KR20170057791A - 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법 - Google Patents

전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법 Download PDF

Info

Publication number
KR20170057791A
KR20170057791A KR1020150161405A KR20150161405A KR20170057791A KR 20170057791 A KR20170057791 A KR 20170057791A KR 1020150161405 A KR1020150161405 A KR 1020150161405A KR 20150161405 A KR20150161405 A KR 20150161405A KR 20170057791 A KR20170057791 A KR 20170057791A
Authority
KR
South Korea
Prior art keywords
dye
total
current density
equation
potential
Prior art date
Application number
KR1020150161405A
Other languages
English (en)
Inventor
김동민
사르카 수브라타
서현우
Original Assignee
홍익대학교세종캠퍼스산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍익대학교세종캠퍼스산학협력단 filed Critical 홍익대학교세종캠퍼스산학협력단
Priority to KR1020150161405A priority Critical patent/KR20170057791A/ko
Publication of KR20170057791A publication Critical patent/KR20170057791A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법에 관한 것으로서, 염료 감응형 태양전지 셀의 실험 j-V 곡선을 획득하는 단계; 상기 j-V 곡선으로부터 각 전위별 전체저항(R total)의 값을 계산하는 단계; 전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
Figure pat00046
에 대하여 도시하는 단계; 및 데이터의 선형 근사로부터 파라미터 R s 와 β를 획득하는 단계;를 포함하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법이 제시된다.

Description

전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법 {Method for extracting equivalent circuit parameters of dye-sensitized solar cells exclusively from current density-voltage curves and computer readable recording medium therefor}
본 발명은 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법 및 이를 위한 프로그램을 기록한 컴퓨터로 판독 가능한 기록매체에 관한 것으로, 보다 상세하게는 전류 밀도-전압(j-v) 데이터로부터 염료 감응형 태양전지(DSSCs)의 등가 회로 파라미터를 추출하는 방법에 관한 것이다.
염료 감응형 태양전지(Dye-Sensitized Solar Cell)는 산화환원 전해질로 구성되어 있으며, 표면에 화학적으로 흡착된 염료 분자가 태양빛을 받아 전자를 방출함으로써 전기를 생산하는 전지이다.
염료감응 태양전지는 식물이 광합성 작용을 통해 받은 태양에너지를 전자의 흐름으로 만들어내어 산화환원작용의 에너지로 쓰는 것과 같은 원리를 가진다. 단지, 식물의 잎에서 광합성을 할 때 빛을 엽록소라는 염료가 흡수하는 반면, 염료 감응형 태양전지는 나노 크기의 염료분자를 사용한다.표면에 염료분자가 화학적으로 흡착된 나노 입자 반도체 산화물 전극에 태양빛이 흡수되면 염료분자는 전자를 내놓게 되는데 이 전자가 여러 경로를 통하여 투명 전도성 기판으로 전달되어 최종적으로 전류를 생성한다. 전기적 일을 마친 전자는 다시 염료분자의 본래 위치로 돌아와 태양전지를 순환하게 된다.
이러한 염료 감응형 태양전지는 기존의 실리콘 태양전지에 비하여 제조공정이 단순하며 그로 인해 전지의 가격이 실리콘 셀 가격의 20~30% 정도이고, 안정성이 매우 높아 10년 이상 사용하여도 초기 효율을 거의 유지하며, 실리콘계 태양전지와 비교했을 때 일광량의 영향을 적게 받는다. 반면에, 전기 변환 효율이 기존의 태양전지에 비해 낮으며, 전해질의 안정성이 높지 못하고 액체 전해질의 경우 휘발하는 문제점이 있다.
염료 감응형 태양 전지는 매력적인 특성(저비용, 다양한 색상, 투명, 유연성 및 확산광에서의 동작)으로 인하여 활발히 연구되는 분야이다. TiO2 광전극에 로드된 루테늄 염료, I-/I- 3기반 산화 환원 전해질 및 백금화된 카운터 전극으로 구성된 전형적인 염료 감응형 태양 전지는 11.3% 효율을 나타내었으며, 포르피린 염료 및 코발트 기반 산화 환원 전해질로 구성된 염료 감응형 태양 전지는 12.3% 효율을 나타내었다. 더욱이, 페로브스카이트 태양전지에 대한 15% 기록 효율에 대한 최근 연구는 이 분야 기술의 연구 활동을 가속시키고 있다. 기록 효율에도 불구하고, 저비용, 긴 작동시간 및 고효율을 보장하는 새로운 물질과 방법을 가지고 소규모 연구실 사이즈 유닛 셀로부터 큰 사이즈의 모듈로 크기를 증가시키는 것이 필요하다. 이러한 관점에서, 디바이스의 태양광 성능에 영향을 주는 핵심 파라미터의 이해는 필수적이다.
외부 셀 전류 밀도(jcell)와 전압(Vcell) 사이의 관계는 이하의 다이오드 모델식 [식 1]에 의해 표현될 수 있다.
[식 1]
Figure pat00001
여기서, jph 는 광생성 전류밀도, j0 는 암포화 전류 밀도, m은 이상성 계수, β는 재결합차수, kB 는 볼츠만 상수, T 는 절대 온도, q 는 전하량, Rs 직렬 저항 및 Rsh 는 션트 저항을 나타낸다.
[식 1]이 통상적인 전류 밀도-전압(j-V) 곡선을 보여주는 염료 감응형 태양 전지에 유효하다 하더라도, 식을 통하여 j-V 곡선을 계산하는 것은 디바이스 성능을 제한하는 파라미터를 뽑아내는 강력한 접근법인데, 그 이유는 디바이스의 광특성은 j-V 및 전기 화학적 임피던스 분광(EIS) 데이터의 조합된 분석으로부터 획득될 수 있는 몇몇 파라미터로 설명될 수 있기 때문이다.
파라미터를 추출하기 위한 다른 방법은 실험된 j-V 곡선을 [식 1]에 반복적으로 맞추는 것이다. 그러나, j-V 곡선은 파라미터 세트와 다르게 맞추어질 수 있으며, 이는 물리적으로 의미를 갖지 않는다.
한편, 조합된 분석은 염료감응 태양전지의 오픈회로 및 쇼트회로 사이의 전위차에 상응하는 스테디 스테이트에서 측정된 EIS 스펙트럼 세트가 필요하다. 일반적으로 EIS 측정의 한 세트는 싱글셀의 경우 약 1시간 걸린다. 긴 시간동안의 조명으로 인하여 셀 온도는 시간이 흐를수록 변화하므로, 측정 동안에 셀의 정상상태를 일관되게 유지하는 것은 매우 어렵다는 문제점이 있다.
더욱이, EIS 데이터 분석은 등가회로 요소의 의미있는 값을 추출함으로써 적절한 등가 회로 임피던스 모델에 피팅하는 것과 같은 복잡한 공정을 포함한다. 그러므로, 더 신속하고 쉬운 방법으로 파라미터를 추출하는 방법을 개발할 필요가 있었다.
한국공개특허 제10-2007-0013876호
본 발명은 상술한 종래의 문제점을 극복하기 위한 것으로서, 본 발명이 해결하고자 하는 과제는 보다 신속하고, 용이한 방법으로 염료 감응형 태양전지의 등가 회로 파라미터를 추출하기 위하여, 전류 밀도-전압(j-v) 데이터만으로 염료 감응형 태양전지의 등가 회로 파라미터를 추출하는 방법을 제공하기 위한 것이다.
본 발명의 예시적인 실시예에 따르면, 염료 감응형 태양전지 셀의 실험 j-V 곡선을 획득하는 단계; 상기 j-V 곡선으로부터 각 전위별 전체저항(R total)의 값을 계산하는 단계; 전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
Figure pat00002
에 대하여 도시하는 단계; 및 데이터의 선형 근사로부터 파라미터 R s 와 β를 획득하는 단계;를 포함하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법이 제공된다.
상기 파라미터 R s 와 β를 획득하는 단계 이후에, j-V 곡선을 피팅함으로써 R s + R sh 를 측정하는 단계; 이미 알고있는 R s 값을 이용하여, R sh(션트저항)의 값을 계산하는 단계; 및 [식 11]
Figure pat00003
에 따라 j-V 곡선으로부터 획득된 전체저항(R total)으로부터 R r 을 계산하는 단계;를 더 포함한다.
상기 R r 을 계산하는 단계 이후에, R s 로 인한 전위 하락에 대한 V cell 을 보정한 후(
Figure pat00004
), 보정된 전위(V PE)에 대하여 R r 값을 도시하는 단계; 및 상기 도시된 그래프는 [식 12]
Figure pat00005
에 피팅되며, 상기 그래프를 이용하여, 파라미터를 추출하는 단계;를 더 포함한다.
상기 j-V 곡선으로부터 각 전위별 전체저항(R total)의 값을 계산하는 단계는, 각 전위별 전체저항(R total)의 값을 계산하기 위하여,
[식 3]
Figure pat00006
에 따른 j-V 데이터로부터 계산하는 것을 특징으로 한다.
상기 전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
Figure pat00007
에 대하여 도시하는 단계는,
[식 1]
Figure pat00008
여기서, jph 는 광생성 전류밀도, j0 는 다크 포화 전류 밀도, β는 재결합차수, kB 는 볼츠만 상수, T 는 절대 온도, q 는 전하량, Rs 직렬 저항 및 Rsh 는 션트 저항을 나타내며, 상기 [식 1]을 [식 5]와 같이 낮은 전위용과 [식 6]과 같이 높은 전위용으로 구분하는 단계;
[식 5]
Figure pat00009
[식 6]
Figure pat00010
를 포함한다.
상기 [식 1]을 [식 5]와 같이 낮은 전위용과 [식 6]과 같이 높은 전위용으로 구분하는 단계 이후에, 상기 [식 5] 및 [식 6]의 유도체를 이용하여 쇼트-회로 부근 전위용으로 [식 7]을 제공하며, Voc 부근 전위용으로 [식 8]을 제공하는 단계;
[식 7]
Figure pat00011
[식 8]
Figure pat00012
를 더 포함한다.
상기 [식 5] 및 [식 6]의 유도체를 이용하여 쇼트-회로 부근 전위용으로 [식 7]을 제공하며, Voc 부근 전위용으로 [식 8]을 제공하는 단계 이후에,
jph 의 값으로 쇼트-회로 전류 밀도(jsc)를 고려하여, 상기 [식 8]을 [식 9]로 유도하는 단계; 및
[식 9]
Figure pat00013
전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
Figure pat00014
에 대하여 도시하는 단계;를 더 포함한다.
본 발명에 따르면, 전류 밀도-전압(j-v) 데이터만으로 염료 감응형 태양전지의 등가 회로 파라미터를 추출함으로써, 보다 신속하고 용이하면서 신뢰성 높은 염료 감응형 태양전지의 등가 회로 파라미터를 얻을 수 있게 된다.
도 1은 식 1의 다이오드 모델식에 상응하는 등가 회로도이다.
도 2는 실험에 의한 j-V 곡선을 나타낸다.
도 3은 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터를 추출하는 과정을 도시한 흐름도이다.
도 4는 [식 3]에 따른 j-V 데이터로부터 계산된 전위별 전체저항(R total)의 값을 나타낸 도이다.
도 5는
Figure pat00015
에 대한 전체저항(R total)의 값을 나타낸 도이다.
도 6은 쇼트-회로에서 2개의 셀들의 j-V 곡선을 피팅하여 측정된 R s + R sh 의 값을 나타낸 도이다.
도 7은 보정된 전위(V PE)에 대한 R r 의 값을 나타낸 도이다.
도 8a 및 도 8b는 획득한 파라미터를 이용하여 재생성한 j-V 곡선(도 8a는 셀A, 도 8b는 셀B)을 나타낸 도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다.
도 1을 참조하면, 외부 셀 전류 밀도(jcell)와 전압(Vcell) 사이의 관계는 이하의 다이오드 모델식 [식 1]에 의해 표현될 수 있다.
[식 1]
Figure pat00016
여기서, jph 는 광생성 전류밀도, j0 는 다크 포화 전류 밀도, β는 재결합차수, kB 는 볼츠만 상수, T 는 절대 온도, q 는 전하량, Rs 직렬 저항 및 Rsh 는 션트 저항을 나타낸다.
션트 저항(R sh )과 재결합 저항(R r )의 병렬 연결은 광생성 전류(j ph)의 손실을 나타내며, 직렬 저항(R s)은 V cell = V PE + j cell R s 로서의 광생성 전압(VPE)의 손실을 나타낸다.
도 1의 등가 회로에 따라, 염료 감응형 태양 전지의 전체 저항(Rtotal)은 이하의 [식 2]로 기재될 수 있다.
[식 2]
Figure pat00017
한편, 전체 저항(Rtotal)은 이하의 [식 3]과 같이 j-V곡선의 유도체로부터 유도될 수 있다.
[식 3]
Figure pat00018
반대로, 상응하는 셀의 j-V 곡선은 [식 4]를 통하여 쇼트-회로 전류 밀도(jsc)를 사용하여 전체 저항(Rtotal)으로부터 구성될 수 있다.
[식 4]
Figure pat00019
[식 1]은 2개의 다른 전위 영역을 위하여 간소화될 수 있다. 낮은 전위에서 재결합 저항(R r)은 전류 손실을 지배하는 션트 저항(R sh)보다 더 커지지만, 더 높은 전위에서의 재결합 저항(R r)은 손실 메커니즘을 기하급수적으로 지배한다. 그 결과, 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지 j-V 곡선을 형성한다. 그러므로, j-V 관계는 [식 5]와 같이 낮은 전위용과 [식 6]과 같이 높은 전위용으로 표현될 수 있다.
[식 5]
Figure pat00020
[식 6]
Figure pat00021
[식 3]에 따르면, [식 5] 및 [식 6]의 유도체는 쇼트-회로 부근 전위용으로 [식 7]을 제공하며, Voc 부근 전위용으로 [식 8]을 제공한다.
[식 7]
Figure pat00022
[식 8]
Figure pat00023
j0의 값은 jph 보다 더 작은 크기의 차수이므로, 무시될 수 있다.
jph 의 값으로 쇼트-회로 전류 밀도(jsc)를 고려하면, [식 8]은 [식 9]와 같이 기재될 수 있다.
[식 9]
Figure pat00024
만약, 전체 저항(Rtotal)이
Figure pat00025
에 대하여 도시되어, 선형 근사(linear fit)로 된다면, [식 9]는 R s 와 β제공할 것이다.
R s 의 값을 사용하며, R sh 의 값은 [식 7]에 따른 쇼트-회로에서 전체 저항(Rtotal)으로부터 획득될 수 있다.
그러나, 쇼트-회로에서 j-V 곡선은 스무드-라인이 아니며, 그러므로 전체 저항(Rtotal)은 쇼트-회로에서 j-V 곡선의 슬로프로부터 측정될 수 없다. 이러한 문제점에 대한 해법은 쇼트-회로에서 j-V곡선을 [식 10]에 선형 근사(리니어 피팅)시키는 것이며, [식 10]은 [식 5]로부터 다음과 같이 재정리될 수 있다.
[식 10]
Figure pat00026
R sR sh 의 값은 알고 있으므로, 백 리액션 저항(R r)은 [식 2]에 따른 전체 저항(Rtotal)으로부터 이하의 [식 11]과 같이 용이하게 계산될 수 있다.
[식 11]
Figure pat00027
재결합 저항(R r)은 VPE에 의존한다.
[식 12]
R s 에 의해 유도된 전위 하락에 대한 보정후, 재결합 저항(Rr)은 VPE에 대하여 도시될 수 있다. [식 12]에 대한 플롯의 최적 피팅은 j 0 와 β값을 제공한다. 최종적으로, 상기 분석으로부터 획득된 데이터는 [식 1]을 통한 j-V 곡선을 계산하는데 사용될 수 있다.
도 2는 실험에 의한 j-V 곡선을 나타내며, 도 3은 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터를 추출하는 과정을 도시한 흐름도이며, 도 4는 [식 3]에 따른 j-V 데이터로부터 계산된 전위별 전체저항(R total)의 값을 나타낸 도이며, 도 5는
Figure pat00028
에 대한 전체저항(R total)의 값을 나타낸 도이고, 도 6은 쇼트-회로에서 2개의 셀들의 j-V 곡선을 피팅하여 측정된 R s + R sh 의 값을 나타낸 도이며, 도 7은 보정된 전위(V PE)에 대한 R r 의 값을 나타낸 도이다.
[실험예]
4 ㎛ 두께 TiO2 광전극이 로드된 N719(염료), 백금화된 카운터 전극, 및 트리요오드화물/요오드화물 기반 액체 전해질을 포함하는 2개의 상이한 염료감응 태양전지(이하 'A셀, B셀'이라 함)를 제조하였다.
A 셀은 0.6M 1-부틸-3-메틸이미다졸리움 요오드화물(BMII), 0.1M I2 , 0.1M 구아니이니움 시오시아네이트 및 0.5M 4-테트-부틸피리딘(TBP)을 포함하는 액체 전해질을 사용하였으며, B셀은 0.5M 리튬 요오드화물(LiI) 및 0.05M I2만 함유하는 액체 전해질을 사용하였다.
태양광 측정은 AM 1.5스펙트럼 분포를 갖는 3A 솔라 시뮬레이터(일본, 산-세이 전기 주식회사, XES-40S1)를 사용하였다. 전류-전압(j-V)은 다목적 포텐셔스탯(네덜란드, 이비움 테크놀로지사의 이비움스탯)으로 측정하였다.
셀의 전기화학 임피던스 스펙트럼은 동일한 포펜셔스탯으로 측정하였으며, 측정된 스펙트럼은 제트뷰 소프트웨어(미국, 스크리브너 어소시에이트 3.1버전)로 염료감응 태양전지의 적합한 등가회로로 피팅하였다.
EIS 측정은 주파수 100kHz ~ 100MHz 범위에서 10mv 변조된 전압을 인가하면서 측정하였다.
도 3 내지 도 7을 참조하여, 등가 회로 파라미터를 추출하는 과정을 살펴본다.
이하의 실시예에서,2개의 상이한 액체 전해질을 포함하는 염료 감응형 태양전지의 등가 회로 파라미터를 추출하기 위하여 수행되었다.
A 셀은 이미다졸륨 요오드화물 (imidazolium iodide)기반 전해질과 첨가물로 구성되며, B 셀은 첨가물 없이 리튬 요오드화물(LiI;Lithium iodide)로 구성된다.
우선, 제조한 셀의 실험 j-V 곡선(도 2, 솔리드 라인 참조)을 획득하는 과정을 수행한다(S10).
j-V 곡선으로부터 획득된 태양광 성능 파라미터는 이하의 [표 1]에 요약된다.
[표 1]
Figure pat00029
도 2에 도시된 데이터 및 [표 1]에 요약된 데이터로부터, A 셀의 효율(ηη(3.42%)이 B셀의 효율(5.29%)보다 낮으며, j sc 값이 상대적으로 높음에도 불구하고, A셀의 fill-factor (ff) 및 V oc가 낮음을 알 수 있다.
그 다음, 각 전위별 전체저항(R total)의 값은 계산하는 과정을 수행한다(S20). 이때, 각 전위별 전체저항(R total)의 값을 계산하기 위하여, [식 3]에 따른 j-V 데이터로부터 계산한다(도 4 참조).
도 5에 도시된 바와 같이, 전체저항(R total)을 상응하는 셀의 Vmp에서 Voc까지의 전위별로
Figure pat00030
에 대하여 도시하는 과정을 수행한다(S30).
그리고 나서, S30과정을 통하여 획득한 데이터의 선형 근사(리니어 피트)로부터 파라미터를 R s 와 β를 획득하는 과정을 수행한다(S40).
본 실시예의 경우, A셀의 경우 획득한 R s 와 β는 각각 6.56 Ωm2 와 0.50이며, B셀의 경우 획득한 R s 와 β는 7.47 Ωm2 와 0.60 이다.
그 다음, 도 6에 도시된 바와 같이 쇼트-회로에서 2개의 셀들의 j-V 곡선을 피팅함으로써 R s + R sh 를 측정하는 과정을 수행한다(S50).
이미 알고있는 R s 값을 이용하여, 션트 저항(R sh)의 값을 계산하는 과정을 수행한다(S60). 본 실시예의 경우, A셀은 1003.81 Ωcm2 로, B셀은 1282.07 Ωcm2 로 계산되었다.
그리고 나서, [식 11]에 따라 j-V 곡선으로부터 획득된 전체저항(R total)으로부터 R r 을 계산하는 과정을 수행한다(S70).
R s 로 인한 전위 하락에 대한 V cell 을 보정한 후(
Figure pat00031
), 보정된 전위(V PE)에 대하여 R r 값을 도시하는 과정을 수행한다(S80).
그리고 나서, S80 과정을 통하여 도출된 그래프를 이용하여, 파라미터를 추출하는 과정을 수행한다(S90).
본 실시예의 경우, 그래프는 [식 12]에 피팅되어, A셀의 j 0 및 β는 3.36×10-3 mA/cm2 및 0.51로 추출되며, B 셀의 j 0 및 β는 1.31×10-6 mA/cm2 및 0.60으로 추출되었다.
파라미터는 j-V 및 EIS 데이터의 조합 분석(종래기술)으로 획득되기도 한다. 종래 기술 및 본원 발명에 따라 획득된 등가 회로 파라미터는 표 2에 요약된다.
[표 2]
Figure pat00032
상기 [표 2]는 본 발명에 따라 j-V 데이터로부터 획득한 등가회로 파라미터가 j-V 및 EIS 데이터의 조합 분석으로부터 획득한 파라미터와 유사하다는 것을 보여준다.
도 8a 및 도 8b는 획득한 파라미터를 이용하여 재생성한 j-V 곡선(도 8a는 셀A, 도 8b는 셀B)을 나타낸 도이다.
양 방법은 A 셀에서의 재결합이 B셀에서의 재결합 보다 더 높음을 제시한다. 더욱이, R s 로 인한 전위 하락을 제거함으로써 계산된 j-V곡선(도 8 참조, R s = 0)은 A셀의 매우 낮은 필-팩터(ff)가 첨가물을 포함하지 않는 전해질로 침투된 광전극의 본래 특성임을 보여준다. 그 이유는 R s 효과없이 계산된 내부 필-팩터(ff')는 A셀의 경우 66%인 반면, B셀은 78%로 나타났기 때문이다.
상기에서 살펴본 바와 같이, 디바이스 성능에 영향을 주는 등가회로 파라미터를 j-V 및 EIS 데이터의 조합 분석으로 유도하는 대신에 j-V 데이터만으로 신속하고, 용이하면서도 신뢰성있게 유도할 수 있다.
이상에서 설명한 것은 본 발명에 따른 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이, 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.

Claims (7)

  1. 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법으로서,
    염료 감응형 태양전지 셀의 실험 j-V 곡선을 획득하는 단계;
    상기 j-V 곡선으로부터 각 전위별 전체저항(R total)의 값을 계산하는 단계;
    전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
    Figure pat00033
    에 대하여 도시하는 단계; 및
    데이터의 선형 근사로부터 파라미터 R s 와 β를 획득하는 단계;를 포함하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.
  2. 제1항에 있어서,
    상기 파라미터 R s 와 β를 획득하는 단계 이후에,
    j-V 곡선을 피팅함으로써 R s + R sh 를 측정하는 단계;
    이미 알고있는 R s 값을 이용하여, R sh(션트저항)의 값을 계산하는 단계; 및
    [식 11]
    Figure pat00034
    에 따라 j-V 곡선으로부터 획득된 전체저항(R total)으로부터 R r 을 계산하는 단계;를 더 포함하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.
  3. 제2항에 있어서,
    상기 R r 을 계산하는 단계 이후에,
    R s 로 인한 전위 하락에 대한 V cell 을 보정한 후(
    Figure pat00035
    ), 보정된 전위(V PE)에 대하여 R r 값을 도시하는 단계; 및
    상기 도시된 그래프는 [식 12]
    Figure pat00036
    에 피팅되며, 상기 그래프를 이용하여, 파라미터를 추출하는 단계;를 더 포함하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.
  4. 제1항에 있어서,
    상기 j-V 곡선으로부터 각 전위별 전체저항(R total)의 값을 계산하는 단계는,
    각 전위별 전체저항(R total)의 값을 계산하기 위하여,
    [식 3]
    Figure pat00037
    에 따른 j-V 데이터로부터 계산하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.
  5. 제1항에 있어서,
    상기 전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
    Figure pat00038
    에 대하여 도시하는 단계는,
    [식 1]
    Figure pat00039

    여기서, jph 는 광생성 전류밀도, j0 는 다크 포화 전류 밀도, β는 재결합차수, kB 는 볼츠만 상수, T 는 절대 온도, q 는 전하량, Rs 직렬 저항 및 Rsh 는 션트 저항을 나타내며, 상기 [식 1]을 [식 5]와 같이 낮은 전위용과 [식 6]과 같이 높은 전위용으로 구분하는 단계;
    [식 5]
    Figure pat00040

    [식 6]
    Figure pat00041

    를 포함하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.
  6. 제5항에 있어서,
    상기 [식 1]을 [식 5]와 같이 낮은 전위용과 [식 6]과 같이 높은 전위용으로 구분하는 단계 이후에,
    상기 [식 5] 및 [식 6]의 유도체를 이용하여 쇼트-회로 부근 전위용으로 [식 7]을 제공하며, Voc 부근 전위용으로 [식 8]을 제공하는 단계;
    [식 7]
    Figure pat00042

    [식 8]
    Figure pat00043

    를 더 포함하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.
  7. 제6항에 있어서,
    상기 [식 5] 및 [식 6]의 유도체를 이용하여 쇼트-회로 부근 전위용으로 [식 7]을 제공하며, Voc 부근 전위용으로 [식 8]을 제공하는 단계 이후에,
    jph 의 값으로 쇼트-회로 전류 밀도(jsc)를 고려하여, 상기 [식 8]을 [식 9]로 유도하는 단계; 및
    [식 9]
    Figure pat00044

    전체저항(R total)을 최대 전력점 전압(Vmp)에서 오픈-회로 전압(Voc)까지
    Figure pat00045
    에 대하여 도시하는 단계;
    를 더 포함하는 것을 특징으로 하는 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법.

KR1020150161405A 2015-11-17 2015-11-17 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법 KR20170057791A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150161405A KR20170057791A (ko) 2015-11-17 2015-11-17 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150161405A KR20170057791A (ko) 2015-11-17 2015-11-17 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법

Publications (1)

Publication Number Publication Date
KR20170057791A true KR20170057791A (ko) 2017-05-25

Family

ID=59051068

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150161405A KR20170057791A (ko) 2015-11-17 2015-11-17 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법

Country Status (1)

Country Link
KR (1) KR20170057791A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714000A (zh) * 2018-12-25 2019-05-03 苏州阿特斯阳光电力科技有限公司 硅片表面金属化界面的复合电流密度测试方法及测试网版
CN111694395A (zh) * 2020-06-28 2020-09-22 齐鲁工业大学 一种基于伏安特性方程和二分法的光伏最大功率点跟踪方法
US11119157B2 (en) 2017-11-02 2021-09-14 Lg Chem, Ltd. Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119157B2 (en) 2017-11-02 2021-09-14 Lg Chem, Ltd. Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
CN109714000A (zh) * 2018-12-25 2019-05-03 苏州阿特斯阳光电力科技有限公司 硅片表面金属化界面的复合电流密度测试方法及测试网版
CN111694395A (zh) * 2020-06-28 2020-09-22 齐鲁工业大学 一种基于伏安特性方程和二分法的光伏最大功率点跟踪方法
CN111694395B (zh) * 2020-06-28 2021-09-24 齐鲁工业大学 基于伏安特性方程和二分法的光伏最大功率点跟踪方法

Similar Documents

Publication Publication Date Title
Han et al. Modeling of an equivalent circuit for dye-sensitized solar cells
Tsao et al. Cyclopentadithiophene Bridged Donor–Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye‐Sensitized Solar Cells Based on the tris‐Cobalt Bipyridine Redox Couple
Zhang et al. The 2, 2, 6, 6‐tetramethyl‐1‐piperidinyloxy radical: an efficient, iodine‐free redox mediator for dye‐sensitized solar cells
Berginc et al. The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte
Raga et al. Analysis of the origin of open circuit voltage in dye solar cells
Guillén et al. Electron transport and recombination in ZnO-based dye-sensitized solar cells
Huang et al. Probing the low fill factor of NiO p-type dye-sensitized solar cells
Ferdowsi et al. Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator
Hinsch et al. Status of dye solar cell technology as a guideline for further research
Achari et al. A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-sensitized solar cells
Sarker et al. On the hysteresis of current density-voltage curves of dye-sensitized solar cells
Cisneros et al. Investigation of electron transfer processes involved in DSSC’s by wavelength dependent electrochemical impedance spectroscopy (λ-EIS)
Yang et al. Thermal stability study of dye-sensitized solar cells with cobalt bipyridyl–based electrolytes
KR20170057791A (ko) 전류 밀도-전압 곡선으로부터 염료 감응형 태양 전지의 등가 회로 파라미터 추출 방법
Wu et al. Hysteresis analysis in dye-sensitized solar cells based on external bias field effects
Hanmin et al. An improved method to estimate the equivalent circuit parameters in DSSCs
Jia et al. A supramolecular assembly of metal-free organic dye with zinc porphyrin chromophore for dye-sensitized solar cells
Sarker et al. Exact analytical analysis of current density–voltage curves of dye-sensitized solar cells
Giribabu et al. High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells
Cho et al. Efficient binary organic thiolate/disulfide redox mediators in dye-sensitized solar cells based on a carbon black counter electrode
Lee et al. Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells
Uddin et al. Significant influence of annealing temperature and thickness of electrode on energy conversion efficiency of dye sensitized solar cell: effect of catalyst
Latini et al. Benzonitrile based electrolytes for best operation of dye sensitized solar cells
Singh et al. Interface electrostatics of solid-state dye-sensitized solar cells: A joint drift-diffusion and density functional theory study
Stergiopoulos et al. High boiling point solvent-based dye solar cells pass a harsh thermal ageing test

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application