B/en
Priority to DE102016107395.4A priority patent/DE102016107395A1/en
Publication of KR20170059661A publication Critical patent/KR20170059661A/en
Application granted granted Critical
Publication of KR101848611B1 publication Critical patent/KR101848611B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • B60L11/1814
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2230/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • H02M2001/123
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7216
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

The present embodiment includes an input terminal and an output terminal connected to the input terminal and improving power factor through the input terminal. The output terminal has a non-electrolytic capacitor formed at both sides of an electrolytic capacitor for output. A first inductor is formed between the non-electrolytic capacitor and the electrolytic capacitor. In this embodiment, the ripple current (current stress) of a PFC output terminal is reduced through a CL circuit formed on the left side of the electrolytic capacitor. An input ripple current (input current stress) of a DC-DC converter can be reduced through a LC circuit formed on the right side.

Description

역률 개선 회로 및 이를 적용한 자동차용 충전기{POWER FACTOR IMPROVING CIRCUIT AND CHARGER FOR VEHICLE ADAPTING THE SAME} TECHNICAL FIELD [0001] The present invention relates to a power factor correction circuit, and a battery charger using the same. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 실시예는 역률을 개선하기 위한 회로 및 이를 적용한 자동차용 충전기에 관한 것이다.The present embodiment relates to a circuit for improving the power factor and an automobile charger to which the circuit is applied.

최근에는 공해가 없는 친환경 차량이 각광받고 있다. 이러한 친환경 차량은 고전압을 배터리에 충전시키기 위한 컨버터를 필수적으로 사용하여 왔다. 컨버터는 전압 승압 및 역률 개선을 목적으로 하는 PFC 회로(Power Factor Correction Circuit가 필요하다.Recently, eco-friendly vehicles without pollution are attracting attention. These environmentally friendly vehicles have essentially used converters for charging high voltage into batteries. The converter requires a PFC circuit (Power Factor Correction Circuit) for voltage boosting and power factor improvement.

PFC 회로는 높은 정격 전압과 대용량을 요구하고 있기 때문에 설계시 패키지 측면에서 가장 유리한 전해 커패시터를 사용하였다.Since PFC circuit requires high rated voltage and large capacity, the most advantageous electrolytic capacitor is used in the package side in design.

전해 커패시터가 작더라도 높은 정격 전압과 대용량을 만족할 수 있었지만, 액체 성분의 유전체를 가지므로, 전류 스트레스(전류 리플)에 의한 신뢰성 저하가 심각한 문제로 대두되었다.Even if the electrolytic capacitor is small, high rated voltage and large capacity can be satisfied. However, since the liquid dielectric has a dielectric property, a decrease in reliability due to current stress (current ripple) has become a serious problem.

예를 들면, 다량의 리플 전류에 노출시 전해액이 증발하는 현상이 발생하고, 이는 더 이상 유전체로 작용하지 못하여 궁극적으로 커패시터 용량 감소로 이어져 왔다.For example, when the battery is exposed to a large amount of ripple current, the electrolytic solution evaporates, which can no longer function as a dielectric, which ultimately leads to a reduction in the capacity of the capacitor.

더불어, 전술한 컨버터는 입력으로 고전압 AC 전원을 사용하고, 높은 주파수의 스위칭을 동반하기 때문에 EMC(Electro Magnetic Compatibility)적으로 매우 취약하였다.In addition, the converter described above is highly vulnerable to EMC (Electro Magnetic Compatibility) because it uses a high voltage AC power source as input and accompanies high frequency switching.

이러한 EMC에 대한 대책을 수립하지 못할 경우에는 컨버터 단품을 넘어서 차량 전체의 상품성 저하 및 심각하게는 차량 법규 불만족의 위험성을 야기시킬 수 있었다.Failure to develop measures against EMC could lead to a reduction in the overall commerciality of the vehicle beyond the converter alone, and seriously the risk of dissatisfaction with vehicle regulations.

1. 일본공개특허 : 제5-204478호, 2. 일본공개특허 : 제2008-172868호.1. Japanese Laid-Open Patent No. 5-204478, 2. Japanese Laid-Open Patent No. 2008-172868.

본 실시예는 전류 스트레스를 줄이기 위한 역률 개선 회로 및 이를 적용한 자동차용 충전기를 제공하는데 그 목적이 있다.It is an object of the present invention to provide a power factor improving circuit for reducing current stress and a car charger using the same.

또한, 본 실시예는 EMC 성능을 개선하기 위한 역률 개선 회로 및 이를 적용한 자동차용 충전기를 제공하는데 그 다른 목적이 있다.It is another object of the present invention to provide a power factor correction circuit for improving EMC performance and a car charger using the same.

하나의 실시예에 따르면, 입력단; 및 상기 입력단에 연결되어, 상기 입력단을 통해 역률을 개선하는 출력단을 포함하는 역률 개선 회로를 제공하고, 상기 출력단은 출력용 전해 커패시터를 중심으로 양측에 비전해 커패시터를 형성하고, 상기 비전해 커패시터와 상기 전해 커패시터사이마다 제1 인덕터를 형성시킨다.According to one embodiment, And an output terminal connected to the input terminal and improving the power factor through the input terminal. The output stage includes a non-electrolytic capacitor formed on both sides of the output electrolytic capacitor, A first inductor is formed between the electrolytic capacitors.

상기 입력단은 입력 전원, 제2 인덕터, 다이오드 및 IGFET 회로간 직병렬 연결될 수 있다.The input terminal may be connected in parallel between the input power supply, the second inductor, the diode, and the IGFET circuit.

상기 비전해 커패시터는, 필름 커패시터 또는 세라믹 커패시터일 수 있다.The non-electrolytic capacitor may be a film capacitor or a ceramic capacitor.

상기 제1 인덕터는, 상기 전해 커패시터의 양측에서 커플링되어 형성될 수 있다.The first inductor may be coupled at both sides of the electrolytic capacitor.

상기 비전해 커패시터와 상기 제1 인덕터는, 병렬 연결될 수 있다.The non-electrolytic capacitor and the first inductor may be connected in parallel.

하나의 실시예에 따르면, 고전압용 배터리를 충전하기 위한 자동차용 충전기로서, 입력단과 상기 입력단에 연결되어, 상기 입력단을 통해 역률을 개선하는 출력단을 구비한 역률 개선 회로; 및 상기 출력단에 연결되어 상기 역률 개선 회로에서 출력된 정현파를 포함한 제1 직류 전압을 교류 전압으로 변환하고, 상기 변환된 교류 전압을 제2 직류 전압으로 변환하는 DC-DC 컨버터를 포함하는 자동차용 충전기를 제공한다.According to one embodiment, an automotive charger for charging a high voltage battery, comprising: a power factor correction circuit having an input terminal and an output terminal connected to the input terminal and having an output terminal for improving the power factor through the input terminal; And a DC-DC converter connected to the output terminal for converting a first DC voltage including a sinusoidal wave output from the power factor correction circuit to an AC voltage and converting the converted AC voltage to a second DC voltage, Lt; / RTI >

상기 출력단은, 출력용 전해 커패시터를 중심으로 양측에 비전해 커패시터를 형성하고, 상기 비전해 커패시터와 상기 전해 커패시터사이마다 제1 인덕터를 형성한다.The output terminal forms a non-electrolytic capacitor on both sides of an output electrolytic capacitor, and forms a first inductor between the non-electrolytic capacitor and the electrolytic capacitor.

상기 입력단은, 입력 전원, 제2 인덕터, 다이오드 및 IGFET 회로간 직병렬 연결될 수 있다.The input terminal may be connected in parallel between the input power supply, the second inductor, the diode, and the IGFET circuit.

상기 비전해 커패시터는, 필름 커패시터 또는 세라믹 커패시터일 수 있다.The non-electrolytic capacitor may be a film capacitor or a ceramic capacitor.

상기 제1 인덕터는, 상기 전해 커패시터의 양측에서 커플링되어 형성될 수 있다.The first inductor may be coupled at both sides of the electrolytic capacitor.

상기 DC-DC 컨버터는, 부스터 컨버터(boost converter)일 수 있다.The DC-DC converter may be a boost converter.

상기 비전해 커패시터와 상기 제1 인덕터는, 병렬 연결될 수 있다.The non-electrolytic capacitor and the first inductor may be connected in parallel.

이상과 같이, 본 실시예는 기존 기술에 비하여 하기와 같은 유리한 효과를 얻을 수 있다.As described above, the present embodiment has the following advantageous effects as compared with the existing technology.

첫번째, 본 실시예는 전해 커패시터를 중심으로 좌측에 형성된 CL 회로를 통해 PFC 출력단의 리플 전류(전류 스트레스)를 저감시키고, 우측에 형성된 LC 회로를 통해 DC-DC 컨버터의 입력 리플 전류(입력 전류 스트레스)를 저감시킨다.First, in this embodiment, the ripple current (current stress) at the PFC output stage is reduced through the CL circuit formed on the left side of the electrolytic capacitor, and the input ripple current (input current stress ).

두번째, 본 실시예는 커플링된 인덕터들을 통해 고전압 DC 링크단 인덕턴스 밸런싱이 가능하므로, 고전압 Common-Mode 노이즈를 저감시켜 궁극적으로 EMC 성능을 개선시킨다.Second, this embodiment allows high voltage DC link inductance balancing through coupled inductors, thereby reducing high voltage Common-Mode noise and ultimately improving EMC performance.

세번째, 본 실시예는 PFC 출력 커패시터의 정전 용량이 최적화되어 충전기의 사이즈를 최적화하고, 충전기의 무게(질량 개선)를 줄일 수 있다.Third, this embodiment optimizes the capacitance of the PFC output capacitor to optimize the size of the charger and reduce the weight (mass improvement) of the charger.

네번째, 본 실시예는 입출력 EMC 필터의 사이즈가 축소되어 이 또한 충전기의 사이즈를 최적화하고, 충전기의 무게(질량 개선)를 줄일 수 있다.Fourth, the present embodiment can reduce the size of the input / output EMC filter, thereby optimizing the size of the charger and reducing the weight (mass improvement) of the charger.

다섯번째, 본 실시예는 저가의 필터 구성으로 인하여, 고가의 출력용 전해 커패시터와 충전기의 입출력 EMC 필터를 축소시켜 적용하기 때문에 제작 비용을 줄일 수 있다.Fifthly, the present embodiment can reduce manufacturing cost because the costly input / output EMC filter of the electrolytic capacitor and the charger for output are applied by using the inexpensive filter structure.

이하에 첨부되는 도면들은 본 실시예에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 실시예들을 제공한다. 다만, 본 실시예의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 일 실시예에 따른 역률 개선 회로의 일례를 예시적으로 나타낸 회로 구성도이다.
도 2는 일 실시예에 따른 자동차용 충전기의 일례를 예시적으로 나타낸 회로 구성도이다.
도 3은 도 1 및 도 2의 역률 개선 회로에 대비되는 기존의 역률 개선 회로를 나타낸 회로 구성도이다.
도 4는 도 1 및 도 2의 역률 개선 회로와 비교되는 역률 개선 회로를 나타낸 회로 구성도이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. However, the technical features of the present embodiment are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute a new embodiment.
1 is a circuit diagram showing an example of a power factor improving circuit according to an embodiment.
2 is a circuit configuration diagram exemplarily showing an example of a car charger according to one embodiment.
FIG. 3 is a circuit diagram showing an existing power factor correction circuit in contrast to the power factor correction circuit of FIG. 1 and FIG. 2. FIG.
Fig. 4 is a circuit diagram showing a power factor improving circuit compared with the power factor improving circuit of Figs. 1 and 2. Fig.

이하에서는, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하고자 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout.

이하의 실시예에서 설명되는 용어들은 단지 특정한 실시예를 설명하기 위하여 사용된 것이지, 이들로 한정하려는 의도는 아니다.It is to be understood that the terms used in the following examples are used only to illustrate specific embodiments, and are not intended to be limiting.

예를 들면, 이하의 본 명세서에서 개시되는 접미사인 "단"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.For example, the suffix "step " disclosed in the present specification is to be given or mixed with consideration only to ease of specification, and does not have a meaning or role that is different from itself.

또한, 이하의 실시예에서 설명되는 '제1'과 '제2'와 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 제한정되지는 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 용도로서 사용된다.Furthermore, terms including ordinals such as 'first' and 'second' described in the following embodiments may be used to describe various elements, but the elements are not limited by the terms . The terms are used to distinguish one component from another.

또한, 다양하게 기재된 실시예들의 설명 및 특허청구범위에 사용되는 단수 표현인 '상기는 아래위 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현도 포함하는 것으로 이해될 수 있다.It is also to be understood that the singular forms "a" and "an" used in the description of the various embodiments described and in the claims are intended to include the plural forms as well, unless the context clearly dictates otherwise.

또한, 이하의 실시예에서 개시되는 '및/또는'은 열거되는 관련 항목들 중 하나 이상의 항목에 대한 임의의 및 모든 가능한 조합들을 포함하는 것으로 이해되어야 한다.It is also to be understood that the term " and / or " disclosed in the following embodiments includes any and all possible combinations of one or more of the listed related items.

또한, 이하의 실시예에서 개시되는 "포함하다" 또는 "형성하다" 등의 용어들은, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것으로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 구비하는 것으로 이해되어야 한다.It is also to be understood that the terms such as " comprises "or " forming ", as used in the following examples, mean that a constituent element can be implanted unless specifically stated otherwise. But should be understood to include additional elements.

<역률 개선 회로의 예><Example of Power Factor Correction Circuit>

도 1은 일 실시예에 따른 역률 개선 회로의 일례를 예시적으로 나타낸 회로 구성도이다.1 is a circuit diagram showing an example of a power factor improving circuit according to an embodiment.

도 1을 참조하면, 일 실시예에 따른 역률 개선 회로(100)는 역률 개선을 위하여 입력단(110)과 출력단(120)를 포함한다.Referring to FIG. 1, the power factor correction circuit 100 includes an input terminal 110 and an output terminal 120 for power factor correction.

입력단(110)은 입력 전류의 피크값이 입력 전압을 추종하도록 입력 전류 또는 입력 전압을 제어할 수 있다.The input terminal 110 can control the input current or the input voltage so that the peak value of the input current follows the input voltage.

이를 위해, 입력단(110)은 전원(111)과 상기 전원(111)에 연결된 인덕터(112)와 상기 전원(111)과 인덕터(112) 사이에 병렬 연결되는 제1 다이오드(113)와 상기 인덕터(112)에 연결되는 제2 다이오드(114)와 상기 인덕터(112)와 제2 다이오드(114) 사이에 병렬 연결되는 IGFET 회로(115)들로 구성된다.The input terminal 110 includes a power source 111, an inductor 112 connected to the power source 111, a first diode 113 connected in parallel between the power source 111 and the inductor 112, And an IGFET circuit 115 connected in parallel between the inductor 112 and the second diode 114. The second diode 114 is connected to the first diode 114 and the second diode 114,

반면, 출력단(120)은 입력단(110)에 연결되어, 입력단(110)의 입력 전압 추종에 의해 정현파를 생성함으로써, 역률을 개선할 뿐만 아니라, 고조파 규제의 대응할 수 있게끔 할 수 있다.Meanwhile, the output stage 120 is connected to the input stage 110 so as to generate a sinusoidal wave by following the input voltage of the input stage 110, thereby improving not only the power factor but also the harmonic regulation.

이를 위해, 출력단(120)은 출력용 전해 커패시터(121)와 상기 전해 커패시터(121)로부터 양측에 연결된 비전해 커패시터(122)를 형성할 수 있다.To this end, the output stage 120 may form an output electrolytic capacitor 121 and a non-electrolytic capacitor 122 connected to both sides of the electrolytic capacitor 121.

전해 커패시터(121)는 통상적으로 널리 알려진 액체 성분의 유전체를 가지고 있기 때문에, 전류 스트레스(전류 리플)에 의한 신뢰성이 저하가 유발된다.Since the electrolytic capacitor 121 usually has a dielectric of a widely known liquid component, reliability due to current stress (current ripple) is lowered.

따라서, 전류 스트레스에 의한 신뢰성 저하를 막고자, 전해 커패시터(121)의 양측에 비전해 커패시터(122)를 연결하고, 또한 비전해 커패시터(122)와 전해 커패시터(121)사이마다 제1 인덕터(123)를 형성할 수 있다.Therefore, in order to prevent reliability degradation due to current stress, a non-electrolytic capacitor 122 is connected to both sides of the electrolytic capacitor 121 and a first inductor 123 is connected between the non-electrolytic capacitor 122 and the electrolytic capacitor 121 ) Can be formed.

이런 경우, 전해 커패시터(121)를 중심으로 좌측에 비전해 커패시터(122)와 제1 인덕터(123)가 형성된다.In this case, the non-electrolytic capacitor 122 and the first inductor 123 are formed on the left side of the electrolytic capacitor 121.

이들에 대해 회로 연결 관계를 보면, 좌측의 비전해 커패시터(122)는 입력단(110)과 병렬 연결되고, 좌측의 제1 인덕터(123)는 좌측의 비전해 커패시터(122)와 병렬 연결되며, 좌측의 제1 인덕터(123)는 출력용 전해 커패시터(121)와 병렬 연결될 수 있다.The non-electrolytic capacitor 122 on the left side is connected in parallel with the input terminal 110, the first inductor 123 on the left side is connected in parallel with the left non-electrolytic capacitor 122, The first inductor 123 may be connected to the output electrolytic capacitor 121 in parallel.

이처럼, 전해 커패시터(121)를 중심으로 좌측에 비전해 커패시터(122)와 제1 인덕터(123)가 형성되면, PFC 출력단(120)의 CL 필터로서 역할을 할 수 있다. CL 필터는 전술한 전해 커패시터(121)에 의한 전류 스트레스(리플 전류)를 저감시킬 수 있다.If the non-electrolytic capacitor 122 and the first inductor 123 are formed on the left side of the electrolytic capacitor 121, it can serve as a CL filter of the PFC output stage 120. [ The CL filter can reduce the current stress (ripple current) caused by the electrolytic capacitor 121 described above.

여기서, 좌측의 비전해 커패시터(122)는 필름 커패시터 또는 세라믹 커패시터로 제작될 수 있고, 좌측의 비전해 커패시터(122)와 전해 커패시터(121) 사이에 형성된 제1 인덕터(123)는 커플링 구조를 가질 수 있다.Here, the left non-electrolytic capacitor 122 may be made of a film capacitor or a ceramic capacitor, and the first inductor 123 formed between the left non-electrolytic capacitor 122 and the electrolytic capacitor 121 may have a coupling structure Lt; / RTI &gt;

이 처럼, 좌측의 제1 인덕터(123)를 커플링 구조를 갖는 이유는 EMC 문제를 개선함기 위함이다.The reason why the left inductor 123 has a coupling structure is to improve the EMC problem.

예를 들어, 하나의 제1 인덕터(123)가 좌측의 비전해 커패시터(122)와 전해 커패시터(121) 사이에 형성되면, 입력단(110)으로부터 발생된 고전압 사이에 노이즈에 의한 위상차가 발생하고, 이로 인한 고전압 Common-Mode 노이즈가 출력단(120)으로 유기되어 심각한 EMC 문제가 야기될 수 있다.For example, when one first inductor 123 is formed between the left non-electrolytic capacitor 122 and the electrolytic capacitor 121, a phase difference due to noise occurs between high voltages generated from the input terminal 110, The resulting high voltage Common-Mode noise can be induced to the output stage 120, which can cause serious EMC problems.

따라서, 전술한 EMC 문제를 방지하기 위하여, 좌측의 비전해 커패시터(122)와 전해 커패시터(121) 사이에는 커플링된 제1 인덕터(123)가 형성되고 있는 이유이다.Therefore, in order to prevent the above-described EMC problem, a coupled first inductor 123 is formed between the left non-electrolytic capacitor 122 and the electrolytic capacitor 121.

반면, 출력용 전해 커패시터(121)를 중심으로 우측에 제1 인덕터(123)와 비전해 커패시터(122)가 형성될 수 있다.On the other hand, the first inductor 123 and the non-electrolytic capacitor 122 may be formed on the right side of the output electrolytic capacitor 121.

이들에 대해 회로 연결 관계를 보면, 우측의 제1 인덕터(123)는 전해 커패시터(121)와 병렬 연결되고, 우측의 비전해 커패시터(122)는 우측의 제1 인덕터(123)와 병렬 연결될 수 있다.The first inductor 123 on the right side is connected in parallel with the electrolytic capacitor 121 and the non-electrolytic capacitor 122 on the right side is connected in parallel with the first inductor 123 on the right side .

이처럼, 전해 커패시터(121)를 중심으로 우측에 제1 인덕터(123)와 비전해 커패시터(122)가 형성되면, PFC 출력단(120)의 LC 필터로서 역할을 할 수 있다. LC 필터는 출력단(120)에 연결될 DC-DC 컨버터의 입력 리플 전류를 저감시킬 수 있기 때문에 궁극적으로 전술한 전해 커패시터(121)에 의한 전류 스트레스(리플 전류)를 저감시킬 수 있다고 할 수 있다.When the first inductor 123 and the non-electrolytic capacitor 122 are formed on the right side of the electrolytic capacitor 121, the first inductor 123 and the non-electrolytic capacitor 122 can serve as the LC filter of the PFC output stage 120. The LC filter can reduce the input ripple current of the DC-DC converter to be connected to the output stage 120, which ultimately can reduce the current stress (ripple current) caused by the electrolytic capacitor 121 described above.

여기서, 우측의 비전해 커패시터(122)는 필름 커패시터 또는 세라믹 커패시터로 제작될 수 있고, 우측의 전해 커패시터(121)와 비전해 커패시터(122) 사이에 형성된 제1 인덕터(123)는 커플링 구조를 가질 수 있다.Here, the non-electrolytic capacitor 122 on the right side can be made of a film capacitor or a ceramic capacitor, and the first inductor 123 formed between the electrolytic capacitor 121 on the right side and the non-electrolytic capacitor 122 has a coupling structure Lt; / RTI &gt;

이 처럼, 우측의 제1 인덕터(123)를 커플링 구조를 갖는 이유는 EMC 문제를 개선함기 위함이다.The reason why the first inductor 123 on the right side has a coupling structure is to improve the EMC problem.

예를 들어, 하나의 제1 인덕터(123)가 우측의 비전해 커패시터(122)와 전해 커패시터(121) 사이에 형성되면, 입력단(110)으로부터 발생된 고전압 사이에 노이즈에 의한 위상차가 발생하고, 이로 인한 고전압 Common-Mode 노이즈가 출력단(120)으로 유기되어 심각한 EMC 문제가 야기될 수 있다.For example, when one first inductor 123 is formed between the non-electrolytic capacitor 122 on the right side and the electrolytic capacitor 121, a phase difference due to noise occurs between high voltages generated from the input terminal 110, The resulting high voltage Common-Mode noise can be induced to the output stage 120, which can cause serious EMC problems.

따라서, 전술한 EMC 문제를 개선하기 위하여, 우측의 전해 커패시터(121)와 비전해 커패시터(122) 사이에는 커플링된 제1 인덕터(123)가 형성되고 있는 이유이다.Therefore, in order to solve the above-described EMC problem, a coupled first inductor 123 is formed between the electrolytic capacitor 121 and the non-electrolytic capacitor 122 on the right side.

이를 통해 알 수 있듯이, 전해 커패시터(121)의 양측에 각각 커플링된 제1 인덕터(123)가 적용됨으로써, 궁극적으로, 입력단(110)으로부터 발생된 고전압 Link (+)/(-) 사이에 인덕턴스 벨런싱(balancing)을 맞추어, 고전압 Common-Mode 노이즈를 저감시킴으로써, 역률 개선 회로(100)에서의 EMC 성능을 개선시킬 수 있었다.The first inductor 123 coupled to both sides of the electrolytic capacitor 121 is applied to the input terminal 110 to induce inductance between the high voltage Link (+) / (- By balancing and reducing the high-voltage common-mode noise, the EMC performance in the power factor correction circuit 100 can be improved.

<충전기의 예><Example of charger>

도 2는 일 실시예에 따른 자동차용 충전기의 일례를 예시적으로 나타낸 회로 구성도이다.2 is a circuit configuration diagram exemplarily showing an example of a car charger according to one embodiment.

도 2를 참조하면, 일 실시예에 따른 자동차용 충전기(200)는 고전압용 배터리를 충전하기 위하여, 역률 개선 회로 및 DC-DC 컨버터(230)를 포함하고, 상기 역률 개선 회로는 입력단(210)과 출력단(220)를 포함한다.2, the automotive charger 200 includes a power factor correction circuit and a DC-DC converter 230 for charging a high-voltage battery, and the power factor correction circuit includes an input terminal 210, And an output stage 220.

입력단(210)은 입력 전류의 피크값이 입력 전압을 추종하도록 입력 전류 또는 입력 전압을 제어할 수 있다. The input terminal 210 can control the input current or the input voltage so that the peak value of the input current follows the input voltage.

이를 위해, 입력단(210)은 전원(211)과 상기 전원(211)에 연결된 인덕터(212)와 상기 전원(211)과 인덕터(212) 사이에 병렬 연결되는 제1 다이오드(213)와 상기 인덕터(212)에 연결되는 제2 다이오드(214)와 상기 인덕터(212)와 제2 다이오드(214) 사이에 병렬 연결되는 IGFET 회로(215)들로 구성된다.To this end, the input stage 210 includes a power source 211, an inductor 212 connected to the power source 211, a first diode 213 connected in parallel between the power source 211 and the inductor 212, 212 and an IGFET circuit 215 connected in parallel between the inductor 212 and the second diode 214. The second diode 214 is connected to the first diode 212 and the second diode 214,

반면, 출력단(220)은 입력단(210)에 연결되어, 입력단(210)의 입력 전압 추종에 의해 정현파를 생성함으로써, 역률을 개선할 뿐만 아니라, 고조파 규제의 대응할 수 있게끔 할 수 있다.Meanwhile, the output stage 220 is connected to the input stage 210 to generate a sinusoidal wave by following the input voltage of the input stage 210, thereby improving not only the power factor but also the harmonic regulation.

이를 위해, 출력단(220)은 출력용 전해 커패시터(221)와 상기 전해 커패시터(221)로부터 양측에 연결된 비전해 커패시터(222)를 형성할 수 있다.For this purpose, the output stage 220 may form an output electrolytic capacitor 221 and a non-electrolytic capacitor 222 connected to both sides of the electrolytic capacitor 221.

전해 커패시터(221)는 통상적으로 널리 알려진 액체 성분의 유전체를 가지고 있기 때문에, 전류 스트레스(전류 리플)에 의한 신뢰성이 저하가 유발된다.Since the electrolytic capacitor 221 usually has a dielectric of a widely known liquid component, reliability due to current stress (current ripple) is lowered.

따라서, 전류 스트레스에 의한 신뢰성 저하를 막고자, 전해 커패시터(221)의 양측에 비전해 커패시터(222)를 연결하고, 또한 비전해 커패시터(222)와 전해 커패시터(221)사이마다 제1 인덕터(223)를 형성할 수 있다.Therefore, the non-electrolytic capacitor 222 is connected to both sides of the electrolytic capacitor 221 and the first inductor 223 is connected between the non-electrolytic capacitor 222 and the electrolytic capacitor 221 in order to prevent reliability degradation due to the current stress. ) Can be formed.

이런 경우, 전해 커패시터(221)를 중심으로 좌측에 비전해 커패시터(222)와 제1 인덕터(223)가 형성된다.In this case, the non-electrolytic capacitor 222 and the first inductor 223 are formed on the left side of the electrolytic capacitor 221.

이들에 대해 회로 연결 관계를 보면, 좌측의 비전해 커패시터(222)는 입력단(210)과 병렬 연결되고, 좌측의 제1 인덕터(223)는 좌측의 비전해 커패시터(222)와 병렬 연결되며, 좌측의 제1 인덕터(223)는 출력용 전해 커패시터(221)와 병렬 연결될 수 있다.The non-electrolytic capacitor 222 on the left side is connected in parallel with the input terminal 210, the first inductor 223 on the left side is connected in parallel with the left non-electrolytic capacitor 222, The first inductor 223 of the output capacitor 223 may be connected in parallel with the output electrolytic capacitor 221.

이처럼, 전해 커패시터(221)를 중심으로 좌측에 비전해 커패시터(222)와 제1 인덕터(223)가 형성되면, PFC 출력단(220)의 CL 필터로서 역할을 할 수 있다. CL 필터는 전술한 전해 커패시터(221)에 의한 전류 스트레스(리플 전류)를 저감시킬 수 있다.When the non-electrolytic capacitor 222 and the first inductor 223 are formed on the left side of the electrolytic capacitor 221, it can serve as a CL filter of the PFC output stage 220. The CL filter can reduce the current stress (ripple current) caused by the electrolytic capacitor 221 described above.

여기서, 좌측의 비전해 커패시터(222)는 필름 커패시터 또는 세라믹 커패시터로 제작될 수 있고, 좌측의 비전해 커패시터(222)와 전해 커패시터(221) 사이에 형성된 제1 인덕터(223)는 커플링 구조를 가질 수 있다.Here, the left non-electrolytic capacitor 222 may be made of a film capacitor or a ceramic capacitor, and the first inductor 223 formed between the left non-electrolytic capacitor 222 and the electrolytic capacitor 221 may have a coupling structure Lt; / RTI &gt;

이 처럼, 좌측의 제1 인덕터(223)를 커플링 구조를 갖는 이유는 EMC 문제를 개선함기 위함이다.The reason why the first inductor 223 on the left side has a coupling structure is to improve the EMC problem.

예를 들어, 하나의 제1 인덕터(223)가 좌측의 비전해 커패시터(222)와 전해 커패시터(221) 사이에 형성되면, 입력단(210)으로부터 발생된 고전압 사이에 노이즈에 의한 위상차가 발생하고, 이로 인한 고전압 Common-Mode 노이즈가 출력단(220)으로 유기되어 심각한 EMC 문제가 야기될 수 있다.For example, when one first inductor 223 is formed between the left non-electrolytic capacitor 222 and the electrolytic capacitor 221, a phase difference due to noise occurs between high voltages generated from the input terminal 210, This causes the high voltage common-mode noise to be sent to the output stage 220, which can cause serious EMC problems.

따라서, 전술한 EMC 문제를 방지하기 위하여, 좌측의 비전해 커패시터(222)와 전해 커패시터(221) 사이에는 커플링된 제1 인덕터(223)가 형성되고 있는 이유이다.Therefore, in order to prevent the above-described EMC problem, a coupled first inductor 223 is formed between the left non-electrolytic capacitor 222 and the electrolytic capacitor 221.

반면, 출력용 전해 커패시터(221)를 중심으로 우측에 제1 인덕터(223)와 비전해 커패시터(222)가 형성될 수 있다.On the other hand, the first inductor 223 and the non-electrolytic capacitor 222 may be formed on the right side of the output electrolytic capacitor 221.

이들에 대해 회로 연결 관계를 보면, 우측의 제1 인덕터(223)는 전해 커패시터(221)와 병렬 연결되고, 우측의 비전해 커패시터(222)는 우측의 제1 인덕터(223)와 병렬 연결될 수 있다.The first inductor 223 on the right side is connected in parallel with the electrolytic capacitor 221 and the non-electrolytic capacitor 222 on the right side is connected in parallel with the first inductor 223 on the right side .

이처럼, 전해 커패시터(221)를 중심으로 우측에 제1 인덕터(223)와 비전해 커패시터(222)가 형성되면, PFC 출력단(220)의 LC 필터로서 역할을 할 수 있다. LC 필터는 이후에 설명될 출력단(220)에 연결된 DC-DC 컨버터(230)의 입력 리플 전류를 저감시킬 수 있기 때문에 궁극적으로 전해 커패시터(221)에 의한 전류 스트레스(리플 전류)를 저감시킬 수 있다고 할 수 있다.When the first inductor 223 and the non-electrolytic capacitor 222 are formed on the right side of the electrolytic capacitor 221 as described above, the first inductor 223 and the non-electrolytic capacitor 222 can serve as an LC filter of the PFC output stage 220. Since the LC filter can reduce the input ripple current of the DC-DC converter 230 connected to the output stage 220 to be described later, it is possible to ultimately reduce the current stress (ripple current) caused by the electrolytic capacitor 221 can do.

여기서, 우측의 비전해 커패시터(222)는 필름 커패시터 또는 세라믹 커패시터로 제작될 수 있고, 우측의 전해 커패시터(221)와 비전해 커패시터(222) 사이에 형성된 제1 인덕터(223)는 커플링 구조를 가질 수 있다.The first inductor 223 formed between the electrolytic capacitor 221 and the non-electrolytic capacitor 222 on the right side may be formed of a film capacitor or a ceramic capacitor. Lt; / RTI &gt;

이 처럼, 우측의 제1 인덕터(223)를 커플링 구조를 갖는 이유는 EMC 문제를 개선함기 위함이다.The reason why the first inductor 223 on the right side has a coupling structure is to improve the EMC problem.

예를 들어, 하나의 제1 인덕터(223)가 우측의 비전해 커패시터(222)와 전해 커패시터(221) 사이에 형성되면, 입력단(210)으로부터 발생된 고전압 사이에 노이즈에 의한 위상차가 발생하고, 이로 인한 고전압 Common-Mode 노이즈가 출력단(220)으로 유기되어 심각한 EMC 문제가 야기될 수 있다.For example, when one first inductor 223 is formed between the non-electrolytic capacitor 222 and the electrolytic capacitor 221 on the right side, a phase difference due to noise occurs between high voltages generated from the input terminal 210, This causes the high voltage common-mode noise to be sent to the output stage 220, which can cause serious EMC problems.

따라서, 전술한 EMC 문제를 개선하기 위하여, 우측의 전해 커패시터(221)와 비전해 커패시터(222) 사이에는 커플링된 제1 인덕터(223)가 형성되고 있는 이유이다.Therefore, in order to solve the above-described EMC problem, a coupled first inductor 223 is formed between the electrolytic capacitor 221 and the non-electrolytic capacitor 222 on the right side.

이를 통해 알 수 있듯이, 전해 커패시터(221)의 양측에 각각 커플링된 제1 인덕터(223)가 적용됨으로써, 궁극적으로, 입력단(210)으로부터 발생된 고전압 Link (+)/(-) 사이에 인덕턴스 벨런싱(balancing)을 맞추어, 고전압 Common-Mode 노이즈를 저감시킴으로써, 역률 개선 회로(100)에서의 EMC 성능을 개선시킬 수 있었다.A first inductor 223 coupled to both sides of the electrolytic capacitor 221 is applied so that an inductance is generated between the high voltage Link (+) / (-) generated from the input stage 210, By balancing and reducing the high-voltage common-mode noise, the EMC performance in the power factor correction circuit 100 can be improved.

예시적인 실시예에서, DC-DC 컨버터(230)는 출력단(220)에 연결되어, 역률 개선 회로에서 출력된 정현파를 포함한 제1 직류 전압을 교류 전압으로 변환하고, 변환된 교류 전압을 제2 직류 전압으로 변환한다.In an exemplary embodiment, the DC-DC converter 230 is connected to the output stage 220 to convert the first DC voltage including the sinusoidal wave output from the power factor correction circuit to an AC voltage, Voltage.

이러한 DC-DC 컨버터(230)는 부스터 컨버터(boost converter)인 것이 바람직하다.The DC-DC converter 230 is preferably a boost converter.

예를 들어, 부스터 컨버터는 예컨대 출력단(220)으로부터 병렬 연결된 4개의 IGFET 회로(231)와, 상기 IGFET 회로(231)의 상하 IGFET 회로 사이에 병렬 연결되는 한쌍의 인덕터(232)와, 상기 인덕터(232)으로부터 병렬 연결된 4개의 다이오드(233)와, 상기 4개의 다이오드(233)의 출력단과 연결된 인덕터(236)와, 상기 4개의 다이오드(233)의 입력단과 일단이 연결되고 타단이 상기 인덕터(236)와 연결된 2개의 전해 커패시터(235)를 포함할 수 있다.For example, the booster converter may include, for example, four IGFET circuits 231 connected in parallel from the output stage 220, a pair of inductors 232 connected in parallel between the upper and lower IGFET circuits of the IGFET circuit 231, One end of the diode 233 is connected to the input terminal of the four diodes 233 and the other end of the diode 233 is connected to the inductor 236 And two electrolytic capacitors 235 connected to the capacitor C2.

그러나, 전술한 부스터 컨버터의 회로 구성에 한정되지 않는다. 더 나아가 부스터 컨버터가 아닌 역률 개선 및 전압 승압을 위한 컨버터라면 본 실시예에서 말하는 DC-DC 컨버터의 범주안에 포함될 수 있다.However, the present invention is not limited to the circuit configuration of the booster converter described above. Further, if it is a converter for power factor improvement and voltage boosting other than the booster converter, it can be included in the scope of the DC-DC converter in this embodiment.

<비교예><Comparative Example>

도 3은 도 1 및 도 2의 역률 개선 회로에 대비되는 기존의 역률 개선 회로를 나타낸 회로 구성도이고, 도 4는 도 1 및 도 2의 역률 개선 회로와 비교되는 역률 개선 회로를 나타낸 회로 구성도이다.Fig. 3 is a circuit configuration diagram showing an existing power factor improving circuit in contrast to the power factor improving circuit of Figs. 1 and 2. Fig. 4 is a circuit diagram showing a power factor improving circuit compared with the power factor improving circuit of Figs. to be.

도 3을 참조하면, 기존의 역률 개선 회로는 도 1 및 도 2에서 설명된 입력단(110,210)과 동일한 입력단의 회로들을 구성하고 있지만, 도 1 및 도 2의 출력단(120, 220)과는 다르게 출력단(10A)에서 하나의 전해 커패시터(10)만을 구성한다.3, the conventional power factor correction circuit has the same input stage circuits as the input stages 110 and 210 described in FIGS. 1 and 2. However, unlike the output stages 120 and 220 of FIGS. 1 and 2, And only one electrolytic capacitor 10 is formed in the electrode 10A.

출력단(10A)에서 하나의 전해 커패시터(10)만이 구성되면, PFC 출력 전해커패시터의 전류 스트레스 저감 및 EMC 개선 대책 부족으로 인하여 충전기의 신뢰성 저하 및 EMC 문제 야기 가능성이 매우 높아질 수 있다.If only one electrolytic capacitor 10 is formed at the output stage 10A, there is a possibility that the reliability of the charger is lowered and the EMC problem is caused due to the reduction of the current stress of the PFC output electrolytic capacitor and the lack of measures for improving the EMC.

반면, 도 4에 도시된 역률 개선 회로의 출력단(20A)은 도 1 및 도 2에서 설명한 출력용 전해 커패시터(121)와 상기 전해 커패시터(121)로부터 양측에 연결된 비전해 커패시터(122)를 포함하고, 상기 전해 커패시터(121)와 비전해 커패시터의 사이에는 도 1 및 도 2의 커플링된 제1 인덕터(123, 223)와 다르게 각각 하나의 인덕터(20A)로 구성될 수 있다.On the other hand, the output stage 20A of the power factor correction circuit shown in FIG. 4 includes the output electrolytic capacitor 121 and the non-electrolytic capacitor 122 connected to the both sides of the electrolytic capacitor 121 described in FIGS. 1 and 2, Between the electrolytic capacitor 121 and the non-electrolytic capacitor, the first inductor 123 and the second inductor 123 may be formed of one inductor 20A different from the coupled inductors 123 and 223 of FIGS.

이런 경우, 하나의 인덕터(L, 20A)로 인하여, 고전압 Link의 (+)/(-) 사이에 노이즈 위상차이가 발생하고 이로 인한 Commom-Mode 노이즈가 발생하여 심각한 EMC 문제가 야기되고 있음을 확인하였다.In this case, it is confirmed that noise phase difference occurs between (+) and (-) of high voltage link due to one inductor (L, 20A) and commom-mode noise caused by this causes serious EMC problem Respectively.

따라서, 도 1 및 도 2에서 실시되고 있는 역률 개선 회로는 전술한 도 3 및 도 4에 비하여, 리플 전류(전류 스트레스)를 저감시키고, EMC 문제를 해결할 수 있었다.Therefore, the power factor improvement circuit implemented in Fig. 1 and Fig. 2 can reduce the ripple current (current stress) and solve the EMC problem in comparison with Figs. 3 and 4 described above.

이상에서와 같이, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the exemplary embodiments or constructions. You can understand that you can do it. The embodiments described above are therefore to be considered in all respects as illustrative and not restrictive.

본 실시예들은 EV(Electric Vehicle), HEV(Hybrid Electric Vehicle), PHEV(Plug-in Hybrid Electric Vehicle), FCEV(Fuel Cell Electric Vehicle) 및 BEV(Battery Electric Vehicle)에 적용될 수 있다.The embodiments can be applied to EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), PHEV (Plug-in Hybrid Electric Vehicle), FCEV (Fuel Cell Electric Vehicle) and BEV (Battery Electric Vehicle).

100 : 역률 개선 회로 110,210 : 입력단
120,220 : 출력단 121,221 : 전해 커패시터
122,222 : 비전해 커패시터 123,223 : 제1 인덕터
100: Power factor correction circuit 110, 210:
120,220: Output stage 121, 221: Electrolytic capacitor
122, 222 non-electrolytic capacitors 123, 223 first inductor

Claims (11)

입력단; 및
상기 입력단에 연결되어, 상기 입력단을 통해 역률을 개선하는 출력단을 포함하고,
상기 출력단은,
출력용 전해 커패시터를 중심으로 양측에 비전해 커패시터를 형성하고, 상기 비전해 커패시터와 상기 전해 커패시터사이마다 제1 인덕터를 형성하는, 역률 개선 회로.
Input stage; And
And an output terminal connected to the input terminal for improving a power factor through the input terminal,
Wherein,
A non-electrolytic capacitor is formed on both sides of an output electrolytic capacitor, and a first inductor is formed between the non-electrolytic capacitor and the electrolytic capacitor.
제1항에 있어서,
상기 입력단은,
입력 전원, 제2 인덕터, 다이오드 및 IGFET 회로를 구성하고, 상기 구성간 직병렬 연결되는, 역률 개선 회로.
The method according to claim 1,
Wherein,
Wherein the input power supply, the second inductor, the diode, and the IGFET circuit are configured and connected in series-parallel between the configurations.
제1항에 있어서,
상기 비전해 커패시터는, 필름 커패시터 또는 세라믹 커패시터인 것인, 역률 개선 회로.
The method according to claim 1,
Wherein the non-electrolytic capacitor is a film capacitor or a ceramic capacitor.
제1항에 있어서,
상기 제1 인덕터는, 각각 상기 전해 커패시터의 양측에서 커플링되는, 역률 개선 회로.
The method according to claim 1,
Wherein the first inductor is coupled at both sides of the electrolytic capacitor, respectively.
제1항에 있어서,
상기 비전해 커패시터와 상기 제1 인덕터는, 병렬 연결되는, 역률 개선 회로.
The method according to claim 1,
Wherein the non-electrolytic capacitor and the first inductor are connected in parallel.
고전압용 배터리를 충전하기 위한 자동차용 충전기로서,
입력단과 상기 입력단에 연결되어, 상기 입력단을 통해 역률을 개선하는 출력단을 구비한 역률 개선 회로; 및
상기 출력단에 연결되어 상기 역률 개선 회로에서 출력된 정현파를 포함한 제1 직류 전압을 교류 전압으로 변환하고, 상기 변환된 교류 전압을 제2 직류 전압으로 변환하는 DC-DC 컨버터를 포함하고,
상기 출력단은,
출력용 전해 커패시터를 중심으로 양측에 비전해 커패시터를 형성하고, 상기 비전해 커패시터와 상기 전해 커패시터사이마다 제1 인덕터를 형성하는, 자동차용 충전기.
An automotive charger for charging a high voltage battery,
A power factor correction circuit having an input terminal and an output terminal connected to the input terminal and having an output terminal for improving the power factor through the input terminal; And
And a DC-DC converter connected to the output terminal for converting a first DC voltage including a sinusoidal wave output from the power factor correction circuit into an AC voltage and converting the converted AC voltage to a second DC voltage,
Wherein,
Forming non-electrolytic capacitors on both sides of an output electrolytic capacitor, and forming a first inductor between the non-electrolytic capacitor and the electrolytic capacitor.
제6항에 있어서,
상기 입력단은,
입력 전원, 제2 인덕터, 다이오드 및 IGFET 회로를 구성하고, 상기 구성간 직병렬 연결되는, 자동차용 충전기.
The method according to claim 6,
Wherein,
Wherein the input power supply, the second inductor, the diode, and the IGFET circuit are configured and connected in series-parallel between the configurations.
제6항에 있어서,
상기 비전해 커패시터는, 필름 커패시터 또는 세라믹 커패시터인 것인, 자동차용 충전기.
The method according to claim 6,
Wherein the non-electrolytic capacitor is a film capacitor or a ceramic capacitor.
제6항에 있어서,
상기 제1 인덕터는, 각각 상기 전해 커패시터의 양측에서 커플링되는 자동차용 충전기.
The method according to claim 6,
Wherein the first inductor is coupled at both sides of the electrolytic capacitor, respectively.
제6항에 있어서,
상기 DC-DC 컨버터는, 부스터 컨버터(boost converter)인 것인, 자동차용 충전기.
The method according to claim 6,
Wherein the DC-DC converter is a boost converter.
제6항에 있어서,
상기 비전해 커패시터와 상기 제1 인덕터는, 병렬 연결되는, 자동차용 충전기.
The method according to claim 6,
Wherein the non-electrolytic capacitor and the first inductor are connected in parallel.
KR1020150163879A 2015-11-23 2015-11-23 Power factor improving circuit and charger for vehicle adapting the same KR101848611B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020150163879A KR101848611B1 (en) 2015-11-23 2015-11-23 Power factor improving circuit and charger for vehicle adapting the same
US15/058,437 US10150372B2 (en) 2015-11-23 2016-03-02 Power factor improving circuit and charger for vehicles employing the same
CN201610228241.0A CN106787670B (en) 2015-11-23 2016-04-13 The vehicle charger of power factor correction circuit and the application circuit
DE102016107395.4A DE102016107395A1 (en) 2015-11-23 2016-04-21 Power factor improvement circuit and charger for vehicles using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150163879A KR101848611B1 (en) 2015-11-23 2015-11-23 Power factor improving circuit and charger for vehicle adapting the same

Publications (2)

Publication Number Publication Date
KR20170059661A true KR20170059661A (en) 2017-05-31
KR101848611B1 KR101848611B1 (en) 2018-04-13

Family

ID=58693947

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150163879A KR101848611B1 (en) 2015-11-23 2015-11-23 Power factor improving circuit and charger for vehicle adapting the same

Country Status (4)

Country Link
US (1) US10150372B2 (en)
KR (1) KR101848611B1 (en)
CN (1) CN106787670B (en)
DE (1) DE102016107395A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102406659B1 (en) * 2017-03-07 2022-06-08 현대자동차주식회사 A vehicle and a charger for the vehicle
US10218262B1 (en) 2017-09-25 2019-02-26 Otis Elevator Company Hybrid direct current link system for a regenerative drive
US11271473B2 (en) 2019-07-26 2022-03-08 Lear Corporation On-board charger (OBC) having grid frequency rejecter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049696B2 (en) 1992-01-14 2000-06-05 デンセイ・ラムダ株式会社 Switching power supply
JPH05204478A (en) 1992-01-30 1993-08-13 Yokogawa Electric Corp Noise filter circuit for active power factor improving type power source
JPH0628835A (en) * 1992-07-09 1994-02-04 Nippon Seiko Kk Magnetic disk device
JP2001268939A (en) 2000-03-23 2001-09-28 Daikin Ind Ltd Motor-driving device
US6781351B2 (en) * 2002-08-17 2004-08-24 Supertex Inc. AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
GB2396491B (en) * 2002-12-21 2005-11-30 Dyson Ltd Power conversion apparatus
JP2005269883A (en) 2004-02-18 2005-09-29 Sharp Corp Power unit and ac connector used therefor
JP2008172868A (en) 2007-01-09 2008-07-24 Denso Corp Dc-dc converter and its design method
US8076920B1 (en) * 2007-03-12 2011-12-13 Cirrus Logic, Inc. Switching power converter and control system
JP2009095183A (en) 2007-10-11 2009-04-30 Eta Electric Industry Co Ltd Switching power-supply device
JP2010029039A (en) 2008-07-24 2010-02-04 Sanken Electric Co Ltd Power factor improving converter
CN101707845A (en) * 2009-12-02 2010-05-12 上海宏源照明电器有限公司 Method for improving electromagnetic compatibility of electronic ballast and electronic ballast
KR20160121591A (en) * 2010-08-18 2016-10-19 핀식스 코포레이션 Very high frequency switching cell-based power converter
US8482944B1 (en) * 2010-10-29 2013-07-09 Universal Lighting Technologies, Inc. Electronic ballast with inrush protection circuit
KR20120072802A (en) * 2010-12-24 2012-07-04 삼성전기주식회사 A charging module of energy storage devices
CN103222177B (en) * 2011-01-07 2016-04-27 东芝三菱电机产业系统株式会社 Power conversion device
TWI437410B (en) * 2011-09-30 2014-05-11 Ind Tech Res Inst Buck power factor correcting systems
US20130285621A1 (en) * 2012-04-27 2013-10-31 Samsung Electro-Mechanics Co., Ltd. Power supplying apparatus and power charging apparatus
TWI462451B (en) * 2012-12-05 2014-11-21 Hep Tech Co Ltd AC / DC conversion device and its function correction method
US20140369077A1 (en) * 2013-06-13 2014-12-18 Hyundai Motor Company Pfc circuit for charging converter
US9490766B2 (en) * 2014-02-13 2016-11-08 Ut-Battelle, Llc Shielded multi-stage EMI noise filter

Also Published As

Publication number Publication date
US20170144555A1 (en) 2017-05-25
US10150372B2 (en) 2018-12-11
CN106787670A (en) 2017-05-31
CN106787670B (en) 2019-10-29
DE102016107395A1 (en) 2017-05-24
KR101848611B1 (en) 2018-04-13

Similar Documents

Publication Publication Date Title
JP6710615B2 (en) Bidirectional AC-DC converter
US10688880B2 (en) Battery charger for electric vehicle
US9236755B2 (en) Charging system for reducing harmonic wave and fabricating cost
Yilmaz et al. Review of integrated charging methods for plug-in electric and hybrid vehicles
US10654371B2 (en) Charging apparatus for electric vehicle
KR20190054390A (en) Complex circuit for charging and low voltage converting of electric vehicle
US20140313795A1 (en) Single phase bi-directional ac-dc converter with reduced passive components size and common mode electro-magnetic interference
CN107785156B (en) Transformer type inductor and power converter using same
CN107517016A (en) With the high step-up ratio Y source inventers for suppressing the influence of coupling inductance leakage inductance
KR101848611B1 (en) Power factor improving circuit and charger for vehicle adapting the same
US20160303984A1 (en) Charging device for vehicle
US20140369077A1 (en) Pfc circuit for charging converter
KR20170093014A (en) A pfc circuit device for high-power, high-power density ev on-board charger
JP6944058B2 (en) Vehicle charger with DC / DC converter
Hou et al. Evaluation of integrated active filter auxiliary power modules in electrified vehicle applications
CN114728593A (en) A on-vehicle power assembly for AGV
JP2011205806A (en) Vehicle multi-phase converter
CN205622509U (en) Rolling stock DC voltage converter with electric energy bidirectional function
Hou et al. Integrated active power filter auxiliary power modules for electrified vehicle applications with single-phase on-board chargers
JP2020533945A (en) Vehicle charger with DC / DC converter
CN212063594U (en) Single-phase vehicle-mounted battery charger for plug-in electric automobile
CN210839385U (en) Preceding-stage PFC AC/DC converter of vehicle-mounted charger of automobile
US10958204B1 (en) Automotive electric drive systems with interleaved variable voltage converters
Dong et al. High Efficiency GaN-based Non-isolated Electric Vehicle On-board Charger with Active Filtering
Khalid et al. Experimental validation of off‐board EV charging station with reduced active switch count

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant