KR20170046543A - Defrosting device and refrigerator having the same - Google Patents

Defrosting device and refrigerator having the same Download PDF

Info

Publication number
KR20170046543A
KR20170046543A KR1020150147010A KR20150147010A KR20170046543A KR 20170046543 A KR20170046543 A KR 20170046543A KR 1020150147010 A KR1020150147010 A KR 1020150147010A KR 20150147010 A KR20150147010 A KR 20150147010A KR 20170046543 A KR20170046543 A KR 20170046543A
Authority
KR
South Korea
Prior art keywords
heater
heat
case
evaporator
heating unit
Prior art date
Application number
KR1020150147010A
Other languages
Korean (ko)
Other versions
KR102447834B1 (en
Inventor
정광수
강우철
박용갑
이근형
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020150147010A priority Critical patent/KR102447834B1/en
Priority to EP16857644.5A priority patent/EP3367025B1/en
Priority to EP19211279.5A priority patent/EP3708933A1/en
Priority to US15/518,502 priority patent/US10520240B2/en
Priority to CN201680003731.9A priority patent/CN107003060B/en
Priority to PCT/KR2016/008436 priority patent/WO2017069386A1/en
Priority to JP2017520344A priority patent/JP6484709B2/en
Publication of KR20170046543A publication Critical patent/KR20170046543A/en
Application granted granted Critical
Publication of KR102447834B1 publication Critical patent/KR102447834B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • F25D23/082Strips
    • F25D23/087Sealing strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • Y02B40/30

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Defrosting Systems (AREA)

Abstract

According to the present invention, disclosed is a defrosting device which comprises: a heating unit provided in an evaporator; and a heat pipe in which both end portions are individually connected to an entry and an exit of the heating unit, and at least a portion is arranged to be adjacent to a cooling pipe to radiate heat to the cooling pipe of the evaporator by a high temperature hydraulic fluid heated by the heating unit to be transferred. The heating unit comprises: a heater case having an empty space therein and the entry and the exit individually placed at positions which are spaced from each other in a longitudinal direction; and a heater attached to an outside surface of the heater case to heat the hydraulic fluid inside the heater case.

Description

제상 장치 및 이를 구비하는 냉장고{DEFROSTING DEVICE AND REFRIGERATOR HAVING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a defrosting device and a refrigerator having the defrosting device.

본 발명은 냉동 사이클에 구비되는 증발기에 착상된 성에를 제거하기 위한 제상 장치, 그리고 이를 구비하는 냉장고에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting device for removing frost on a evaporator provided in a refrigeration cycle, and a refrigerator having the defrosting device.

냉동 사이클에 구비되는 증발기는 냉각관을 유동하는 냉매의 순환에 의해 생성된 냉기를 이용하여 주변의 온도를 낮추게 된다. 이 과정에서, 주변 공기와의 온도차가 발생할 경우, 공기 중의 수분이 냉각관의 표면에 응축 동결되는 현상이 발생한다.The evaporator provided in the refrigeration cycle lowers the ambient temperature by using cool air generated by the circulation of the refrigerant flowing through the cooling pipe. In this process, when a temperature difference with ambient air occurs, moisture in the air is condensed and frozen on the surface of the cooling pipe.

증발기에 착상된 성에를 제거하기 위한 제상 작업으로, 종래에는 통상 전기히터를 이용한 제상 방법이 이용되었다.As a defrosting operation for removing the impurities cast on the evaporator, a defrosting method using an electric heater is conventionally used.

최근에는 발열수단으로서 히트 파이프를 이용한 제상 장치가 개발되어 안출되었는데, 이와 관련한 기술로는 대한민국 등록특허 제10-0469322호 "증발기"가 있다.In recent years, a defrosting device using a heat pipe has been developed as a heat generating means, and a related art is Korean Patent No. 10-0469322 entitled "Evaporator ".

상기 "증발기" 특허의 히트 파이프식 제상 장치는 히터가 증발기의 상하방향을 따라 수직으로 배치되고, 작동액이 히터의 저부에만 충진된 구성을 가진다. 상기 구조의 제상 장치는, 신속한 가열에 의해 증발 속도를 높일 수는 있겠지만, 히터가 과열되는 위험을 내포하고 있다.In the heat pipe type defrost apparatus of the above-mentioned "evaporator", the heater is arranged vertically along the vertical direction of the evaporator, and the working liquid is filled only at the bottom of the heater. The defrosting device of the above structure may increase the evaporation speed by rapid heating, but it involves the risk of overheating the heater.

또한, 히터가 히트 파이프의 내부에 수용되는 구조를 가짐에 따라, 고온의 열이 히트 파이프 내부에 집중되어 히터의 수명이 단축될 수 있으며, 히터의 실링문제가 생길 수 있다.Further, since the heater has a structure in which the heat pipe is housed inside the heat pipe, high temperature heat can be concentrated inside the heat pipe, shortening the lifetime of the heater, and there may be a sealing problem of the heater.

본 발명의 일 목적은, 보다 저렴한 비용으로 제작 가능하고, 제상시 소비되는 전력이 감소될 수 있으며, 유지 보수가 용이한 새로운 구조의 제상 장치를 제공하는 데에 있다.It is an object of the present invention to provide a defrost apparatus of a new structure which can be manufactured at a lower cost, can reduce power consumption during defrosting, and is easy to maintain.

본 발명의 다른 일 목적은, 히터의 열전달 성능을 향상시킬 수 있으며, 히터의 과열을 방지하여 신뢰성을 향상시킬 수 있는 제상 장치를 제공하는 데에 있다.It is another object of the present invention to provide a defrosting device capable of improving heat transfer performance of a heater and preventing overheating of a heater to improve reliability.

본 발명의 또 다른 일 목적은, 히터에 작동액이 접촉되는 것을 방지할 수 있는 제상 장치를 제공하는 데에 있다.Another object of the present invention is to provide a defrosting device capable of preventing a working fluid from contacting a heater.

본 발명의 또 다른 일 목적은, 작동액이 효율적으로 순환할 수 있는 제상 장치를 제공하는 데에 있다.Still another object of the present invention is to provide a defrost apparatus in which a working liquid can be efficiently circulated.

본 발명의 또 다른 일 목적은, 히팅유닛이 증발기의 상하방향을 따라 수직으로 배치되는 제상 장치에서, 증발기의 하측 냉각관에 대한 제상이 원활하게 이루어질 수 있는 구조를 제공하는 데에 있다.Another object of the present invention is to provide a structure in which defrosting of the lower cooling pipe of the evaporator can be smoothly performed in a defrosting apparatus in which the heating unit is disposed vertically along the vertical direction of the evaporator.

이와 같은 본 발명의 해결 과제를 달성하기 위하여, 본 발명의 제상 장치는, 증발기에 구비되는 히팅 유닛; 및 양단부가 상기 히팅 유닛의 입구와 출구에 각각 연결되고, 상기 히팅 유닛에 의해 가열되어 이송되는 고온의 작동액에 의해 상기 증발기의 냉각관에 방열하도록 적어도 일부가 상기 냉각관에 인접하게 배치되는 히트 파이프를 포함하며, 상기 히팅 유닛은, 내부에 빈 공간을 구비하고, 길이방향을 따라 상호 이격된 위치에 상기 입구와 상기 출구를 각각 구비하는 히터 케이스; 및 상기 히터 케이스의 외부면에 부착되어 상기 히터 케이스 내의 작동액을 가열하도록 구성되는 히터를 포함한다.According to an aspect of the present invention, there is provided a defrost apparatus comprising: a heating unit provided in an evaporator; And at least a part of which is disposed adjacent to the cooling pipe so as to be radiated to the cooling pipe of the evaporator by the high temperature working liquid which is heated and conveyed by the heating unit and whose both ends are connected to the inlet and the outlet of the heating unit, Wherein the heating unit includes a heater case having an empty space therein and having the inlet and the outlet at positions spaced apart from each other along the longitudinal direction; And a heater attached to an outer surface of the heater case and configured to heat a working fluid in the heater case.

상기 히터는 플레이트 형태를 가지는 판상 히터가 될 수 있다.The heater may be a plate-shaped heater having a plate shape.

상기 히터는, 세라믹 재질로 형성되고, 상기 히터 케이스의 외부면에 부착되는 베이스 플레이트; 상기 베이스 플레이트에 형성되며, 전원 인가시 발열하도록 구성되는 열선; 및 상기 베이스 플레이트에 구비되어 상기 열선과 전원을 전기적으로 연결하도록 구성되는 터미널을 포함한다.The heater includes a base plate formed of a ceramic material and attached to an outer surface of the heater case; A heating wire formed on the base plate and configured to generate heat when power is applied; And a terminal provided on the base plate and configured to electrically connect the hot wire and the power source.

상기 히터 케이스는, 상기 열선이 배치되는 부분에 대응되는 능동발열부와, 상기 열선이 미배치되는 부분에 대응되는 수동발열부로 구획되고, 상기 히트 파이프를 이동한 후 상기 입구를 통하여 리턴되는 작동액이 재가열되어 역류하는 것을 방지하도록, 상기 입구는 상기 수동발열부에 형성된다.Wherein the heater case is divided into an active heat generating portion corresponding to a portion where the heat ray is disposed and a passive heat generating portion corresponding to a portion where the heat ray is not arranged, The inlet is formed in the manual heat generating portion so as to prevent reheating and backflow.

상기 열선은 상기 입구와 상기 출구 사이의 일 지점으로부터 상기 출구를 향하여 연장 형성된다.The hot wire extends from one point between the inlet and the outlet toward the outlet.

본 발명은 상기 구조를 기초로 하는 제상 장치의 제1 내지 제4실시예에 대하여 개시한다.The present invention discloses first to fourth embodiments of the defrost apparatus based on the above structure.

제1실시예:First Embodiment:

상기 히터는 상기 히터 케이스의 저면에 부착될 수 있다.The heater may be attached to the bottom surface of the heater case.

상기 히터 케이스의 양측에는 각각 저면으로부터 하측으로 연장 형성되어 상기 저면에 부착된 히터의 양측면을 덮도록 구성되는 제1 및 제2연장핀이 구비될 수 있다.The heater case may include first and second extension pins formed on both sides of the heater case so as to cover both sides of the heater attached to the bottom surface.

상기 히터의 배면과 상기 제1 및 제2연장핀에 의해 형성되는 리세스된(recessed) 공간에는 실링부재가 상기 히터를 덮도록 충진된다.In the recessed space formed by the back surface of the heater and the first and second extension pins, a sealing member is filled to cover the heater.

상기 히터의 배면과 상기 실링부재 사이에는 절연재가 개재된다.An insulating material is interposed between the back surface of the heater and the sealing member.

상기 히터 케이스와 상기 히터 사이에는 열전도성 접착제가 개재된다.A thermally conductive adhesive is interposed between the heater case and the heater.

상기 히터 케이스는, 내부에 빈 공간을 구비하고, 양단부가 개구된 형태를 가지며, 저면에 상기 히터가 부착되는 메인 케이스; 및 상기 메인 케이스의 개구된 양단부를 각각 덮도록 장착되는 제1커버와 제2커버를 포함할 수 있다.The heater case includes a main case having a hollow space therein, both ends of which are opened, and the heater is attached to the bottom of the main case; And a first cover and a second cover which are mounted to cover the opened both ends of the main case, respectively.

상기 제1 및 제2커버 중 적어도 하나는 상기 메인 케이스의 저면으로부터 하측으로 연장 형성되어, 상기 제1 및 제2연장핀과 함께 상기 히터를 둘러싸도록 이루어질 수 있다.At least one of the first and second covers may extend downward from the bottom surface of the main case so as to surround the heater together with the first and second extension pins.

상기 히트 파이프가 상기 증발기의 전면부 및 후면부에 2행을 이루도록 각각 배치되는 제1히트 파이프와 제2히트 파이프로 구성되는 경우, 상기 출구는 상기 제1 및 제2히트 파이프의 일단부와 각각 연결되는 제1출구와 제2출구를 포함하며, 상기 입구는 상기 제1 및 제2히트 파이프의 타단부와 각각 연결되는 제1입구와 제2입구를 포함한다.In the case where the heat pipe is constituted by a first heat pipe and a second heat pipe which are respectively arranged in two rows on the front and rear sides of the evaporator, the outlet is connected to one end of the first and second heat pipes And the inlet includes a first inlet and a second inlet respectively connected to the other ends of the first and second heat pipes.

상기 제1 및 제2출구는, 상기 메인 케이스의 양측에 각각 형성되거나, 상기 제1커버에 서로 나란하게 형성될 수 있다.The first and second outlets may be formed on both sides of the main case, respectively, or may be formed in parallel with the first cover.

상기 제1 및 제2입구는, 상기 메인 케이스의 양측에 각각 형성되거나, 상기 제2커버에 서로 나란하게 형성될 수 있다.The first and second inlets may be formed on both sides of the main case, respectively, or may be formed in parallel with the second cover.

한편, 상기 히터가 미부착된 상기 히터 케이스의 다른 외부면에는 외부핀이 돌출 형성될 수 있다.On the other hand, an outer fin may protrude from the other outer surface of the heater case to which the heater is not attached.

상기 히터는 상기 히터 케이스의 저면에 부착되고, 상기 외부핀은 상기 히터 케이스의 상면에 형성될 수 있다.The heater may be attached to the bottom surface of the heater case, and the external fin may be formed on the top surface of the heater case.

상기 외부핀은 복수 개로 구비되어, 상호 소정의 이격 간격을 두고 상기 히터 케이스의 길이방향 또는 폭방향을 따라 연장 형성될 수 있다. 상기 이격 간격은 상기 외부핀의 폭과 같거나 상기 외부핀의 폭보다 넓게 설정된다.The plurality of external fins may be formed to extend along the longitudinal direction or the width direction of the heater case with a predetermined gap therebetween. The spacing distance is set to be equal to or greater than the width of the outer pin.

또는, 상기 외부핀은 복수 개로 구비되고, 상기 히터 케이스의 길이방향 및 폭방향을 따라 상호 소정의 이격 간격을 두고 배치되어 행렬(matrix)를 이룰 수 있다.Alternatively, a plurality of the external fins may be provided, and the heaters may be arranged in a matrix at a predetermined distance from each other along the longitudinal direction and the width direction of the heater case.

상기 제1 및 제2출구가 상기 메인 케이스의 일단부에 인접한 양측면에 각각 형성되고, 상기 제1 및 제2입구가 상기 메인 케이스의 타단부에 인접한 양측면에 각각 형성된 구조에서, 상기 외부핀은 상기 메인 케이스의 양측 외부면에도 각각 돌출 형성되되, 상기 제1입구와 상기 제1출구 사이 및 상기 제2입구와 상기 제2출구 사이에서 길게 연장 형성될 수 있다.Wherein the first and second outlets are respectively formed on both side surfaces adjacent to one end of the main case and the first and second inlets are formed on both side surfaces adjacent to the other end of the main case, Protruding from the outer surface of both sides of the main case, and extended between the first inlet and the first outlet, and between the second inlet and the second outlet.

상기 외부핀은 상기 제1 및 제2커버 중 적어도 하나의 커버의 외부면에서도 돌출 형성될 수 있다.The outer pin may protrude from an outer surface of at least one of the first and second covers.

한편, 상기 히터가 부착되는 상기 외부면의 내측 내부면에는 내부핀이 돌출 형성될 수 있다.On the other hand, an inner fin may protrude from an inner inner surface of the outer surface to which the heater is attached.

상기 히터는 상기 히터 케이스의 외부 저면에 부착되고, 상기 내부핀은 상기 히터 케이스의 내부 저면으로부터 돌출 형성될 수 있다.The heater may be attached to an outer bottom surface of the heater case, and the inner fin may protrude from an inner bottom surface of the heater case.

상기 내부핀은 상기 히터 케이스의 내부 높이 대비 1/2 이하의 길이로 돌출 형성된다.The inner pin is protruded to a length of 1/2 or less of the inner height of the heater case.

상기 내부핀은 복수 개로 구비되어, 상호 소정의 이격 간격을 두고 상기 히터 케이스의 길이방향을 따라 연장 형성될 수 있다.The plurality of inner fins may be formed to extend along the longitudinal direction of the heater case with a predetermined spacing therebetween.

상기 히터 케이스의 내측벽과 상기 내측벽에 인접한 상기 내부핀까지의 간격은 상기 내부핀의 폭 대비 1배 이상 2배 이하로 형성된다.The inner wall of the heater case and the inner fins adjacent to the inner wall are spaced apart from each other by at least 1 times and not more than 2 times the width of the inner fins.

상기 복수의 내부핀 상호 간의 이격 간격은 상기 내부핀의 폭 대비 1배 이상 2배 이하로 형성된다.The spacing between the plurality of inner pins is not less than 1 times and not more than 2 times the width of the inner pins.

상기 제1 및 제2출구가 상기 메인 케이스의 일단부에 인접한 양측면에 각각 형성되고, 상기 제1 및 제2입구가 상기 메인 케이스의 타단부에 인접한 양측면에 각각 형성된 구조에서, 상기 내부핀은 상기 제1입구와 상기 제1출구 사이 및 상기 제2입구와 상기 제2출구 사이에서 길게 연장 형성될 수 있다.Wherein the first and second outlets are formed on both side surfaces adjacent to one end of the main case and the first and second inlets are formed on both side surfaces adjacent to the other end of the main case, And may extend between the first inlet and the first outlet, and between the second inlet and the second outlet.

한편, 상기 리드 와이어는 상기 증발기의 외측에 인접한 상기 히터의 일단부로부터 외측으로 연장되도록 구성된다.On the other hand, the lead wire is configured to extend outward from one end of the heater adjacent to the outside of the evaporator.

상기 히팅 유닛이 상기 증발기의 좌측 저부에 배치된 구조에서, 상기 리드 와이어는 상기 증발기의 좌측에 인접한 상기 히터의 좌측 단부로부터 외측으로 연장되도록 구성된다.In the structure in which the heating unit is disposed at the left bottom of the evaporator, the lead wire is configured to extend outward from the left end of the heater adjacent to the left side of the evaporator.

이 경우, 상기 리드 와이어와 연결되는 상기 터미널은 상기 히터의 좌측 단부에 위치한다.In this case, the terminal connected to the lead wire is located at the left end of the heater.

상기 히팅 유닛이 상기 증발기의 우측 저부에 배치된 구조에서, 상기 리드 와이어는 상기 증발기의 우측에 인접한 상기 히터의 우측 단부로부터 외측으로 연장되도록 구성된다.In the structure in which the heating unit is disposed at the bottom right portion of the evaporator, the lead wire is configured to extend outward from the right end of the heater adjacent to the right side of the evaporator.

이 경우, 상기 히터의 우측 단부는 상기 히터 케이스의 상기 입구와 상기 출구 사이에 배치되며, 상기 리드 와이어와 연결되는 상기 터미널은 상기 히터 케이스의 상기 입구에 인접한 상기 입구와 상기 출구 사이에 위치한다.In this case, the right end of the heater is disposed between the inlet and the outlet of the heater case, and the terminal connected to the lead wire is positioned between the inlet adjacent to the inlet of the heater case and the outlet.

한편, 작동액의 일부가 상기 히터 케이스의 전단부에 머물러 상기 히터와 접촉되도록, 상기 출구는 상기 히터 케이스의 전단으로부터 후방으로 소정 간격을 두고 이격된 위치에 형성될 수 있다.Meanwhile, the outlet may be formed at a position spaced apart from the front end of the heater case by a predetermined distance so that a part of the operating fluid stays at the front end of the heater case and contacts the heater.

또한, 상기 히터 케이스의 상기 입구와 연결되는 상기 히트 파이프의 리턴부의 내경은 5mm보다 크고 7mm보다 작게 형성될 수 있다.The inner diameter of the return portion of the heat pipe connected to the inlet of the heater case may be larger than 5 mm and smaller than 7 mm.

한편, 상기 히터 케이스는 상기 입구측 단부가 상기 출구측 단부에 대하여 -90° 이상 2° 이하의 각도 범위를 가지도록 배치된다.On the other hand, the heater case is disposed such that the inlet side end portion has an angular range of -90 degrees or more and 2 degrees or less with respect to the outlet side end portion.

아울러, 작동액의 유동 방향 및 가열된 작동액의 상승 특성을 고려하여, 상기 리턴부는 상기 히터 케이스와 평행하게 배치되거나 상기 히터 케이스의 하측으로 연장 형성될 수 있으며, 상기 히터 케이스의 출구와 연결되는 상기 히트 파이프의 유입부는 상기 히터 케이스와 평행하게 배치되거나 상기 히터 케이스로부터 상측으로 연장 형성될 수 있다.In addition, considering the flow direction of the working fluid and the rising characteristic of the heated working fluid, the return portion may be disposed parallel to the heater case or may extend to the lower side of the heater case, The inflow portion of the heat pipe may be disposed parallel to the heater case or extend upward from the heater case.

제2실시예:Second Embodiment:

상기 히터 케이스는 상기 증발기의 일측에 구비되는 지지대의 외측에 상하방향을 따라 수직으로 배치되고, 상기 히터는 작동액이 모두 액체 상태일 때, 상기 히터 케이스에 충진된 작동액의 수면보다 낮게 위치하도록 구성된다.The heater case is vertically disposed along a vertical direction on the outside of a support provided on one side of the evaporator, and the heater is positioned lower than the water surface of the working fluid filled in the heater case when the working fluid is in a liquid state .

상기 히터는 상기 지지대와 마주하는 상기 히터 케이스 일면의 맞은편 면에 부착될 수 있다.The heater may be attached to the opposite surface of the heater case facing the support.

제3실시예:Third Embodiment:

상기 히트 파이프는 지그재그 형태로 반복적으로 벤딩되어 다열(多列)을 이루며, 상기 히트 파이프의 하부에 배치되는 각 열 간의 간격은 상부에 배치되는 각 열 간의 간격보다 좁게 구성된다.The heat pipes are repeatedly bent in a zigzag fashion to form multiple rows, and the intervals between the rows arranged at the lower portion of the heat pipe are narrower than the intervals between the rows arranged at the upper portion.

상기 증발기 전방의 상기 제1히트 파이프의 하부에 배치되는 각 열 간의 간격은 상부에 배치되는 각 열의 간격보다 좁게 형성되고, 상기 증발기 후방의 상기 제2히트 파이프의 상부에 배치되는 각 열 간의 간격은 하부에 배치되는 각 열의 간격보다 좁게 형성될 수 있다.Wherein a distance between each row disposed at a lower portion of the first heat pipe in front of the evaporator is formed to be narrower than a distance between each row disposed at an upper portion and an interval between each row disposed at an upper portion of the second heat pipe at the rear of the evaporator May be formed to be narrower than the interval of each row arranged at the lower portion.

또는, 상기 증발기 전방의 상기 제1히트 파이프의 하부에 배치되는 각 열 간의 간격은 상부에 배치되는 각 열의 간격보다 넓게 형성되고, 상기 증발기 후방의 상기 제2히트 파이프의 상부에 배치되는 각 열 간의 간격은 하부에 배치되는 각 열의 간격보다 넓게 형성될 수 있다.Alternatively, the interval between each row arranged at the lower part of the first heat pipe at the front of the evaporator is wider than the interval between each row arranged at the upper part, and the interval between each row arranged at the upper part of the second heat pipe at the rear of the evaporator The interval may be formed to be wider than the interval of each column arranged at the lower portion.

제4실시예:Fourth Embodiment:

상기 히트파이프는, 상기 히팅유닛의 출구와 연결되고, 상기 냉각관에 대응되도록 배치되어 상기 냉각관에 열을 전달하도록 이루어지는 증발부; 및 상기 증발부에서 연장되어 상기 냉각관의 최저열보다 아래로 배치되며, 상기 히팅유닛의 입구와 연결되는 응축부를 포함한다.Wherein the heat pipe is connected to an outlet of the heating unit and is arranged to correspond to the cooling pipe to transfer heat to the cooling pipe; And a condensing portion extending from the evaporating portion and disposed below the lowermost column of the cooling pipe, the condensing portion being connected to the inlet of the heating unit.

상기 구조에서, 상기 히팅 유닛의 하단은 최저열 냉각관에 인접하여 배치될 수 있다.In this structure, the lower end of the heating unit may be disposed adjacent to the lowest heat cooling pipe.

또는, 상기 히팅 유닛의 적어도 일부는 최저열 냉각관보다 아래로 배치될 수 있다.Alternatively, at least a portion of the heating unit may be disposed below the lowest heat cooling tube.

본 발명에 따르면, 히터는 히터 케이스의 외부면에 부착되어 히터 케이스 내의 작동액을 가열하도록 구성되므로, 히터가 히터 케이스의 내부에 수용된 구조 대비 히터의 고장시 유지 보수가 용이하다. 또한, 상기 히터로 판상의 세라믹 히터가 적용되는 경우, 보다 저렴한 비용으로 고효율의 제상 장치를 구현할 수 있다.According to the present invention, since the heater is attached to the outer surface of the heater case to heat the working fluid in the heater case, it is easy to maintain and repair the heater in the event of a failure, compared with the structure in which the heater is housed inside the heater case. In addition, when the plate-shaped ceramic heater is applied to the heater, a highly efficient defrosting device can be realized at a lower cost.

상기 제상 장치에서, 히터 케이스의 외부면에 외부핀이 형성되는 경우, 히터 케이스의 외부 면적이 증가되어, 주위의 저온 공기와 히터 케이스 간의 열교환 효율이 향상될 수 있다.In the above-described defrosting apparatus, when the outer fin is formed on the outer surface of the heater case, the outer surface area of the heater case is increased, and the heat exchange efficiency between the surrounding low temperature air and the heater case can be improved.

아울러, 상기 제상 장치에서, 히터 케이스의 내부에 내부핀이 형성되는 경우, 히터 케이스의 내부에 충진된 작동액과의 접촉 면적이 증가되어, 히터에서 작동액으로 전달되는 열전달량이 증가될 수 있다. 또한, 히터 케이스의 전체 부피가 증가하여, 히터 케이스에서 열을 받아들일 수 있는 열용량이 증가하게 되며, 이에 따라 히터에서 발생되는 열을 보다 더 많이 받아들일 수 있게 된다. 이러한 결과, 제상 성능이 향상될 수 있다.In addition, in the above-described defrosting apparatus, when the inner fin is formed in the heater case, the contact area with the working fluid filled in the heater case is increased, and the amount of heat transferred from the heater to the working fluid can be increased. In addition, the total volume of the heater case increases, so that the heat capacity to receive heat from the heater case increases, thereby allowing more heat to be generated in the heater. As a result, defrost performance can be improved.

이와 같이 외부핀 및/또는 내부핀이 형성되는 경우, 히터에서 발생된 열의 상당량이 히터 전방의 히터 케이스로 전달되어 히터의 과열이 방지될 수 있으며, 히터의 후면부 온도가 낮아지게 되어 히터의 신뢰성 및 수명이 향상될 수 있다.In the case where the external fin and / or the internal fin are formed as described above, a considerable amount of heat generated by the heater is transmitted to the heater case in front of the heater, so that the overheat of the heater can be prevented and the temperature of the rear surface of the heater is lowered. The life span can be improved.

또한, 상기 제상 장치에서, 히터가 히터 케이스의 저면에 부착되고, 히터 케이스의 양측에 제1 및 제2연장핀이 각각 저면으로부터 하측으로 연장 형성되며, 히터의 배면과 제1 및 제2연장핀에 의해 형성되는 리세스된 공간에 실링부재가 충진되는 구조에 의해, 히터의 실링구조가 구현될 수 있다.In the defrosting apparatus, the heater is attached to the bottom surface of the heater case, the first and second extension pins extend from the bottom surface to the both sides of the heater case, respectively, and the back surface of the heater and the first and second extension pins The sealing structure of the heater can be realized by a structure in which the sealing member is filled in the recessed space formed by the sealing member.

아울러, 히팅 유닛의 입구와 연결되는 리턴부는, 5mm보다 크고 7mm보다 작은 내경을 가질 수 있다. 이 경우, 리턴되는 작동액이 히터 케이스 내부로 원활히 유입될 수 있으며, 재가열된 작동액의 역류가 방지될 수 있다.In addition, the return portion connected to the inlet of the heating unit may have an inner diameter larger than 5 mm and smaller than 7 mm. In this case, the returned working fluid can flow smoothly into the heater case, and the backflow of the reheated working fluid can be prevented.

또한, 가열된 작동액의 상승 특성을 고려하여, 작동액이 유동하기 용이한 히팅 유닛과 히트 파이프 간의 연결 구조를 통하여, 재가열된 작동액의 역류를 방지하면서 히터에 의해 재가열되어 기체 상태로 상승력을 가지고 배출되는 작동액의 흐름이 원활하게 형성될 수 있는 구조가 구현될 수 있다.Further, in consideration of the rising characteristic of the heated working fluid, the heating fluid is reheated by the heater while preventing the back flow of the reheated working fluid through the connection structure between the heating unit and the heat pipe, It is possible to realize a structure in which the flow of the working liquid discharged therefrom can be smoothly formed.

그리고, 히팅유닛이 증발기의 상하방향을 따라 수직으로 배치되는 제상 장치에서, 히트파이프의 저온의 응축부가 증발기의 냉각관 최저열보다 아래로 최소 두 열 이상 더 배치되는 경우, 고온의 증발부만이 증발기의 제상에 이용되므로 하측 냉각관에 대한 제상이 원활하게 이루어질 수 있다.In the defrosting apparatus in which the heating unit is disposed vertically along the vertical direction of the evaporator, when the low-temperature condensation portion of the heat pipe is disposed by at least two or more rows below the lowest temperature of the cooling pipe of the evaporator, only the high- The defrosting of the lower cooling pipe can be smoothly performed because it is used for defrosting the evaporator.

상기 구조에서, 히팅유닛의 적어도 일부는 증발기보다 아래로 배치될 수 있으며, 바람직하게는 히팅유닛의 하단이 히팅유닛의 최저열 수평배관에 인접하게 위치할 수 있다. 이 경우, 작동액의 충진량이 감소될 수 있으며, 이에 따라 히트파이프의 최저열 수평배관의 온도가 제상 가능 수준까지 상승될 수 있다.In this structure, at least a portion of the heating unit may be disposed below the evaporator, and preferably the lower end of the heating unit may be located adjacent to the lowest column horizontal pipe of the heating unit. In this case, the filling amount of the working liquid can be reduced, so that the temperature of the lowest heat horizontal pipe of the heat pipe can be raised to the defrostable level.

도 1은 본 발명의 일 실시예에 따른 냉장고의 구성을 개략적으로 나타낸 종단면도.
도 2 및 도 3은 도 1의 냉장고에 적용되는 제상 장치의 제1실시예를 보인 정면도 및 사시도.
도 4는 도 3에 도시된 히팅 유닛의 일 예를 보인 분해 사시도.
도 5는 도 4에 도시된 히팅 유닛을 길이방향을 따라 취한 단면도.
도 6은 도 4에 도시된 히터의 개념도.
도 7 내지 도 9는 도 4에 도시된 히팅 유닛에서 출구와 입구의 형성 위치가 변형된 예들을 각각 보인 분해 사시도.
도 10 및 도 11은 히터의 작동 전 및 작동 후 상태에서의 작동액의 순환을 설명하기 위한 개념도들.
도 12는 도 3에 도시된 히팅 유닛의 다른 일 예를 폭방향을 따라 취한 단면도.
도 13 및 도 14는 도 12에 도시된 히팅 유닛에서 외부핀의 형상이 변형된 예들을 보인 개념도들.
도 15 및 도 16은 도 3에 도시된 히팅 유닛의 또 다른 일 예를 폭방향 및 길이방향을 따라 취한 단면도들.
도 17은 도 16에 도시된 히팅 유닛에서 내부핀의 형성 위치가 변형된 예를 보인 단면도.
도 18은 도 3에 도시된 히팅 유닛의 또 다른 일 예를 보인 단면도.
도 19 및 도 20은 히팅 유닛의 위치에 따른 리드 와이어의 연결 구조를 설명하기 위한 개념도들.
도 21a 내지 도 21c는 냉동 조건에서 도 4에 도시된 리턴부의 내경 별 히터의 온도 변화를 보인 그래프.
도 22는 도 21c 조건의 리턴부에서의 유체의 흐름을 개념적으로 나타낸 도면.
도 23은 히터 케이스의 입구측 단부가 출구측 단부에 대하여 경사진 각도에 따라 히터 케이스 및 히트 파이프의 각 열의 온도 변화를 보인 그래프들.
도 24 내지 도 26은 도 19 내지 도 20에 적용되는 히팅 유닛에서, 히팅 유닛과 히트 파이프 간의 연결 구조의 변형예를 보인 종단면도들.
도 27 및 도 28은 도 1의 냉장고에 적용되는 제상 장치의 제2실시예를 보인 정면도 및 사시도.
도 29는 도 1의 냉장고에 적용되는 제상 장치에서, 히트 파이프의 상부열과 하부열 간의 폭이 다르게 형성되는 제3실시예를 보인 개념도.
도 30 및 도 31은 도 29에 도시된 제상 장치의 변형예를 보인 개념도들.
도 32 및 도 33은 도 1의 냉장고에 적용되는 제상 장치의 제4실시예를 보인 정면도 및 사시도.
도 34 및 도 35는 도 32 및 도 33에 도시된 제상 장치에서, 히팅 유닛의 형성 위치가 변형된 예를 보인 정면도 및 사시도.
FIG. 1 is a longitudinal sectional view schematically showing a configuration of a refrigerator according to an embodiment of the present invention. FIG.
FIGS. 2 and 3 are a front view and a perspective view showing a first embodiment of a defrost apparatus applied to the refrigerator of FIG. 1;
FIG. 4 is an exploded perspective view showing an example of the heating unit shown in FIG. 3; FIG.
5 is a cross-sectional view taken along the longitudinal direction of the heating unit shown in Fig.
Fig. 6 is a conceptual view of the heater shown in Fig. 4. Fig.
Figs. 7 to 9 are exploded perspective views showing the modified positions of the outlet and the inlet formed in the heating unit shown in Fig. 4, respectively. Fig.
Figs. 10 and 11 are conceptual diagrams for explaining the circulation of the working fluid before and after the operation of the heater. Fig.
FIG. 12 is a cross-sectional view of another example of the heating unit shown in FIG. 3 taken along the width direction; FIG.
13 and 14 are conceptual diagrams showing examples in which the shape of the external fin is modified in the heating unit shown in Fig.
Figs. 15 and 16 are cross-sectional views taken along the width direction and the length direction of another example of the heating unit shown in Fig. 3;
17 is a sectional view showing an example in which the formation position of the internal fin is modified in the heating unit shown in Fig.
FIG. 18 is a sectional view showing another example of the heating unit shown in FIG. 3; FIG.
19 and 20 are conceptual diagrams for explaining the connection structure of the lead wire according to the position of the heating unit.
Figs. 21A to 21C are graphs showing temperature changes of the heater according to the inner diameter of the return portion shown in Fig. 4 under the freezing condition. Fig.
Fig. 22 conceptually shows the flow of the fluid in the return portion under the condition of Fig. 21c; Fig.
23 is a graph showing the temperature change of each row of the heater case and the heat pipe according to an inclined angle of the inlet side end portion of the heater case with respect to the outlet side end portion.
FIGS. 24 to 26 are longitudinal sectional views showing a modification of the connecting structure between the heating unit and the heat pipe in the heating unit applied to FIGS. 19 to 20. FIG.
27 and 28 are a front view and a perspective view showing a second embodiment of the defrost apparatus applied to the refrigerator of Fig.
FIG. 29 is a conceptual view showing a third embodiment in which the widths between the upper row and the lower row of the heat pipe are different in the defrost apparatus applied to the refrigerator of FIG. 1;
FIGS. 30 and 31 are conceptual diagrams showing a modified example of the defroster shown in FIG. 29; FIG.
32 and 33 are a front view and a perspective view showing a fourth embodiment of the defrost apparatus applied to the refrigerator of FIG. 1;
34 and 35 are a front view and a perspective view showing an example in which the forming position of the heating unit is modified in the defrost apparatus shown in Figs. 32 and 33; Fig.

이하, 본 발명에 관련된 제상 장치 및 이를 구비하는 냉장고에 대하여 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, a defrosting apparatus and a refrigerator having the defrosting apparatus according to the present invention will be described in detail with reference to the drawings.

본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.In the present specification, the same or similar reference numerals are assigned to the same or similar components in different embodiments, and redundant explanations thereof will be omitted.

또한, 서로 다른 실시예라도 구조적, 기능적으로 모순이 되지 않는 한 어느 하나의 실시예에 적용되는 구조는 다른 하나의 실시예에도 동일하게 적용될 수 있다.In addition, the structure applied to any one embodiment may be applied to another embodiment as long as the different embodiments are not structurally and functionally inconsistent.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The singular expressions include plural expressions unless the context clearly dictates otherwise.

본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the embodiments of the present invention, a detailed description of related arts will be omitted when it is determined that the gist of the embodiments disclosed herein may be obscured.

첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. It should be understood that it includes water and alternatives.

도 1은 본 발명의 일 실시예에 따른 냉장고(100)의 구성을 개략적으로 나타낸 종단면도이다.1 is a longitudinal sectional view schematically showing a configuration of a refrigerator 100 according to an embodiment of the present invention.

냉장고(100)는 압축-응축-팽창-증발의 과정이 연속적으로 이루어지는 냉동 사이클에 의해 생성된 냉기를 이용하여 내부에 저장된 식품을 저온 보관하는 장치이다.The refrigerator (100) is a device for keeping food stored in the refrigerator at a low temperature by using cold air generated by a refrigeration cycle in which a process of compression-condensation-expansion-evaporation is continuously performed.

도시된 바와 같이, 냉장고 본체(110)는 내부에 식품의 저장을 위한 저장공간을 구비한다. 상기 저장공간은 격벽(111)에 의해 분리될 수 있으며, 설정 온도에 따라 냉장실(112)과 냉동실(113)로 구분될 수 있다.As shown in the figure, the refrigerator body 110 has a storage space for storing food therein. The storage space may be separated by the partition wall 111 and may be divided into a refrigerating chamber 112 and a freezing chamber 113 according to a set temperature.

본 실시예에서는, 냉동실(113)이 냉장실(112) 위에 배치되는 탑 마운트 타입(top mount type)의 냉장고를 보이고 있지만, 본 발명은 이에 한정되지 않는다. 본 발명은, 냉장실과 냉동실이 좌우로 배치되는 사이드 바이 사이드 타입(side by side type)의 냉장고, 상부에 냉장실이 마련되고 하부에 냉동실이 마련되는 바텀 프리저 타입(bottom freezer type)의 냉장고 등에도 적용될 수 있다.In this embodiment, a top mount type refrigerator in which the freezing chamber 113 is disposed on the refrigerating chamber 112 is shown, but the present invention is not limited thereto. The present invention is also applicable to a bottom freezer type refrigerator having a side-by-side type refrigerator in which a refrigerating chamber and a freezing chamber are disposed in the left and right direction, a refrigerating chamber in an upper portion thereof and a freezing chamber in a lower portion thereof .

냉장고 본체(110)에는 도어가 연결되어, 냉장고 본체(110)의 전면 개구부를 개폐하도록 이루어진다. 본 도면에서는, 냉장실 도어(114)와 냉동실 도어(115)가 각각 냉장실(112)과 냉동실(113)의 전면부를 개폐하도록 구성된 것을 보이고 있다. 도어는 냉장고 본체(110)에 회전 가능하게 연결되는 회전형 도어, 냉장고 본체(110)에 슬라이드 이동 가능하게 연결되는 서랍형 도어 등으로 다양하게 구성될 수 있다.A door is connected to the refrigerator body 110 to open and close the front opening of the refrigerator body 110. In this figure, the refrigerating chamber door 114 and the freezing chamber door 115 are configured to open and close the refrigerating chamber 112 and the freezing chamber 113, respectively. The door may be variously constructed of a rotatable door rotatably connected to the refrigerator body 110, a drawer-type door slidably connected to the refrigerator body 110, and the like.

냉장고 본체(110)에는 내부 저장공간의 효율적인 활용을 위한 수납유닛[180, 예를 들어, 선반(181), 트레이(182), 바스켓(183) 등]이 적어도 하나 이상 구비된다. 예를 들어, 선반(181)과 트레이(182)는 냉장고 본체(110) 내부에 설치될 수 있고, 바스켓(183)은 냉장고 본체(110)에 연결되는 도어(114) 내측에 설치될 수 있다.The refrigerator body 110 is provided with at least one storage unit 180 (for example, a shelf 181, a tray 182, a basket 183, etc.) for efficiently utilizing the internal storage space. For example, the shelf 181 and the tray 182 may be installed inside the refrigerator body 110, and the basket 183 may be installed inside the door 114 connected to the refrigerator body 110.

한편, 냉동실(113)의 후방측에는 증발기(130) 및 송풍팬(140)이 구비되는 냉각실(116)이 마련된다. 격벽(111)에는 냉장실(112) 및 냉동실(113)의 공기가 냉각실(116) 측으로 흡입 및 복귀될 수 있도록 하는 냉장실 귀환덕트(111a) 및 냉동실 귀환덕트(111b)가 형성된다. 또한, 냉장실(112)의 후방측에는 냉동실(113)과 통하고 전면부에 다수의 냉기토출구(150a)를 갖는 냉기덕트(150)가 설치된다.On the other hand, a cooling chamber 116 provided with an evaporator 130 and a blowing fan 140 is provided on the rear side of the freezing chamber 113. The partition wall 111 is formed with a refrigerating chamber returning duct 111a and a freezing chamber returning duct 111b through which the air of the refrigerating chamber 112 and the freezing chamber 113 can be sucked and returned to the cooling chamber 116 side. A cool air duct 150 having a plurality of cool air discharge openings 150a communicating with the freezing chamber 113 and having a plurality of cool air discharge openings 150a is provided on the rear side of the refrigerating chamber 112. [

냉장고 본체(110)의 배면 하부측에는 기계실(117)이 마련되고, 기계실(117)의 내부에는 압축기(160)와 응축기(미도시) 등이 구비된다.A machine room 117 is provided on the lower side of the backside of the refrigerator body 110 and a compressor 160 and a condenser (not shown) are provided in the machine room 117.

한편, 냉장실(112) 및 냉동실(113)의 공기는 냉각실(116)의 송풍팬(140)에 의하여 격벽(111)의 냉장실 귀환덕트(111a) 및 냉동실 귀환덕트(111b)를 통해서 냉각실(116)로 흡입되어 증발기(130)와 열교환을 이루게 되고, 다시 냉기덕트(150)의 냉기토출구(150a)를 통하여 냉장실(112) 및 냉동실(113)로 토출되는 과정을 반복적으로 행하게 된다. 이때, 증발기(130)의 표면에는 냉장실 귀환덕트(111a) 및 냉동실 귀환덕트(111b)를 통하여 재유입되는 순환 공기와의 온도차에 의해서 성에가 착상된다.The air in the refrigerating compartment 112 and the freezing compartment 113 is supplied to the cooling chamber 116 through the refrigerating chamber return duct 111a and the freezing compartment return duct 111b of the partition 111 by the blowing fan 140 of the cooling chamber 116 The refrigerant is sucked into the evaporator 130 and exchanges heat with the evaporator 130 and is repeatedly discharged through the cold air outlet 150a of the refrigerant duct 150 to the refrigerating chamber 112 and the freezing chamber 113. [ At this time, the surface of the evaporator 130 is concealed by the temperature difference between the refrigerant return duct 111a and the circulating air flowing back through the freezer return duct 111b.

이러한 성에를 제거하기 위해 증발기(130)에는 제상 장치(170)가 구비되며, 제상 장치(170)에 의해 제거된 물, 즉 제상수는 제상수 배출관(118)을 통하여 냉장고 본체(110)의 하부측 제상수 받이(미도시)에 집수되게 된다.The evaporator 130 is provided with a defrosting device 170 and the water removed by the defrosting device 170 is discharged to the lower portion of the refrigerator body 110 through the defrost water discharge pipe 118. [ (Not shown).

이하, 제상시의 소비전력이 감소될 수 있고, 열교환 효율이 증대될 수 있는 새로운 형태의 제상 장치(170)에 대하여 설명한다.Hereinafter, a new type of defrost apparatus 170 capable of reducing power consumption during defrosting and increasing heat exchange efficiency will be described.

도 2 및 도 3은 도 1의 냉장고(100)에 적용되는 제상 장치(170)의 제1실시예를 보인 정면도 및 사시도이다.2 and 3 are a front view and a perspective view showing a first embodiment of the defrost apparatus 170 applied to the refrigerator 100 of FIG.

도 2 및 도 3을 참조하면, 증발기(130)는 냉각관(131, 쿨링 파이프), 복수의 냉각핀(132) 및 양측의 지지대(133)를 포함한다.2 and 3, the evaporator 130 includes a cooling pipe 131, a plurality of cooling fins 132, and supports 133 on both sides.

냉각관(131)은 지그재그 형태로 반복적으로 벤딩되어 다열(多列)을 이루며, 내부에는 냉매가 충진된다. 냉각관(131)은 알루미늄 재질로 형성될 수 있다.The cooling pipe 131 is repeatedly bent in a zigzag fashion to form multiple rows, and the inside thereof is filled with refrigerant. The cooling pipe 131 may be made of aluminum.

냉각관(131)은 수평배관부와 벤딩배관부의 조합으로 구성될 수 있다. 수평배관부는 상하로 서로 수평하게 배치되어 열을 이루고, 각 열의 수평배관부는 냉각핀(132)을 관통하도록 구성된다. 벤딩배관부는 상측 수평배관부의 단부와 하측 수평배관부의 단부를 각각 연결하여 내부를 상호 연통시키도록 구성된다.The cooling pipe 131 may be composed of a combination of a horizontal pipe portion and a bending pipe portion. The horizontal piping portions are arranged horizontally and horizontally to form heat, and the horizontal piping portions of the respective rows pass through the cooling fin 132. [ The bending piping portion is configured to connect the ends of the upper horizontal piping portion and the lower horizontal piping portion to each other to communicate with each other.

냉각관(131)은 증발기(130)의 양측에 각각 구비되는 지지대(133)를 관통하여 지지된다. 이때, 냉각관(131)의 벤딩배관부는 지지대(133)의 외측에서 상측 수평배관부의 단부와 하측 수평배관부의 단부를 연결하도록 구성된다.The cooling pipe 131 is supported through the support member 133 provided on both sides of the evaporator 130. At this time, the bending piping portion of the cooling pipe 131 is configured to connect the end portion of the upper horizontal pipe portion and the end portion of the lower horizontal pipe portion from the outside of the support base 133.

도 3을 참조하면, 본 실시예에서는 냉각관(131)이 2행을 이루도록 증발기(130)의 전면부 및 후면부에 각각 형성되는 제1냉각관(131')과 제2냉각관(131")으로 구성된 것을 보이고 있다. 참고로, 도 2에서는 전방의 제1냉각관(131')과 후방의 제2냉각관(131")이 서로 동일한 형태로 형성되어, 제2냉각관(131")이 제1냉각관(131')에 의해 가려져 있다.3, the first cooling pipe 131 'and the second cooling pipe 131', which are respectively formed on the front and rear sides of the evaporator 130 so that the cooling pipes 131 form two rows, The first cooling pipe 131 'at the front and the second cooling pipe 131' 'at the rear are formed in the same shape, and the second cooling pipe 131 " Is covered by the first cooling pipe 131 '.

그러나, 본 발명이 이에 한정되는 것은 아니다. 전방의 제1냉각관(131')과 후방의 제2냉각관(131")은 서로 다른 형태로 형성될 수 있다. 다른 한편으로는, 냉각관(131)은 단일 행을 이루도록 형성될 수도 있다.However, the present invention is not limited thereto. The first cooling pipe 131 'on the front side and the second cooling pipe 131' 'on the rear side may be formed in different shapes. On the other hand, the cooling pipe 131 may be formed to form a single row .

냉각관(131)에는 복수의 냉각핀(132)이 냉각관(131)의 연장방향을 따라 소정 간격을 두고 이격되게 배치된다. 냉각핀(132)은 알루미늄 재질의 평판체로 형성될 수 있으며, 냉각관(131)은 냉각핀(132)의 삽입홀에 삽입된 상태에서 확관되어 상기 삽입홀에 견고하게 끼워질 수 있다.A plurality of cooling fins 132 are disposed in the cooling pipe 131 at predetermined intervals along the extending direction of the cooling pipe 131. The cooling fin 132 may be formed of a flat plate made of an aluminum material and the cooling pipe 131 may be expanded in a state of being inserted into the insertion hole of the cooling fin 132 and firmly fitted into the insertion hole.

복수의 지지대(133)는 증발기(130)의 양측에 각각 구비되며, 각각은 상하방향을 따라 수직으로 연장되어 관통된 냉각관(131)을 지지하도록 구성된다. 지지대(133)에는 후술하는 히트 파이프(172)가 끼워져 고정될 수 있는 삽입홈 또는 삽입홀이 형성된다.The plurality of supports 133 are provided on both sides of the evaporator 130, and each of them is configured to support the cooling pipe 131 extending vertically along the vertical direction. The support base 133 is formed with an insertion groove or an insertion hole into which a heat pipe 172 to be described later can be fitted and fixed.

제상 장치(170)는 증발기(130)에 설치되어, 증발기(130)에서 발생하는 성에를 제거하도록 이루어진다. 제상 장치(170)는 히팅 유닛(171) 및 히트 파이프(172, 전열관)를 포함한다.The defrosting device 170 is installed in the evaporator 130 to remove the property of the evaporator 130. The defrosting device 170 includes a heating unit 171 and a heat pipe 172 (heat transfer pipe).

히팅 유닛(171)은 증발기(130)의 하부에 구비되며, 제어부(미도시)와 전기적으로 연결되어 상기 제어부로부터 구동 신호를 받으면 열을 발생하도록 형성된다. 예를 들어, 상기 제어부는 기설정된 시간 간격마다 히팅 유닛(171)에 구동 신호를 인가하거나, 감지된 냉각실(116)의 온도가 기설정된 온도 이하로 낮아질 경우 히팅 유닛(171)에 구동 신호를 인가하도록 구성될 수 있다.The heating unit 171 is provided at a lower portion of the evaporator 130, and is formed to generate heat when it is electrically connected to a control unit (not shown) and receives a driving signal from the control unit. For example, when the control unit applies a driving signal to the heating unit 171 every predetermined time interval, or when the temperature of the detected cooling chamber 116 becomes lower than a preset temperature, the control unit outputs a driving signal to the heating unit 171 . ≪ / RTI >

히트 파이프(172)는 히팅 유닛(171)과 연결되어, 히팅 유닛(171)과 함께 작동액(F, working fluid)이 순환할 수 있는 폐루프 형태의 유로를 형성한다. 히트 파이프(172)는 알루미늄 재질로 형성될 수 있다.The heat pipe 172 is connected to the heating unit 171 to form a closed loop type flow path through which the working fluid F can circulate together with the heating unit 171. [ The heat pipe 172 may be formed of an aluminum material.

히트 파이프(172)는 증발기(130)의 전면부 및 후면부에 2행을 이루도록 각각 배치되는 제1히트 파이프(172')와 제2히트 파이프(172")로 구성될 수 있다. 본 예에서는, 제1히트 파이프(172')가 제1냉각관(131')의 전방에 배치되고, 제2히트 파이프(172")가 제2냉각관(131")의 후방에 배치되어, 2행을 이루도록 형성된 구조를 보이고 있다.The heat pipe 172 may be composed of a first heat pipe 172 'and a second heat pipe 172' arranged in two rows on the front and rear portions of the evaporator 130. In this example, The first heat pipe 172 'is disposed in front of the first cooling pipe 131' and the second heat pipe 172 '' is disposed in the rear of the second cooling pipe 131 ' .

상기 작동액(F)으로는, 냉장고(100)의 냉동 조건에서 액상으로 존재하되, 가열되면 기상으로 상변화하여 열을 수송하는 역할을 하는 냉매(예를 들어, R-134a, R-600a 등)가 이용될 수 있다.As the working fluid F, a refrigerant (for example, R-134a, R-600a, etc.) that exists in a liquid state under the freezing condition of the refrigerator 100 and that is phase- ) May be used.

도 4는 도 3에 도시된 히팅 유닛(171)의 일 예를 보인 분해 사시도이며, 도 5는 도 4에 도시된 히팅 유닛(171)을 길이방향을 따라 취한 단면도이고, 도 6은 도 4에 도시된 히터(171b)의 개념도이다.FIG. 4 is an exploded perspective view showing an example of the heating unit 171 shown in FIG. 3, FIG. 5 is a sectional view taken along the longitudinal direction of the heating unit 171 shown in FIG. 4, And is a conceptual view of the heater 171b shown.

상기 도면들을 참조하여 히팅 유닛(171)에 대하여 상세하게 살펴보면, 히팅 유닛(171)은 히터 케이스(171a) 및 히터(171b)를 포함한다.Referring to the drawings, the heating unit 171 includes a heater case 171a and a heater 171b.

히터 케이스(171a)는 내부가 비어있는 형태를 가지며, 히트 파이프(172)의 양단부와 각각 연결되어 히트 파이프(172)와 함께 작동액(F)이 순환할 수 있는 폐루프 형태의 유로를 형성한다. 히터 케이스(171a)는 사각기둥 형태를 가질 수 있으며, 알루미늄 재질로 형성될 수 있다.The heater case 171a has a hollow shape and is connected to both ends of the heat pipe 172 to form a closed loop type flow path in which the working fluid F can circulate together with the heat pipe 172 . The heater case 171a may have a quadrangular prism shape and may be made of aluminum.

히터 케이스(171a)는 어큐뮬레이터(134)가 위치하는 증발기(130)의 일측, 그 맞은편인 타측, 또는 상기 일측과 상기 타측 사이의 임의의 지점에 배치될 수 있다.The heater case 171a may be disposed on one side of the evaporator 130 where the accumulator 134 is located, on the opposite side thereof, or on any side between the one side and the other side.

히터 케이스(171a)는 냉각관(131)의 최저열에 인접하게 배치될 수 있다. 예를 들어, 히터 케이스(171a)는 냉각관(131)의 최저열과 동일한 높이에 배치되거나, 냉각관(131)의 최저열보다 낮은 위치에 배치될 수 있다.The heater case 171a may be disposed adjacent to the lowest row of the cooling pipe 131. [ For example, the heater case 171a may be disposed at the same height as the lowest row of the cooling tube 131, or may be disposed at a position lower than the lowest row of the cooling tube 131. [

본 실시예에서는, 히터 케이스(171a)가 어큐뮬레이터(134)가 위치하는 증발기(130)의 일측에서, 냉각관(131)의 최저열보다 낮은 위치에, 냉각관(131)과 평행하게 증발기(130)의 수평방향으로 배치된 것을 보이고 있다.The heater case 171a is disposed at a position lower than the lowermost column of the cooling pipe 131 at one side of the evaporator 130 where the accumulator 134 is located and in parallel with the cooling pipe 131 As shown in Fig.

히터 케이스(171a)의 길이방향 상의 양측에는 히트 파이프(172)의 양단부와 각각 연결되는 출구(171c', 171c")와 입구(171d', 171d")가 각각 형성된다.Outlets 171c 'and 171c' 'and inlets 171d' and 171d ', respectively, which are respectively connected to both ends of the heat pipe 172 are formed on both sides in the longitudinal direction of the heater case 171a.

구체적으로, 히터 케이스(171a)의 일측[예를 들어, 히터 케이스(171a)의 전단부에 인접한 외주면]에는 히트 파이프(172)의 일단부와 연통되는 출구(171c', 171c")가 형성된다. 출구(171c', 171c")는 히터(171b)에 의해 가열 작동액(F)이 히트 파이프(172)로 배출되는 개구를 의미한다.Concretely, outlets 171c 'and 171c ", which communicate with one end of the heat pipe 172, are formed at one side of the heater case 171a (for example, the outer peripheral side adjacent to the front end of the heater case 171a) . The outlets 171c 'and 171c "refer to the openings through which the heating working fluid F is discharged to the heat pipe 172 by the heater 171b.

히터 케이스(171a)의 타측[예를 들어, 히터 케이스(171a)의 후단부에 인접한 외주면]에는 히트 파이프(172)의 타단부와 연통되는 입구(171d', 171d")가 형성된다. 입구(171d', 171d")는 히트 파이프(172)를 지나면서 응축된 작동액(F)이 히터 케이스(171a)로 회수되는 개구를 의미한다.An inlet 171d ', 171d "communicating with the other end of the heat pipe 172 is formed on the other side of the heater case 171a (for example, the outer peripheral surface adjacent to the rear end of the heater case 171a) 171d 'and 171d' 'refer to openings through which the condensed working fluid F passes through the heat pipe 172 to the heater case 171a.

히터(171b)는 히터 케이스(171a)의 외부면에 부착되어, 제어부로부터 구동 신호를 받으면 열을 발생하도록 구성된다. 히터 케이스(171a) 내의 작동액(F)은 발열되는 히터(171b)에 의해 열을 전달받아 고온으로 가열된다.The heater 171b is attached to the outer surface of the heater case 171a and is configured to generate heat when receiving a drive signal from the control unit. The working fluid F in the heater case 171a is heated to a high temperature by receiving heat by the heater 171b which generates heat.

히터(171b)는 일방향을 따라 연장 형성되며, 히터 케이스(171a)의 외부면에 부착되어 히터 케이스(171a)의 길이방향을 따라 연장된 형태를 가진다. 히터(171b)로는 플레이트 형태를 가지는 판상 히터(예를 들어, 판상의 세라믹 히터)가 이용된다.The heater 171b extends along one direction and is attached to the outer surface of the heater case 171a and extends in the longitudinal direction of the heater case 171a. As the heater 171b, a plate-shaped heater (for example, a plate-shaped ceramic heater) having a plate shape is used.

본 실시예에서는, 히터 케이스(171a)가 내부의 빈 공간이 사각 단면 형태를 가지는 사각 파이프 형태로 형성되며, 플레이트 형태의 히터(171b)가 히터 케이스(171a)의 저면에 부착된 것을 보이고 있다. 이처럼, 히터(171b)가 히터 케이스(171a)의 저면에 부착된 구조는, 가열된 작동액(F)에 상측으로의 추진력이 발생하는 데에 유리하며, 제상으로 인하여 발생된 제상수가 히터(171b)에 직접 떨어지지 않아서 쇼트가 방지될 수 있다.In this embodiment, it is shown that the heater case 171a is formed in the shape of a square pipe in which the empty space inside has a rectangular cross-sectional shape, and a plate-shaped heater 171b is attached to the bottom surface of the heater case 171a. The structure in which the heater 171b is attached to the bottom surface of the heater case 171a is advantageous in that the upward driving force is generated in the heated working fluid F and the defrost water generated by the defrosting is supplied to the heater 171b so that a shot can be prevented.

히터(171b)에는 열선(171b2, 도 6 참조)이 형성되어, 전원 공급시 열을 발생하도록 구성된다. 도 5에 도시된 바와 같이, 히터 케이스(171a)는 열선(171b2)이 배치된 부분에 대응되는 능동발열부(AHP: Active Heating Part)와 열선(171b2)이 미배치된 부분에 대응되는 수동발열부(PHP: Passive Heating Part)로 구획된다. 상기 능동발열부(AHP)와 수동발열부(PHP)에 대해서는 후술하기로 한다.The heater 171b is formed with a heat ray 171b2 (see FIG. 6), and is configured to generate heat when power is supplied. 5, the heater case 171a has an active heating part (AHP) corresponding to a part where the heat ray 171b2 is disposed and a manual heat generation part corresponding to a part where the heat ray 171b2 is not arranged (PHP: Passive Heating Part). The active heat generating unit (AHP) and the passive heat generating unit (PHP) will be described later.

히트 파이프(172)와 히터 케이스(171a)는 동종 재질(예를 들어, 알루미늄 재질)로 형성될 수 있으며, 이 경우 히트 파이프(172)는 히터 케이스(171a)의 출구(171c', 171c") 및 입구(171d', 171d")와 직접 연결될 수 있다.The heat pipe 172 and the heater case 171a may be made of the same material (for example, aluminum). In this case, the heat pipe 172 is connected to the outlets 171c 'and 171c' 'of the heater case 171a. And the inlets 171d ', 171d ".

참고로, 히터(171b)가 카트리지 타입으로 구성되어 히터 케이스(171a)의 내부에 장착되는 경우에는, 히터(171b)와 히터 케이스(171a) 간의 용접 및 실링을 위하여, 알루미늄 재질이 아닌 구리 재질의 히터 케이스(171a)를 사용하게 된다.For the sake of welding and sealing between the heater 171b and the heater case 171a when the heater 171b is configured as a cartridge type and mounted inside the heater case 171a, The heater case 171a is used.

이처럼, 히트 파이프(172)와 히터 케이스(171a)가 이종 재질로 형성되는 경우[위의 경우와 같이, 히트 파이프(172)가 알루미늄 재질로 형성되고, 히터 케이스(171a)가 구리 재질로 형성되는 경우]에는, 히트 파이프(172)를 히터 케이스(171a)의 출구(171c', 171c")와 입구(171d', 171d")에 직접 연결하기가 어렵다. 따라서, 이들 간의 연결을 위하여, 히터 케이스(171a)의 출구(171c', 171c")에 출구관을 연장 형성하고, 입구(171d', 171d")에 회수관을 연장 형성하여, 히트 파이프(172)를 상기 출구관과 상기 회수관에 연결하게 되며, 이 과정에서 용접 및 실링 공정이 필요하다.When the heat pipe 172 and the heater case 171a are formed of different materials (as in the above case, the heat pipe 172 is made of aluminum material and the heater case 171a is made of copper material , It is difficult to directly connect the heat pipe 172 to the outlets 171c 'and 171c' 'of the heater case 171a and the inlets 171d' and 171d ''. Therefore, for connection between them, an outlet pipe is extended to the outlets 171c 'and 171c' 'of the heater case 171a and a return pipe is extended to the inlets 171d' and 171d ' ) Is connected to the outlet pipe and the return pipe, and a welding and sealing process is required in this process.

그런데, 본 발명과 같이 히터(171b)가 히터 케이스(171a)의 외부면에 부착되는 구조에서는, 히터 케이스(171a)가 히트 파이프(172)와 동종 재질로 형성될 수 있으므로, 히트 파이프(172)가 히터 케이스(171a)의 출구(171c', 171c")와 입구(171d', 171d")에 직접 연결될 수 있다.In the structure in which the heater 171b is attached to the outer surface of the heater case 171a as in the present invention, the heater case 171a may be formed of a material similar to that of the heat pipe 172, Can be directly connected to the outlets 171c 'and 171c' 'of the heater case 171a and the inlets 171d' and 171d ''.

한편, 히터(171b)에 의해 히터 케이스(171a)의 내부에 충진된 작동액(F)이 고온으로 가열됨에 따라, 작동액(F)은 압력 차이에 의해 유동하여 히트 파이프(172)를 이동하게 된다. 구체적으로, 히터(171b)에 의해 가열되어 출구(171c', 171c")로 배출된 고온의 작동액(F)은 히트 파이프(172)를 이동하면서 증발기(130)의 냉각관(131)에 열을 전달한다. 작동액(F)은 이러한 열교환 과정을 거치면서 점차 냉각되어 입구(171d', 171d")로 유입된다. 냉각된 작동액(F)은 히터(171b)에 의해 재가열된 후 다시 출구(171c', 171c")로 배출되어 위의 과정을 반복 수행한다. 이러한 순환 방식에 의해 냉각관(131)에 대한 제상이 이루어지게 된다.On the other hand, as the working fluid F filled in the heater case 171a is heated to a high temperature by the heater 171b, the working fluid F flows due to the pressure difference to move the heat pipe 172 do. Specifically, the high-temperature working fluid F heated by the heater 171b and discharged to the outlets 171c 'and 171c "flows through the heat pipe 172 to the cooling pipe 131 of the evaporator 130 The working fluid F is gradually cooled and flows into the inlets 171d 'and 171d' through such a heat exchange process. The cooled working fluid F is reheated by the heater 171b and then discharged again to the outlets 171c 'and 171c' 'to repeat the above process. By this circulation system, .

도 2 및 도 3을 참조하면, 히트 파이프(172)의 적어도 일부는 증발기(130)의 냉각관(131)에 인접하게 배치되어, 히팅 유닛(171)에 의해 가열되어 이송되는 고온의 작동액(F)에 의해 증발기(130)의 냉각관(131)에 열을 전달하여 성에를 제거하도록 구성된다.2 and 3, at least a part of the heat pipe 172 is disposed adjacent to the cooling pipe 131 of the evaporator 130 and is heated by the heating unit 171 to be heated F to transfer the heat to the cooling pipe 131 of the evaporator 130 to remove the sludge.

히트 파이프(172)는 냉각관(131)과 같이 반복적으로 벤딩된 형태(지그재그 형태)를 가질 수 있다. 이를 위하여, 히트 파이프(172)는 연장부(172a) 및 방열부(172b)를 포함한다.The heat pipe 172 may have a repetitive bent shape (zigzag shape) such as the cooling pipe 131. To this end, the heat pipe 172 includes an extension portion 172a and a heat dissipation portion 172b.

연장부(172a)는 히팅 유닛(171)에 의해 가열된 작동액(F)을 증발기(130)의 상측으로 이송하는 유로를 형성한다. 연장부(172a)는 증발기(130)의 하부에 구비되는 히터 케이스(171a)의 출구(171c', 171c") 및 증발기(130)의 상부에 구비되는 방열부(172b)와 연결된다.The extension portion 172a forms a flow path for transferring the working fluid F heated by the heating unit 171 to the upper side of the evaporator 130. [ The extended portion 172a is connected to the outlet 171c 'and 171c' of the heater case 171a provided below the evaporator 130 and the heat radiating portion 172b provided on the upper portion of the evaporator 130. [

연장부(172a)는 증발기(130)의 상측으로 연장되는 수직연장부를 포함한다. 상기 수직연장부는 증발기(130)의 일측에 구비되는 지지대(133)의 외측에 지지대(133)로부터 이격 배치된 상태로 증발기(130)의 상부까지 연장된다.The extension 172a includes a vertical extension extending upwardly of the evaporator 130. [ The vertical extension portion extends to the upper portion of the evaporator 130 while being spaced apart from the supporter 133 on the outer side of the supporter 133 provided at one side of the evaporator 130.

한편, 히팅 유닛(171)의 설치 위치에 따라 연장부(172a)는 수평연장부를 더 구비할 수 있다. 일 예로, 히팅 유닛(171)이 수직연장부로부터 이격된 위치에 구비될 경우(도 20 참조), 히팅 유닛(171)과 수직연장부를 연결하기 위한 수평연장부가 추가로 구비될 수 있다.Meanwhile, the extending portion 172a may further include a horizontal extending portion according to a mounting position of the heating unit 171. [ For example, when the heating unit 171 is provided at a position spaced apart from the vertical extension (see FIG. 20), a horizontal extension for connecting the heating unit 171 and the vertical extension may be additionally provided.

히팅 유닛(171)에 수평연장부가 연결되어 길게 연장 형성되는 경우, 고온의 작동액(F)이 증발기(130)의 하부를 거쳐가게 되므로, 증발기(130) 하측 냉각관(131)에 대한 제상이 원활하게 이루어질 수 있는 이점이 있다.When the horizontally extending portion is connected to the heating unit 171, the hot working fluid F flows through the lower portion of the evaporator 130, so that defrosting of the lower cooling pipe 131 of the evaporator 130 There is an advantage that it can be done smoothly.

방열부(172b)는 증발기(130)의 상부로 연장된 연장부(172a)와 연결되어, 증발기(130)의 냉각관(131)을 따라 지그재그 형태로 연장된다. 방열부(172b)는 열을 이루는 복수의 수평배관(172b') 및 이들을 지그재그 형태로 연결하도록 벤딩된 U자관 형태로 구성되는 연결배관(172b")의 조합으로 구성된다.The heat dissipating unit 172b is connected to the extension 172a extending to the upper portion of the evaporator 130 and extends in a zigzag shape along the cooling pipe 131 of the evaporator 130. [ The heat radiating portion 172b is composed of a combination of a plurality of horizontal piping 172b 'forming heat and a connection pipe 172b "formed in a U-shaped pipe bending to connect them in a zigzag form.

연장부(172a) 또는 방열부(172b)는 어큐뮬레이터(134)에 적상된 성에를 제거하기 위하여, 어큐뮬레이터(134)에 인접한 위치까지 연장될 수 있다.The extension portion 172a or the heat dissipation portion 172b may extend to a position adjacent to the accumulator 134 in order to remove the property imposed on the accumulator 134. [

도시된 바와 같이, 수직연장부가 어큐뮬레이터(134)가 위치하는 증발기(130)의 일측에 배치되는 경우에는, 수직연장부가 어큐뮬레이터(134)에 인접한 위치까지 상측으로 연장된 후, 냉각관(131)을 향하여 하측으로 벤딩 및 연장되어 방열부(172b)와 연결되도록 구성될 수 있다.As shown in the figure, when the vertical extension part is disposed on one side of the evaporator 130 where the accumulator 134 is located, the vertical extension part extends upward to a position adjacent to the accumulator 134, And may be connected to the heat radiating portion 172b.

반면에, 수직연장부가 상기 일측의 반대편인 타측에 배치되는 경우(도 32 참조), 방열부(172b)는 수직연장부와 연결되어 수평으로 연장된 후, 어큐뮬레이터(134)를 향하여 상측으로 연장되었다가 다시 냉각관(131)에 대응되도록 하측으로 연장될 수 있다.On the other hand, when the vertical extension is disposed on the other side opposite to the one side (see FIG. 32), the heat dissipating portion 172b is horizontally connected to the vertical extension portion and then extends upward toward the accumulator 134 May be extended downward to correspond to the cooling pipe 131 again.

히트 파이프(172)에서, 히터 케이스(171a)의 출구(171c', 171c")와 연결되는 부분은 고온의 작동액(F)이 유입되는 유입부(172c', 172c")를 구성하며, 히터 케이스(171a)의 입구(171d', 171d")와 연결되는 부분은 냉각된 작동액(F)이 회수되는 리턴부(172d', 172d")를 구성한다.In the heat pipe 172, the portions connected to the outlets 171c 'and 171c' 'of the heater case 171a constitute inflow portions 172c' and 172c '' into which the hot working fluid F flows, Portions connected to the inlets 171d 'and 171d' 'of the case 171a constitute return portions 172d' and 172d '' from which the cooled working fluid F is recovered.

본 실시예에서, 히터(171b)에 의해 가열된 작동액(F)은 유입부(172c', 172c")로 배출되어 연장부(172a)를 통해 증발기(130)의 상부로 이송된 후, 방열부(172b)를 따라 흐르면서 냉각관(131)에 열을 전달하여 제상을 수행한 뒤, 리턴부(172d', 172d")를 통하여 리턴되며, 다시 히터(171b)에 의해 재가열되어 히트 파이프(172)를 유동하는 순환 루프를 형성한다.In this embodiment, the working fluid F heated by the heater 171b is discharged to the inflow portions 172c 'and 172c' ', is transferred to the upper portion of the evaporator 130 through the extended portion 172a, 172d ", and then reheated by the heater 171b to be reheated to the heat pipe 172 (172b, 172c) To form a circulating loop.

히트 파이프(172)가 제1 및 제2히트 파이프(172', 172")로 구성되는 구조에서, 제1 및 제2히트 파이프(172', 172")는 히팅 유닛(171)의 입구(171d', 171d") 및 출구(171c', 171c")와 각각 연결된다.In the structure in which the heat pipe 172 is composed of the first and second heat pipes 172 'and 172' ', the first and second heat pipes 172' and 172 ' ', 171d' 'and the outlets 171c' and 171c '', respectively.

구체적으로, 히팅 유닛(171)의 출구(171c', 171c")는 제1출구(171c')와 제2출구(171c")로 구성되고, 제1 및 제2히트 파이프(172', 172") 각각의 일단부는 제1 및 제2출구(171c', 171c")와 각각 연결된다. 상기 연결 구조에 의해, 히팅 유닛(171)에 의해 가열된 기체 상태의 작동액(F)은 제1 및 제2출구(171c', 171c")를 통하여 제1 및 제2히트 파이프(172', 172")로 각각 방출된다.Specifically, the outlets 171c 'and 171c' 'of the heating unit 171 are composed of a first outlet 171c' and a second outlet 171c '', and the first and second heat pipes 172 'and 172' ) Are connected to the first and second outlets 171c 'and 171c' ', respectively. With this connection structure, the gaseous working fluid F heated by the heating unit 171 flows through the first and second outlets 171c 'and 171c' 'to the first and second heat pipes 172' 172 ").

제1 및 제2출구(171c', 171c")는 히터 케이스(171a)의 외주 양측에 각각 형성되거나, 히터 케이스(171a)의 전단부에 나란하게 형성될 수 있다.The first and second outlets 171c 'and 171c' 'may be formed on both sides of the outer circumference of the heater case 171a or may be formed in parallel to the front end of the heater case 171a.

제1 및 제2출구(171c', 171c")와 각각 연결되는 제1 및 제2히트 파이프(172', 172")의 일단부는 그 기능상[히터(171b)에 의해 가열된 고온의 작동액(F)이 유입되는 부분] 제1 및 제2유입부(172c', 172c")로 이해될 수 있다.One end of each of the first and second heat pipes 172 'and 172' ', which are connected to the first and second outlets 171c' and 171c '', respectively, is functionally equivalent to the high temperature working fluid heated by the heater 171b F) can be understood as first and second inflow portions 172c ', 172c ".

또한, 히팅 유닛(171)의 입구(171d', 171d")는 제1입구(171d')과 제2입구(171d")로 구성되고, 제1 및 제2히트 파이프(172', 172") 각각의 타단부는 제1 및 제2입구(171d', 171d")와 각각 연결된다. 상기 연결 구조에 의해, 각각의 히트 파이프(172)를 이동하면서 냉각된 액체 상태의 작동액(F)은 제1 및 제2입구(171d', 171d")를 통하여 히터 케이스(171a)의 내부로 유입된다.The inlet 171d 'and 171d "of the heating unit 171 are constituted by a first inlet 171d' and a second inlet 171d", and the first and second heat pipes 172 ', 172 " And the other ends thereof are respectively connected to the first and second inlets 171d 'and 171d' '. By the above-described connection structure, the working liquid F in a liquid state that is cooled while moving the respective heat pipes 172 flows into the inside of the heater case 171a through the first and second inlets 171d 'and 171d " ≪ / RTI >

제1 및 제2입구(171d', 171d")는 히터 케이스(171a)의 외주 양측에 각각 형성되거나, 히터 케이스(171a)의 후단부에 나란하게 형성될 수 있다.The first and second inlets 171d 'and 171d' 'may be formed on both sides of the outer circumference of the heater case 171a or may be formed in parallel to the rear end of the heater case 171a.

제1 및 제2입구(171d', 171d")와 각각 연결되는 제1 및 제2히트 파이프(172', 172")의 타단부는 그 기능상[각각의 히트 파이프(172)를 이동하면서 냉각된 액체 상태의 작동액(F)이 회수되는 부분] 제1 및 제2리턴부(172d', 172d")로 이해될 수 있다.The other end of the first and second heat pipes 172 'and 172' ', respectively, connected to the first and second inlets 171d' and 171d ' Can be understood as first and second return portions 172d 'and 172d "in which the liquid working fluid (F) is recovered.

한편, 도 4 및 도 5를 참조하면, 히터 케이스(171a)의 출구(171c', 171c")는 히터 케이스(171a)의 전단으로부터 후방으로 소정 간격을 두고 이격된 위치에 형성될 수 있다. 즉, 히터 케이스(171a)의 전단부는 출구(171c', 171c")를 지나서 전방으로 돌출 형성된 것으로 이해될 수 있다.4 and 5, the outlets 171c 'and 171c' 'of the heater case 171a may be formed at positions spaced apart from the front end of the heater case 171a by a predetermined distance. , And the front end portion of the heater case 171a may be understood to be formed protruding forward through the outlets 171c 'and 171c' '.

히터(171b)의 열선(171b2)은 입구(171d', 171d")와 출구(171c', 171c") 사이의 일 지점으로부터 출구(171c', 171c")를 지난 위치까지 연장 형성될 수 있다. 이에 따으면, 히터 케이스(171a)의 출구(171c', 171c")는 능동발열부(AHP) 내에 위치하게 된다.The heat ray 171b2 of the heater 171b may extend from one point between the inlets 171d 'and 171d' and the outlets 171c 'and 171c' to a position past the outlets 171c 'and 171c' '. Accordingly, the outlets 171c 'and 171c' 'of the heater case 171a are located in the active heat generating portion AHP.

상기 구조에 의해, 작동액(F)의 일부는 히터 케이스(171a)의 전단부[히터 케이스(171a)의 내측 전단과 출구(171c', 171c") 사이의 공간]에 머물러 히터(171b)의 과열을 방지하게 된다.A part of the working fluid F stays in the front end portion of the heater case 171a (a space between the inner front end of the heater case 171a and the outlets 171c 'and 171c "), Thereby preventing overheating.

구체적으로, 능동발열부(AHP)에서 가열된 작동액(F)은 작동액(F)이 순환하는 방향, 즉 히터 케이스(171a)의 전단부를 향하여 이동되는데, 이 과정에서 작동액(F)의 일부는 분지된 출구(171c', 171c")로 배출되지만 나머지는 출구(171c', 171c")를 지나 히터 케이스(171a)의 전단부에 와류를 형성하며 머무르게 된다.Specifically, the working fluid F heated by the active heating unit AHP is moved toward the circulating direction of the working fluid F, that is, toward the front end of the heater case 171a. In this process, Some are discharged to the branched outlets 171c 'and 171c' ', while the remainder pass through the outlets 171c' and 171c '' and remain in the front end portion of the heater case 171a to form a vortex.

이처럼 가열된 작동액(F)의 전부가 출구(171c', 171c")로 바로 배출되는 것이 아니라, 일부는 출구(171c', 171c")로 바로 배출되지 못하고 히터 케이스(171a) 내에 머물러있게 되므로, 히터(171b)의 과열이 보다 방지될 수 있다.Not all of the heated working fluid F is directly discharged to the outlets 171c 'and 171c' ', but a part of the heated working fluid F is not discharged directly to the outlets 171c' and 171c '' and stays in the heater case 171a , The overheat of the heater 171b can be further prevented.

한편, 히트 파이프(172)는 냉각관(131)의 각 열에 고정되는 복수의 냉각핀(132) 사이에 수용되도록 구성될 수 있다. 상기 구조에 의하면, 히트 파이프(172)는 냉각관(131)의 각 열 사이사이에 배치되게 된다. 이때, 히트 파이프(172)는 냉각핀(132)과 접촉하도록 구성될 수도 있다.Meanwhile, the heat pipe 172 may be configured to be received between the plurality of cooling fins 132 fixed to each row of the cooling pipe 131. According to the above structure, the heat pipes 172 are disposed between the respective rows of the cooling pipes 131. At this time, the heat pipe 172 may be configured to contact the cooling fin 132.

그러나 본 발명이 이에 한정되는 것은 아니다. 일 예로, 히트 파이프(172)는 복수의 냉각핀(132)을 관통하도록 설치될 수 있다. 즉, 히트 파이프(172)는 냉각핀(132)의 삽입홀에 삽입된 상태에서 확관되어 상기 삽입홀에 견고하게 끼워질 수 있다. 상기 구조에 따르면, 히트 파이프(172)는 냉각관(131)에 대응되게 배치되게 된다.However, the present invention is not limited thereto. In one example, the heat pipe 172 may be installed to penetrate the plurality of cooling fins 132. That is, the heat pipe 172 is expanded in a state of being inserted into the insertion hole of the cooling fin 132 and can be firmly fitted into the insertion hole. According to the above structure, the heat pipe 172 is disposed correspondingly to the cooling pipe 131.

앞서 설명한 바와 같이, 본 발명의 히팅 유닛(171)에 적용되는 히터(171b)는 판상 형태로 형성될 수 있으며, 대표적으로는 판상의 세라믹 히터(171b)가 이용될 수 있다.As described above, the heater 171b applied to the heating unit 171 of the present invention may be formed in a plate-like shape, and typically, a plate-shaped ceramic heater 171b may be used.

도 6에 도시된 바와 같이, 히터(171b)는 베이스 플레이트(171b1), 열선(171b2) 및 터미널(171b3)을 포함하여 구성될 수 있다.6, the heater 171b may include a base plate 171b1, a heat ray 171b2, and a terminal 171b3.

베이스 플레이트(171b1)는 세라믹 재질로 형성되고, 일방향을 따라 길게 연장된 판상 형태로 형성된다. 베이스 플레이트(171b1)는 히터 케이스(171a)의 외부면에 부착되어, 히터 케이스(171a)의 길이방향을 따라 배치된다.The base plate 171b1 is formed of a ceramic material and is formed in a plate shape elongated along one direction. The base plate 171b1 is attached to the outer surface of the heater case 171a and disposed along the longitudinal direction of the heater case 171a.

베이스 플레이트(171b1)에는 열선(171b2)이 형성되며, 상기 열선(171b2)은 전원 인가시 발열하도록 구성된다. 베이스 플레이트(171b1)가 히터 케이스(171a)의 외부면에 부착된 상태에서, 열선(171b2)은 히터 케이스(171a)의 입구(171d', 171d")와 출구(171c', 171c") 사이의 일 지점으로부터 출구(171c', 171c")를 향하여 연장된 형태를 가진다.A heat ray 171b2 is formed on the base plate 171b1, and the heat ray 171b2 is configured to generate heat when power is applied. 171d "of the heater case 171a and the outlets 171c ', 171c" in a state where the base plate 171b1 is attached to the outer surface of the heater case 171a, And extends from one point toward the outlets 171c ', 171c ".

상기 열선(171b2)은 저항체(예를 들어, 루테늄과 백금이 조합된 분말, 텅스텐 등)가 베이스 플레이트(171b1)에 특정 패턴으로 패터닝되어 형성될 수 있다. 열선(171b2)은 베이스 플레이트(171b1)의 길이방향을 따라 연장 형성될 수 있다.The heat ray 171b2 may be formed by patterning a resistor (for example, a powder of ruthenium and platinum combined with tungsten) in a specific pattern on the base plate 171b1. The heat line 171b2 may extend along the longitudinal direction of the base plate 171b1.

베이스 플레이트(171b1)의 일측에는 열선(171b2)과 전원을 전기적으로 연결하도록 구성되는 터미널(171b3)이 구비되며, 상기 터미널(171b3)에는 전원과 전기적으로 연결되는 리드 와이어(173)가 연결된다.A terminal 171b3 configured to electrically connect the hot wire 171b2 and the power source is provided at one side of the base plate 171b1 and a lead wire 173 electrically connected to the power source is connected to the terminal 171b3.

한편, 히터 케이스(171a)는 열선(171b2)이 배치된 부분에 대응되는 능동발열부(AHP)와 열선(171b2)이 미배치된 부분에 대응되는 수동발열부(PHP)로 구획된다.The heater case 171a is divided into an active heat generating portion AHP corresponding to a portion where the heat ray 171b2 is disposed and a passive heat generating portion PHP corresponding to a portion where the heat ray 171b2 is not arranged.

상기 능동발열부(AHP)는 열선(171b2)에 의해 직접적으로 가열되는 부분으로서, 액체 상태의 작동액(F)은 능동발열부(AHP)에서 가열되어 고온의 기체 상태로 상변화된다.The active heat generating portion AHP is a portion directly heated by the heat ray 171b2, and the liquid working fluid F is heated in the active heat generating portion AHP and is phase-changed into a high temperature gaseous state.

히터 케이스(171a)의 출구(171c', 171c")는 능동발열부(AHP) 내에 위치하거나, 능동발열부(AHP)보다 전방에 위치할 수 있다. 도 5에서는, 히터(171b)의 열선(171b2)이 형성된 부분이 히터 케이스(171a)의 외주에 형성된 출구(171c', 171c") 아래를 지나 전방으로 연장 형성된 것을 예시하고 있다. 즉, 본 실시예에서, 히터 케이스(171a)의 출구(171c', 171c")는 능동발열부(AHP) 내에 위치한다.The outlets 171c 'and 171c' of the heater case 171a may be located in the active heat generating portion AHP or in front of the active heat generating portion AHP. In FIG. 5, 171b2 are formed to extend forward beyond the outlets 171c ', 171c "formed on the outer periphery of the heater case 171a. That is, in this embodiment, the outlets 171c 'and 171c' 'of the heater case 171a are located in the active heat generating portion AHP.

능동발열부(AHP)의 후방에는 수동발열부(PHP)가 형성된다. 수동발열부(PHP)는 능동발열부(AHP)처럼 열선(171b2)에 의해 직접적으로 가열되는 부분은 아니지만, 간접적으로 열을 전달받아 일정 온도 수준으로 가열된다. 여기서, 수동발열부(PHP)는 액체 상태의 작동액(F)에 소정의 온도 상승을 야기할 수 있을 뿐, 작동액(F)을 기체 상태로 상변화시킬 수 있을 만큼 고온을 가지지는 않는다. 즉, 온도 관점에서, 능동발열부(AHP)는 상대적으로 고온부를 형성하고, 수동발열부(PHP)는 상대적으로 저온부를 형성한다.A passive heating part (PHP) is formed behind the active heating part (AHP). The passive heat generating part PHP is not directly heated by the heat ray 171b2 like the active heat generating part AHP, but indirectly receives heat and is heated to a certain temperature level. Here, the passive heat generating portion PHP can cause a predetermined temperature rise in the liquid-state working fluid F, but does not have a high enough temperature to phase-change the working fluid F into a gaseous state. That is, from the viewpoint of temperature, the active heat generating portion AHP forms a relatively high temperature portion, and the passive heat generating portion PHP forms a relatively low temperature portion.

만일, 작동액(F)이 고온의 능동발열부(AHP) 측으로 바로 리턴되도록 구성된다면, 회수되는 작동액(F)이 다시 가열되어 히터 케이스(171a) 내로 원활하게 귀환되지 못하고 역류하게 되는 경우가 발생할 수 있다. 이는 히트 파이프(172) 내의 작동액(F)의 순환 유동에 방해가 되어, 히터(171b)가 과열되는 문제를 야기할 수 있다.If the working fluid F is configured to return directly to the high-temperature active heat generating portion AHP side, there is a case where the recovered working fluid F is heated again and is not smoothly returned to the heater case 171a but flows backward Lt; / RTI > This interferes with the circulating flow of the working fluid F in the heat pipe 172, which may cause a problem that the heater 171b is overheated.

이러한 문제점을 개선하기 위하여, 히팅 유닛(171)의 입구(171d', 171d")는 수동발열부(PHP) 내에 형성되어, 히트 파이프(172)를 이동한 후 리턴되는 작동액(F)이 능동발열부(AHP)로 바로 유입되지 않도록 구성된다.The inlet 171d ', 171d "of the heating unit 171 is formed in the passive heating portion PHP so that the returned working fluid F after moving the heat pipe 172 is active (AHP). ≪ / RTI >

본 실시예에서는, 히팅 유닛(171)의 입구(171d', 171d")가 수동발열부(PHP) 내에 위치하여, 히트 파이프(172)를 이동한 후 리턴되는 작동액(F)이 수동발열부(PHP)로 유입되도록 구성된 것을 보이고 있다. 즉, 히팅 유닛(171)의 입구(171d', 171d")는 히터 케이스(171a) 중 열선(171b2)이 미배치되는 부분에 형성된다.In this embodiment, the inlet 171d ', 171d "of the heating unit 171 is located in the passive heat generating portion PHP, and after the heat pipe 172 is moved, The entrance 171d ', 171d "of the heating unit 171 is formed in a portion of the heater case 171a where the heat ray 171b2 is unseated.

이처럼, 수동발열부(PHP)는 열선(171b2)의 형성 위치에 관계된다. 따라서, 열선(171b2)이 히팅 유닛(171)의 입구(171d', 171d")까지 연장 형성되지만 않는다면, 히터(171b)의 베이스 플레이트(171b1)는 입구(171d', 171d")에 대응되는 부분까지도 연장 형성될 수 있다. 즉, 베이스 플레이트(171b1)는 히터 케이스(171a)의 저면 대부분을 덮도록 배치되되, 열선(171b2)은 입구(171d', 171d")를 벗어난 위치에 형성되어, 입구(171d', 171d")를 통하여 리턴되는 작동액(F)이 역류하는 것이 방지될 수 있다.As described above, the passive heating portion PHP is related to the formation position of the heat ray 171b2. Accordingly, the base plate 171b1 of the heater 171b can be positioned at a portion corresponding to the inlets 171d 'and 171d "unless the heat line 171b2 is extended to the inlets 171d' and 171d" of the heating unit 171. [ Can also be extended. That is, the base plate 171b1 is disposed so as to cover most of the bottom surface of the heater case 171a, and the heat ray 171b2 is formed at positions deviating from the inlets 171d 'and 171d' It is possible to prevent the returned working fluid F from flowing backward.

이하에서는, 히터 케이스(171a)의 상세 구조 및 히터 케이스(171a)와 히터(171b) 간의 결합 구조에 대하여 보다 상세히 설명한다.Hereinafter, the detailed structure of the heater case 171a and the coupling structure between the heater case 171a and the heater 171b will be described in more detail.

히터 케이스(171a)는 메인 케이스(171a1)와, 메인 케이스(171a1) 양측에 각각 결합되는 제1커버(171a2)와 제2커버(171a3)를 포함한다.The heater case 171a includes a main case 171a1 and a first cover 171a2 and a second cover 171a3 which are respectively coupled to both sides of the main case 171a1.

메인 케이스(171a1)는 내부에 빈 공간을 구비하며, 양단부가 개구된 형태를 가진다. 메인 케이스(171a1)는 알루미늄 재질로 형성될 수 있다. 도 4에서는 내부의 빈 공간이 사각 단면 형태를 가지고 일방향을 따라 길게 연장 형성된 사각기둥 형태의 메인 케이스(171a1)를 보이고 있다.The main case 171a1 has a hollow space therein and has both ends opened. The main case 171a1 may be made of aluminum. 4 shows a main case 171a1 in the form of a quadrangular prism having a hollow space in the form of a rectangular cross section and elongated along one direction.

제1 및 제2커버(171a2, 171a3)는 메인 케이스(171a1)의 개구된 양단부를 덮도록 메인 케이스(171a1)의 양측에 각각 장착된다. 제1 및 제2커버(171a2, 171a3)는 메인 케이스(171a1)와 같은 알루미늄 재질로 형성될 수 있다.The first and second covers 171a2 and 171a3 are mounted on both sides of the main case 171a1 so as to cover both opened ends of the main case 171a1. The first and second covers 171a2 and 171a3 may be made of the same aluminum material as the main case 171a1.

본 실시예에서는, 메인 케이스(171a1)의 길이방향을 따라 상호 이격된 위치에 출구(171c', 171c")와 입구(171d', 171d")가 각각 구비되며, 상기 출구(171c', 171c")와 입구(171d', 171d")에 히트 파이프(172)의 양단부[출구(171c', 171c")와 연결되는 유입부(172c', 172c") 및 입구(171d', 171d")와 연결되는 리턴부(172d', 172d")]가 연결된 구조를 보이고 있다.In this embodiment, the outlets 171c 'and 171c' and the outlets 171d 'and 171d' are provided at positions spaced apart from each other along the longitudinal direction of the main case 171a1, And the inlet 171d ', 171d "connected to the both ends of the heat pipe 172 (the outlets 171c', 171c") and the inlets 171d ', 171d " (172d ', 172d ")) are connected to each other.

보다 구체적으로, 메인 케이스(171a1)의 일측면에는 제1출구(171c')와 제1입구(171d')가 길이방향을 따라 상호 이격된 위치에 형성되고, 상기 일면과 마주하는 타측면에는 제2출구(171c")와 제2입구(171d")가 길이방향을 따라 상호 이격된 위치에 형성된다. 여기서, 제1출구(171c')와 제2출구(171c")는 서로 마주하도록 배치될 수 있으며, 제1입구(171d')와 제2입구(171d")는 서로 마주하도록 배치될 수 있다.More specifically, a first outlet 171c 'and a first inlet 171d' are formed on one side of the main case 171a1 at positions spaced from each other along the longitudinal direction, and on the other side facing the one side, 2 outlet 171c "and the second inlet 171d" are formed at mutually spaced positions along the longitudinal direction. Here, the first outlet 171c 'and the second outlet 171c' may be disposed to face each other, and the first inlet 171d 'and the second inlet 171d' may be disposed to face each other.

그러나, 본 발명이 이에 한정되는 것은 아니다. 입구(171d', 171d")와 출구(171c', 171c") 중 적어도 하나는 제1 및/또는 제2커버(171a2, 171a3)에 형성될 수도 있다. 이와 관련한 구조에 대해서는 뒤에서 보다 상세히 설명하기로 한다.However, the present invention is not limited thereto. At least one of the inlets 171d ', 171d "and the outlets 171c', 171c" may be formed in the first and / or second covers 171a2, 171a3. The structure related to this will be described in detail later.

한편, 히팅 유닛(171)은 증발기(130)의 하부에 구비되므로, 그 구조상 제상으로 인하여 발생된 제상수가 히팅 유닛(171)으로 흘러내릴 수 있다. 히팅 유닛(171)에는 구비되는 히터(171b)는 전자 부품이므로, 이에 제상수가 접촉되면 쇼트가 발생할 수 있다. 이처럼, 제상수를 비롯한 수분이 히터(171b)에 침투되지 않도록 하기 위하여 본 발명의 히팅 유닛(171)은 다음과 같은 실링 구조를 구비할 수 있다.On the other hand, since the heating unit 171 is provided in the lower portion of the evaporator 130, the defrost water generated due to the defrosting can flow down to the heating unit 171. Since the heater 171b included in the heating unit 171 is an electronic component, a short circuit may occur when the tap water contacts with the heater 171b. The heating unit 171 of the present invention may have the following sealing structure in order to prevent the moisture including the defrost water from penetrating into the heater 171b.

먼저, 메인 케이스(171a1)의 저면에는 히터(171b)가 부착되며, 메인 케이스(171a1)의 양측에는 제1 및 제2연장핀(171a1a, 171a1b)이 각각 저면으로부터 하측으로 연장 형성되어 저면에 부착된 히터(171b)의 측면을 덮도록 구성된다. 상기 구조에 의해, 제상으로 인하여 발생된 제상수가 메인 케이스(171a1)에 떨어져 메인 케이스(171a1)의 외부면을 타고 흘러내리더라도, 제1 및 제2연장핀(171a1a, 171a1b) 내측에 수용된 히터(171b)로는 제상수가 침투되지 않는다.A heater 171b is attached to the bottom of the main case 171a1 and first and second extension pins 171a1a and 171a1b extend from the bottom to the bottom of the main case 171a1, And covers the side surface of the heater 171b. With this structure, even if the defrost water generated by the defrosting falls into the main case 171a1 and flows down on the outer surface of the main case 171a1, the heater housed inside the first and second extension pins 171a1a and 171a1b (171b).

또한, 이처럼 히터(171b)의 배면과 제1 및 제2연장핀(171a1a, 171a1b)에 의해 형성되는 리세스된(recessed) 공간(R)에는 실링부재(171e)가 히터(171b)를 덮도록 충진될 수 있다. 상기 실링부재(171e)로 실리콘, 우레탄, 에폭시 등이 이용될 수 있다. 예를 들어, 액상의 에폭시가 히터(171b)를 덮도록 상기 리세스된 공간(R) 내에 충진된 후 경화 과정을 거쳐, 히터(171b)의 실링 구조가 완성될 수 있다. 이때, 제1 및 제2연장핀(171a1a, 171a1b)은 실링부재(171e)가 충진되는 리세스된 공간(R)을 한정하는 측벽으로서 기능하게 된다.The sealing member 171e covers the heater 171b in the recessed space R formed by the back surface of the heater 171b and the first and second extension pins 171a1a and 171a1b. Can be filled. As the sealing member 171e, silicone, urethane, epoxy, or the like may be used. For example, a liquid epoxy may be filled in the recessed space R so as to cover the heater 171b, and then a curing process may be performed to complete the sealing structure of the heater 171b. At this time, the first and second extension pins 171a1a and 171a1b function as side walls defining the recessed space R in which the sealing member 171e is filled.

히터(171b)의 배면과 실링부재(171e) 사이에는 절연재(171f)가 개재될 수 있다. 상기 절연재(171f)로 운모 재질의 마이카 시트(mica sheet)가 이용될 수 있다. 히터(171b)의 배면에 절연재(171f)가 배치됨으로써, 전원 인가에 따른 열선(171b2)의 발열시 히터(171b) 배면측으로의 열전달이 제한될 수 있다.An insulating material 171f may be interposed between the back surface of the heater 171b and the sealing member 171e. As the insulating material 171f, a mica sheet made of mica may be used. The heat transfer to the backside of the heater 171b can be restricted when the heating wire 171b2 generates heat when the power source is applied by disposing the insulating material 171f on the back surface of the heater 171b.

아울러, 메인 케이스(171a1)와 히터(171b) 사이에는 열전도성 접착제(171g)가 개재될 수 있다. 열전도성 접착제(171g)는 히터(171b)를 메인 케이스(171a1)에 부착시키면서 히터(171b)에서 발생된 열을 메인 케이스(171a1)에 전달하는 역할을 한다. 상기 열전도성 접착제(171g)로, 고온에 견딜 수 있는 내열 실리콘이 이용될 수 있다.In addition, a thermally conductive adhesive 171g may be interposed between the main case 171a1 and the heater 171b. The thermally conductive adhesive 171g serves to transfer the heat generated from the heater 171b to the main case 171a1 while attaching the heater 171b to the main case 171a1. As the thermally conductive adhesive 171g, heat-resistant silicone which can withstand high temperatures can be used.

한편, 제1 및 제2커버(171a2, 171a3) 중 적어도 하나는 상기 메인 케이스(171a1)의 저면으로부터 하측으로 연장 형성되어, 상기 제1 및 제2연장핀(171a1a, 171a1b)과 함께 상기 히터(171b)를 둘러싸도록 구성될 수 있다. 상기 구조에 따르면, 실링부재(171e)의 충진이 보다 용이하게 이루어질 수 있다.At least one of the first and second covers 171a2 and 171a3 extends downward from the bottom surface of the main case 171a1 so that the first and second covers 171a1 and 171a1b and the heater 171b. According to this structure, the filling of the sealing member 171e can be made easier.

다만, 히터(171b)의 터미널(171b3)에 연결되는 리드 와이어(173)가 히터 케이스(171a)의 일측에서 외부로 연장되는 구조를 고려할 때, 제1 및 제2커버(171a2, 171a3) 중 상기 히터 케이스(171a) 일측에 대응되는 커버는 하측으로 연장 형성되지 않거나, 하측으로 연장 형성되더라도 리드 와이어(173)가 통과할 수 있는 홈 내지는 홀을 구비할 수 있다.However, considering the structure in which the lead wire 173 connected to the terminal 171b3 of the heater 171b extends outward from one side of the heater case 171a, the first and second covers 171a2 and 171a3 The cover corresponding to one side of the heater case 171a may not have a downward extension or may have a groove or a hole through which the lead wire 173 can pass even if the cover is extended downward.

본 실시예에서는, 제2커버(171a3)가 메인 케이스(171a1)의 저면으로부터 하측으로 연장 형성되고, 리드 와이어(173)가 제1커버(171a2) 측으로 연장 형성된 구조를 보이고 있다. In this embodiment, the second cover 171a3 extends downward from the bottom surface of the main case 171a1, and the lead wire 173 extends toward the first cover 171a2.

도 7 내지 도 9는 도 4에 도시된 히팅 유닛(171)에서 출구(171c', 171c")와 입구(171d', 171d")의 형성 위치가 변형된 예들을 각각 보인 분해 사시도이다. 본 변형예는 앞선 실시예와 히팅 유닛(171)의 출구(171c', 171c") 및/또는 입구(171d', 171d")의 형성 위치만 상이할 뿐이어서, 이외의 다른 구성들에는 앞선 실시예의 구성들이 동일하게 적용될 수 있다.Figs. 7 to 9 are exploded perspective views showing examples in which the positions of the outlets 171c 'and 171c " and the inlets 171d' and 171d "in the heating unit 171 shown in Fig. 4 are deformed. This modified example differs from the previous embodiment only in the formation positions of the outlets 171c 'and 171c' 'and / or the inlets 171d' and 171d 'of the heating unit 171, Exemplary configurations can be applied equally.

먼저, 도 7을 참조하면, 히팅 유닛(271)의 입구와 출구는 제1 및 제2커버(271a2, 271a3)에 각각 형성될 수 있다. 구체적으로, 제1커버(271a2)에는 히팅 유닛(271)의 제1 및 제2출구가 함께 형성되어, 제1 및 제2출구에 각각 연결되는 제1 및 제2유입부(272c', 272c")가 나란하게 배치될 수 있다. 또한, 제2커버(271a3)에는 히팅 유닛(271)의 제1 및 제2입구가 함께 형성되어, 제1 및 제2입구에 각각 연결되는 제1 및 제2리턴부(272d', 272d")가 나란하게 배치될 수 있다.7, the inlet and the outlet of the heating unit 271 may be formed in the first and second covers 271a2 and 271a3, respectively. Specifically, the first cover 271a2 is formed with first and second outlets of the heating unit 271, and first and second inflow parts 272c 'and 272c "connected to the first and second outlets, respectively, The first and second openings of the heating unit 271 are formed in the second cover 271a3 so that the first and second openings of the first and second openings, The return portions 272d 'and 272d "may be arranged side by side.

이처럼, 히팅 유닛(271)의 출구와 입구는 메인 케이스(271a1)의 양측면에 형성될 수도 있고, 제1 및 제2커버(271a2, 271a3)에 형성될 수도 있다. 뿐만 아니라, 상기 구조의 조합도 가능하다.As such, the outlet and the inlet of the heating unit 271 may be formed on both sides of the main case 271a1, and may be formed on the first and second covers 271a2 and 271a3. In addition, a combination of the above structures is also possible.

일 예로, 도 8에 도시된 바와 같이, 히팅 유닛(371)의 출구는 메인 케이스(371a1)에 형성되고, 히팅 유닛(371)의 입구는 제2커버(371a3)에 형성될 수 있다. 구체적으로, 메인 케이스(371a1)의 양측면에는 히팅 유닛(371)의 제1 및 제2출구가 서로 마주하도록 형성될 수 있다. 또한, 제2커버(371a3)에는 히팅 유닛(371)의 제1 및 제2입구가 함께 형성되어, 제1 및 제2입구에 각각 연결되는 제1 및 제2리턴부(372d', 372d")가 나란하게 배치될 수 있다.8, an outlet of the heating unit 371 may be formed in the main case 371a1, and an inlet of the heating unit 371 may be formed in the second cover 371a3. Specifically, on both sides of the main case 371a1, the first and second outlets of the heating unit 371 may be formed to face each other. The first and second openings of the heating unit 371 are formed in the second cover 371a3 so that the first and second return parts 372d 'and 372d ", which are connected to the first and second inlets, respectively, Can be arranged side by side.

다른 일 예로, 도 9에 도시된 바와 같이, 히팅 유닛(471)의 출구는 제1커버(471a2)에 형성되고, 히팅 유닛(471)의 입구는 메인 케이스(471a1)에 형성될 수 있다. 구체적으로, 제2커버(471a3)에는 히팅 유닛(471)의 제1 및 제2출구가 함께 형성되어, 제1 및 제2출구에 각각 연결되는 제1 및 제2유입부(472c', 472c")가 나란하게 배치될 수 있다. 또한, 메인 케이스(471a1)의 양측면에는 히팅 유닛(471)의 제1 및 제2입구가 서로 마주하도록 형성될 수 있다.9, an outlet of the heating unit 471 may be formed in the first cover 471a2, and an inlet of the heating unit 471 may be formed in the main case 471a1. Specifically, the first and second outlets of the heating unit 471 are formed in the second cover 471a3, and first and second inlets 472c 'and 472c "which are connected to the first and second outlets, respectively, The first and second inlets of the heating unit 471 may be formed on both sides of the main case 471a1 so as to face each other.

도 10 및 도 11은 히터(171b)의 작동 전 및 작동 후 상태에서의 작동액(F)의 순환을 설명하기 위한 개념도들이다.Figs. 10 and 11 are conceptual diagrams for explaining the circulation of the working fluid F in the pre-operation and post-operation states of the heater 171b.

먼저, 도 10을 참조하면, 히터(171b)의 작동 전, 작동액(F)은 액체 상태에 놓이며, 히트 파이프(172)의 하부 최저열을 기준으로 상부의 기설정된 열까지 차오르게 된다. 일 예로, 이 상태에서 작동액(F)은 히트 파이프(172)의 하부 2열까지 충진될 수 있다.10, before the operation of the heater 171b, the working fluid F is put in a liquid state, and is heated up to a predetermined row of the upper portion based on the lower lowest heat of the heat pipe 172. [ For example, in this state, the working fluid F may be filled up to the lower two rows of the heat pipes 172.

히터(171b)가 작동하면, 히터 케이스(171a) 내의 작동액(F)은 히터(171b)에 의해 가열된다. 도 11을 참조하면, 고온의 기체 상태(F1)로 가열된 작동액(F)은 히트 파이프(172)의 유입부(172c', 172c")로 유입되어 히트 파이프(172)를 흐르면서, 냉각관(131)에 방열하게 된다. 작동액(F)은 상기 방열 과정에서 열을 잃으면서 액체와 기체가 공존하는 상태(F2)로 흐르게 되고, 최종적으로 액체 상태(F3)로 히트 파이프(172)의 리턴부(172d', 172d")를 통해 히팅 유닛(171)으로 유입되게 된다. 히팅 유닛(171)으로 유입된 작동액(F)은 히터(171b)에 의해 재가열되어, 앞서 설명한 바와 같은 흐름을 반복(순환)하게 되며, 이 과정에서 증발기(130)에 열이 전달되어 증발기(130)에 적상된 성에가 제거되게 된다.When the heater 171b operates, the working fluid F in the heater case 171a is heated by the heater 171b. 11, the working fluid F heated to the high temperature gaseous state F1 flows into the inlet portions 172c 'and 172c' 'of the heat pipe 172 and flows through the heat pipe 172, The working fluid F flows into the state F2 in which the liquid and the gas coexist while the heat is lost in the heat dissipation process and finally flows into the state F2 of the heat pipe 172 in the liquid state F3, And then flows into the heating unit 171 through the return units 172d 'and 172d' '. The operating fluid F flowing into the heating unit 171 is reheated by the heater 171b to repeat the flow as described above. In this process, heat is transferred to the evaporator 130, 130 are removed.

이처럼, 작동액(F)은 히팅 유닛(171)에 의해 발생되는 압력 차이에 의해 유동하여 히트 파이프(172)를 빠르게 순환하게 되므로, 히트 파이프(172)의 전 구간이 단시간 내에 안정된 작동 온도에 도달할 수 있고, 이에 따라 제상이 빠르게 이루어질 수 있다.Since the working fluid F flows due to the pressure difference generated by the heating unit 171 and circulates the heat pipe 172 quickly, the entire area of the heat pipe 172 reaches a stable operating temperature within a short time So that defrosting can be done quickly.

한편, 유입부(172c', 172c")로 유입되는 작동액(F)은 고온의 기체 상태(F1)로 히트 파이프(172)의 순환 과정 중 가장 높은 온도를 가진다. 따라서, 이러한 고온의 기체 상태(F1)에 놓인 작동액(F)에 의한 열의 대류를 이용하면, 보다 효율적으로 증발기(130)에 적상된 성에를 제거할 수 있다.On the other hand, the working fluid F flowing into the inlet portions 172c 'and 172c "has the highest temperature in the circulation process of the heat pipe 172 in the high temperature gas state F1. By using convection of heat by the working fluid F placed on the evaporator F1, it is possible to more effectively remove the property imposed on the evaporator 130. [

일 예로, 유입부(172c', 172c")는 증발기(130)에 구비되는 냉각관(131)의 최저열보다 상대적으로 낮은 위치 또는 최저열과 같은 위치에 배치될 수 있다. 이에 따르면, 유입부(172c', 172c")를 통하여 유입되는 고온의 작동액(F)이 냉각관(131)의 최저열 가까이에서 열을 전달하게 될 뿐만 아니라, 이러한 열이 상승되어 상기 최저열에 인접한 냉각관(131)으로 전달될 수 있다.For example, the inflow portions 172c 'and 172c' 'may be disposed at positions relatively lower than the lowest row or the lowest row of the cooling tubes 131 provided in the evaporator 130. According to this, 172c 'and 172c' 'of the cooling tubes 131 and 132 are not only transmitted heat near the lowest heat of the cooling tubes 131 but also increased in the cooling tubes 131 adjacent to the lowest heat, Lt; / RTI >

한편, 작동액(F)이 이와 같은 상 변화(phase change)를 이루며 히트 파이프(172)를 순환하기 위해서는, 작동액(F)이 적정량으로 히트 파이프(172)에 충진되어야 한다.On the other hand, in order for the working fluid F to make such a phase change and circulate through the heat pipe 172, the working fluid F must be filled in the heat pipe 172 in a proper amount.

실험 결과, 작동액(F)이 히트 파이프(172)와 히터 케이스(171a)의 총 내부 체적 대비 30% 미만으로 충진된 경우, 시간이 지남에 따라 히팅 유닛(171)의 온도가 급격하게 증가하는 것을 확인할 수 있었다. 이는 히트 파이프(172)와 히터 케이스(171a)의 총 내부 체적 대비 작동액(F)이 부족하다는 것을 의미한다.As a result of the experiment, when the working fluid F is filled with less than 30% of the total internal volume of the heat pipe 172 and the heater case 171a, the temperature of the heating unit 171 increases sharply over time . This means that the working fluid F is insufficient relative to the total internal volume of the heat pipe 172 and the heater case 171a.

또한, 작동액(F)이 히트 파이프(172)와 히터 케이스(171a)의 총 내부 체적 대비 40%를 초과하여 충진된 경우, 히트 파이프(172)의 일부 열의 온도가 안정된 작동 온도[50° 이하(냉동 조건)]에 도달하지 못하는 것을 확인할 수 있었다. 이러한 온도 저하는 히트 파이프(172)가 리턴부(172d', 172d")에 가까워질 수록 두드러진다. 이는, 히트 파이프(172)와 히터 케이스(171a)의 총 체적 대비 작동액(F)이 과다하여 작동액(F)이 액체 상태로 흐르는 구간이 많아지는 것을 의미한다고 볼 수 있다.When the working fluid F is filled in excess of 40% of the total internal volume of the heat pipe 172 and the heater case 171a, the temperature of a part of the heat pipe 172 is lower than a stable operating temperature (Freezing condition)] could not be reached. This temperature drop becomes noticeable as the heat pipe 172 approaches the return portions 172d 'and 172d'. This is because the operating fluid F is excessively larger than the total volume of the heat pipe 172 and the heater case 171a It means that the interval in which the working fluid F flows into the liquid state is increased.

작동액(F)이 히트 파이프(172)와 히터 케이스(171a)의 총 내부 체적 대비 30% 이상 40% 이하로 충진된 경우, 히팅 유닛(171)의 온도 및 히트 파이프(172)의 각 열의 온도는 시간이 경과함에 따라 안정된 작동 온도에 도달하는 것을 확인할 수 있었다.The temperature of the heating unit 171 and the temperature of each column of the heat pipe 172 are set to be equal to or more than 30% and not more than 40% of the total internal volume of the heat pipe 172 and the heater case 171a, Can reach a stable operating temperature over time.

이때, 히트 파이프(172)의 각 열의 온도는, 유입부(172c', 172c")에 가까울수록 보다 높은 온도를 보이고, 리턴부(172d', 172d")에 가까울수록 보다 낮은 온도를 보이는 것으로 나타났다. 충진된 작동액(F)의 양이 줄어들수록, 유입부(172c', 172c")에서의 온도(최고 온도)와 리턴부(172d', 172d")에서의 온도(최저 온도) 간의 차이도 줄어들었다.At this time, the temperature of each row of the heat pipe 172 shows a higher temperature as the closer to the inlet portions 172c 'and 172c ", and the lower the temperature as closer to the return portions 172d' and 172d" . As the amount of the filled working fluid F decreases, the difference between the temperature (maximum temperature) at the inlet portions 172c 'and 172c' 'and the temperature (lowest temperature) at the return portions 172d' and 172d ' .

따라서, 작동액(F)은 히트 파이프(172)와 히터 케이스(171a)의 총 내부 체적 대비 30% 이상 40% 이하로 충진되되, 제상 장치(170)의 열 전달 구조, 안정성 등에 따라 각각의 제상 장치(170) 별로 최적화된 작동액(F)의 충진량이 선정될 수 있다.Therefore, the working fluid F is filled in the amount of 30% or more and 40% or less of the total internal volume of the heat pipe 172 and the heater case 171a. However, depending on the heat transfer structure and stability of the defroster 170, The filling amount of the working fluid F optimized for each device 170 can be selected.

한편, 히터(171b)가 히터 케이스(171a)의 외부면에 부착되는 그 구조상, 히터 케이스(171a)에 대한 히터(171b)의 열전달 성능을 향상시키고, 히터(171b)의 과열을 방지하는 구조가 고려되는 것이 바람직하다. 이하에서는, 이러한 사항들이 고려된 히팅 유닛(171)에 대하여 설명한다.On the other hand, the structure in which the heater 171b is attached to the outer surface of the heater case 171a improves the heat transfer performance of the heater 171b with respect to the heater case 171a and prevents the overheat of the heater 171b . In the following, the heating unit 171 considering such matters will be described.

도 12는 도 3에 도시된 히팅 유닛(171)의 다른 일 예(571)를 폭방향을 따라 취한 단면도이다.12 is a cross-sectional view of another example 571 of the heating unit 171 shown in FIG. 3 taken along the width direction.

도 12를 참조하면, 히터 케이스의 외부면에는 히터 케이스의 방열을 위한 외부핀(571a1c)이 돌출 형성된다. 외부핀(571a1c)은 히터 케이스의 제작시 돌출된 구성으로서 히터 케이스에 일체로 형성되거나(예를 들어, 알루미늄의 압출 성형), 별도의 구성으로서 용접, 접착제 등에 의해 히터 케이스에 부착될 수 있다.Referring to FIG. 12, external fins 571a1c for heat radiation of the heater case protrude from the outer surface of the heater case. The outer fins 571a1c may be integrally formed with the heater case (for example, extrusion molding of aluminum) or may be attached to the heater case by welding, adhesive, or the like as a separate constitution, which is protruded when the heater case is manufactured.

이처럼 히터 케이스의 외부면에 외부핀(571a1c)이 형성되면, 외부핀(571a1c)이 미형성된 구조 대비 히터 케이스의 외부 면적이 증가된다. 그 결과, 주위의 저온 공기와 히터 케이스 간의 열교환 효율이 향상될 수 있다.When the outer fins 571a1c are formed on the outer surface of the heater case, the outer surface area of the heater case is increased compared to the structure in which the outer fins 571a1c are not formed. As a result, heat exchange efficiency between the surrounding low temperature air and the heater case can be improved.

상기 구조에 따라, 히터(571b)에서 발생된 열의 상당량이 히터(571b) 전방의(본 도면의 상측 방향) 히터 케이스로 전달되어[상대적으로, 히터(571b) 후방으로의 열전달은 감소], 히터(571b)의 과열이 방지될 수 있다. 또한, 히터(571b)의 후면부 온도가 낮아지게 되어, 히터(571b)의 신뢰성 및 수명이 향상될 수 있다. 아울러, 히터(571b)의 후방에 구비되는 실링부재(571e)로의 열전달이 감소되어, 실링부재(571e)의 용융이 방지될 수 있다.A relatively large amount of heat generated in the heater 571b is transmitted to the heater case (in the upper direction in the figure) in front of the heater 571b (relatively, the heat transfer to the rear of the heater 571b is reduced) The overheating of the heat sink 571b can be prevented. Further, the temperature of the rear surface of the heater 571b is lowered, and the reliability and life of the heater 571b can be improved. In addition, heat transfer to the sealing member 571e provided at the rear of the heater 571b is reduced, so that melting of the sealing member 571e can be prevented.

이하, 외부핀(571a1c)의 구성에 대하여 보다 상세히 설명한다.Hereinafter, the configuration of the external pin 571a1c will be described in more detail.

도시된 바와 같이, 외부핀(571a1c)은 메인 케이스(571a1)의 상면에 형성될 수 있다. 외부핀(571a1c)은 복수 개로 구비되어, 상호 소정의 이격 간격을 두고 메인 케이스(571a1)의 길이방향 또는 폭방향을 따라 연장 형성될 수 있다. 본 실시예에서는, 외부핀(571a1c)이 메인 케이스(571a1)의 길이방향을 따라 연장 형성된 것을 보이고 있다.As shown in the figure, the external pin 571a1c may be formed on the upper surface of the main case 571a1. The plurality of external pins 571a1c may be formed extending in the longitudinal direction or the width direction of the main case 571a1 with a predetermined spacing therebetween. In this embodiment, the outer fins 571a1c extend along the longitudinal direction of the main case 571a1.

복수의 외부핀(571a1c) 간의 이격 간격은 외부핀(571a1c)의 폭과 같거나 외부핀(571a1c)의 폭보다 넓게 형성될 수 있다. 복수의 외부핀(571a1c) 간의 이격 간격이 외부핀(571a1c)의 폭보다 좁은 경우에는 외부핀(571a1c)에 의한 방열 효과가 외부핀(571a1c)이 미형성된 구조 대비 크지 않기 때문이다.The spacing distance between the plurality of outer fins 571a1c may be equal to the width of the outer fins 571a1c or wider than the width of the outer fins 571a1c. When the spacing distance between the plurality of outer fins 571a1c is narrower than that of the outer fins 571a1c, the heat dissipation effect by the outer fins 571a1c is not so large as compared with the structure in which the outer fins 571a1c are not formed.

히터(571b)가 메인 케이스(571a1)의 저면에 부착된 구조에서, 메인 케이스(571a1)의 상부에 형성된 외부핀(571a1c)에 의해, 히터(571b)에서 발생된 열의 상당량은 히터(571b) 전방의 메인 케이스(571a1)로 전달되게 된다. 이러한 열전달에 의해, 히터(571b)의 과열이 방지될 수 있을 뿐만 아니라, 상기 열전달 과정에서 메인 케이스(571a1) 내부의 작동액(F)에 보다 많은 열이 전달될 수 있다. 즉, 열전달 효율의 향상이 이루어질 수 있다.In the structure in which the heater 571b is attached to the bottom surface of the main case 571a1, a considerable amount of heat generated in the heater 571b by the external pin 571a1c formed in the upper portion of the main case 571a1, To the main case 571a1 of the main body 571b. By this heat transfer, not only the overheating of the heater 571b can be prevented, but also more heat can be transferred to the working fluid F in the main case 571a1 in the heat transfer process. That is, the heat transfer efficiency can be improved.

한편, 작동액(F)에 최대한 많은 열이 전달될 수 있도록, 작동액(F)이 모두 액체 상태일 때, 작동액(F)은 메인 케이스(571a1)의 내부 빈 공간에 완전히 충진되도록 구성된다. 이는 앞서 설명한 바와 같이, 히터 케이스가 증발기(130)의 하부에 구비되고, 작동액(F)이 히트 파이프와 히터 케이스의 총 내부 체적 대비 30% 이상 40% 이하로 충진된 경우라면, 충족될 수 있다.On the other hand, when all of the working fluid F is in a liquid state, the working fluid F is configured to be completely filled in the inner empty space of the main case 571a1 so that as much heat as possible can be transmitted to the working fluid F . This is because, as described above, if the heater case is provided under the evaporator 130 and the working fluid F is filled in a ratio of 30% to 40% of the total internal volume of the heat pipe and the heater case, have.

도 13 및 도 14는 도 12에 도시된 히팅 유닛(571)에서 외부핀(571a1c)의 형상이 변형된 예들을 보인 개념도들이다.13 and 14 are conceptual diagrams showing examples in which the shape of the external pin 571a1c is modified in the heating unit 571 shown in FIG.

먼저, 도 13을 참조하면, 외부핀(671a1c)은 메인 케이스(671a1)의 상면뿐만 아니라, 다른 외부면에도 형성될 수 있다.Referring to FIG. 13, the external pin 671a1c may be formed not only on the upper surface of the main case 671a1 but also on the other external surface.

일 예로, 외부핀(671a1d)은 메인 케이스(671a1)의 양측 외부면에도 각각 돌출 형성될 수 있다. 다만, 히팅 유닛(671)의 출구(671c', 671c") 및 입구(671d', 671d")가 메인 케이스(671a1)의 양측면에 각각 형성되는 경우라면, 외부핀(571a1d)은 출구(671c', 671c") 및 입구(671d', 671d") 사이에서 길게 연장된 형태로 형성될 수 있다.For example, the outer pins 671a1d may be formed on both outer surfaces of the main case 671a1. However, if the outlets 671c 'and 671c' and the inlets 671d 'and 671d' of the heating unit 671 are formed on both sides of the main case 671a1, the outer pin 571a1d is connected to the outlet 671c ' , 671c ", and the inlets 671d 'and 671d ", respectively.

다른 일 예로, 외부핀(671a1e)은 제1 및 제2커버(671a2, 671a3) 중 적어도 하나의 커버의 외부면에도 돌출 형성될 수 있다. 다만, 히팅 유닛(671)의 출구(671c', 671c") 및 입구(671d', 671d") 중 하나가 대응되는 커버에 형성된 경우라면, 외부핀(671a1e)은 제1 및 제2커버(671a2, 671a3) 중 출구(671c', 671c") 및 입구(671d', 671d")가 미형성된 적어도 하나의 커버의 외부면에 돌출 형성될 수 있다.In another example, the outer pin 671a1e may protrude from the outer surface of at least one of the first and second covers 671a2 and 671a3. However, if one of the outlets 671c 'and 671c' 'of the heating unit 671 and the one of the inlets 671d' and 671d 'are formed on the corresponding cover, the outer pin 671a1e is connected to the first and second covers 671a2 671c "and the inlets 671d 'and 671d" in the outer surface of at least one of the uncovered covers.

다음으로, 외부핀(771a1c)은 히터 케이스(771a)의 외부면에 돌기 형태로 돌출 형성될 수 있다.Next, the outer pin 771a1c may protrude from the outer surface of the heater case 771a in the form of a projection.

일 예로, 도 14에 도시된 바와 같이, 외부핀(771a1c)은 복수 개로 구비되어, 메인 케이스(771a1)의 길이방향 및 폭방향을 따라 상호 소정의 이격 간격을 두고 배치될 수 있다. 이에 따라, 복수의 외부핀(771a1c)은 행렬(matrix)를 이루도록 배치되게 된다.For example, as shown in FIG. 14, a plurality of external pins 771a1c may be provided and spaced apart from each other along the longitudinal direction and the width direction of the main case 771a1. Accordingly, the plurality of external pins 771a1c are arranged to form a matrix.

다른 일 예로, 외부핀(771a1c)은 복수 개로 구비되어, 메인 케이스(771a1)의 외부면 상에서 임의로 돌출된 형태를 가질 수 있다.As another example, a plurality of external pins 771a1c may be provided and may have a shape protruding arbitrarily on the outer surface of the main case 771a1.

상기 구조들에 의하면, 외부핀에 의한 히터 케이스의 외부 면적이 보다 증가될 수 있다. 그 결과, 주위의 저온 공기와 히터 케이스 간의 열교환 효율이 보다 향상될 수 있으며, 히터의 과열 방지로 히터의 신뢰성 및 수명이 보다 향상될 수 있다.According to the above structures, the outer surface area of the heater case by the outer fin can be further increased. As a result, the heat exchange efficiency between the surrounding low-temperature air and the heater case can be further improved, and the reliability and lifetime of the heater can be further improved by preventing overheating of the heater.

한편, 앞서 설명한 제1 및 제2연장핀도 히터 케이스에서 돌출 형성되는 구성이라는 점에서, 외부핀의 일종으로 이해될 수 있다. 따라서, 제1 및 제2연장핀에 의해서도 상기 효과가 달성될 수 있다.On the other hand, the above-described first and second extension pins are also formed as protrusions from the heater case. Therefore, the above effects can be achieved by the first and second extension pins.

도 15 및 도 16은 도 3에 도시된 히팅 유닛(171)의 또 다른 일 예(871)를 폭방향 및 길이방향을 따라 취한 단면도들이다.Figs. 15 and 16 are cross-sectional views taken along the width direction and the longitudinal direction of another example 871 of the heating unit 171 shown in Fig.

도 15 및 도 16을 참조하면, 히터 케이스의 내부에는 히터(871b)의 열전달 성능 향상을 위한 내부핀(871a1f)이 돌출 형성된다. 내부핀(871a1f)은 히터 케이스의 제작시 돌출된 구성으로서 히터 케이스에 일체로 형성(예를 들어, 알루미늄의 압출 성형)되거나, 별도의 구성으로서 용접, 접착제 등에 의해 히터 케이스에 부착될 수 있다.15 and 16, inner fins 871a1f for improving the heat transfer performance of the heater 871b are protruded from the inside of the heater case. The internal fins 871a1f may be formed integrally with the heater case (for example, aluminum extrusion) or protruded at the time of manufacturing the heater case, or may be attached to the heater case by welding, adhesive or the like as a separate constitution.

이처럼 히터 케이스의 내부에 내부핀(871a1f)이 형성되는 경우, 히터 케이스와 내부에 충진된 작동액(F)과의 접촉 면적이 증가되어, 히터(871b)에서 작동액(F)으로 전달되는 열전달량이 증가될 수 있다. 또한, 히터 케이스의 전체 부피가 증가하여, 히터 케이스에서 열을 받아들일 수 있는 열용량이 증가하게 되며, 이에 따라 히터(871b)에서 발생되는 열을 보다 더 많이 받아들일 수 있게 된다. 이러한 결과, 제상 성능이 향상될 수 있다.When the inner pin 871a1f is formed inside the heater case, the contact area between the heater case and the filled working fluid F is increased, and the heat transfer from the heater 871b to the working fluid F The amount can be increased. In addition, the total volume of the heater case increases, so that the heat capacity to receive heat from the heater case increases, thereby allowing more heat to be generated in the heater 871b. As a result, defrost performance can be improved.

아울러, 히터(871b)에서 발생된 열의 상당량이 히터(871b) 전방(본 도면의 상측 방향)의 히터 케이스로 전달되어[상대적으로, 히터(871b) 후방으로의 열전달은 감소], 히터(871b)의 과열이 방지될 수 있다. 또한, 히터(871b)의 후면부 온도가 낮아지게 되어, 히터(871b)의 신뢰성 및 수명이 향상될 수 있다. 아울러, 히터(871b)의 후방에 구비되는 실링부재(871e)로의 열전달이 감소되어, 실링부재(871e)의 용융이 방지될 수 있다.A relatively large amount of heat generated in the heater 871b is transmitted to the heater case in the front of the heater 871b (in the upper direction in the drawing) (relatively, the heat transfer to the rear of the heater 871b is reduced) It is possible to prevent overheating of the battery. In addition, the temperature of the rear surface of the heater 871b is lowered, and the reliability and life of the heater 871b can be improved. In addition, heat transfer to the sealing member 871e provided at the rear of the heater 871b is reduced, so that melting of the sealing member 871e can be prevented.

이하, 내부핀(871a1f)의 구성에 대하여 보다 상세히 설명한다.Hereinafter, the configuration of the inner pins 871a1f will be described in more detail.

도시된 바와 같이, 내부핀(871a1f)은 메인 케이스(871a1) 중 히터(871b)가 부착된 외부면의 내측인 내부면에 돌출 형성된다. 본 도면에서는, 히터(871b)가 메인 케이스(871a1)의 외부 저면에 부착되고, 내부핀(871a1f)이 메인 케이스(871a1)의 내부 저면에 돌출 형성된 것을 보이고 있다.As shown in the figure, the inner pins 871a1f protrude from the inner surface of the inner surface of the outer surface of the main case 871a1 to which the heater 871b is attached. In this figure, the heater 871b is attached to the outer bottom surface of the main case 871a1, and the inner fin 871a1f protrudes from the inner bottom surface of the main case 871a1.

내부핀(871a1f)은 메인 케이스(871a1)의 내부 높이 대비 1/2 이하의 길이로 돌출 형성되는 것이 바람직하다. 내부핀(871a1f)이 메인 케이스(871a1)의 내부 높이 대비 1/2을 초과하는 길이로 돌출 형성되는 경우, 작동액(F)이 원활하게 유동하는 데에 방해가 된다.The inner fins 871a1f are preferably protruded to a length less than 1/2 of the inner height of the main case 871a1. If the inner pins 871a1f protrude to a length exceeding ½ of the inner height of the main case 871a1, the working fluid F is prevented from flowing smoothly.

내부핀(871a1f)은 복수 개로 구비되어, 상호 소정의 이격 간격을 두고 메인 케이스(871a1)의 길이방향 또는 폭방향을 따라 연장 형성될 수 있다. 본 실시예에서는, 내부핀(871a1f)이 메인 케이스(871a1)의 길이방향을 따라 연장 형성된 것을 보이고 있다. 내부핀(871a1f)이 메인 케이스(871a1)의 압출 성형에 의해 메인 케이스(871a1)와 일체로 형성되는 구조를 가지는 경우, 내부핀(871a1f)은 메인 케이스(871a1)의 길이방향을 따라 연장 형성되는 구조를 가지게 된다.The plurality of inner fins 871a1f may be formed extending in the longitudinal direction or the width direction of the main case 871a1 with a predetermined spacing therebetween. In this embodiment, the inner fins 871a1f extend along the longitudinal direction of the main case 871a1. When the inner pin 871a1f is formed integrally with the main case 871a1 by extrusion molding of the main case 871a1, the inner pin 871a1f extends along the longitudinal direction of the main case 871a1 Structure.

이때, 복수의 내부핀(871a1f) 상호 간의 이격 간격은 내부핀(871a1f)의 폭 대비 1배 이상으로 설정되는 것이 바람직하다. 복수의 내부핀(871a1f) 상호 간의 이격 간격이 내부핀(871a1f)의 폭보다 좁은 경우에는 복수의 내부핀(871a1f) 사이로의 유동이 현저하게 줄어들게 되기 때문이다. 또한, 내부핀(871a1f)의 형성으로 인한 효과를 만족할만한 수준으로 얻기 위해서는, 복수의 내부핀(871a1f) 상호 간의 이격 간격은 내부핀(871a1f)의 폭 대비 2배 이하로 설정되어, 메인 케이스(871a1) 내에 많은 내부핀(871a1f)이 구비될 수 있도록 하는 것이 바람직하다.At this time, it is preferable that the spacing distance between the plurality of inner fins 871a1f is set to be at least one times the width of the inner fins 871a1f. This is because, when the spacing distance between the plurality of inner fins 871a1f is smaller than the width of the inner fins 871a1f, the flow between the plurality of inner fins 871a1f is remarkably reduced. In order to obtain a satisfactory level of the effect of forming the inner pins 871a1f, the spacing between the plurality of inner pins 871a1f is set to be not more than twice the width of the inner pins 871a1f, 871a1 may be provided with many internal pins 871a1f.

이와 같은 관점에서, 메인 케이스(871a1)의 내측벽과 상기 내측벽에 인접한 내부핀(871a1f)까지의 간격도 내부핀(871a1f)의 폭 대비 1배 이상 2배 이하로 설정되는 것이 바람직하다.From this point of view, it is preferable that the interval between the inner wall of the main case 871a1 and the inner pin 871a1f adjacent to the inner wall is set to be not less than 1 time and not more than twice the width of the inner pin 871a1f.

한편, 작동액(F)에 최대한 많은 열이 전달될 수 있도록, 작동액(F)이 모두 액체 상태일 때, 작동액(F)은 메인 케이스(871a1)의 내부 빈 공간에 완전히 충진되도록 구성된다. 이는 앞서 설명한 바와 같이, 히터 케이스가 증발기(130)의 하부에 구비되고, 작동액(F)이 히트 파이프와 히터 케이스의 총 내부 체적 대비 30% 이상 40% 이하로 충진된 경우라면, 충족될 수 있다.On the other hand, when all of the working fluid F is in a liquid state, the working fluid F is configured to be completely filled in the inner empty space of the main case 871a1 so that as much heat as possible can be transmitted to the working fluid F . This is because, as described above, if the heater case is provided under the evaporator 130 and the working fluid F is filled in a ratio of 30% to 40% of the total internal volume of the heat pipe and the heater case, have.

이하에서는, 내부핀에 의한 상기 효과를 만족할만한 수준으로 얻으면서, 작동액이 원활하게 히터 케이스에서 방출 및 히터 케이스로 유입될 수 있도록 하는 구조에 대하여 살펴본다.Hereinafter, a structure for allowing the operating fluid to flow smoothly from the heater case to the heater case will be described while obtaining the above-described effect of the inner fin to a satisfactory level.

도 17은 도 16에 도시된 히팅 유닛(971)에서 내부핀(971a1f)의 형성 위치가 변형된 예를 보인 단면도이다.17 is a cross-sectional view showing an example in which the forming position of the inner fin 971a1f is deformed in the heating unit 971 shown in Fig.

앞선 실시예에서는, 내부핀(871a1f)이 메인 케이스(871a1)의 일단에서 타단에 이르기까지 메인 케이스(871a1)의 길이방향을 따라 연장 형성된 구조를 보였다. 도 16에 도시된 바와 같이, 메인 케이스(871a1)의 양측면에 출구(871c", 반대측 출구 미도시)와 입구(971d", 반대측 입구 미도시)가 각각 메인 케이스(871a1)의 길이방향을 따라 소정 간격을 두고 이격된 위치에 형성된 구조에서, 내부핀(871a1f)은 입구(871d")와 출구(871c")가 형성된 높이까지 돌출 형성된다. 따라서, 도 16에 도시된 바와 같이, 내부핀(871a1f)은 메인 케이스(871a1)의 폭방향을 따라 소정의 이격 간격을 두고 출구(871c")와 입구(871d")의 일부를 가리도록 배치되게 된다.In the foregoing embodiment, the inner pins 871a1f extend from the one end of the main case 871a1 to the other end along the longitudinal direction of the main case 871a1. An outlet 871c "and an inlet 971d" on the opposite sides of the main case 871a1 are provided along the longitudinal direction of the main case 871a1, respectively, on both sides of the main case 871a1, In the structure formed at a spaced apart position, the inner pins 871a1f are protruded to the height where the inlet 871d "and the outlet 871c" are formed. 16, the inner fins 871a1f are arranged so as to cover a part of the outlet 871c " and the inlet 871d "at a predetermined spacing along the width direction of the main case 871a1 do.

상기 구조는 내부핀(871a1f)이 메인 케이스(871a1)의 내부 높이 대비 1/2 이하의 길이로 돌출 형성되고, 메인 케이스(871a1)의 내측벽과 상기 내측벽에 인접한 내부핀(871a1f)까지의 간격이 내부핀(871a1f)의 폭 대비 1배 이상으로 형성되는 경우라면, 작동액(F)이 출구(871c")를 통하여 방출되고 입구(871d")를 통하여 회수되는 것에 큰 영향을 미치지는 않지만 어느 정도의 영향을 미치게 되는 것은 사실이다.The inner pin 871a1f protrudes from the inner case 871a1f with a length equal to or less than 1/2 of the inner height of the main case 871a1 and extends from the inner wall of the main case 871a1 to the inner pin 871a1f adjacent to the inner wall If the interval is formed to be at least one times the width of the inner fins 871a1f, although the working fluid F does not have a great influence on being discharged through the outlet 871c "and being recovered through the inlet 871d & It is true that it has some influence.

이를 개선하기 위하여 본 변형예에서는, 메인 케이스(971a1)의 내부 저면에서 돌출 형성되는 내부핀(971a1f)이 입구(971d", 반대측 입구 미도시)와 출구(971c", 반대측 출구 미도시) 사이에 형성된 것을 보이고 있다. 상기 구조에 따르면, 메인 케이스(971a1)의 폭방향을 따라서는 내부핀(971a1f)이 메인 케이스(971a1)의 출구(971c")와 입구(971d")를 가리지 않게 된다. 따라서, 작동액(F)이 입구(971d")를 통하여 원활하게 회수될 수 있고, 회수된 작동액(F)이 전방으로 유동하면서 히터(971b)에 의해 재가열될 때 내부핀(971a1f)에 의해 보다 많은 열을 전달받게 되며, 재가열된 작동액(F)이 출구(971c")를 통하여 원활하게 방출될 수 있다.In order to solve this problem, in this modified example, the inner pin 971a1f protruding from the inner bottom surface of the main case 971a1 is provided between the inlet 971d "(the opposite side inlet not shown) and the outlet 971c" . According to the above structure, the inner pin 971a1f does not cover the outlet 971c " and the inlet 971d " of the main case 971a1 along the width direction of the main case 971a1. Therefore, the working fluid F can be smoothly recovered through the inlet 971d ", and the recovered working fluid F can be recovered by the inner fin 971a1f when it is reheated by the heater 971b while flowing forward More heat is received, and the reheated working fluid F can be smoothly discharged through the outlet 971c ".

도 18은 도 3에 도시된 히팅 유닛(171)의 또 다른 일 예(1071)를 보인 단면도이다.FIG. 18 is a sectional view showing another example 1071 of the heating unit 171 shown in FIG.

도 18에 도시된 구조는 앞서 설명한 외부핀 및 내부핀과 관련된 구조의 조합으로 이해될 수 있다. 즉, 메인 케이스(1071a1)의 외부면에는 메인 케이스(1071a1)의 방열을 위한 외부핀(1071a1c)이 돌출 형성되고, 메인 케이스(1071a1)의 내부에는 히터(1071b)의 열전달 성능 향상을 위한 내부핀(1071a1f)이 돌출 형성된다.The structure shown in Fig. 18 can be understood as a combination of the structures related to the external pins and the internal fins described above. An outer pin 1071a1c for radiating heat of the main case 1071a1 protrudes from the outer surface of the main case 1071a1 and an inner pin 1071a1c is formed inside the main case 1071a1 for the purpose of improving the heat transfer performance of the heater 1071b. (1071a1f) are protruded.

본 예의 구조에는 앞선 실시예들에 대한 구조가 모두 적용될 수 있다. 이에 대한 중복되는 설명은 생략하기로 한다.The structure of this embodiment can be applied to all of the structures of the foregoing embodiments. A duplicate description thereof will be omitted.

한편, 히터(171b)가 구동되면, 증발기(130)에 착상된 성에가 제거되기 시작한다. 구체적으로, 작동액(F)은 히터(171b)에 의해 가열되어 히트 파이프(172)를 흐르게 되고, 이 과정에서 증발기(130)의 냉각관(131)에 방열이 이루어져, 냉각관(131)에 착상된 성에 내지 얼음이 녹게 된다. 성에 내지 얼음은 제상으로 인해 물, 즉 제상수로 변하여 증발기(130)의 하부로 떨어지게 되는데, 경우에 따라서는 증발기(130)의 하부에 구비되는 히팅 유닛(171)에도 제상수가 떨어질 수 있다.On the other hand, when the heater 171b is driven, the impurities implanted in the evaporator 130 begin to be removed. Specifically, the working fluid F is heated by the heater 171b and flows through the heat pipe 172. In this process, heat is radiated to the cooling pipe 131 of the evaporator 130, The frozen castle or ice is melted. In the case of ice or ice, the water is turned into water, that is, dehydrated water, and falls down to the lower portion of the evaporator 130. In some cases, the dehydrated water may drop in the heating unit 171 provided below the evaporator 130.

히터(171b)의 열선(171b2)과 터미널(171b3), 그리고 상기 터미널(171b3)과 연결되는 리드 와이어(173)는 도체를 포함하여 구성되기 때문에, 제상수와 접촉할 경우 쇼트가 발생할 가능성이 있다. 앞서 설명한 바와 같이, 히터(171b)가 히터 케이스(171a)의 저면에 부착된 구조, 실링부재(171e)가 히터(171b)를 덮도록 배치되는 구조, 그리고 히터 케이스(171a)의 양측에 제1 및 제2연장핀(171a1a, 171a1b)이 돌출 형성되어 내부에 히터(171b)를 수용하는 구조에 의하면, 히터(171b)와 제상수 간의 접촉이 일정 수준 방지될 수 있다.Since the heat wire 171b2 and the terminal 171b3 of the heater 171b and the lead wire 173 connected to the terminal 171b3 are constructed to include a conductor, there is a possibility that a short circuit may occur when they contact the defrost water . The structure in which the heater 171b is attached to the bottom surface of the heater case 171a and the structure in which the sealing member 171e covers the heater 171b and the structure in which the heater 171b is disposed on both sides of the heater case 171a, And the second extension pins 171a1a and 171a1b are protruded to receive the heater 171b therein, contact between the heater 171b and the defrost water can be prevented to a certain extent.

그러나, 리드 와이어(173)는 히터 케이스(171a)의 외부로 노출되어, 연장된 형태를 가진다. 이러한 구성적 특성상, 리드 와이어(173)에 흘러내린 제상수가 제상 이후 냉각되어 성에 내지는 얼음으로 발전하는 경우, 그에 따른 무게 증가로 터미널(171b3)과의 접촉에 영향을 주거나, 일부 제상수가 리드 와이어(173)를 타고 히터(171b) 내지 전원 측으로 흘러들어가 쇼트를 일으킬 수 있다.However, the lead wire 173 is exposed to the outside of the heater case 171a and has an elongated shape. Due to such a constitutional characteristic, when the defrost water flowing down to the lead wire 173 is cooled after the defrosting and is generated into the frost or ice, the increase in weight accordingly affects the contact with the terminal 171b3, It may flow through the wire 173 and flow from the heater 171b to the power source side to cause a short circuit.

이하에서는, 도 19 및 도 20을 참조하여, 상기 문제점을 방지하기 위한 히팅 유닛(171)의 위치에 따른 리드 와이어(173)의 연결 구조에 대하여 설명한다.Hereinafter, the connection structure of the lead wire 173 according to the position of the heating unit 171 for preventing the above-described problems will be described with reference to FIGS. 19 and 20. FIG.

히팅 유닛(171)은 증발기(130)의 일측 저부에 좌우방향을 따라 연장된 형태로 배치된다. 상기 히팅 유닛(171)은 냉각관(131)의 최저열과 동일한 높이 또는 냉각관(131)의 최저열보다 낮은 위치에 증발기(130)의 좌우방향을 따라 연장된 형태로 배치될 수 있다.The heating unit 171 is disposed on one side of the evaporator 130 in a manner extending in the left-right direction. The heating unit 171 may be disposed at the same height as the lowest row of the cooling tube 131 or at a position lower than the lowest row of the cooling tube 131 along the left and right direction of the evaporator 130.

상기 배치 상태에서, 히터(171b)와 전원 간을 연결하는 리드 와이어(173)는 증발기(130)의 외측에 인접한 히터(171b)의 일단부로부터 외측으로 연장되도록 구성된다. 즉, 리드 와이어(173)는 증발기(130)의 내측이 아닌 외측을 향해 연장되어 전원과 연결되도록 구성된다. 상기 구조에 의하면, 증발기(130)의 하측으로 리드 와이어(173)가 배치되는 영역이 최소화될 수 있어서, 제상수가 리드 와이어(173)로 떨어지는 것이 최소화될 수 있다.The lead wire 173 connecting between the heater 171b and the power source is configured to extend outwardly from one end of the heater 171b adjacent to the outside of the evaporator 130. [ That is, the lead wire 173 extends outside the inside of the evaporator 130 and is connected to the power source. According to the above structure, the area where the lead wires 173 are disposed below the evaporator 130 can be minimized, so that the dropping of the defrost water to the lead wires 173 can be minimized.

이에 대한 구체적인 예들을 살펴보면, 먼저 도 19에서는 히팅 유닛(171)이 증발기(130)의 좌측 저부에 배치된 것을 예시하고 있다. 리드 와이어(173)는 증발기(130)의 좌측에 인접한 히터(171b)의 좌측 단부로부터 외측으로 연장되도록 구성된다. 이를 위하여, 리드 와이어(173)와 연결되는 터미널(171b3)은 히터(171b)의 좌측 단부에 위치하는 것이 바람직하다.19, the heating unit 171 is disposed at the left bottom portion of the evaporator 130. As shown in FIG. The lead wire 173 is configured to extend outward from the left end of the heater 171b adjacent to the left side of the evaporator 130. [ To this end, the terminal 171b3 connected to the lead wire 173 is preferably located at the left end of the heater 171b.

도 19와는 반대의 경우로서, 도 20에서는 히팅 유닛(171)이 증발기(130)의 우측 저부에 배치된 것을 예시하고 있다. 리드 와이어(173)는 증발기(130)의 우측에 인접한 히터(171b)의 우측 단부로부터 외측으로 연장되도록 구성된다. 이를 위하여, 리드 와이어(173)와 연결되는 터미널(171b3)은 히터 케이스(171a)의 입구에 인접한, 입구와 출구 사이에 위치하는 것이 바람직하다.19, the heating unit 171 is disposed at the lower right portion of the evaporator 130 in FIG. The lead wire 173 is configured to extend outward from the right end of the heater 171b adjacent to the right side of the evaporator 130. [ To this end, the terminal 171b3 connected to the lead wire 173 is preferably located between the inlet and the outlet, adjacent to the inlet of the heater case 171a.

여기서, 히터 케이스(171a)의 우측 단부에 위치하는 입구를 통하여 회수되는 작동액(F)이 재가열되어 역류되지 않도록, 히터(171b)의 우측 단부는 히터 케이스(171a)의 입구와 출구 사이에 배치되는 것이 바람직하다. 상기 배치에 따르면, 히터 케이스(171a)의 입구에는 열선(171b2)이 미배치되어, 수동발열부(PHP) 내에 입구가 위치하게 된다.The right end of the heater 171b is disposed between the inlet and the outlet of the heater case 171a so that the working fluid F recovered through the inlet located at the right end of the heater case 171a is reheated and not flowed backward . According to the above arrangement, the heat ray 171b2 is not disposed at the entrance of the heater case 171a, and the entrance is located in the passive heat generating portion PHP.

도시된 바와 같이, 히터 케이스(171a)의 입구에 연결되는 리턴부(172d', 172d")가 벤딩된 형태로 형성되는 경우, 리턴되는 작동액(F)은 히터 케이스(171a)로 유입되기 직전에 적어도 한 번 방향이 전환되게 된다. 여기서, 벤딩된 부분에는 유동 저항이 크게 형성되기 때문에, 리턴되는 작동액(F)의 역류가 방지될 수 있다.As shown in the figure, when the return portions 172d 'and 172d' connected to the inlet of the heater case 171a are formed in a bent shape, the returned working fluid F flows into the heater case 171a immediately before being introduced into the heater case 171a The return flow of the returning working fluid F can be prevented because the flow resistance is formed to a large extent in the bent portion.

참고로, 상기 예들에서는 히터 케이스(171a)가 증발기에 수평하게 배치된 것을 예시하고 있으나, 반드시 이에 한정되는 것은 아니다. 히터 케이스(171a)는 입구측 단부가 출구측 단부에 대하여 -90° 이상 2° 이하의 각도 범위 내에 있도록 배치될 수 있다. 이에 대해서는 뒤에서 자세히 다루기로 한다.For reference, in the above examples, the heater case 171a is horizontally disposed in the evaporator. However, the present invention is not limited thereto. The heater case 171a may be disposed such that the inlet side end portion is within an angle range of -90 占 to 2 占 with respect to the outlet side end portion. This will be discussed in detail later.

도 21a 내지 도 21c는 냉동 조건에서 도 4에 도시된 리턴부(172d', 172d")의 내경 별 히터(171b)의 온도 변화를 보인 그래프이고, 도 22는 도 21c 조건의 리턴부(172d', 172d")에서의 유체의 흐름을 개념적으로 나타낸 도면이다.21A to 21C are graphs showing the temperature change of the heater 171b according to the inner diameters of the return portions 172d 'and 172d' shown in FIG. 4 under the freezing condition, FIG. 22 is a graph showing the temperature change of the return portion 172d ' , 172d ").

도 21a는 리턴부(172d', 172d")의 내경이 4.75mm인 경우이고, 도 21b는 리턴부(172d', 172d")의 내경이 6.35mm인 경우이며, 도 21c는 리턴부(172d', 172d")의 내경이 7.92mm인 경우이다. 본 실험에서는 적정 작동액(F)의 양을 55g, 60g, 65g으로 각각 설정하여, 리턴부(172d', 172d")의 내경 별 히터(171b)의 온도 변화를 측정하였다.21B shows a case where the inner diameters of the return portions 172d 'and 172d "are 6.35 mm, and FIG. 21C shows the case where the return portions 172d' and 172d ' The amount of the working liquid F is set to 55 g, 60 g and 65 g, respectively, and the inner diameter of the return portions 172d 'and 172d " ) Were measured.

도 21a에 도시된 바와 같이, 리턴부(172d', 172d")의 내경이 4.75mm인 경우에는 작동액(F)의 양이 55g일 때 히터(171b)의 과열이 발생했다. 이는 리턴부(172d', 172d")의 직경이 작음으로 인해 히터 케이스(171a)로 리턴되는 작동액(F)의 양이 적정량 대비 감소되어, 작동액(F)이 가열되는 히터(171b)를 충분히 접하지 못하게 된 것이 원인이라고 판단된다. 이처럼 리턴부(172d', 172d")의 직경이 5mm 이하인 경우, 히터(171b)가 과열되는 문제가 야기될 수 있다.21A, when the inner diameter of the return portions 172d 'and 172d "is 4.75 mm, the heater 171b is overheated when the amount of the working fluid F is 55 g. The amount of the working fluid F returned to the heater case 171a due to the small diameter of the working fluid F is reduced compared to the proper amount so that the working fluid F can not sufficiently touch the heater 171b . If the diameter of the return portions 172d 'and 172d' is 5 mm or less, the heater 171b may overheat.

도 21c에 도시된 바와 같이, 리턴부(172d', 172d")의 내경이 7.92mm인 경우에는 작동액(F)의 양이 55g, 65g일 때 히터(171b)의 과열이 발생했다. 이처럼, 리턴부(172d', 172d")의 직경이 7mm 이상인 경우에는, 도 22에 도시된 바와 같이, 회수되는 작동액(Fa)이 리턴부(172d', 172d")에 모두 충진된 상태로 히터 케이스(171a) 내부로 회수되지 못하고, 리턴부(172d', 172d") 내의 상부에 공간이 생긴 상태로 흘러 히터 케이스(171a) 내부로 유입되는 현상이 발생하였다.21c, when the inner diameter of the return portions 172d ', 172d "is 7.92 mm, the heater 171b is overheated when the amount of the working fluid F is 55 g and 65 g. As described above, When the diameter of the return portions 172d 'and 172d "is 7 mm or more, the return fluid 172b is filled in the return portions 172d' and 172d" as shown in FIG. 22, The air is not recovered to the inside of the heater case 171a and flows into the heater case 171a in a state where the space is formed in the upper part of the return parts 172d 'and 172d'.

이때, 히터 케이스(171a) 내부로 유입된 작동액(Fa)은 히터(171b)에 의해 재가열되어 히팅 유닛(171) 내부에서 강하게 유동하게 되는데, 가열된 일부 작동액(Fb)이 리턴부(172d', 172d") 내의 상부 공간으로 배출되어, 결과적으로 리턴부(172d', 172d")로 일부 작동액(Fb)이 역류되는 현상이 일어나게 된다.At this time, the working fluid Fa flowing into the heater case 171a is reheated by the heater 171b to flow strongly in the heating unit 171. When some heated working fluid Fb is returned to the return unit 172d 172d ", resulting in a phenomenon that some of the working fluid Fb flows back to the return portions 172d 'and 172d ".

이처럼, 리턴부(172d', 172d")의 내경이 달라짐에 따라 위와 같은 현상이 발생하게 된다. 따라서, 히터(171b)의 과열 및 작동액(F)의 역류를 방지하기 위해서는, 입구(171d', 171d")를 수동발열부(PHP) 내에 형성하는 것과 더불어 리턴부(172d', 172d")가 적정 내경을 가지도록 해야 한다.In order to prevent the overheat of the heater 171b and the back flow of the working fluid F, the inlet 171d 'and the inlet 171d' , 171d ") in the passive heat generating portion PHP should be formed so that the return portions 172d 'and 172d" have proper diameters.

실험 결과, 도 21b에 도시된 바와 같이, 리턴부(172d', 172d")의 내경이 6.35mm인 경우에는 히팅 유닛(171)의 과열이 발생하지 않음을 확인하였다. 이는 작동액(F)이 원활하게 리턴 및 재가열되어 순환될 수 있음을 의미한다. 참고로, 상기 실험에 이용된 작동액(F)의 양은 55g, 60g이며, 이는 히트 파이프(172)와 히터 케이스(171a)의 총 체적의 30-35%에 대응되는 충진량이다.21B, it was confirmed that the heating unit 171 did not overheat when the inner diameters of the return units 172d 'and 172d "were 6.35 mm. The amount of the working fluid F used in the experiment is 55 g and 60 g, which means that the total volume of the heat pipe 172 and the heater case 171a 30-35%.

살펴본 바와 같이, 리턴부(172d', 172d")의 내경은 5mm보다 크고 7mm보다 작게 형성될 수 있다. 바람직하게는, 상기 범위 내의 6.35mm 내경을 가지는 상용관이 리턴부(172d', 172d")로 이용될 수 있다.As can be seen, the inner diameter of the return portions 172d 'and 172d' 'may be larger than 5mm and smaller than 7mm. Preferably, the return pipe 172d' and 172d ' ). ≪ / RTI >

참고로, 위의 실험에는 폭방향 단면이 8mm (높이) x 13mm (너비) 사양(spec)을 가지는 히터 케이스(171a)가 사용되었다. 히터 케이스(171a)의 사양(spec)은 실험에 이용된 사양과 다소 달라질 수 있으나, 리턴부(172d', 172d")로는 위의 내경 조건을 가지는 리턴부(172d', 172d")가 동일하게 사용될 수 있다.For reference, a heater case 171a having a width of 8 mm (height) x 13 mm (width) in the width direction was used in the above experiment. The specs of the heater case 171a may be somewhat different from the specifications used in the experiment but the return portions 172d 'and 172d "having the above inner diameter conditions are the same as the return portions 172d' and 172d" Can be used.

한편, 앞서 설명한 바와 같이, 히터 케이스(171a) 내부에서 히터(171b)에 의해 가열되어 증발된 작동액(F)은 히트 파이프(172)의 유입부(172c', 172c")로 유입되고, 히트 파이프(172)를 흐르면서 냉각된 작동액(F)은 히트 파이프(172)의 리턴부(172d', 172d")를 통하여 히터 케이스(171a) 내부로 회수된다. 이러한 일련의 유동 과정에서, 히트 파이프(172)에 대한 히터 케이스(171a)의 설치 각도는 작동액(F)의 순환 여부에 중요한 역할을 한다. 이하, 이에 대하여 구체적으로 설명한다.As described above, the working fluid F evaporated by the heater 171b in the heater case 171a flows into the inlet portions 172c 'and 172c "of the heat pipe 172, The cooled working fluid F flowing through the pipe 172 is recovered into the heater case 171a through the return portions 172d 'and 172d "of the heat pipe 172. [ In this series of flow processes, the installation angle of the heater case 171a with respect to the heat pipe 172 plays an important role in whether or not the working fluid F circulates. Hereinafter, this will be described in detail.

도 23은 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 경사진 각도에 따라 히터 케이스(171a) 및 히트 파이프(172)의 각 열의 온도 변화를 보인 그래프들이다.23 shows the relationship between the angle of the heater case 171a and the angle of the heat pipe 172 with respect to the angle of the end of the heater case 171a on the side of the inlet 171d ' These graphs show the temperature change of the heat.

참고로, TH는 히터 케이스(171a)의 온도이고, TL은 히트 파이프(172)의 방열부(172b)의 최저열의 온도를 나타낸다. 작동액(F)은 히터(171b)에 의해 가열되어 히트 파이프(172)를 순환한 후 히터 케이스(171a)로 되돌아오게 되므로, 히터 케이스(171a)의 온도(TH)가 가장 높고, 방열부(172b)의 최저열의 온도(TL)가 가장 낮다. 따라서, 히트 파이프(172)의 나머지 열들의 온도는 TH와 TL 사이에 있는 것으로 이해될 수 있다. 도 23에서는 설명의 편의상 TH와 TL에 해당하는 온도 곡선만을 지시선으로 나타내었다.Note that TH is the temperature of the heater case 171a and TL is the temperature of the lowest row of the heat dissipating portion 172b of the heat pipe 172. [ The working fluid F is heated by the heater 171b and circulated through the heat pipe 172 and returned to the heater case 171a so that the temperature TH of the heater case 171a is the highest, 172b are the lowest temperature TL of the lowest row. Thus, it can be understood that the temperature of the remaining heat of the heat pipe 172 is between TH and TL. In FIG. 23, only the temperature curves corresponding to TH and TL are indicated by the leader lines for convenience of explanation.

도면을 참조하면, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 경사진 각도에 따라 작동액(F)의 원활한 순환 여부가 달라질 수 있다. 히터 케이스(171a)가 일방향으로 연장되게 형성되고, 양측에 입구(171d', 171d")와 출구(171c', 171c")가 각각 형성된 구조의 경우, 이는 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 경사진 각도와도 관계된다.Referring to the drawings, whether or not the operating fluid F is circulated smoothly depends on the inclination angle of the end of the heater case 171a on the side of the inlet 171d ', 171d "side end with respect to the outlet 171c', 171c" . In the case of the structure in which the heater case 171a is formed to extend in one direction and the inlets 171d 'and 171d' and the outlets 171c 'and 171c' , 171d ") are also related to the inclined angle with respect to the end portions on the side of the outlets 171c 'and 171c ".

0°는 히터 케이스(171a)가 증발기(130)에 수평하게 배치된 것을 의미하고, 양(+)의 각도는 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 상향으로 배치된 것을 의미하며, 음(-)의 각도는 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 하향으로 배치된 것을 의미한다.0 ° means that the heater case 171a is horizontally disposed in the evaporator 130 and the positive angle means that the end of the heater case 171a on the side of the inlet 171d 'and 171d " 171d "side of the heater case 171a is disposed at an end side of the outlet 171c ', 171c" side of the heater case 171a, As shown in Fig.

도 23의 (a) 내지 (c)에 도시된 바와 같이, 히터 케이스(171a)가 증발기(130)에 수평하게 배치되거나, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 하향으로 배치된 경우[출구(171c', 171c")측이 입구(171d', 171d")측과 동일 높이에 형성되거나, 출구(171c', 171c")측이 입구(171d', 171d")측보다 높은 위치에 형성된 경우], 히터 케이스(171a) 및 히트 파이프(172)의 각 열의 온도는 시간 경과에 따라 유사하게 증가하며, 일정 시간 경과 후에는 안정된 작동 온도에 도달한다. 이는 작동액(F)의 순환이 원활하게 이루어진다는 것을 의미한다.23 (a) to 23 (c), the heater case 171a is horizontally disposed in the evaporator 130, or the end of the heater case 171a on the side of the inlets 171d 'and 171d " The outlets 171c 'and 171c' 'are formed at the same height as the sides of the inlets 171d' and 171d '' or the outlets 171c 'and 171c' The temperature of each row of the heater case 171a and the heat pipe 172 similarly increases with the lapse of time and after a lapse of a predetermined time A stable operating temperature is reached. This means that circulation of the working fluid F is smoothly performed.

실험 결과, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 0°에서 -90° 범위 내에 배치되는 경우, 시간 경과에 따른 온도 곡선은 작동액(F)이 히트 파이프(172)를 순환하는 데에 문제가 없다는 것을 알 수 있었다.As a result of the experiment, when the end of the heater case 171a on the side of the inlet 171d ', 171d "side is disposed within the range of 0 ° to -90 ° with respect to the end of the outlet 171c', 171c" It can be seen that there is no problem in that the working fluid F circulates through the heat pipe 172.

반면에, 도 23의 (d) 내지 (f)를 참조하면, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 상향으로 배치된 경우[출구(171c', 171c")측이 입구(171d', 171d")측보다 낮은 위치에 형성된 경우], 히터 케이스(171a) 및 히트 파이프(172)의 각 열의 온도는 각도 별로 큰 차이를 보인다.On the other hand, referring to FIGS. 23D to 23F, the ends of the heater case 171a on the side of the inlets 171d 'and 171d "side are disposed upward with respect to the ends of the outlets 171c' and 171c" , The temperature of each row of the heater case 171a and the heat pipe 172 is different from each other by a certain angle in the case of the case where the outlets 171c 'and 171c' are formed at positions lower than the sides of the inlets 171d 'and 171d' see.

구체적으로, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 2° 상향으로 배치된 상태[입구(171d', 171d")측이 출구(171c', 171c")측에 대하여 2° 상향으로 배치된 상태]에서는 앞선 그래프들과 큰 차이를 보이지 않았다.Concretely, the side of the inlet 171d ', 171d "side of the heater case 171a is positioned 2 ° upward with respect to the end of the outlet 171c', 171c" In the state of being disposed 2 占 upward with respect to the outlet 171c ', 171c "side), there was no significant difference from the previous graphs.

그러나, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 3° 상향으로 배치된 상태[입구(171d', 171d")측이 출구(171c', 171c")측에 대하여 3° 상향으로 배치된 상태]에서는, 초기에 히터 케이스(171a)의 온도가 갑자기 급격하게 상승 및 하강되는 것을 알 수 있었다. 또한, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 4° 상향으로 배치된 상태[입구(171d', 171d")측이 출구(171c', 171c")측에 대하여 4° 상향으로 배치된 상태]에서는, 히터 케이스(171a)의 온도가 지속적으로 상승하고, 히트 파이프(172)는 초기 온도에서 크게 벗어나지 않는 것을 확인할 수 있었다.However, the side of the inlet 171d ', 171d " side of the heater case 171a is positioned 3 占 upward with respect to the end of the outlet 171c' and 171c " (In a state in which the heater case 171a is disposed at an angle of 3 占 with respect to the heaters 171c 'and 171c' '), the temperature of the heater case 171a suddenly rises and falls suddenly. The side of the inlet 171d ', 171d " side of the heater case 171a is disposed at an angle of 4 占 with respect to the end of the outlet 171c' and 171c " , The temperature of the heater case 171a is continuously increased and the heat pipe 172 is not largely deviated from the initial temperature in the state in which the heat pipe 171c 'and 171c "

이는 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 3° 이상 상향으로 배치[입구(171d', 171d")측이 출구(171c', 171c")측에 대하여 3° 이상 상향으로 배치]되면, 작동액(F)이 히터(171b)에 의해 가열되더라도, 작동액(F)이 상대적으로 아래에 위치하는 유입부(172c', 172c")를 향하여 내려가기가 어렵다는 것을 의미한다.This is because the end of the heater case 171a on the side of the inlet 171d ', 171d "side is disposed at an angle of 3 degrees or more with respect to the end of the outlet 171c', 171c" The operating fluid F is heated by the heater 171b so that the working fluid F is prevented from flowing into the inflow portions 172c 'and 171c' Quot; 172c ").

특히, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 4° 이상 상향으로 배치[입구(171d', 171d")측이 출구(171c', 171c")측에 대하여 4° 이상 상향으로 배치]되면, 작동액(F)이 유입부(172c', 172c")를 향하여 내려가지 않고 오히려 리턴부(172d', 172d")를 통해 역류하여 순환이 되지 않아 히터 케이스(171a)의 온도가 지속적으로 상승하여 과열되게 된다.Particularly, the end of the heater case 171a on the side of the inlet 171d ', 171d "side is disposed at an angle of 4 degrees or more with respect to the end of the outlet 171c', 171c" The actuating liquid F does not descend toward the inflow portions 172c 'and 172c' but is returned to the return portions 172d 'and 172d' 'via the return portions 172d' and 172d ' And the temperature of the heater case 171a is continuously increased to overheat.

이러한 실험결과를 고려하면, 히터 케이스(171a)는 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 -90° 이상 2° 이하의 각도 범위를 가지도록 배치되는 것이 바람직하다.Considering these experimental results, the heater case 171a is arranged so that the end portion of the heater case 171a on the side of the inlet 171d ', 171d "side has an angular range of -90 ° or more and 2 ° or less with respect to the end portion of the outlet 171c', 171c" .

참고로, 도 23의 (a) 내지 (c)를 상호 비교하면, 히터 케이스(171a)의 입구(171d', 171d")측 단부가 출구(171c', 171c")측 단부에 대하여 하향 경사지게 배치될수록, 히트 파이프(172)의 방열부(172b)의 최저열의 온도가 보다 빨리 상승하는 것을 확인할 수 있다. 이는 히터(171b)에 의해 가열된 작동액(F)이 상승력을 가지기 때문에, 히터 케이스(171a)의 출구(171c', 171c")측이 입구(171d', 171d")측에 대하여 상향으로 배치될수록 작동액(F)이 유동하기 용이하기 때문이다.23A to 23C, the ends of the heater case 171a on the side of the inlets 171d 'and 171d "are inclined downward with respect to the ends of the outlets 171c' and 171c" The temperature of the lowest heat of the heat radiating portion 172b of the heat pipe 172 rises more rapidly. This is because the operating fluid F heated by the heater 171b has a lifting force so that the outlet 171c ', 171c "side of the heater case 171a is disposed upward with respect to the inlet 171d', 171d" As the working fluid F flows more easily.

이하에서는, 가열된 작동액(F)의 상승 특성을 고려하여, 작동액(F)이 유동하기 용이한 히팅 유닛(171)과 히트 파이프(172) 간의 연결 구조에 대하여 설명한다.The connection structure between the heating unit 171 and the heat pipe 172, which facilitates the flow of the working fluid F, in consideration of the rising characteristic of the heated working fluid F will be described below.

도 24 내지 도 26은 도 19 내지 도 20에 적용되는 히팅 유닛(171)에서, 히팅 유닛(171)과 히트 파이프(172) 간의 연결 구조의 변형예를 보인 종단면도들이다. 참고로, 본 도면들에서는 설명의 편의를 위하여 히팅 유닛(1171, 1271, 1371)을 히터 케이스(1171a, 1271a, 1371a)와 히터(1171b, 1271b, 1371b)만으로 간략히 도시하였다. 히팅 유닛(1171, 1271, 1371)에는 앞서 설명한 상세 구조[제1 및 제2연장핀, 실링부재, 외부핀, 내부핀 등이 형성된 구조]가 적용될 수 있음은 물론이다.Figs. 24 to 26 are longitudinal sectional views showing a modification of the connection structure between the heating unit 171 and the heat pipe 172 in the heating unit 171 applied to Figs. 19 to 20. Fig. For reference, in the drawings, the heating units 1171, 1271, and 1371 are simply shown as the heater cases 1171a, 1271a, and 1371a and the heaters 1171b, 1271b, and 1371b for the convenience of explanation. It is needless to say that the detailed structure (the structure in which the first and second extension pins, the sealing member, the outer pin, the inner fin, and the like are formed) may be applied to the heating units 1171, 1271 and 1371.

이하에서는, 히터 케이스(1171a, 1271a, 1371a)가 증발기에 수평으로 배치된 것을 기초로 하여 설명하지만, 본 발명이 이에 한정되는 것은 아니다. 앞서 설명한 바와 같이, 히터 케이스(1171a, 1271a, 1371a)는 입구[1171d", 1271d", 1371d" (반대측 입구 미도시)]측 단부가 출구[1171c", 1271c", 1371c" (반대측 출구 미도시)]측 단부에 대하여 -90° 이상 2° 이하의 각도 범위를 가지도록 배치될 수 있다.The following description will be made on the basis that the heater cases 1171a, 1271a and 1371a are horizontally arranged in the evaporator, but the present invention is not limited thereto. As described above, the heater cases 1171a, 1271a, and 1371a are connected to the outlet 1171c ", 1271c ", and 1371c "(the opposite ends of which are not shown) ) With respect to the side end portion of each of the first and second protrusions.

아울러, 이하에서는, 입구(1171d", 1271d", 1371d") 및 출구(1171c", 1271c", 1371c")가 히터 케이스(1171a, 1271a, 1371a)의 양측면에 길이방향을 따라 소정 간격을 두고 이격된 위치에 형성된 것(앞선 도 4에 도시된 구조)을 기초로 설명하지만, 본 발명이 이에 한정되는 것은 아니다. 히팅 유닛(1171, 1271, 1371)의 입구(1171d", 1271d", 1371d") 및 출구(1171c", 1271c", 1371c") 중 적어도 하나는 히터 케이스(1171a, 1271a, 1371a)의 단부(앞선 도 7 내지 도 9에 도시된 구조)에 형성될 수도 있다.In the following description, the outlets 1171d ", 1271d", 1371d "and the outlets 1171c", 1271c ", 1371c" are spaced apart from each other at both sides of the heater case 1171a, 1271a, (The structure shown in FIG. 4), but the present invention is not limited thereto. At least one of the inlets 1171d ", 1271d", 1371d "and the outlets 1171c", 1271c ", 1371c" of the heating units 1171, 1271, 1371 are connected to the ends of the heater cases 1171a, The structure shown in Figs. 7 to 9).

앞서 설명한 바와 같이, 작동액(F)은 입구(1171d", 1271d", 1371d")를 통하여 회수된 후 히터(1171b, 1271b, 1371b)에 의해 재가열되어 출구(1171c", 1271c", 1371c")로 배출된다. 이러한 작동액(F)의 유동 방향 및 가열된 작동액(F)의 상승 특성을 고려하여, 히트 파이프의 리턴부[1172d", 1272d", 1372d" (반대측 미도시)]는 히터 케이스(1171a, 1271a, 1371a)와 평행하게 배치되거나 히터 케이스(1171a, 1271a, 1371a)의 하측으로 연장 형성(또는 하측으로 연장되다가 벤딩되어 수평으로 연장 형성)되며, 히트 파이프의 유입부[1172c", 1272c", 1372c" (반대측 미도시)]는 히터 케이스(1171a, 1271a, 1371a)와 평행하게 배치되거나 히터 케이스(1171a, 1271a, 1371a)로부터 상측으로 연장 형성된다.As described above, the working fluid F is recovered through the inlets 1171d ", 1271d ", 1371d ", and then reheated by the heaters 1171b, 1271b, . The return portions 1172d ", 1272d ", and 1372d "(opposite sides) of the heat pipe are disposed in the vicinity of the heaters 1171a and 1172b in consideration of the flow direction of the working fluid F and the rising characteristics of the heated working fluid F, 1272a, 1271a, 1371a or extend downward (or bend down and extend horizontally) to the lower sides of the heater cases 1171a, 1271a, 1371a, and the inflow portions 1172c " 1372c "(not shown on the opposite side) are arranged in parallel with the heater cases 1171a, 1271a, 1371a or extend upward from the heater cases 1171a, 1271a, 1371a.

여기서, 상측 및/또는 하측으로 연장 형성된다는 의미는 수직하게 연장 형성되는 것뿐만 아니라, 경사지게 연장 형성되는 것을 포함한다.Here, the term " extending upwardly and / or downwardly " means extending not only vertically but also extending obliquely.

아울러, 상기 경우의 조합에서, 리턴부(1172d", 1272d", 1372d") 및 유입부(1172c", 1272c", 1372c") 모두가 히터 케이스(1171a, 1271a, 1371a)의 길이방향을 따라 연장 형성될 수도 있으나, 작동액(F)의 상승력을 고려한 유동 설계 관점에서, 리턴부(1172d", 1272d", 1372d") 및 유입부(1172c", 1272c", 1372c") 중 어느 하나만 히터 케이스(171a)의 길이방향을 따라 연장 형성되는 것이 바람직하다.In addition, in the above combination, both the return portions 1172d ", 1272d ", and 1372d ", and the inflow portions 1172c ", 1272c ", and 1372c "are extended along the longitudinal direction of the heater cases 1171a, Only one of the return portions 1172d ", 1272d ", and 1372d ", and the inflow portions 1172c ", 1272c ", and 1372c " 171a extending in the longitudinal direction.

일 예로, 도 24에서는, 히트 파이프의 리턴부(1172d")가 히터 케이스(1171a)의 길이방향을 따라 연장 형성되고, 히트 파이프의 유입부(1172c")가 히터 케이스(1171a)의 상측으로 연장 형성된 것을 보이고 있다.24, the return portion 1172d "of the heat pipe extends along the longitudinal direction of the heater case 1171a, and the inflow portion 1172c" of the heat pipe extends toward the upper side of the heater case 1171a .

다른 일 예로, 도 25에서는, 히트 파이프의 리턴부(1272d")가 히터 케이스(1271a)의 하측으로 연장 형성되고, 히트 파이프의 유입부(1272c', 1272c")가 히터 케이스(1271a)의 상측으로 연장 형성된 것을 보이고 있다.25, the return portion 1272d "of the heat pipe extends to the lower side of the heater case 1271a, and the inflow portions 1272c 'and 1272c" of the heat pipe extend upward from the heater case 1271a As shown in Fig.

위의 두 예는 히트 파이프의 유입부(1172c", 1272c")가 증발기의 상측으로 연장 형성된다는 점에서, 도 19에 도시된 바와 같이, 히팅 유닛(171)이 히트 파이프(172)의 수직연장부와 직접 연결되는 구조에 적용될 수 있다. 이 경우, 수직연장부의 하단부는 유입부(1172c", 1272c")를 구성한다.19, the heating unit 171 is provided with a vertical extension of the heat pipe 172, as shown in Fig. 19, in that the inlet portions 1172c ", 1272c "of the heat pipes are extended to the upper side of the evaporator. The present invention can be applied to a structure directly connected to a part. In this case, the lower end of the vertically extending portion constitutes an inlet portion 1172c ", 1272c ".

참고로, 도 19와 관련하여 설명한 바와 같이, 위의 두 예에서 히터(1171b, 1271b)의 터미널(미도시)은 히터 케이스(1171a, 1271a)의 출구(1171c", 1271c")측에 인접하게 형성되며, 리드 와이어(1173, 1273)는 상기 터미널에 연결되어 외측으로 연장되도록 구성된다.19, terminals (not shown) of the heaters 1171b and 1271b are adjacent to the outlets 1171c "and 1271c " of the heater cases 1171a and 1271a in the above two examples And lead wires 1173 and 1273 are connected to the terminal and configured to extend outward.

상기 구조에 의하면, 히터(1171b, 1271b)에 의해 가열된 작동액(F)이 상승하여 상측으로 연장 형성된 유입부(1172c", 1272c")로 배출되는 자연스러운 흐름이 형성되므로, 히터 케이스(1171a, 1271a)가 수평으로 배치된 상태에서도 히터(1171b, 1271b)에 의해 가열된 작동액(F)이 유입부(1172c", 1272c")를 통하여 원활하게 배출될 수 있다.According to this structure, since the working fluid F heated by the heaters 1171b and 1271b rises and flows into the inflow portions 1172c "and 1272c " extending upward, the heater case 1171a, The working fluid F heated by the heaters 1171b and 1271b can be smoothly discharged through the inflow portions 1172c "and 1272c"

특히, 도 25에 도시된 구조는, 히트 파이프(1272)의 리턴부(1272d")가 히터 케이스(1271a)의 하측으로 연장 형성되는 구조를 가짐에 따라, 가열되어 상승력을 가지는 작동액(F)이 리턴부(1272d")로 역류하기가 어려운 구조이다. 따라서, 가열된 작동액(F)이 리턴부(1272d")로의 역류 없이 유입부(1272c")를 통하여 배출되는 보다 자연스러운 유동이 형성될 수 있다.25 has a structure in which the return portion 1272d "of the heat pipe 1272 extends to the lower side of the heater case 1271a, It is difficult to flow back to the return portion 1272d ". Therefore, a more natural flow can be formed in which the heated working fluid F is discharged through the inlet portion 1272c "without backflow to the return portion 1272d ".

또 다른 일 예로, 도 26에서는, 히트 파이프(1372)의 리턴부(1372d")가 히터 케이스(1371a)의 하측으로 연장 형성되고, 히트 파이프(1372)의 유입부(1372c")가 히터 케이스(1371a)의 길이방향을 따라 연장 형성된 것을 보이고 있다.26, the return portion 1372d "of the heat pipe 1372 extends to the lower side of the heater case 1371a, and the inflow portion 1372c" of the heat pipe 1372 is connected to the heater case 1371a 1371a extending in the longitudinal direction.

상기 구조는 히트 파이프(1372)의 유입부(1372c")가 히터 케이스(1371a)의 길이방향을 따라 연장 형성된다는 점에서, 도 20에 도시된 바와 같이, 히팅 유닛(171)이 히트 파이프(172)의 수평연장부와 직접 연결되는 구조에 적용될 수 있다. 이 경우, 수평연장부의 단부는 유입부(1372c")를 구성한다. 참고로, 도 20과 관련하여 설명한 바와 같이, 위의 예에서 히터(1371b)의 터미널(미도시)은 히터 케이스(1371a)의 입구(1371d")와 출구(1371c") 사이에 형성되며, 리드 와이어(1373)는 상기 터미널에 연결되어 외측으로 연장되도록 구성된다.The structure is such that the heating unit 171 is connected to the heat pipe 1772a as shown in Fig. 20 in that the inflow portion 1372c "of the heat pipe 1372 extends along the longitudinal direction of the heater case 1371a. ). In this case, the end of the horizontal extension portion constitutes an inflow portion 1372c ". 20, a terminal (not shown) of the heater 1371b in the above example is formed between the inlet 1371d " and the outlet 1371c "of the heater case 1371a, A wire 1373 is configured to extend outwardly connected to the terminal.

이는 앞선 구조들에 비하여 가열된 작동액(F)이 상승하는 특성에 적합한 배출 구조는 아니지만, 히트 파이프(1372)의 리턴부(1372d")가 히터 케이스(1371a)의 하측으로 연장 형성되는 구조를 가짐에 따라, 가열되어 상승력을 가지는 작동액(F)이 리턴부(1372d")로 역류하기가 어려운 구조이다. 따라서, 가열된 작동액(F)이 유입부(1372c")를 통하여 배출되는 일련의 유동이 형성될 수 있다.This is a structure in which the return portion 1372d "of the heat pipe 1372 extends to the lower side of the heater case 1371a, though it is not a discharge structure suited to the characteristic in which the heated working fluid F rises as compared with the above structures The actuating liquid F having a heating force and being raised is difficult to flow back to the return portion 1372d ". Accordingly, a series of flows through which the heated working fluid F is discharged through the inlet portion 1372c "can be formed.

한편, 히터 케이스(1471a)는 입구(1471d", 반대측 입구 미도시)측 단부가 출구(1471c", 반대측 출구 미도시)측 단부에 대하여 -90°의 각도를 이루도록, 즉 증발기(1430)의 하측에서 상측을 향하는 수직방향으로 연장 형성될 수 있다. 이하에서는, 이와 관련된 구조에 대하여 설명한다.On the other hand, the heater case 1471a is formed so that the side end portion of the inlet 1471d ", the opposite side inlet not shown, forms an angle of -90 ° with respect to the side end portion of the outlet 1471c" In the vertical direction facing upward. Hereinafter, a structure related to this will be described.

도 27 및 도 28은 도 1의 냉장고(100)에 적용되는 제상 장치(170)의 제2실시예(1470)를 보인 정면도 및 사시도이다.27 and 28 are a front view and a perspective view showing a second embodiment 1470 of the defrost apparatus 170 applied to the refrigerator 100 of FIG.

도 27 및 도 28을 참조하면, 히팅 유닛(1471)은 제상 장치(1470)의 일측 외곽에 배치될 수 있다. 구체적으로, 히터 케이스(1471a)는 증발기(1430)의 일측에 구비되는 지지대(1433)의 외측에 위치할 수 있으며, 증발기(1430)의 하측에서 상측을 향하는 수직방향으로 연장 형성될 수 있다. 이때, 히터 케이스(1471a)의 적어도 일부는 제1냉각관(1431')과 상기 제2냉각관(1431") 사이에 배치될 수도 있다.27 and 28, the heating unit 1471 may be disposed at one side of the defrost apparatus 1470. [ The heater case 1471a may be located outside the support 1433 provided at one side of the evaporator 1430 and may extend vertically upward from the lower side of the evaporator 1430. [ At this time, at least a part of the heater case 1471a may be disposed between the first cooling pipe 1431 'and the second cooling pipe 1431 ".

히터 케이스(1471a)는 히트 파이프(1472)와 각각 연결되어, 작동액(F)이 순환할 수 있는 유로를 형성한다. 이를 위하여, 히터 케이스(1471a)의 상측과 하측에 각각 출구(1471c")와 입구(1471d")가 형성된다. 출구(1471c")는 히트 파이프(1472)의 연장부와 연결되며, 입구(1471d")는 히트 파이프(1472)의 방열부(1472b) 최저열과 연결된다.The heater case 1471a is connected to the heat pipe 1472, respectively, to form a flow path through which the working fluid F can circulate. To this end, an outlet 1471c "and an inlet 1471d" are formed on the upper and lower sides of the heater case 1471a, respectively. The outlet 1471c "is connected to the extension of the heat pipe 1472, and the inlet 1471d" is connected to the lowest row of the heat dissipation part 1472b of the heat pipe 1472. [

히터(1471b)는 일방향을 따라 연장 형성되는 판상 히터(1471b)로 구성되며, 히터 케이스(1471a)의 외부면에 부착되어 증발기(1430)의 상하방향으로 수직하게 배치된다. 참고로, 도 27에서는 설명의 편의를 위하여 히팅 유닛(1471)을 히터 케이스(1471a)와 히터(1471b)만으로 간략히 도시하였다. 히팅 유닛(1471)에는 앞서 설명한 상세 구조[제1 및 제2연장핀, 실링부재, 외부핀, 내부핀 등이 형성된 구조]가 적용될 수 있음은 물론이다.The heater 1471b is composed of a plate heater 1471b extending in one direction and attached to the outer surface of the heater case 1471a and disposed vertically in the vertical direction of the evaporator 1430. [ 27, the heating unit 1471 is simply shown as a heater case 1471a and a heater 1471b for the convenience of explanation. It is needless to say that the heating unit 1471 may have the detailed structure (the structure in which the first and second extension pins, the sealing member, the outer fin, and the inner fin are formed).

본 실시예에서는, 외부를 향하는 히터 케이스(1471a)의 일면에 히터(1471b)가 부착된 것을 보이고 있다. 상기 배치에 의하면, 제상으로 인하여 발생된 제상수가 히터(1471b)에 접촉되는 것이 일정 수준 방지될 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니다. 히터(1471b)는 지지대(133)와 마주하는 히터 케이스(1471a)의 다른 일면에도 부착될 수 있다. 다만, 이 경우에는 히터(1471b)와 제상수 간의 접촉이 방지될 수 있는 구조가 구비되는 것이 바람직하다.In this embodiment, a heater 1471b is attached to one surface of the heater case 1471a facing outward. According to this arrangement, it is possible to prevent a certain level of contact between the defrost water generated due to defrosting and the heater 1471b. However, the present invention is not limited thereto. The heater 1471b may also be attached to the other surface of the heater case 1471a facing the support table 133. [ However, in this case, it is preferable that a structure capable of preventing contact between the heater 1471b and the defrost water is provided.

참고로, 외부를 향하는 히터 케이스(1471a)의 일면에 히터(1471b)가 부착된 경우, 외부핀은 지지대(133)와 마주하는 히터 케이스(1471a)의 다른 일면에서 돌출 형성될 수 있으며, 내부핀은 히터(1471b)가 부착된 일면의 내측 내부면에서 돌출 형성될 수 있다.When the heater 1471b is attached to one surface of the heater case 1471a facing the outside, the external pin may protrude from the other surface of the heater case 1471a facing the support table 133, May be protruded from the inner inner surface of the one surface to which the heater 1471b is attached.

히터(1471b)의 열선(1471b2)은 입구(1471d")와 출구(1471c") 사이에서 출구(1471c")를 향하여 연장 형성되어, 입구(1471d")를 통하여 회수된 작동액(F)을 재가열하도록 이루어진다. 히터(1471b)의 터미널(미도시)은 입구(1471d")와 출구(1471c") 사이에 위치하는 히터(1471b)의 단부에 형성될 수 있으며, 터미널에는 리드 와이어(1473)가 연결되어 증발기(1430)의 하측을 향하여 연장되도록 구성된다.The hot wire 1471b2 of the heater 1471b is extended toward the outlet 1471c "between the inlet 1471d" and the outlet 1471c "so that the working fluid F recovered through the inlet 1471d" . A terminal (not shown) of the heater 1471b may be formed at the end of the heater 1471b positioned between the inlet 1471d " and the outlet 1471c ", and a lead wire 1473 is connected to the terminal, 1430, respectively.

한편, 작동액(F)은 히터 케이스(1471a) 내부에 수직방향으로 연장되는 히터(1471b)의 최상단보다 높게 충진되는 것이 바람직하다. 이와 같은 구성에 의하면, 히팅 유닛(1471)이 과열되지 않은 상태로 안전하게 제상 운전이 이루어질 수 있으며, 히트 파이프(1472)에 기체 상태의 작동액(F)의 연속적인 공급이 안정적으로 이루어질 수 있다.On the other hand, the working fluid F is preferably filled higher than the uppermost end of the heater 1471b extending in the vertical direction inside the heater case 1471a. With such a configuration, the defrosting operation can be safely performed in a state in which the heating unit 1471 is not overheated, and the continuous supply of the working fluid F in the gaseous state to the heat pipe 1472 can be stably performed.

이하에서는, 작동액(F)이 히트 파이프(1572)를 순환할 때, 작동액(F)의 온도에 따른 대류를 고려한 히트 파이프(1572)의 설계 변경에 대하여 설명한다.Hereinafter, a design change of the heat pipe 1572 considering convection due to the temperature of the working fluid F when the working fluid F circulates through the heat pipe 1572 will be described.

도 29는 도 1의 냉장고(100)에 적용되는 제상 장치(170)에서, 히트 파이프(1572)의 상부열과 하부열 간의 폭이 다르게 형성되는 제3실시예(1570)를 보인 개념도이다. 본 도면에서는, 제상 장치(1570)를 정면(a) 및 측면(b)에서 보이고 있다.29 is a conceptual view showing a third embodiment 1570 in which the widths of the upper and lower rows of the heat pipe 1572 are differently formed in the defrost apparatus 170 applied to the refrigerator 100 of FIG. In this drawing, the defrost apparatus 1570 is shown in front view (a) and side view (b).

참고로, 도 29의 (a)에서는 히트 파이프(1572)의 전체적인 형태가 드러나도록 전방의 제1냉각관(1531')이 생략된 상태로 도시되어 있다. 또한, 후방의 제2냉각관(1531")의 일부가 히트 파이프(1572)와 중첩되어 보이지 않으나, 냉각핀(1532)의 배치 및 도 29의 (b)를 참조하면, 제1 및 제2냉각관(1531', 1531")의 전체적인 형태를 알 수 있다.29 (a), the front first cooling pipe 1531 'is omitted so that the overall shape of the heat pipe 1572 is revealed. In addition, although a part of the rear second cooling pipe 1531 "is not overlapped with the heat pipe 1572, referring to the arrangement of the cooling fin 1532 and Figure 29 (b), the first and second cooling The overall shape of the tubes 1531 ', 1531 "can be known.

도 29를 참조하면, 냉각관(1531) 및 히트 파이프(1572)는 지그재그 형태로 반복적으로 벤딩되어 다열(多列)을 이룬다.29, the cooling pipe 1531 and the heat pipe 1572 are repeatedly bent in a zigzag fashion to form multiple rows.

구체적으로, 냉각관(1531)은 수평배관부와 벤딩배관부의 조합으로 구성될 수 있다. 수평배관부는 상하로 서로 수평하게 배치되고 냉각핀(1532)을 관통하도록 구성되며, 벤딩배관부는 상측 수평배관부의 단부와 하측 수평배관부의 단부를 각각 연결하여 내부를 상호 연통시키도록 구성된다. 여기서, 상기 수평배관부는 도시된 바와 같이 각 열이 일정 간격을 두고 배치될 수 있다.Specifically, the cooling pipe 1531 may be configured by a combination of the horizontal pipe portion and the bending pipe portion. The horizontal piping portions are horizontally arranged vertically to each other and are configured to pass through the cooling fins 1532. The bending piping portions are configured to connect the ends of the upper horizontal piping portion and the lower horizontal piping portions to each other to communicate the inside. Here, as shown in the figure, each of the horizontal pipes may be arranged at a certain interval.

히트 파이프(1572)는 제1냉각관(1531')과 제2냉각관(1531") 사이에 배치되어, 단일 행을 이루도록 형성된다. 히트 파이프(1572)는 연장부(1572a) 및 방열부(1572b)를 포함한다. 연장부(1572a)에 대한 설명은 앞선 실시예에서의 설명으로 갈음하기로 한다.The heat pipe 1572 is disposed between the first cooling pipe 1531 'and the second cooling pipe 1531 " so as to form a single row. The heat pipe 1572 includes an extension portion 1572a and a heat dissipation portion 1572b. The description of the extension 1572a will be omitted from the description of the previous embodiment.

방열부(1572b)는 연장부(1572a)에서 증발기(1530)의 냉각관(1531)을 따라 지그재그 형태로 연장되어 히팅 유닛(1571)의 입구로 연결된다. 방열부(1572b)는 열을 이루는 복수의 수평관(1572b') 및 이들을 지그재그 형태로 연결하도록 벤딩된 U자관 형태로 구성되는 연결관(1572b")의 조합으로 구성된다.The heat radiating portion 1572b extends in a zigzag form along the cooling pipe 1531 of the evaporator 1530 at the extension portion 1572a and is connected to the inlet of the heating unit 1571. [ The heat radiating portion 1572b is formed by a combination of a plurality of horizontal tubes 1572b 'forming heat and a connection tube 1572b "formed in a U-shaped tube bent in a zigzag fashion.

상기 구조에서, 하부의 수평관(1572b') 각 열 간의 간격은 상부의 수평관(1572b') 각 열 간의 간격보다 좁게 형성될 수 있다. 이는 작동액(F)이 히트 파이프(1572)을 순환할 때, 작동액(F)의 온도에 따른 대류를 고려한 설계이다.In this structure, the interval between the rows of the lower horizontal pipe 1572b 'may be narrower than the interval between the respective rows of the upper horizontal pipe 1572b'. This is a design considering convection according to the temperature of the working fluid (F) when the working fluid (F) circulates through the heat pipe (1572).

구체적으로, 히트 파이프(1572)의 유입부를 통하여 유입되는 작동액(F)은 고온의 기체 상태로 히트 파이프(1572)의 순환 과정 중 가장 높은 온도를 가진다. 도시된 바와 같이, 고온의 작동액(F)은 상부에 위치하는 냉각관(1531) 쪽으로 이동되므로, 상부의 냉각관(1531) 주변에서는 대류에 의해 고온의 열이 넓은 영역으로 전달된다.Specifically, the working fluid F flowing through the inlet of the heat pipe 1572 has the highest temperature during the circulation process of the heat pipe 1572 in a high-temperature gas state. As shown in the figure, since the high-temperature working fluid F is moved toward the cooling pipe 1531 positioned at the upper portion, the high-temperature heat is transferred to the wide area by the convection around the cooling pipe 1531 at the upper portion.

반면에, 작동액(F)은 점차 열을 잃으면서 액체와 기체가 공존하는 상태로 흐르다가, 결국엔 액체 상태로 리턴부로 유입되는데, 이때의 열은 냉각관(1531)의 성에를 제거하기에는 충분한 온도이지만, 주변으로의 열전달 정도는 앞선 경우에 비하여 떨어질 수밖에 없다.On the other hand, the working fluid F gradually loses heat and flows in a state in which the liquid and the gas coexist, and eventually flows into the return portion in the liquid state. The heat at this time is sufficient to remove the property of the cooling tube 1531 Temperature, but the degree of heat transfer to the surroundings is inevitably lower than that of the prior art.

따라서, 이를 고려하여, 리턴부에 가까운 히트 파이프(1572)의 각 열[즉, 방열부(1572b)의 수평관(1572b')]은 상부에 위치하는 히트 파이프(1572)의 각 열에 비하여 좁은 간격으로 배치된다. 예를 들어, 상부에 위치하는 히트 파이프(1572)의 각 열은 냉각관(1531)의 하나의 열을 사이에 두고 인접한 냉각관(1531)의 열에 대응되게 배치될 수 있으며, 하부에 위치하는 히트 파이프(1572)의 각 열은 냉각관(1531)의 각 열에 대응되게 배치될 수 있다.Therefore, in consideration of this, the heat of each heat pipe 1572 (i.e., the horizontal pipe 1572b 'of the heat radiating portion 1572b) near the return portion is narrower than each column of the heat pipe 1572 located at the upper portion . For example, each row of the heat pipes 1572 located at the upper portion may be disposed corresponding to the row of the adjacent cooling tubes 1531 through one row of the cooling tubes 1531, Each row of pipes 1572 may be disposed corresponding to each column of the cooling pipe 1531.

상기 구조에 따라, 증발기(1530)의 하부에는 상부보다 상대적으로 더 많은 방열부(1572b)의 수평관(1572b')이 배열되게 된다.According to the above structure, the horizontal pipe 1572b 'of the heat radiating part 1572b is arranged at a lower portion of the evaporator 1530, which is relatively larger than the upper part.

도 30 및 도 31은 도 29에 도시된 제상 장치(1570)의 변형예(1670)를 보인 개념도들이다.Figs. 30 and 31 are conceptual diagrams showing a modified example 1670 of the defrost apparatus 1570 shown in Fig.

먼저, 도 30에서는 제상 장치(1670)를 정면(a) 및 측면(b)에서 보이고 있다.First, in Fig. 30, the defrost apparatus 1670 is shown in front view (a) and side view (b).

본 변형예에서, 히트 파이프(1672)는 제1냉각관(1631') 전방의 제1히트 파이프(1672')와 제2냉각관(1631") 후방의 제2히트 파이프(1672")로 구성되어, 2행을 이루도록 형성된다.In this modification, the heat pipe 1672 is composed of the first heat pipe 1672 'in front of the first cooling pipe 1631' and the second heat pipe 1672 '' in the rear of the second cooling pipe 1631 " So as to form two rows.

참고로, 도 30의 (a)에서는 제2히트 파이프(1672")가 제1히트 파이프(1672')와 중첩되어 보이지 않으나, 도 30의 (b)를 참조하면 제2히트 파이프(1672")의 전체적인 형태를 알 수 있다.30 (a), the second heat pipe 1672 " does not overlap with the first heat pipe 1672 ', but the second heat pipe 1672 " Can be understood as a whole.

도시된 바와 같이, 제1 및 제2히트 파이프(1672', 1672")의 하부에 배치되는 수평관(1672b') 각 열 간의 간격은 상부에 배치되는 수평관(1672b') 각 열의 간격보다 좁게 형성될 수 있다. 이는 작동액(F)이 히트 파이프(1672)을 순환할 때, 작동액(F)의 온도에 따른 대류를 고려한 설계이며, 이에 대한 구체적인 설명은 앞선 도 29에 대한 설명으로 갈음한다.As shown in the drawing, the interval between the rows of the horizontal pipes 1672b 'disposed below the first and second heat pipes 1672' and 1672 'is narrower than the interval between the rows of the horizontal pipes 1672b' 29 is a diagram illustrating the convection flow according to the temperature of the working fluid F when the working fluid F circulates through the heat pipe 1672. A detailed description thereof will be given with reference to FIG. do.

다음으로, 도 31에서는, 이해를 돕기 위하여 제1 및 제2냉각관(1731', 1731")의 일부를 생략하여 도시하였다.31, a part of the first and second cooling tubes 1731 'and 1731 "is omitted for the sake of understanding.

도 31을 참조하면, 증발기(1730) 전방의 제1히트 파이프(1772')의 하부에 배치되는 각 열 간의 간격은 상부에 배치되는 각 열의 간격보다 좁게 형성될 수 있다. 반대로, 증발기(1730) 후방의 제2히트 파이프(1772")의 상부에 배치되는 각 열 간의 간격은 하부에 배치되는 각 열의 간격보다 좁게 형성될 수 있다.Referring to FIG. 31, the interval between the rows arranged at the lower portion of the first heat pipe 1772 'in front of the evaporator 1730 may be narrower than the interval between the rows arranged at the upper portion. On the contrary, the interval between the rows arranged on the upper portion of the second heat pipe 1772 " behind the evaporator 1730 may be narrower than the interval between the rows arranged below.

상기 배치 관계에 따르면, 어느 하나의 히트 파이프(1772)의 간격이 넓은 부분에 의한 온도 저하가 다른 하나의 히트 파이프(1772)의 간격이 좁은 부분에 의한 온도 상승에 의해 보상되도록 이루어진다. 따라서, 기본 구조(도 3에 도시된 구조)보다 제1 및 제2히트 파이프(1772', 1772")가 짧게 구성되면서도, 냉각관(1731)으로의 효율적인 열 전달 구조가 구현될 수 있다.According to the arrangement relationship, the temperature decrease due to the wide interval of one heat pipe 1772 is compensated by the temperature rise due to the narrow portion of the other heat pipe 1772. Therefore, an efficient heat transfer structure to the cooling pipe 1731 can be realized, while the first and second heat pipes 1772 'and 1772 " are configured shorter than the basic structure (the structure shown in FIG. 3).

이에 대한 변형 예로서, 증발기(1730) 전방의 제1히트 파이프(1772')의 하부에 배치되는 각 열 간의 간격은 상부에 배치되는 각 열의 간격보다 넓게 형성될 수 있다. 반대로, 증발기(1730) 후방의 제2히트 파이프(1772")의 상부에 배치되는 각 열 간의 간격은 하부에 배치되는 각 열의 간격보다 넓게 형성될 수 있다.As a modification of this, the interval between the rows arranged at the lower portion of the first heat pipe 1772 'in front of the evaporator 1730 may be wider than the interval between the rows arranged at the upper portion. On the contrary, the interval between the rows arranged on the upper portion of the second heat pipe 1772 " behind the evaporator 1730 may be wider than the interval between the rows arranged below.

한편, 작동액(F)이 히트 파이프(1872)를 흐르면서 냉각관(1831)에 방열함에 따라, 작동액(F)은 히팅 유닛(1871)의 입구에 가까워갈수록 냉각된다. 따라서, 하측 냉각관(1731)에 대한 제상이 원활하게 이루어지지 않을 수 있다. 이하에서는, 이를 개선할 수 있는 구조에 대하여 설명한다.On the other hand, as the working fluid F radiates to the cooling pipe 1831 while flowing through the heat pipe 1872, the working fluid F is cooled as it gets closer to the inlet of the heating unit 1871. Therefore, defrosting to the lower cooling pipe 1731 may not be performed smoothly. Hereinafter, a structure capable of improving this will be described.

도 32 및 도 33은 도 1의 냉장고(100)에 적용되는 제상 장치(170)의 제4실시예(1870)를 보인 정면도 및 사시도이다. 도 32에서는 냉각핀(1832)의 일부를 생략하여 표시하였다. 참고로, 증발기(1830)의 상세 구성은 도 33에 보다 상세히 도시되어 있다.32 and 33 are a front view and a perspective view showing a fourth embodiment 1870 of the defrost apparatus 170 applied to the refrigerator 100 of FIG. In FIG. 32, a part of the cooling fin 1832 is omitted. For reference, the detailed configuration of the evaporator 1830 is shown in more detail in Fig.

도 32 및 도 33을 참조하면, 히트 파이프(1872)는 순환하는 작동액(F)의 상태에 따른 관점에서 고온의 증발부(E)와 저온의 응축부(C)로 구분될 수 있다.32 and 33, the heat pipe 1872 can be divided into a high-temperature evaporator E and a low-temperature condenser C from the viewpoint of the state of the circulating working fluid F. [

증발부(E)는 작동액(F)이 고온의 기체 또는 고온의 기체와 액체를 포함하는 상태로 이동되는 부분으로서, 냉각관(1831)의 제상이 가능한 온도를 가진다. 구조적으로, 증발부(E)는 히팅 유닛(1871)의 출구와 연결되고, 증발기(1830)의 냉각관(131)에 대응되도록 배치되어 증발기(1830)의 냉각관(1831)에 열을 전달하도록 이루어진다.The evaporation portion E is a portion where the working fluid F is moved to a state containing a high temperature gas or a high temperature gas and liquid and has a temperature at which the cooling pipe 1831 can defrost. The evaporator E is structurally connected to the outlet of the heating unit 1871 and arranged to correspond to the cooling tube 131 of the evaporator 1830 to transfer heat to the cooling tube 1831 of the evaporator 1830 .

반면에, 응축부(C)는 작동액(F)이 저온의 액체 상태로 흐르는 부분으로서, 냉각관(1831)에 대한 제상이 이루어질 수 있는 온도보다 낮은 온도를 가진다. 따라서, 응축부(C)가 냉각관(1831)에 인접하게 배치되더라도, 냉각관(1831)에 대한 제상은 원활하게 이루어질 수 없다. 응축부(C)는 최종적으로 히팅 유닛(1871)의 입구와 연결된다.On the other hand, the condensing portion C has a temperature lower than the temperature at which the working fluid F flows into the low-temperature liquid state, at which defrosting with respect to the cooling pipe 1831 can be performed. Therefore, even if the condensing section C is disposed adjacent to the cooling pipe 1831, defrosting with respect to the cooling pipe 1831 can not be performed smoothly. The condensing section C is finally connected to the inlet of the heating unit 1871.

히트 파이프(1872)는 상부에서 하부로 지그재그 형태로 연장되므로, 히트 파이프(1872)가 냉각관(1831)에 대응되게 배열되는 구조라면, 응축부(C)는 하측 냉각관(1831)에 인접하게 배치되게 된다. 이는 하측 냉각관(1831)에 대한 제상이 원활하게 이루어질 수 없음을 의미한다.The heat pipe 1872 extends in a staggered fashion from top to bottom so that the heat pipe 1872 is arranged corresponding to the cooling pipe 1831 so that the condensation portion C is adjacent to the lower cooling pipe 1831 Respectively. This means that defrosting to the lower side cooling pipe 1831 can not be performed smoothly.

이를 해결하기 위하여, 응축부(C)는 증발부(E)에서 연장되어 증발기(1830)의 최저열 냉각관(1831a)보다 아래로 배치된다. 응축부(C)는 최저열 냉각관(1831a)보다 아래로 배치되는 적어도 두 개의 수평배관을 포함하여 구성된다. 본 실시예에서는, 히트 파이프(1872)가 증발기(1830)의 냉각관(1831) 최저열보다 아래로 두 열 더 구비되어 응축부(C)를 구성하는 구조를 보이고 있다.In order to solve this problem, the condenser C extends from the evaporator E and is disposed below the lowest heat-cooling pipe 1831a of the evaporator 1830. [ The condensing section C comprises at least two horizontal pipes arranged below the lowest heat-cooling pipe 1831a. In this embodiment, the heat pipe 1872 is provided with two rows below the lowest column of the cooling pipe 1831 of the evaporator 1830 to form the condensing section C.

이와 같이, 히트 파이프(1872)의 저온의 응축부(C)가 증발기(1830)의 최저열 냉각관(1831)보다 아래로 배치되는 경우, 고온의 증발부(E)만이 증발기(1830)의 제상에 이용되므로 하측 냉각관(1831)에 대한 제상이 원활하게 이루어질 수 있다.Thus, when the low temperature condensation portion C of the heat pipe 1872 is disposed below the lowermost heat cooling pipe 1831 of the evaporator 1830, only the high temperature evaporation portion E is defrosted by the defrosting of the evaporator 1830 So that defrosting of the lower cooling pipe 1831 can be smoothly performed.

상기 구조에서, 히팅 유닛(1871)의 하단은 최저열 냉각관(1831a)에 인접하여 배치된다. 이에 따라, 히트 파이프(1872)의 리턴부는 응축부(C)의 최저열 수평배관에서 히팅 유닛(1871)의 입구까지 상방향으로 벤딩된 형태로 연장되어, 응축된 작동액(F)이 회수될 수 있는 유로를 형성한다.In this structure, the lower end of the heating unit 1871 is disposed adjacent to the lowest heat cooling tube 1831a. The return portion of the heat pipe 1872 extends upwardly from the lowest horizontal horizontal pipe of the condensing portion C to the inlet of the heating unit 1871 so that the condensed working fluid F is recovered Thereby forming a flow path.

상기 리턴부에서, 벤딩된 형태를 가지는 부분에서는 유동 저항이 크게 형성되기 때문에, 히팅 유닛(1871)의 입구로 리턴되는 작동액(F)이 역류되는 것을 억제하는 데에 유리한 장점이 있다.Since the flow resistance is large at the bent portion at the return portion, there is an advantage in suppressing backflow of the working fluid F returned to the inlet of the heating unit 1871.

도 34 및 도 35는 도 32 및 도 33에 도시된 제상 장치(1870)에서, 히팅 유닛(1971)의 형성 위치가 변형된 예(1970)를 보인 정면도 및 사시도이다.34 and 35 are a front view and a perspective view showing an example (example 1970) in which the forming position of the heating unit 1971 is modified in the defrost apparatus 1870 shown in Figs. 32 and 33. Fig.

도 34 및 도 35를 참조하면, 히팅 유닛(1971)의 적어도 일부는 증발기(1930)의 최저열 냉각관(1931)보다 아래로 배치된다. 일 예로, 히팅 유닛(1971)의 하단은 히트 파이프(1972)의 최저열 수평배관에 인접하게 위치할 수 있으며, 히팅 유닛(1971)의 상단은 증발기(1930)의 최저열 냉각관(1931a)에서 위로 첫번째 냉각관[1931b (즉, 아래에서 두번째 냉각관)] 아래에 위치할 수 있다.34 and 35, at least a portion of the heating unit 1971 is disposed below the lowest heat cooling tube 1931 of the evaporator 1930. [ The lower end of the heating unit 1971 may be located adjacent to the lowest thermal horizontal pipe of the heat pipe 1972 and the upper end of the heating unit 1971 may be located on the lowest heat cooling pipe 1931a of the evaporator 1930 Can be located under the first cooling tube [1931b (ie, the second cooling tube from below)].

상기 구조에 의하면, 히트 파이프(1972)의 최저열 수평배관과 히팅 유닛(1971)의 입구를 연결하는 리턴부는 앞선 실시예의 리턴부에 비하여 짧게 형성된다.According to the above structure, the return portion connecting the lowest horizontal horizontal pipe of the heat pipe 1972 to the inlet of the heating unit 1971 is formed to be shorter than the return portion of the previous embodiment.

히트 파이프(1972)의 최저열 수평배관과 히팅 유닛(1971)의 입구가 실질적으로 동일한 층위에 놓이는 경우, 리턴부는 히트 파이프(1972)의 최저열 수평배관에서 수평방향으로 연장되어 히팅 유닛(1971)의 입구에 연결될 수 있다.The return portion extends in the horizontal direction in the lowest horizontal horizontal pipe of the heat pipe 1972 and is connected to the heating unit 1971 when the lowest horizontal horizontal pipe of the heat pipe 1972 and the inlet of the heating unit 1971 are placed on substantially the same layer. Lt; / RTI >

또한, 상기 구조에 따르면, 히팅 유닛(1971)이 히트 파이프(1972)의 최저열 수평배관에 인접하게 배치되므로, 앞선 실시예에 비하여 적은양의 작동액(F)으로 히터(1971b)가 작동액(F)의 수면 아래에 위치하도록 구성할 수 있다. 또한, 작동액(F)의 충진량이 감소됨에 따라, 히트 파이프(1972)의 최저열 수평배관의 온도가 보다 상승될 수 있다. 이는 증발부(E)의 하부 온도가 앞선 예에 비하여 상승한다는 것을 의미한다.Further, according to the above structure, since the heating unit 1971 is disposed adjacent to the lowermost horizontal pipe of the heat pipe 1972, the heater 1971b is driven by a small amount of the working fluid F, (F). ≪ / RTI > Further, as the filling amount of the working liquid F is reduced, the temperature of the lowest heat horizontal pipe of the heat pipe 1972 can be further raised. This means that the lower temperature of the evaporation portion E rises as compared with the foregoing example.

Claims (20)

증발기에 구비되는 히팅 유닛; 및
양단부가 상기 히팅 유닛의 입구와 출구에 각각 연결되고, 상기 히팅 유닛에 의해 가열되어 이송되는 고온의 작동액에 의해 상기 증발기의 냉각관에 방열하도록 적어도 일부가 상기 냉각관에 인접하게 배치되는 히트 파이프를 포함하며,
상기 히팅 유닛은,
내부에 빈 공간을 구비하고, 길이방향을 따라 상호 이격된 위치에 상기 입구와 상기 출구를 각각 구비하는 히터 케이스; 및
상기 히터 케이스의 외부면에 부착되어 상기 히터 케이스 내의 작동액을 가열하도록 구성되는 히터를 포함하는 것을 특징으로 하는 제상 장치.
A heating unit provided in the evaporator; And
At least a part of which is connected to the inlet and the outlet of the heating unit, and a heat pipe which is disposed adjacent to the cooling pipe so as to radiate heat to the cooling pipe of the evaporator by the hot working liquid, / RTI >
The heating unit includes:
A heater case having an empty space therein and having the inlet and the outlet at positions spaced apart from each other along the longitudinal direction; And
And a heater attached to an outer surface of the heater case to heat the working fluid in the heater case.
제1항에 있어서,
상기 히터는 플레이트 형태를 가지는 판상 히터인 것을 특징으로 하는 제상 장치.
The method according to claim 1,
Wherein the heater is a plate-shaped heater having a plate shape.
제2항에 있어서,
상기 히터는,
세라믹 재질로 형성되고, 상기 히터 케이스의 외부면에 부착되는 베이스 플레이트;
상기 베이스 플레이트에 형성되며, 전원 인가시 발열하도록 구성되는 열선; 및
상기 베이스 플레이트에 구비되어 상기 열선과 전원을 전기적으로 연결하도록 구성되는 터미널을 포함하는 것을 특징으로 하는 제상 장치.
3. The method of claim 2,
The heater
A base plate formed of a ceramic material and attached to an outer surface of the heater case;
A heating wire formed on the base plate and configured to generate heat when power is applied; And
And a terminal provided on the base plate and configured to electrically connect the hot wire and the power source.
제3항에 있어서,
상기 히터 케이스는, 상기 열선이 배치되는 부분에 대응되는 능동발열부와, 상기 열선이 미배치되는 부분에 대응되는 수동발열부로 구획되고,
상기 히트 파이프를 이동한 후 상기 입구를 통하여 리턴되는 작동액이 재가열되어 역류하는 것을 방지하도록, 상기 입구는 상기 수동발열부에 형성되는 것을 특징으로 하는 제상 장치.
The method of claim 3,
Wherein the heater case is divided into an active heat generating portion corresponding to a portion where the heat ray is disposed and a passive heat generating portion corresponding to a portion where the heat ray is not disposed,
Wherein the inlet is formed in the manual heat generating portion so that the working fluid returned through the inlet after the heat pipe is moved is reheated and prevented from flowing backward.
제3항에 있어서,
상기 열선은 상기 입구와 상기 출구 사이의 일 지점으로부터 상기 출구를 향하여 연장 형성되는 것을 특징으로 하는 제상 장치.
The method of claim 3,
Wherein the hot line extends from one point between the inlet and the outlet toward the outlet.
제1항에 있어서,
상기 히터는 상기 히터 케이스의 저면에 부착되는 것을 특징으로 하는 제상 장치.
The method according to claim 1,
And the heater is attached to the bottom surface of the heater case.
제6항에 있어서,
상기 히터 케이스의 양측에는 각각 저면으로부터 하측으로 연장 형성되어 상기 저면에 부착된 히터의 양측면을 덮도록 구성되는 제1 및 제2연장핀이 구비되는 것을 특징으로 하는 제상 장치.
The method according to claim 6,
Wherein the heater case includes first and second extension pins formed on both sides of the heater case, the first and second extension pins extending from the bottom surface to cover both sides of the heater attached to the bottom surface.
제7항에 있어서,
상기 히터의 배면과 상기 제1 및 제2연장핀에 의해 형성되는 리세스된(recessed) 공간에는 실링부재가 상기 히터를 덮도록 충진되는 것을 특징으로 하는 제상 장치.
8. The method of claim 7,
Wherein a sealing member is filled in the recessed space formed by the back surface of the heater and the first and second extension pins so as to cover the heater.
제8항에 있어서,
상기 히터의 배면과 상기 실링부재 사이에는 절연재가 개재되는 것을 특징으로 하는 제상 장치.
9. The method of claim 8,
Wherein an insulating material is interposed between a back surface of the heater and the sealing member.
제9항에 있어서,
상기 히터 케이스와 상기 히터 사이에는 열전도성 접착제가 개재되는 것을 특징으로 하는 제상 장치.
10. The method of claim 9,
Wherein a thermally conductive adhesive is interposed between the heater case and the heater.
제7항에 있어서,
상기 히터 케이스는,
내부에 빈 공간을 구비하고, 양단부가 개구된 형태를 가지며, 저면에 상기 히터가 부착되는 메인 케이스; 및
상기 메인 케이스의 개구된 양단부를 각각 덮도록 장착되는 제1커버와 제2커버를 포함하는 것을 특징으로 하는 제상 장치.
8. The method of claim 7,
The heater case includes:
A main case having a hollow space therein and having both ends opened and having the heater attached to the bottom thereof; And
And a first cover and a second cover which are mounted to cover the open both ends of the main case, respectively.
제11항에 있어서,
상기 제1 및 제2커버 중 적어도 하나는 상기 메인 케이스의 저면으로부터 하측으로 연장 형성되어, 상기 제1 및 제2연장핀과 함께 상기 히터를 둘러싸도록 이루어지는 것을 특징으로 하는 제상 장치.
12. The method of claim 11,
Wherein at least one of the first and second covers extends downward from a bottom surface of the main case and surrounds the heater together with the first and second extension pins.
제11항에 있어서,
상기 히트 파이프는 상기 증발기의 전면부 및 후면부에 2행을 이루도록 각각 배치되는 제1히트 파이프와 제2히트 파이프를 포함하고,
상기 출구는 상기 제1 및 제2히트 파이프의 일단부와 각각 연결되는 제1출구와 제2출구를 포함하며,
상기 입구는 상기 제1 및 제2히트 파이프의 타단부와 각각 연결되는 제1입구와 제2입구를 포함하는 것을 특징으로 하는 제상 장치.
12. The method of claim 11,
Wherein the heat pipe includes a first heat pipe and a second heat pipe which are respectively arranged in two rows on a front portion and a rear portion of the evaporator,
The outlet includes a first outlet and a second outlet respectively connected to one end of the first and second heat pipes,
Wherein the inlet comprises a first inlet and a second inlet respectively connected to the other ends of the first and second heat pipes.
제13항에 있어서,
상기 제1 및 제2출구는, 상기 메인 케이스의 양측에 각각 형성되거나, 상기 제1커버에 서로 나란하게 형성되는 것을 특징으로 하는 제상 장치.
14. The method of claim 13,
Wherein the first and second outlets are formed on both sides of the main case, respectively, or are formed in parallel with each other on the first cover.
제14항에 있어서,
상기 제1 및 제2입구는, 상기 메인 케이스의 양측에 각각 형성되거나, 상기 제2커버에 서로 나란하게 형성되는 것을 특징으로 하는 제상 장치.
15. The method of claim 14,
Wherein the first and second inlets are formed on both sides of the main case, respectively, or are formed in parallel with each other in the second cover.
제1항에 있어서,
상기 히터 케이스는 상기 증발기의 일측에 구비되는 지지대의 외측에 상하방향을 따라 수직으로 배치되고,
상기 히터는 작동액이 모두 액체 상태일 때, 상기 히터 케이스에 충진된 작동액의 수면보다 낮게 위치하도록 구성되는 것을 특징으로 하는 제상 장치.
The method according to claim 1,
The heater case is disposed vertically along the vertical direction on the outside of a support provided on one side of the evaporator,
Wherein the heater is configured to be positioned lower than the water surface of the working fluid filled in the heater case when all the working fluid is in the liquid state.
제16항에 있어서,
상기 히터는 상기 지지대와 마주하는 상기 히터 케이스 일면의 맞은편 면에 부착되는 것을 특징으로 하는 제상 장치.
17. The method of claim 16,
Wherein the heater is attached to the opposite surface of the heater case facing the support base.
제1항에 있어서,
상기 히팅 유닛은 상기 증발기의 일측 저부에 좌우방향을 따라 배치되고,
상기 히터와 전원 간을 연결하는 리드 와이어는 상기 증발기의 외측에 인접한 상기 히터의 일단부로부터 외측으로 연장되도록 구성되는 것을 특징으로 하는 제상 장치.
The method according to claim 1,
Wherein the heating unit is disposed at a bottom portion of the evaporator along a lateral direction,
Wherein the lead wire connecting the heater and the power source is configured to extend outward from one end of the heater adjacent to the outside of the evaporator.
제1항에 있어서,
상기 히트파이프는,
상기 히팅유닛의 출구와 연결되고, 상기 냉각관에 대응되도록 배치되어 상기 냉각관에 열을 전달하도록 이루어지는 증발부; 및
상기 증발부에서 연장되어 상기 냉각관의 최저열보다 아래로 배치되며, 상기 히팅유닛의 입구와 연결되는 응축부를 포함하는 것을 특징으로 하는 제상 장치.
The method according to claim 1,
The heat pipe includes:
An evaporator connected to an outlet of the heating unit and arranged to correspond to the cooling pipe to transfer heat to the cooling pipe; And
And a condensing portion extending from the evaporating portion and disposed below the lowest column of the cooling pipe and connected to the inlet of the heating unit.
냉장고 본체;
상기 냉장고 본체에 설치되고, 주위의 증발열을 빼앗아 유체를 냉각하도록 형성되는 증발기; 및
상기 증발기에서 발생하는 성에를 제거하도록 이루어지며, 제1항 내지 제19항 중 어느 한 항에 따르는 제상 장치를 포함하는 냉장고.
Refrigerator body;
An evaporator installed in the refrigerator body and configured to cool the fluid by depriving surrounding evaporation heat; And
The refrigerator as claimed in any one of claims 1 to 19, wherein the defrosting device is configured to remove the property generated in the evaporator.
KR1020150147010A 2015-10-21 2015-10-21 Defrosting device and refrigerator having the same KR102447834B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020150147010A KR102447834B1 (en) 2015-10-21 2015-10-21 Defrosting device and refrigerator having the same
EP16857644.5A EP3367025B1 (en) 2015-10-21 2016-08-01 Defrosting device and refrigerator having same
EP19211279.5A EP3708933A1 (en) 2015-10-21 2016-08-01 Defrosting device and refrigerator having the same
US15/518,502 US10520240B2 (en) 2015-10-21 2016-08-01 Defrosting device and refrigerator having the same
CN201680003731.9A CN107003060B (en) 2015-10-21 2016-08-01 Defroster and refrigerator with the defroster
PCT/KR2016/008436 WO2017069386A1 (en) 2015-10-21 2016-08-01 Defrosting device and refrigerator having same
JP2017520344A JP6484709B2 (en) 2015-10-21 2016-08-01 Defrosting device and refrigerator provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150147010A KR102447834B1 (en) 2015-10-21 2015-10-21 Defrosting device and refrigerator having the same

Publications (2)

Publication Number Publication Date
KR20170046543A true KR20170046543A (en) 2017-05-02
KR102447834B1 KR102447834B1 (en) 2022-09-27

Family

ID=58742920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150147010A KR102447834B1 (en) 2015-10-21 2015-10-21 Defrosting device and refrigerator having the same

Country Status (1)

Country Link
KR (1) KR102447834B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216869A1 (en) * 2017-05-25 2018-11-29 엘지전자 주식회사 Defrosting apparatus and refrigerator comprising same
WO2018216858A1 (en) * 2017-05-25 2018-11-29 엘지전자 주식회사 Defrosting apparatus and refrigerator comprising same
KR20180129176A (en) * 2017-05-25 2018-12-05 엘지전자 주식회사 Defrosting device and refrigerator having the same
KR20190099910A (en) * 2018-02-20 2019-08-28 엘지전자 주식회사 Defrosting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313144A (en) * 1995-05-17 1996-11-29 Fuji Electric Co Ltd Defrosting device of freezing and refrigerating showcase
KR20090008352A (en) * 2006-04-26 2009-01-21 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Ceramic heater and method of securing a thermocouple thereto
KR20100001721A (en) * 2008-06-27 2010-01-06 주식회사 에이엠오 Defrost heater of surface type
KR101125827B1 (en) * 2010-05-03 2012-03-27 김종수 Defrosting module with loop-type heat pipe using bubble jet
JP2013016589A (en) * 2011-07-01 2013-01-24 Toyota Motor Corp Boil cooling device, and cooling system for vehicle using boil cooling device
US20150048073A1 (en) * 2013-08-16 2015-02-19 Adlink Technology Inc. Heating element and circuit module stack structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313144A (en) * 1995-05-17 1996-11-29 Fuji Electric Co Ltd Defrosting device of freezing and refrigerating showcase
KR20090008352A (en) * 2006-04-26 2009-01-21 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Ceramic heater and method of securing a thermocouple thereto
KR20100001721A (en) * 2008-06-27 2010-01-06 주식회사 에이엠오 Defrost heater of surface type
KR101125827B1 (en) * 2010-05-03 2012-03-27 김종수 Defrosting module with loop-type heat pipe using bubble jet
JP2013016589A (en) * 2011-07-01 2013-01-24 Toyota Motor Corp Boil cooling device, and cooling system for vehicle using boil cooling device
US20150048073A1 (en) * 2013-08-16 2015-02-19 Adlink Technology Inc. Heating element and circuit module stack structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216869A1 (en) * 2017-05-25 2018-11-29 엘지전자 주식회사 Defrosting apparatus and refrigerator comprising same
WO2018216858A1 (en) * 2017-05-25 2018-11-29 엘지전자 주식회사 Defrosting apparatus and refrigerator comprising same
KR20180129178A (en) * 2017-05-25 2018-12-05 엘지전자 주식회사 Defrosting device and refrigerator having the same
KR20180129176A (en) * 2017-05-25 2018-12-05 엘지전자 주식회사 Defrosting device and refrigerator having the same
KR20180129607A (en) * 2017-05-25 2018-12-05 엘지전자 주식회사 Defrosting device and refrigerator having the same
EP3633292A4 (en) * 2017-05-25 2021-04-07 LG Electronics Inc. Defrosting apparatus and refrigerator comprising same
EP3633293A4 (en) * 2017-05-25 2021-04-28 LG Electronics Inc. Defrosting apparatus and refrigerator comprising same
KR20210124163A (en) * 2017-05-25 2021-10-14 엘지전자 주식회사 Defrosting device and refrigerator having the same
US11428455B2 (en) 2017-05-25 2022-08-30 Lg Electronics Inc. Defrosting apparatus and refrigerator comprising same
US11525619B2 (en) 2017-05-25 2022-12-13 Lg Electronics Inc. Defrosting apparatus and refrigerator comprising same
KR20190099910A (en) * 2018-02-20 2019-08-28 엘지전자 주식회사 Defrosting device

Also Published As

Publication number Publication date
KR102447834B1 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
EP3374708B1 (en) Defrosting device
US10718561B2 (en) Refrigerator and method for controlling temperature of a refrigerating chamber
EP3343134B1 (en) An arrangement comprising a defrosting device and an evaporator
KR101969803B1 (en) Defrosting device and refrigerator having the same
KR20180021565A (en) Defrosting device and refrigerator having the same
KR20170046543A (en) Defrosting device and refrigerator having the same
KR20170046545A (en) Defrosting device and refrigerator having the same
KR101742587B1 (en) Evaporator and refrigerator having the same
KR20210124163A (en) Defrosting device and refrigerator having the same
JP6484709B2 (en) Defrosting device and refrigerator provided with the same
KR20170046544A (en) Defrosting device and refrigerator having the same
KR101786517B1 (en) Defrosting device and refrigerator having the same
JP2010230212A (en) Refrigerator
KR101788605B1 (en) Defrosting device and refrigerator having the same
KR20180026977A (en) Defrosting device and refrigerator having the same
KR20180026978A (en) Defrosting device and refrigerator having the same
US11428455B2 (en) Defrosting apparatus and refrigerator comprising same
KR102521938B1 (en) Defrosting device
KR102280123B1 (en) Defrosting device and refrigerator having the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant