KR20170030159A - Absorption type chiller with improved condensing system - Google Patents

Absorption type chiller with improved condensing system Download PDF

Info

Publication number
KR20170030159A
KR20170030159A KR1020150127346A KR20150127346A KR20170030159A KR 20170030159 A KR20170030159 A KR 20170030159A KR 1020150127346 A KR1020150127346 A KR 1020150127346A KR 20150127346 A KR20150127346 A KR 20150127346A KR 20170030159 A KR20170030159 A KR 20170030159A
Authority
KR
South Korea
Prior art keywords
condenser
pipe
absorber
cooling water
regenerator
Prior art date
Application number
KR1020150127346A
Other languages
Korean (ko)
Inventor
임지훈
Original Assignee
임지훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임지훈 filed Critical 임지훈
Priority to KR1020150127346A priority Critical patent/KR20170030159A/en
Publication of KR20170030159A publication Critical patent/KR20170030159A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/021Evaporators in which refrigerant is sprayed on a surface to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/172Speeds of the condenser fan
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The present invention relates to an absorption type chiller with an improved condensing system, which can improve cooling performance by separating condensation of a condenser and cooling of an absorber, performing the condensation in an additional nozzle condenser (21), and enabling the cooling of the absorber to be independently performed in a cooling tower (15).

Description

응축시스템을 개선시킨 흡수식냉동기{Absorption type chiller with improved condensing system}[0001] The present invention relates to an absorption type chiller with improved condensing system,

흡수식냉동기 구조분야Absorption refrigerator structure

기존의 흡수식냉동기 또는 냉온수기는 냉열과 온열을 하나의 기기로 발생시킬 수 있으므로 냉열기기와 온열기기 2개를 설치 운영하는 것보다 공간문제 및 경제성 측면에서 유리하고 전기를 사용하지 않고 다른 열원을 사용함으로써 매우 호응이 좋다. 출원번호 10-2005-0064388[흡수식냉동사이클의 냉매재생방법 및 냉매재생장치]는 에너지를 절약하면서 적정냉매재생을 위하여 냉매의 수위를 감지하는 제어시스템을 보완하는 발명이며, 출원번호 20-2012-0002107[흡수식 냉동기]는 냉매를 재생하는 방법을 가열식에서 정수식으로 변경시킨 발명이다. 흡수식냉동기 또는 흡수식냉온수기에서는 흡수기와 응축기 내부 열교환튜브에 동시에 폐순환회로를 형성하고 내부로 냉각수가 흐르면서 순차적으로 냉각과 응축을 반복한다. 흡수기와 응축기 2개의 열 발생원에 의한 온도낙차가 커져서 냉각수량이 많아지므로 냉각탑의 냉각성능에 큰 부담을 주고 있다. 그리고 기존에는 냉각수가 응축기 내부로 순환하는 방식의 응축기를 사용하므로 시스템 전체의 구조가 복잡해지는 단점이 있다.     Conventional absorption chiller or cold / hot water heater can generate cold and hot as one device, so it is more advantageous in terms of space problem and economical efficiency than using two heating and heating devices, It is very favorable. Application No. 10-2005-0064388 [Refrigerant Regeneration Method and Refrigerant Regeneration Method in Absorption Refrigeration Cycle] is an invention for complementing a control system for detecting the level of a refrigerant for regenerating an appropriate refrigerant while saving energy, and Application No. 20-2012- 0002107 [Absorption refrigerator] is an invention in which a method of regenerating a refrigerant is changed from a heating type to an integral type. In the absorption type refrigerator or the absorption type cold / hot water generator, a closed loop circuit is simultaneously formed in the absorber and the heat exchanger tube in the condenser, and cooling and condensation are sequentially repeated with the cooling water flowing into the inside. The temperature drop due to the two heat sources of the absorber and the condenser becomes large and the cooling water becomes large, so that the cooling performance of the cooling tower is greatly burdened. In addition, since the conventional system uses a condenser in which cooling water circulates inside the condenser, the structure of the entire system becomes complicated.

본 발명에서는 흡수기와 응축기의 냉각시스템을 분리시켜서 각각의 기기에서 냉각을 수행하여, 기존에 순차적 연속 냉각에 따라 크게 나타나던 온도낙차를 2개로 나누어지도록 하여 냉각수 온도유지 폭을 넓히며, 내부에 냉각수를 강제로 순환시키는 기존 응축기를 제거하고 내부에 흐르는 냉각수가 아닌 외부에서 냉각매체로 냉각시킬 수 있는 구조의 노출응축기를 제시하며, 재생기에서 발생하는 증기는 압력 차이에 의해 자기 스스로 노출응축기로 유입되도록 하여 별도의 순환동력을 사용하지 않도록 한다.     In the present invention, by separating the cooling system of the absorber and the condenser, cooling is performed in each of the devices, and the temperature drop which is largely caused by the sequential continuous cooling is divided into two, thereby widening the cooling water temperature holding width. The condenser of the present invention can be cooled by the cooling medium from the outside instead of the cooling water flowing inside the condenser, and the steam generated in the regenerator is introduced into the exposed condenser by itself due to the pressure difference. Do not use the circulating power of.

흡수기(12)와 응축기(14)의 냉각장치를 분리시킴으로 인해 냉각과 응축이 분리된 시스템에서 각각 적정 온도낙차 범위에서 이루어지도록 하며, 별도로 설치된 노출응축기(21)를 설치하고 재생기(13)에서 노출응축기(21)로 증기의 이동은 증기의 압력차에 의한 자연순환으로 이동되도록 하여 해결함     The evaporator 12 and the condenser 14 are separated from each other so that the cooling and condensation are separated from each other in the proper temperature range. The movement of the steam to the condenser (21) is solved by moving it to the natural circulation by the pressure difference of the steam

기존의 흡수식 냉동기 또는 냉온수기는 증발기(11)에서 수증기가 발생하여 흡수기(12)에서 흡수되면서 발생하는 열량과 재생기(13)에 의해 응축기(14)에 유입되는 열량을 합한 총열량(얻은 냉열의 약2배에 달하는 열량)을 모두 냉각탑이 냉각시키므로 열량측면에서 냉각탑의 냉각부담이 커지고, 또한 흡수기(12)를 냉각시키면서 온도가 상승한 냉각수가 그 다음 순서로 응축기(14)를 냉각시켜야 하므로 흡수기(12)와 응축기(14) 모두에 적정온도의 냉각수를 공급해야 하는 냉각탑의 온도낙차에 대한 부담도 가중되어 냉각수 유량이 커져 대량의 냉각수 제조 및 순환에 많은 에너지를 낭비하고 있다.     The conventional absorption refrigerator or the cold / hot water heater calculates the total amount of heat (the amount of heat of the obtained cold heat, which is the sum of the amount of heat generated by the vapor generated in the evaporator 11 and absorbed in the absorber 12 and the amount of heat introduced into the condenser 14 by the regenerator 13) And the cooling water whose temperature rises while cooling the absorber 12 is required to cool the condenser 14 in the following order, so that the temperature of the absorber 12 ) And the condenser (14) is also increased, so that the flow rate of the cooling water is increased, wasting a lot of energy in the production and circulation of a large amount of cooling water.

본 발명에서는 첫째 순차적 냉각이 아니라 개별 냉각방식을 택하여 흡수기(12)와 응축기(14)를 냉각시키는 각각의 냉각장치를 설치하여 적정 온도낙차 범위에서 냉각과 응축이 분리된 시스템에서 각각 별도로 이루어지도록 하여 큰 온도낙차에 대한 냉각장치의 부담을 줄였으며, 둘째 응축은 별도로 설치된 노출응축기(21)로 증기가 압력차에 의한 자연순환 방식으로 이동하게 하여 냉각매체 순환에 추가적인 에너지 사용을 필요 없게 하였으며 흡수기(12)를 냉각시킬 냉각수만 순환하도록 하여 순환하는 냉각수유량을 획기적으로 줄어들게 하였다. 또한 내부 공간에 수직형노출응축기(83)를 설치하는 응축기결합냉각탑(70)을 제시하여 공간을 최소화하여 설치비용을 대폭 축소시켰으며 냉각수를 냉각시키는 과정에서 발생하는 배출공기의 냉각 잔열을 이용하여 수직형노출응축기(83)의 응축에 활용하여 냉각효율을 극대화시켰다.     In the present invention, it is preferable that the first cooling system, not the sequential cooling system, be used to cool the absorber 12 and the condenser 14 so that the refrigeration system and the condenser system are separate from each other The second condensation is a separately installed condenser (21), which moves the steam in a natural circulation manner by pressure difference, thereby eliminating the need for additional energy to circulate the cooling medium. Only the cooling water to be cooled is circulated so that the circulating cooling water flow rate is drastically reduced. In addition, a condenser-coupled cooling tower (70) for installing a vertical type outdoor condenser (83) in the inner space is proposed to minimize the installation space, thereby drastically reducing the installation cost. By using the cooling residual heat of the exhaust air generated in the process of cooling the cooling water And is used for condensing the vertical type outdoor condenser 83 to maximize the cooling efficiency.

도 1은 기존의 흡수식냉동기 설명도이다.
도 2는 본 발명의 응축시스템을 개선시킨 흡수식냉동기 설명도이다.
도 3은 본 발명에 냉각수/흡수액열교환기를 추가한 사례 설명도이다.
도 4는 본 발명에 증기집합통을 추가한 사례 설명도이다.
도 5는 이중효용흡수식냉동기의 증기집합통 배관결합 사례 설명도이다.
도 6은 기존 흡수식냉동기에 본 발명을 적용한 사례 설명도이다.
도 7은 본 발명에 응축기결합냉각탑이 적용된 사례 설명도이다.
도 8은 응축기결합냉각탑 사례 설명도이다.
1 is an explanatory diagram of a conventional absorption refrigerator.
2 is an explanatory view of an absorption type refrigerator in which the condensing system of the present invention is improved.
FIG. 3 is a diagram illustrating a case in which a cooling water / absorption liquid heat exchanger is added to the present invention.
FIG. 4 is a diagram illustrating a case in which a steam trap is added to the present invention. FIG.
FIG. 5 is an explanatory view of a steam-collecting pipe connection example of a dual-effect absorption refrigerator. FIG.
FIG. 6 is an explanatory diagram of a case in which the present invention is applied to a conventional absorption refrigerator.
FIG. 7 is an explanatory diagram of a case where a condenser-coupled cooling tower is applied to the present invention.
8 is an explanatory view of a condenser-coupled cooling tower.

도 1은 기존의 흡수식냉동기 설명도이다. 흡수식냉온수기도 냉열을 발생하는 모드가 있으나 대표적으로 흡수식냉동기로 설명을 한다. 기존의 흡수식냉동기는 냉열사용처(10), 증발기(11), 흡수기(12), 재생기(13), 응축기(14), 냉각탑(15)이 배관으로 연결되어 냉열 및 온열을 발생시키고 사용을 한다. 밀폐된 증발기(11) 내부에 증발열교환튜브(116)가 설치되고 그 상부에는 냉매분사장치(16)가 설치되며 증발기(11) 내부 하부에서 상부의 냉매분사장치(16)에 관통하여 연결되도록 냉매분사배관(121)을 설치하고 그 관로상에 냉매분사펌프(18)를 설치하고, 증발열교환튜브(116) 는 냉열사용처(10)와 폐순환배관으로 연결하고 증발기(11) 내부 하부에 냉매(112)를 채우고, 증발기체통로(117)를 증발기(11)와 흡수기(12)가 관통되도록 연결하고 밀폐된 흡수기(12) 내부에 흡수열교환튜브(115)가 설치되고 그 상부에는 흡수용액분사장치(17)가 설치되며 흡수기(12) 내부 하부에서 재생기(13) 일측에 관통되도록 흡수용액유출배관(122)을 설치하고 그 관로상에 흡수용액유출펌프(19)를 설치하고 재생기(13) 내부 하부에서 흡수기(12) 내부 상부의 흡수용액분사장치(17)에 관통하여 연결되도록 흡수용액유입배관(123)을 설치하고 흡수용액유출배관(122)과 흡수용액유입배관(123)에 흐르는 용액이 열교환하도록 흡수용액열교환기(111)를 설치하고 흡수기(12) 내부 하부에 흡수용액(113)을 채우고, 재생기(13)에 열을 가하도록 가열장치(110)를 설치하고 응축기체통로(118)를 재생기(13)와 응축기(14)가 관통되도록 연결하고, 밀폐된 응축기(14) 내부에 응축열교환튜브(114)를 설치하고 응축기(14) 내부 하부에서 냉매분사배관(121) 일측에 T분기로 관통되도록 냉매유출배관(120)을 설치하고, 냉각탑(15) - 흡수열교환튜브(115) - 응축열교환튜브(114) - 다시 냉각탑(15)의 냉각수 폐순환회로가 형성되도록 냉각수배관(119)을 설치하고, 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 낮추는 진공펌프(미도시)로 구성하는 것을 특징으로 한다. 재생기(13)는 하나로 구성될 수도 있으며 2중효용흡수식냉동기와 같이 고온재생기와 저온재생기 2개로 구성될 수도 있다. 저온재생기는 고온재생기에서 발생한 수증기의 잠열을 이용하여 가열한다. 작동원리는 다음과 같다. 진공펌프를 가동하여 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 약 0.01기압의 낮은 압력을 유지하는 상태에서 냉매분사장치(16)를 통하여 냉매가 분사되면 냉매가 물(H2O)일 경우 냉매가 기화하여 약5℃ 정도의 수증기가 만들어지며 증발열교환튜브(116)를 식혀서 냉열사용처(10)에 냉열을 제공하고, 이 수증기는 증발기체통로(117)를 통하여 흡수기(12)로 유입되어 흡수용액분사장치(17)로 분사되는 증기압이 낮은 흡수용액(113)에 흡수되면서 냉각과정을 반복한다. 흡수용액(113)은 염화나트륨(NaCl) 수용액, 리듐브로마이드(LiBr) 수용액 등이 사용된다. 흡수기(12)에서는 수증기가 흡수액에 흡수되면서 발생하는 열을 흡수열교환튜브(115) 내부에 흐르는 냉각수에 의해 냉각된다. 증발기(11)에서 유입된 수증기를 흡수하여 농도가 묽어진 흡수용액(113)은 흡수용액유출펌프(19)에 의해 흡수용액유출배관(122)을 통하여 재생기(13)에 유입되고, 재생기(13)에 설치된 가열장치(110)가 가동하면 묽은 흡수용액(113)은 수증기를 증발시키고 농도가 높아지며 농도가 높아진 흡수용액(113)은 흡수용액유입배관(123)을 통하여 다시 흡수기(12)로 순환하는 과정을 반복한다. 흡수용액유출배관(122) 내부의 흡수용액(113)의 온도는 낮고 흡수용액유입배관(123)에 흐르는 흡수용액(113)은 온도가 높으므로 이들 간에 흡수용액열교환기(111)를 통하여 열교환을 하도록 하여 재생기(13)로 유입되는 흡수용액(113)의 온도는 높이고 흡수기(12)로 유입되는 흡수용액(113)의 온도는 낮추는 과정을 거쳐 열효율을 높인다. 재생기(13)에서 발생한 수증기는 응축기(14)로 유입되어 내부에 설치된 응축열교환튜브(114) 내부를 흐르는 냉각수에 의해 냉매인 액체상태의 물로 다시 환원되어 냉매유출배관(120)을 통하여 다시 증발기(11)로 유입되면서 순환의 한 주기를 마친다. 즉 증발기(11)에서 얻어진 냉열에 상당하는 열량은 흡수기(12)로 이동하였고, 재생기(13)에서는 다시 그에 상당하는 열을 가하여 냉매를 기화시켜 응축기(14)로 이동시켰기 때문에 증발기(11)에서 얻은 냉열량의 약2배에 해당하는 흡수기(12)와 응축기(14)에서 발생한 열량을 냉각수는 제거시켜야 한다. 뿐만 아니라 흡수기(12)와 응축기(14)를 순차적으로 냉각수가 순환하면서 냉각작용을 하므로 온도낙차가 커져서 냉각탑의 부담이 커지며 냉각수 유량을 대폭 증대시키는 단점이 있다.      1 is an explanatory diagram of a conventional absorption refrigerator. The absorption type cold / hot water generator also has a mode of generating cold heat, but it is typically described as an absorption type refrigerator. In the conventional absorption type refrigerator, cold heat application unit 10, evaporator 11, absorber 12, regenerator 13, condenser 14 and cooling tower 15 are connected by piping to generate cold heat and hot heat. A vaporizing heat exchange tube 116 is installed inside the sealed evaporator 11 and a refrigerant spraying device 16 is installed on the upper part of the evaporation heat exchange tube 116. The refrigerant spraying device 16 is installed in the evaporator 11 through the upper refrigerant spraying device 16, The evaporation heat exchange tube 116 is connected to the cold heat source 10 through the closed circulation pipe and the refrigerant 112 is supplied to the lower part of the evaporator 11, And the evaporator body passage 117 is connected to the evaporator 11 and the absorber 12 in such a manner that the evaporator 11 and the absorber 12 penetrate through the absorber 12. An absorption heat exchange tube 115 is installed inside the sealed absorber 12, And an absorber solution outflow pipe 19 is provided on the pipe so that the absorbent solution outflow pipe 122 is provided so as to pass through one side of the regenerator 13 from the lower part of the inside of the absorber 12, Through the absorbing solution injector (17) inside the absorber (12) The absorbing solution heat exchanger 111 is installed so that the solution flowing through the absorbing solution outflow pipe 122 and the solution flowing into the absorbing solution inflow pipe 123 is installed to be absorbed in the lower part of the inside of the absorber 12 The solution 113 is filled and the heating device 110 is installed so as to heat the regenerator 13 and the condenser body passage 118 is connected to the regenerator 13 and the condenser 14 so as to pass therethrough, A condensation heat exchange tube 114 is installed inside the condenser 14 and a refrigerant outflow pipe 120 is installed to one side of the refrigerant injection pipe 121 from the lower part of the inside of the condenser 14 so as to pass through the T branch, The cooling water pipe 119 is installed so that the cooling water circulation circuit of the cooling tower 15 is formed and the evaporator 11 and the evaporator body passage 117 are connected to the absorber 12 And a vacuum pump (not shown) for lowering the pressure of the space to be constituted. The regenerator 13 may be constituted by one unit and may be constituted by a high-temperature regenerator and two low-temperature regenerators such as a dual efficiency absorption type refrigerator. The low temperature regenerator heats up by using the latent heat of water vapor generated in the high temperature regenerator. The working principle is as follows. The refrigerant is injected through the refrigerant injector 16 while the vacuum pump is operated to maintain the pressure of the space constituted by the evaporator 11, the evaporator body passage 117 and the absorber 12 at a low pressure of about 0.01 atm, The refrigerant vaporizes to generate water vapor of about 5 ° C. and the evaporation heat exchange tube 116 is cooled to provide the cold heat source 10 with cold heat which is passed through the evaporator body passage 117, The absorbing solution injected into the absorber 12 is absorbed by the absorbing solution 113 having a low vapor pressure injected into the absorbing solution injector 17, and the cooling process is repeated. As the absorbing solution 113, an aqueous solution of sodium chloride (NaCl), a solution of lithium bromide (LiBr) and the like are used. In the absorber 12, the heat generated as the water vapor is absorbed by the absorbing liquid is cooled by the cooling water flowing into the absorption heat exchange tube 115. The absorbing solution 113 having the reduced concentration absorbed from the evaporator 11 is introduced into the regenerator 13 through the absorbing solution outlet pipe 122 by the absorbing solution outlet pump 19 and the regenerator 13 The diluted absorbing solution 113 evaporates water vapor and increases the concentration of the absorbing solution 113. The absorbing solution 113 having a higher concentration flows back to the absorber 12 through the absorption solution inflow pipe 123, Repeat the process. The temperature of the absorption liquid 113 in the absorption liquid outlet pipe 122 is low and the absorption liquid 113 flowing in the absorption liquid inlet pipe 123 has a high temperature so that heat exchange is carried out between them through the absorption liquid heat exchanger 111 The temperature of the absorbing solution 113 flowing into the regenerator 13 is increased and the temperature of the absorbing solution 113 flowing into the absorber 12 is lowered to increase the thermal efficiency. The water vapor generated in the regenerator 13 flows into the condenser 14 and is returned to liquid water as a refrigerant by the cooling water flowing in the condensation heat exchange tube 114 installed in the condenser 14 to be returned to the evaporator 11) and completes one cycle of circulation. That is, the heat amount corresponding to the cold heat obtained in the evaporator 11 is transferred to the absorber 12, and the refrigerant is vaporized by applying the heat corresponding thereto again in the regenerator 13 to move to the condenser 14, Cooling water should be removed from the absorber 12 and the amount of heat generated in the condenser 14, which is about twice the amount of the obtained heat. In addition, since the cooling water circulates sequentially through the absorber 12 and the condenser 14 to cool down, the temperature drop increases and the burden on the cooling tower increases, and the flow rate of the cooling water is significantly increased.

도 2는 본 발명의 응축시스템을 개선시킨 흡수식냉동기 설명도이다. 흡수식냉온수기도 냉열을 발생하는 모드가 있으므로 본 발명을 적용할 수 있음은 당연한 것이나 대표적으로 흡수식냉동기로 설명을 한다. 밀폐된 증발기(11) 내부에 증발열교환튜브(116)가 설치되고 그 상부에는 냉매분사장치(16)가 설치되며 증발기(11) 내부 하부에서 상부의 냉매분사장치(16)에 관통하여 연결되도록 냉매분사배관(121)을 설치하고 그 관로상에 냉매분사펌프(18)를 설치하고, 증발열교환튜브(116) 는 냉열사용처(10)와 폐순환배관으로 연결하고 증발기(11) 내부 하부에 냉매(112)를 채우고, 증발기체통로(117)를 증발기(11)와 흡수기(12)가 관통되도록 연결하고 밀폐된 흡수기(12) 내부에 흡수열교환튜브(115)가 설치되고 그 상부에는 흡수용액분사장치(17)가 설치되며 흡수기(12) 내부 하부에서 재생기(13) 일측에 관통되도록 흡수용액유출배관(122)을 설치하고 그 관로상에 흡수용액유출펌프(19)를 설치하고 재생기(13) 내부 하부에서 흡수기(12) 내부 상부의 흡수용액분사장치(17)에 관통하여 연결되도록 흡수용액유입배관(123)을 설치하고 흡수용액유출배관(122)과 흡수용액유입배관(123)에 흐르는 용액이 열교환하도록 흡수용액열교환기(111)를 설치하고 흡수기(12) 내부 하부에 흡수용액(113)을 채우고, 재생기(13)에 열을 가하도록 가열장치(110)를 설치하고, 내부에 밀폐된 응축유로(미도시)가 형성된 노출응축기(21)를 설치하고 응축기체통로(118)를 재생기(13) 상부 일측과 노출응축기(21)의 응축유로 유입구가 관통되도록 연결하고 노출응축기(21)의 응축유로 유출구와 냉매분사배관(121) 일측이 T분기로 관통되도록 냉매유출배관(120)을 설치하고, 냉각탑(15) 유출구와 흡수열교환튜브(115) 유입구를 냉각수유출배관(24)으로 연결하고 냉각탑(15) 유입구와 흡수열교환튜브(115) 유출구를 냉각수유입배관(23)으로 연결하여 냉각탑(15) - 흡수열교환튜브(115) - 다시 냉각탑(15)의 냉각수 폐순환회로가 형성시키며 냉각수유입배관(23) 또는 냉각수유출배관(24) 관로상에 냉각수순환펌프(22)를 설치하고, 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 낮추는 진공펌프(미도시)를 설치하여 구성하는 것을 특징으로 한다. 흡수용액(113)은 리듐브로마이드(LiBr) 수용액일 수 있으며 냉매(112)는 물(H2O)일 수 있다. 작동원리는 다음과 같다. 진공펌프를 가동하여 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 약 0.01기압의 낮은 압력을 유지하는 상태에서 냉매분사장치(16)를 통하여 냉매가 분사되면 냉매가 물(H2O)일 경우 냉매가 기화하여 약5℃ 정도의 수증기가 만들어지며 증발열교환튜브(116)를 식혀서 냉열사용처(10)에 냉열을 제공하고, 이 수증기는 증발기체통로(117)를 통하여 흡수기(12)로 유입되어 흡수용액분사장치(17)로 분사되는 증기압이 낮은 흡수용액(113)에 흡수되면서 냉각과정을 반복한다. 흡수기(12)에서는 수증기가 흡수액에 흡수되면서 발생하는 열을 흡수열교환튜브(115) 내부에 흐르는 냉각수에 의해 냉각된다. 수증기를 흡수하여 농도가 묽어진 흡수용액(113)은 흡수용액유출펌프(19)에 의해 흡수용액유출배관(122)을 통하여 재생기(13)에 유입되고, 재생기(13)에 설치된 가열장치(110)가 가동하면 묽은 흡수용액(113)은 수증기를 증발시키고 농도가 높아지며 농도가 높아진 흡수용액(113)은 흡수용액유입배관(123)을 통하여 다시 흡수기(12)로 순환하는 과정을 반복한다. 재생기(13)에서 발생한 증기는 노출응축기(21)로 유입되어 외부로 열을 버린 다음 물로 다시 환원되어 냉매유출배관(120)을 통하여 다시 증발기(11)로 유입되면서 순환의 한 주기를 마친다. 즉 증발기(11)에서 얻어진 냉열량에 상당하는 온열량은 흡수기(12)로 이동하였고, 재생기(13)에서는 다시 그에 상당하는 열을 가하여 냉매를 기화시켜 노출응축기(21)로 이동시켰기 때문에 증발기(11)에서 얻은 냉열량의 약1배에 해당하는 열량만이 흡수기(12) 내부의 흡수열교환튜브(115)를 통하여 냉각탑(15)에서 제거되기 때문에 냉각수 유량이 줄어들며 냉각탑(15)의 부담도 줄어든다. 재생기(13)에서 발생한 열은 노출응축기(21)에서 제거된다. 흡수기(12)와 재생기(13)의 열이 각각 냉각탑(15)과 노출응축기(21)에서 별도로 제거되므로 냉각탑(15)과 노출응축기(21)의 냉각부담을 줄일 수 있다. 냉각용배관의 수량이 2개에서 4개로 증가 되지만 배관의 굵기가 가늘어지므로 냉각용배관의 총단면적 측면에서는 큰 차이가 없다.      2 is an explanatory view of an absorption type refrigerator in which the condensing system of the present invention is improved. Since the absorption type cold / hot water generating machine also has a mode of generating cold heat, it is natural that the present invention can be applied, but the absorption type refrigerator will be described as a typical example. A vaporizing heat exchange tube 116 is installed inside the sealed evaporator 11 and a refrigerant spraying device 16 is installed on the upper part of the evaporation heat exchange tube 116. The refrigerant spraying device 16 is installed in the evaporator 11 through the upper refrigerant spraying device 16, The evaporation heat exchange tube 116 is connected to the cold heat source 10 through the closed circulation pipe and the refrigerant 112 is supplied to the lower part of the evaporator 11, And the evaporator body passage 117 is connected to the evaporator 11 and the absorber 12 in such a manner that the evaporator 11 and the absorber 12 penetrate through the absorber 12. An absorption heat exchange tube 115 is installed inside the sealed absorber 12, And an absorber solution outflow pipe 19 is provided on the pipe so that the absorbent solution outflow pipe 122 is provided so as to pass through one side of the regenerator 13 from the lower part of the inside of the absorber 12, Through the absorbing solution injector (17) inside the absorber (12) The absorbing solution heat exchanger 111 is installed so that the solution flowing through the absorbing solution outflow pipe 122 and the solution flowing into the absorbing solution inflow pipe 123 is installed to be absorbed in the lower part of the inside of the absorber 12 A heating device 110 is installed so as to heat the regenerator 13 with the solution 113 filled therein and an exposed condenser 21 in which a condensing passage (not shown) Is connected to one side of the upper side of the regenerator 13 so as to penetrate the condensing flow inlets of the exposed condenser 21 and the condensate flow outlets of the exposed condenser 21 and one side of the refrigerant injection pipe 121 are passed through the refrigerant outflow pipe The inlet of the cooling tower 15 and the inlet of the absorption heat exchange tube 115 are connected to the cooling water outlet pipe 24 and the outlet of the cooling tower 15 and the absorption heat exchange tube 115 are connected to the cooling water inlet pipe 23 Connect the cooling tower (15) - the absorption heat exchange tube (115) - again The cooling water circulation circuit of the cooling tower 15 is formed and the cooling water circulation pump 22 is installed on the channel of the cooling water inflow pipe 23 or the cooling water inflow pipe 24. The evaporator 11, And a vacuum pump (not shown) for lowering the pressure of the space constituted by the vacuum pump 12 is provided. The absorption solution 113 may be an aqueous solution of lithium bromide (LiBr) and the refrigerant 112 may be water (H2O). The working principle is as follows. The refrigerant is injected through the refrigerant injector 16 while the vacuum pump is operated to maintain the pressure of the space constituted by the evaporator 11, the evaporator body passage 117 and the absorber 12 at a low pressure of about 0.01 atm, The refrigerant vaporizes to generate water vapor of about 5 ° C. and the evaporation heat exchange tube 116 is cooled to provide the cold heat source 10 with cold heat which is passed through the evaporator body passage 117, The absorbing solution injected into the absorber 12 is absorbed by the absorbing solution 113 having a low vapor pressure injected into the absorbing solution injector 17, and the cooling process is repeated. In the absorber 12, the heat generated as the water vapor is absorbed by the absorbing liquid is cooled by the cooling water flowing into the absorption heat exchange tube 115. The absorption liquid 113 having a reduced concentration by absorbing water vapor is introduced into the regenerator 13 through the absorption liquid outlet pipe 122 by the absorption liquid outlet pump 19 and is supplied to the heating device 110 The dilute absorbing solution 113 evaporates water vapor and repeats the process of circulating the absorbing solution 113 having a higher concentration and increasing the concentration to the absorber 12 through the absorbing solution inflow pipe 123. The steam generated in the regenerator 13 flows into the exposed condenser 21 and is discharged to the outside and then returned to the water and then flows back into the evaporator 11 through the refrigerant outflow pipe 120 to complete a cycle of circulation. That is, the amount of heat corresponding to the amount of heat received by the evaporator 11 is transferred to the absorber 12, and the refrigerant is vaporized by applying the heat corresponding thereto again to the evaporator 11, 11 is removed from the cooling tower 15 through the absorption heat exchange tube 115 inside the absorber 12 so that the flow rate of cooling water is reduced and the burden on the cooling tower 15 is also reduced . Heat generated in the regenerator (13) is removed from the exposed condenser (21). Since the heat of the absorber 12 and the regenerator 13 are separately removed from the cooling tower 15 and the exposed condenser 21 respectively, the cooling load of the cooling tower 15 and the exposed condenser 21 can be reduced. The number of cooling pipes increases from two to four, but since the thickness of the pipes becomes narrow, there is no significant difference in the total sectional area of the cooling pipes.

도 3은 본 발명에 냉각수/흡수액열교환기를 추가한 사례 설명도이다. 도2에서 흡수기(12)로 유입되는 흡수용액의 온도를 낮추기 위하여 흡수기(12)의 열을 제거하고 냉각탑(15)으로 유입되는 냉각수유입배관(23)의 냉각수와 재생기(13)에서 흡수기(12)로 유입되는 흡수용액유입배관(123)의 흡수용액과 열교환을 하도록 냉각수/흡수액열교환기(31)를 추가로 설치하여 구성하는 것이 특징이다. 이렇게 하면 흡수기(12)를 냉각시키고 냉각탑(15)으로 돌아오는 냉각수의 잔여 냉열을 이용하여 흡수기(12)로 유입되는 흡수용액의 온도를 낮추어 증기압을 낮게 유지하여 흡수기(12)의 흡수능력을 증대시킬 수 있다.      FIG. 3 is a diagram illustrating a case where a cooling water / absorption liquid heat exchanger is added to the present invention. In order to lower the temperature of the absorption liquid flowing into the absorber 12 in FIG. 2, the absorber 12 is heated and the cooling water of the cooling water inflow pipe 23 flowing into the cooling tower 15 and the absorber 12 Absorbing liquid heat exchanger 31 so as to perform heat exchange with the absorption liquid of the absorption liquid inflow pipe 123 flowing into the absorption liquid inflow pipe 123. [ The temperature of the absorption liquid flowing into the absorber 12 is lowered by using the remaining cold heat of the cooling water that is cooled by the absorber 12 and returned to the cooling tower 15 so that the vapor pressure is kept low to increase the absorption capacity of the absorber 12. [ .

도 4는 본 발명에 증기집합통을 추가한 사례 설명도이다. 도2에서 재생기(13) 상부 일측과 노출응축기(21)의 응축유로(미도시) 유입구를 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 밀폐된 증기집합통(41)을 설치하고 증기집합통(41) 측부에 액분리기(42)를 설치하되 액분리기(42)의 유입배관은 증기집합통(41) 측부에 관통되도록 연결하고 액분리기(42)의 유출배관은 냉매유출배관(120)에 T분기로 관통되도록 연결하여 구성하는 것이 특징이다. 재생기(13)에서 발생한 증기가 응축기체통로(118)를 타고 이동하는 과정에서 응축기체통로(118)에서 비정상적으로 응축이 되는 냉매를 증기집합통(41)에 모아 재차 증발의 기회를 주고 그래도 증발하지 않는 액체 냉매는 액분리기(42)를 통하여 냉매유출배관(120)을 통하여 증발기(11)로 유입되도록 하여 응축기체통로(118) 내부에서 응축된 액체 냉매가 다시 재생기(13)로 들어가서 흡수용액의 농도를 묽게 하지 못하게 하기 위함이다.     FIG. 4 is a diagram illustrating a case in which a steam trap is added to the present invention. FIG. 2, the steam collecting cylinder 41 is closed in a Π (pi) branch on the condenser body passage 118 connecting one side of the regenerator 13 and the condensing passage (not shown) of the exposed condenser 21 And the liquid separator 42 is disposed on the side of the vapor collecting container 41 so that the inlet pipe of the liquid separator 42 is connected to the side of the vapor collecting container 41 and the outlet pipe of the liquid separator 42 is connected to the outlet of the refrigerant outlet And is connected to the pipe 120 so as to pass through the T branch. In the course of the steam generated in the regenerator 13 moving along the condenser body passage 118, the refrigerant, which is abnormally condensed in the condenser body passage 118, is collected in the steam collecting container 41 and is evaporated again, The liquid refrigerant that has not been condensed flows into the evaporator 11 through the refrigerant outflow pipe 120 through the liquid separator 42 so that the liquid refrigerant condensed in the condenser body passage 118 enters the regenerator 13 again, So as not to dilute the concentration of water.

도 5는 이중효용흡수식냉동기의 증기집합통 배관결합 사례 설명도이다. 이중효용흡수식냉동기는 재생기(13)의 열효율을 극대화시키기 위하여 재생기(13)가 하나가 아닌 2개로 구성되어 있는데 고온재생기(51)와 저온재생기(52)가 바로 그것이다. 고온재생기(51)에는 열을 가하도록 가열장치(110)를 갖추고 있으며, 저온재생기(52)는 밀폐된 공간 내부에 저온재생기가열튜브(53)가 설치되고 유입구에는 고온재생기증기통로(55)가 설치되며 유출구에는 가열증기유출배관(56)이 설치되고 고온재생기(51)에서 발생한 수증기가 저온재생기가열튜브(53)를 통하여 흐르면서 가열장치의 기능을 수행하며, 고온재생기(51)에서 저온재생기(52)로 흡수용액이 유출되도록 고온재생기용액배관(57)을 관통되게 설치하고 그 관로상에 고온재생기용액펌프(54)를 설치한다. 재생기(13)가 하나가 아닌 고온재생기(51)와 저온재생기(52)로 구분되어 2개로 구성되어 있는 이중효용흡수식냉동기의 경우에 저온재생기(52) 상부 일측과 노출응축기(21)의 응축유로 입구를 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 설치된 밀폐된 증기집합통(41)의 측부 또는 상부 일측에 저온재생기(52)의 가열증기유출배관(56)을 추가로 관통되게 설치하여 구성하는 것이 특징이다. 이중효용흡수식냉동기의 경우에는 저온재생기(52)를 가열한 고온재생기(51)의 증기가 유출되는 가열증기유출배관(56)에서도 증기 또는 고온의 응축된 냉매가 유출되므로 이를 처리할 필요가 있다.      FIG. 5 is an explanatory view of a steam-collecting pipe connection example of a dual-effect absorption refrigerator. FIG. In order to maximize the thermal efficiency of the regenerator 13, the double-efficiency absorption refrigerator is composed of two regenerators 13 instead of one regenerator 13, which is a high temperature regenerator 51 and a low temperature regenerator 52. The low temperature regenerator 52 is provided with a low temperature regenerator heating tube 53 inside the sealed space and a high temperature regenerator vapor passage 55 is provided at the inlet port of the high temperature regenerator 51 Temperature steam generator is installed in the outlet and the steam generated in the high temperature regenerator 51 functions as a heating device while flowing through the low temperature regenerator heating tube 53. In the high temperature regenerator 51, 52, a high-temperature regenerator solution pipe 54 is provided so as to penetrate the high-temperature regenerator solution pipe 57 so that the absorption solution flows out, and a high-temperature regenerator solution pump 54 is installed on the pipe. Temperature regenerator 52 and the condenser 21 of the exposed condenser 21 in the case of a double effect absorption refrigerator in which the regenerator 13 is divided into a high temperature regenerator 51 and a low temperature regenerator 52, The heated steam outlet pipe 56 of the low temperature regenerator 52 is additionally provided on the side or top side of the closed steam collecting cylinder 41 which is provided in the pipe (pi) branch on the pipe of the condenser body passage 118 connecting the inlet And is constructed so as to pass therethrough. In the case of the double-effect absorption refrigerator, vapor or high-temperature condensed refrigerant flows out from the heated vapor outlet pipe 56 through which the vapor of the high-temperature regenerator 51 heated by the low-temperature regenerator 52 flows out.

도 6은 기존 흡수식냉동기에 본 발명을 적용한 사례 설명도이다. 도1의 흡수식냉동기에서 재생기(13)와 응축기(14)가 관통되도록 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 내부에 밀폐된 응축유로(미도시)가 형성된 노출응축기(21)를 설치하되 노출응축기(21)의 응축유로 유입구는 재생기(13)와 연결된 응축기체통로(118)를 연결하고 노출응축기(21)의 응축유로 유출구는 응축기(14)와 연결된 응축기체통로(118)를 연결하여 구성하는 것이 특징이다. 이 경우는 기존의 흡수식냉동기에서 노출응축기(21) 만을 추가로 설치하기 때문에 구조변경을 최소화시키면서 본 발명을 구현하는 것이며 기존에 설치된 흡수식냉동기에 본 발명을 적용할 수 있는 최선의 방법이다. 위와 같이 구성하면 응축기(14)에는 노출응축기(21)에서 이미 응축된 액체 냉매가 유입되므로 별도의 응축작용은 일어나지 않지만 냉각탑(15)으로 유입되는 냉각수유입배관(23)의 냉각수 잔여 냉열로 온도가 더 낮아질 수 있으므로 증발기(11)에 더 낮은 온도의 냉매가 공급되어 냉각성능 향상에 매우 효과적이다. 또한 이에 추가하여 재생기(13) 상부 일측과 노출응축기(21)의 응축유로(미도시) 입구를 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 밀폐된 증기집합통(41)을 설치하고 증기집합통(41) 측부에 액분리기(42)를 설치하되 액분리기(42)의 유입배관은 증기집합통(41) 측부에 관통되도록 연결하고 액분리기(42)의 유출배관은 노출응축기(21)의 응축유로(미도시) 유출구에서 응축기(14)로 유입되는 응축기체통로(118)에 T분기로 관통되도록 연결하여 구성하는 것도 본 발명의 범위에 포함된다. 도5에서 설명한 바와 같이 재생기(13)가 하나가 아닌 고온재생기(51)와 저온재생기(52)로 구분되어 2개로 구성되어 있는 이중효용흡수식냉동기의 경우에 증기집합통(41) 상부 또는 측부에 가열증기유출배관(56)을 추가로 연결하여 구성하는 것도 본 발명의 범위에 포함된다.      FIG. 6 is an explanatory diagram of a case in which the present invention is applied to a conventional absorption refrigerator. 1, the regenerator 13 and the condenser 14 are connected to each other through a condenser body passage 118. The exhaust condenser (not shown) is provided with a condensing passage (not shown) And the condensing flow inlets of the exposed condenser 21 are connected to the condenser body passage 118 connected to the regenerator 13 and the condensing duct outlet of the exposed condenser 21 is connected to the condenser body passage 118 are connected to each other. In this case, since only the exposed condenser 21 is installed in the conventional absorption refrigerator, the present invention is implemented while minimizing the structural change, and it is the best way to apply the present invention to the existing absorption refrigerator. The liquid refrigerant already condensed in the outdoor condenser 21 flows into the condenser 14 so that no additional condensation occurs but the temperature of the cooling water remaining in the cooling water inflow pipe 23 flowing into the cooling tower 15 The refrigerant at a lower temperature is supplied to the evaporator 11, which is very effective for improving the cooling performance. In addition to this, in addition to the vapor collecting cylinder 41 which is branched by a pi (pi) on the condenser body passage 118 connecting one side of the regenerator 13 and the condensing passage (not shown) of the exposed condenser 21, And a liquid separator 42 is provided on the side of the vapor collecting container 41 so that the inlet pipe of the liquid separator 42 is connected to the side of the vapor collecting container 41 and the outlet pipe of the liquid separator 42 is exposed It is also within the scope of the present invention to constitute the condenser tube 21 so as to pass through the condenser tube 118 flowing into the condenser tube 14 through the T branch from an outlet of the condenser tube 21 (not shown). As described in FIG. 5, in the case of a double-effect absorption refrigerator in which the regenerator 13 is divided into a high-temperature regenerator 51 and a low-temperature regenerator 52, It is also within the scope of the present invention to construct the heating steam outlet pipe 56 by further connecting it.

도 7은 본 발명에 응축기결합냉각탑이 적용된 사례 설명도이다. 도2에서 냉각탑(15)과 노출응축기(21)를 결합시킨 응축기결합냉각탑(70)을 설치한 것이 특징이다. 밀폐된 증발기(11) 내부에 증발열교환튜브(116)가 설치되고 그 상부에는 냉매분사장치(16)가 설치되며 증발기(11) 내부 하부에서 상부의 냉매분사장치(16)에 관통하여 연결되도록 냉매분사배관(121)을 설치하고 그 관로상에 냉매분사펌프(18)를 설치하고, 증발열교환튜브(116)는 냉열사용처(10)와 폐순환배관으로 연결하고 증발기(11) 내부 하부에 냉매(112)를 채우고, 증발기체통로(117)를 증발기(11)와 흡수기(12)가 관통되도록 연결하고 밀폐된 흡수기(12) 내부에 흡수열교환튜브(115)가 설치되고 그 상부에는 흡수용액분사장치(17)가 설치되며 흡수기(12) 내부 하부에서 재생기(13) 일측에 관통되도록 흡수용액유출배관(122)을 설치하고 그 관로상에 흡수용액유출펌프(19)를 설치하고 재생기(13) 내부 하부에서 흡수기(12) 내부 상부의 흡수용액분사장치(17)에 관통하여 연결되도록 흡수용액유입배관(123)을 설치하고 흡수용액유출배관(122)과 흡수용액유입배관(123)에 흐르는 용액이 열교환하도록 흡수용액열교환기(111)를 설치하고 흡수기(12) 내부 하부에 흡수용액(113)을 채우고, 재생기(13)에 열을 가하도록 가열장치(110)를 설치하고, 내부 일측에 밀폐된 응축유로(미도시)와 내부 또 다른 일측에 냉각수유로(미도시)가 형성된 응축기결합냉각탑(70)을 설치하고 응축기체통로(118)를 재생기(13) 상부 일측과 응축기결합냉각탑(70)의 응축유로 유입구가 관통되도록 연결하고 응축기결합냉각탑(70)의 응축유로 유출구와 냉매분사배관(121) 일측이 T분기로 관통되도록 냉매유출배관(120)을 설치하고, 응축기결합냉각탑(70)의 냉각수유로 유출구와 흡수열교환튜브(115) 유입구를 냉각수유출배관(24)으로 연결하고 응축기결합냉각탑(70)의 냉각수유로 유입구와 흡수열교환튜브(115) 유출구를 냉각수유입배관(23)으로 연결하여 응축기결합냉각탑(70)의 냉각수유로 - 흡수열교환튜브(115) - 다시 응축기결합냉각탑(70)의 냉각수유로의 냉각수 폐순환회로가 형성시키며 냉각수유입배관(23) 또는 냉각수유출배관(24) 관로상에 냉각수순환펌프(22)를 설치하고, 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 낮추는 진공펌프(미도시)로 구성하는 것을 특징으로 한다. 이와 같이 구성하면 응축기결합냉각탑(70) 하나로 응축기와 냉각탑의 기능을 모두 할 수 있어서 공간 활용에 매우 효과적이다.      FIG. 7 is an explanatory diagram of a case where a condenser-coupled cooling tower is applied to the present invention. In FIG. 2, a condenser-coupled cooling tower 70 in which a cooling tower 15 and an exposed condenser 21 are combined is provided. A vaporizing heat exchange tube 116 is installed inside the sealed evaporator 11 and a refrigerant spraying device 16 is installed on the upper part of the evaporation heat exchange tube 116. The refrigerant spraying device 16 is installed in the evaporator 11 through the upper refrigerant spraying device 16, The evaporation heat exchange tube 116 is connected to the cold heat source 10 through the closed circulation pipe and the refrigerant 112 is supplied to the lower part of the evaporator 11, And the evaporator body passage 117 is connected to the evaporator 11 and the absorber 12 in such a manner that the evaporator 11 and the absorber 12 penetrate through the absorber 12. An absorption heat exchange tube 115 is installed inside the sealed absorber 12, And an absorber solution outflow pipe 19 is provided on the pipe so that the absorbent solution outflow pipe 122 is provided so as to pass through one side of the regenerator 13 from the lower part of the inside of the absorber 12, Through the absorbing solution injector (17) inside the absorber (12) The absorbing solution heat exchanger 111 is installed so that the solution flowing through the absorbing solution outflow pipe 122 and the solution flowing into the absorbing solution inflow pipe 123 is installed to be absorbed in the lower part of the inside of the absorber 12 A heating device 110 is installed so as to fill the solution 113 and to heat the regenerator 13 and a condensing passage (not shown) sealed at one side and a cooling water passage (not shown) at another side The condenser cooling tower 70 is installed and the condenser body passage 118 is connected to one side of the upper side of the regenerator 13 and the condensing duct inlet port of the condenser combined cooling tower 70 so as to penetrate the condenser duct outlet port of the condenser- A refrigerant outflow pipe 120 is provided so that one side of the injection pipe 121 is passed through the T branch and the cooling water outlet port of the condenser combined cooling tower 70 is connected to the inlet of the absorption heat exchange tube 115 through a cooling water outlet pipe 24 Cooling of the condenser-combined cooling tower (70) The cooling water channel-absorbing heat exchange tube 115 of the condenser-combined cooling tower 70 is connected to the channel inlet and the outlet of the absorption heat exchange tube 115 by the cooling water inflow pipe 23 and the cooling water circulation cycle of the cooling water channel of the condenser- A cooling water circulation pump 22 is provided on the cooling water inflow pipe 23 or the cooling water inflow pipe 24 and a space formed by the evaporator 11 and the evaporator body passage 117 and the absorber 12 And a vacuum pump (not shown) for lowering the pressure of the exhaust gas. With this configuration, the condenser-combined cooling tower 70 can function as both the condenser and the cooling tower, which is very effective in space utilization.

도 8은 응축기결합냉각탑 사례 설명도이다. 도7에서 제시한 냉각탑(15)과 노출응축기(21)를 결합시킨 응축기결합냉각탑(70)의 한 사례를 도시하였다. 응축기결합냉각탑(70)의 외함(81) 내부에 다수개의 응축튜브가 수직으로 설치된 수직형노출응축기(83)를 설치하고 수직형노출응축기(83) 유입구는 재생기(13) 상부와 연결된 응축기체통로(118)를 연결하고 수직형노출응축기(83) 유출구는 냉매유출배관(120)과 연결되어 밀폐된 응축유로를 구성하며 수직형노출응축기(83) 상부에 하나 이상의 분사노즐이 설치된 분사장치(82)를 설치하여 유입구에 냉각수유입배관(23)을 연결하고 냉각수(25)가 고이는 외함(81) 내부 하부 일측에 냉각수유출배관(24)을 설치하여 냉각수유로를 형성하고 분사장치(82) 상부에는 냉매의 외부 분산을 막기 위하여 엘리미네이터(84)가 설치되며 외함(81) 측면 하부에 다수의 공기유입구(86)를 설치하고 외함(81) 상부 일측에 공기유출구(87)를 형성시키고 공기유출구(87) 하부 또는 상부에 냉각팬(85)을 설치하여 구성하는 것이 특징이다. 위와 같이 구성을 하면 냉각수유입배관(23)으로 유입되는 냉각수(25)가 분사장치(82)에서 분사되면서 기화하여 냉각수(25)도 온도가 낮아지지만 응축기결합냉각탑(70) 내부로 유입된 공기도 차가워진 상태에서 수직형노출응축기(83)를 냉각시켜 응축튜브 내부의 증기를 응축시켜서 하나의 응축기결합냉각탑(70)로 냉각탑과 응축기의 기능을 함께 수행 할 수 있다. 특히 냉각탑의 경우 분사되는 냉매의 증발단면적을 넓히고자 내부 공간에 충진재를 채우는데 위와 같이 구성을 하면 수직형노출응축기(83)가 충진재 역할을 대신 수행할 수 있어서 응축기를 별도의 공간이 아닌 응축기결합냉각탑(70) 내부에 설치할 수 있어서 공간활용에 매우 효과적이다.     8 is an explanatory view of a condenser-coupled cooling tower. An example of the condenser-coupled cooling tower 70 in which the cooling tower 15 and the exposed condenser 21 shown in FIG. 7 are combined is shown. A vertical type outdoor condenser 83 having a plurality of vertically installed condensing tubes is installed inside the enclosure 81 of the condenser combined cooling tower 70 and a vertical type outdoor condenser 83 inlet is connected to the condenser body 83 connected to the upper part of the regenerator 13 And the outlet of the vertical type outdoor condenser 83 is connected to the refrigerant outflow pipe 120 to constitute a closed condensing passage and the injector 82 having one or more injection nozzles installed on the vertical type outdoor condenser 83 And a cooling water outflow pipe 24 is provided on one side of the lower part of the inside of the enclosure 81 in which the cooling water 25 is poured to form a cooling water flow path and an upper part of the cooling water inflow pipe 23 A plurality of air inflow ports 86 are provided below the side surface of the enclosure 81 and an air outflow port 87 is formed on one side of the enclosure 81 to prevent external dispersion of the refrigerant, (87) A cooling fan (85). The cooling water 25 flowing into the cooling water inflow pipe 23 is vaporized while being jetted from the jetting device 82 so that the temperature of the cooling water 25 is also lowered but the air introduced into the condenser- The vertical exposure condenser 83 can be cooled in the cold state to condense the vapor inside the condensing tube to perform the function of the cooling tower and the condenser together with one condenser-combined cooling tower 70. In particular, in the case of a cooling tower, the filler is filled in the inner space in order to widen the cross-sectional area of the evaporated refrigerant. With the above configuration, the vertical type outdoor condenser 83 can function as a filler instead of the separate space, It can be installed inside the cooling tower 70, which is very effective for space utilization.

10 : 냉열사용처 11 : 증발기
12 : 흡수기 13 : 재생기
14 : 응축기 15 : 냉각탑
16 : 냉매분사장치 17 : 흡수용액분사장치
18 : 냉매분사펌프 19 : 흡수용액유출펌프
110 : 가열장치 111 : 흡수용액열교환기
112 : 냉매 113 : 흡수용액
114 : 응축열교환튜브 115 : 흡수열교환튜브
116 : 증발열교환튜브 117 : 증발기체통로
118 : 응축기체통로 119 : 냉각수배관
120 : 냉매유출배관 121 : 냉매분사배관
122 : 흡수용액유출배관 123 : 흡수용액유입배관
21 : 노출응축기 22 : 냉각수순환펌프
23 : 냉각수유입배관 24 : 냉각수유출배관
25 : 냉각수 31 : 냉각수/흡수액열교환기
41 : 증기집합통 42 : 액분리기
51 : 고온재생기 52 : 저온재생기
53 : 저온재생기가열튜브 54 : 고온재생기용액펌프
55 : 고온재생기증기통로 56 : 가열증기유출배관
57 : 고온재생기용액배관 70 : 응축기결합냉각탑
81 : 외함 82 : 분사장치
83 : 수직형노출응축기 84 : 엘리미네이터
85 : 냉각팬 86 : 공기유입구
87 : 공기유출구
10: Cold heat application place 11: Evaporator
12: absorber 13: regenerator
14: condenser 15: cooling tower
16: Refrigerant jetting device 17: Absorbing solution jetting device
18: Refrigerant injection pump 19: Absorption solution outlet pump
110: Heating device 111: Absorption solution heat exchanger
112: refrigerant 113: absorption liquid
114: condensation heat exchange tube 115: absorption heat exchange tube
116: evaporation heat exchange tube 117: evaporator body passage
118: condenser body conduit 119: cooling water piping
120: Refrigerant outflow pipe 121: Refrigerant injection pipe
122: absorption liquid outlet pipe 123: absorption liquid inlet pipe
21: Exposure condenser 22: Cooling water circulation pump
23: Cooling water inflow pipe 24: Cooling water outflow pipe
25: cooling water 31: cooling water / absorption liquid heat exchanger
41: vapor collecting box 42: liquid separator
51: high temperature regenerator 52: low temperature regenerator
53: low temperature regenerator heating tube 54: high temperature regenerator solution pump
55: high temperature regenerator vapor passage 56: heated vapor outlet pipe
57: high-temperature regenerator solution pipe 70: condenser-coupled cooling tower
81: Enclosure 82: Injection device
83: Vertical Exposed Condenser 84: Eliminator
85: cooling fan 86: air inlet
87: air outlet

Claims (9)

밀폐된 증발기(11) 내부에 증발열교환튜브(116)가 설치되고 그 상부에는 냉매분사장치(16)가 설치되며 증발기(11) 내부 하부에서 상부의 냉매분사장치(16)에 관통하여 연결되도록 냉매분사배관(121)을 설치하고 그 관로상에 냉매분사펌프(18)를 설치하고, 증발열교환튜브(116) 는 냉열사용처(10)와 폐순환배관으로 연결하고 증발기(11) 내부 하부에 냉매(112)를 채우고, 증발기체통로(117)를 증발기(11)와 흡수기(12)가 관통되도록 연결하고 밀폐된 흡수기(12) 내부에 흡수열교환튜브(115)가 설치되고 그 상부에는 흡수용액분사장치(17)가 설치되며 흡수기(12) 내부 하부에서 재생기(13) 일측에 관통되도록 흡수용액유출배관(122)을 설치하고 그 관로상에 흡수용액유출펌프(19)를 설치하고 재생기(13) 내부 하부에서 흡수기(12) 내부 상부의 흡수용액분사장치(17)에 관통하여 연결되도록 흡수용액유입배관(123)을 설치하고 흡수용액유출배관(122)과 흡수용액유입배관(123)에 흐르는 용액이 열교환하도록 흡수용액열교환기(111)를 설치하고 흡수기(12) 내부 하부에 흡수용액(113)을 채우고, 재생기(13)에 열을 가하도록 가열장치(110)를 설치하고, 내부에 밀폐된 응축유로(미도시)가 형성된 노출응축기(21)를 설치하고 응축기체통로(118)를 재생기(13) 상부 일측과 노출응축기(21)의 응축유로 유입구가 관통되도록 연결하고 노출응축기(21)의 응축유로 유출구와 냉매분사배관(121) 일측이 T분기로 관통되도록 냉매유출배관(120)을 설치하고, 냉각탑(15) 유출구와 흡수열교환튜브(115) 유입구를 냉각수유출배관(24)으로 연결하고 냉각탑(15) 유입구와 흡수열교환튜브(115) 유출구를 냉각수유입배관(23)으로 연결하여 냉각탑(15) - 흡수열교환튜브(115) - 다시 냉각탑(15)의 냉각수 폐순환회로가 형성시키며 냉각수유입배관(23) 또는 냉각수유출배관(24) 관로상에 냉각수순환펌프(22)를 설치하고, 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 낮추는 진공펌프(미도시)를 설치하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     A vaporizing heat exchange tube 116 is installed inside the sealed evaporator 11 and a refrigerant spraying device 16 is installed on the upper part of the evaporation heat exchange tube 116. The refrigerant spraying device 16 is installed in the evaporator 11 through the upper refrigerant spraying device 16, The evaporation heat exchange tube 116 is connected to the cold heat source 10 through the closed circulation pipe and the refrigerant 112 is supplied to the lower part of the evaporator 11, And the evaporator body passage 117 is connected to the evaporator 11 and the absorber 12 in such a manner that the evaporator 11 and the absorber 12 penetrate through the absorber 12. An absorption heat exchange tube 115 is installed inside the sealed absorber 12, And an absorber solution outflow pipe 19 is provided on the pipe so that the absorbent solution outflow pipe 122 is provided so as to pass through one side of the regenerator 13 from the lower part of the inside of the absorber 12, Through the absorbing solution injector (17) inside the absorber (12) The absorbing solution heat exchanger 111 is installed so that the solution flowing through the absorbing solution outflow pipe 122 and the solution flowing into the absorbing solution inflow pipe 123 is installed to be absorbed in the lower part of the inside of the absorber 12 A heating device 110 is installed so as to heat the regenerator 13 with the solution 113 filled therein and an exposed condenser 21 in which a condensing passage (not shown) Is connected to one side of the upper side of the regenerator 13 so as to penetrate the condensing flow inlets of the exposed condenser 21 and the condensate flow outlets of the exposed condenser 21 and one side of the refrigerant injection pipe 121 are passed through the refrigerant outflow pipe The inlet of the cooling tower 15 and the inlet of the absorption heat exchange tube 115 are connected to the cooling water outlet pipe 24 and the outlet of the cooling tower 15 and the absorption heat exchange tube 115 are connected to the cooling water inlet pipe 23 Connect the cooling tower (15) - the absorption heat exchange tube (115) - again The cooling water circulation circuit of the cooling tower 15 is formed and the cooling water circulation pump 22 is installed on the channel of the cooling water inflow pipe 23 or the cooling water inflow pipe 24. The evaporator 11, And a vacuum pump (not shown) for lowering the pressure of the space constituted by the condenser 12 is provided. 제1항에 있어서, 냉각탑(15)으로 유입되는 냉각수유입배관(23)의 냉각수와 재생기(13)에서 흡수기(12)로 유입되는 흡수용액유입배관(123)의 흡수용액과 열교환을 하도록 냉각수/흡수액열교환기(31)를 추가로 설치하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     The water treatment system according to claim 1, wherein the cooling water of the cooling water inflow pipe (23) flowing into the cooling tower (15) and the absorption liquid of the absorption solution inflow pipe (123) flowing into the absorber (12) And the absorption liquid heat exchanger (31) is additionally provided. 제1항에 있어서, 재생기(13) 상부 일측과 노출응축기(21)의 응축유로(미도시) 유입구를 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 밀폐된 증기집합통(41)을 설치하고 증기집합통(41) 측부에 액분리기(42)를 설치하되 액분리기(42)의 유입배관은 증기집합통(41) 측부에 관통되도록 연결하고 액분리기(42)의 유출배관은 냉매유출배관(120)에 T분기로 관통되도록 연결하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     The steam condenser according to claim 1, further comprising: a condenser pipe (118) connecting the one side of the regenerator (13) and the condensing duct (not shown) 41 and the liquid separator 42 is disposed on the side of the vapor collecting container 41 so that the inlet pipe of the liquid separator 42 is connected to the side of the vapor collecting container 41 and the outlet pipe of the liquid separator 42, Is connected to the refrigerant outlet pipe (120) through a T branch. 제3항에 있어서, 재생기(13)가 하나가 아닌 고온재생기(51)와 저온재생기(52)로 구분되어 2개로 구성되어 있는 이중효용흡수식냉동기의 경우에 저온재생기(52) 상부 일측과 노출응축기(21)의 응축유로 입구를 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 설치된 밀폐된 증기집합통(41)의 측부 또는 상부 일측에 저온재생기(52)의 가열증기유출배관(56)을 추가로 관통되게 설치하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     4. The dual function absorbing type refrigerator according to claim 3, wherein, in the case of a double effect absorption type refrigerator in which the regenerator (13) is divided into a high temperature regenerator (51) and a low temperature regenerator (52) Temperature regenerator 52 is connected to the side or top of the closed steam collecting cylinder 41 which is provided in a pipe (pi) branch on the pipe of the condenser body passage 118 connecting the condensing flow passage inlet of the low- (56) is further provided so as to pass through the absorption refrigerating machine (1). 흡수식냉동기에 있어서, 재생기(13)와 응축기(14)가 관통되도록 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 내부에 밀폐된 응축유로(미도시)가 형성된 노출응축기(21)를 설치하되 노출응축기(21)의 응축유로 유입구는 재생기(13)와 연결된 응축기체통로(118)를 연결하고 노출응축기(21)의 응축유로 유출구는 응축기(14)와 연결된 응축기체통로(118)를 연결하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     The absorption refrigerating machine includes an outdoor condenser 21 (not shown) having a condenser channel (not shown) which is closed in a π (pi) branch on a condenser body passage 118 connecting the regenerator 13 and the condenser 14, The condensing duct inlet port of the exposed condenser 21 connects the condenser duct passage 118 connected to the regenerator 13 and the condensing duct outlet port of the exposed condenser 21 is connected to the condenser duct passage 118 connected to the condenser 14 ) Is connected to the absorption refrigerating machine (1). 제5항에 있어서, 재생기(13) 상부 일측과 노출응축기(21)의 응축유로(미도시) 입구를 연결하는 응축기체통로(118) 관로상에 Π(파이) 분기하여 밀폐된 증기집합통(41)을 설치하고 증기집합통(41) 측부에 액분리기(42)를 설치하되 액분리기(42)의 유입배관은 증기집합통(41) 측부에 관통되도록 연결하고 액분리기(42)의 유출배관은 노출응축기(21)의 응축유로(미도시) 유출구에서 응축기(14)로 유입되는 응축기체통로(118)에 T분기로 관통되도록 연결하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     The apparatus as claimed in claim 5, further comprising a condenser body passage (118) connecting the one side of the regenerator (13) and the condensing passage (not shown) of the exposed condenser (21) 41 and the liquid separator 42 is disposed on the side of the vapor collecting container 41 so that the inlet pipe of the liquid separator 42 is connected to the side of the vapor collecting container 41 and the outlet pipe of the liquid separator 42, Is connected to the condenser body passage (118), which flows into the condenser (14) at an outlet of the condensing duct (not shown) of the exposed condenser (21) so as to pass through the T branch. 제6항에 있어서, 재생기(13)가 하나가 아닌 고온재생기(51)와 저온재생기(52)로 구분되어 2개로 구성되어 있는 이중효용흡수식냉동기의 경우에 증기집합통(41) 상부 또는 측부에 가열증기유출배관(56)을 추가로 연결하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     7. The dual function absorption type refrigerator according to claim 6, wherein the regenerator (13) is not a single high temperature regenerator (51) and the low temperature regenerator (52) Wherein the heating steam outlet pipe (56) is further connected to the heating steam outlet pipe (56). 밀폐된 증발기(11) 내부에 증발열교환튜브(116)가 설치되고 그 상부에는 냉매분사장치(16)가 설치되며 증발기(11) 내부 하부에서 상부의 냉매분사장치(16)에 관통하여 연결되도록 냉매분사배관(121)을 설치하고 그 관로상에 냉매분사펌프(18)를 설치하고, 증발열교환튜브(116)는 냉열사용처(10)와 폐순환배관으로 연결하고 증발기(11) 내부 하부에 냉매(112)를 채우고, 증발기체통로(117)를 증발기(11)와 흡수기(12)가 관통되도록 연결하고 밀폐된 흡수기(12) 내부에 흡수열교환튜브(115)가 설치되고 그 상부에는 흡수용액분사장치(17)가 설치되며 흡수기(12) 내부 하부에서 재생기(13) 일측에 관통되도록 흡수용액유출배관(122)을 설치하고 그 관로상에 흡수용액유출펌프(19)를 설치하고 재생기(13) 내부 하부에서 흡수기(12) 내부 상부의 흡수용액분사장치(17)에 관통하여 연결되도록 흡수용액유입배관(123)을 설치하고 흡수용액유출배관(122)과 흡수용액유입배관(123)에 흐르는 용액이 열교환하도록 흡수용액열교환기(111)를 설치하고 흡수기(12) 내부 하부에 흡수용액(113)을 채우고, 재생기(13)에 열을 가하도록 가열장치(110)를 설치하고, 내부 일측에 밀폐된 응축유로(미도시)와 내부 또 다른 일측에 냉각수유로(미도시)가 형성된 응축기결합냉각탑(70)을 설치하고 응축기체통로(118)를 재생기(13) 상부 일측과 응축기결합냉각탑(70)의 응축유로 유입구가 관통되도록 연결하고 응축기결합냉각탑(70)의 응축유로 유출구와 냉매분사배관(121) 일측이 T분기로 관통되도록 냉매유출배관(120)을 설치하고, 응축기결합냉각탑(70)의 냉각수유로 유출구와 흡수열교환튜브(115) 유입구를 냉각수유출배관(24)으로 연결하고 응축기결합냉각탑(70)의 냉각수유로 유입구와 흡수열교환튜브(115) 유출구를 냉각수유입배관(23)으로 연결하여 응축기결합냉각탑(70)의 냉각수유로 - 흡수열교환튜브(115) - 다시 응축기결합냉각탑(70)의 냉각수유로의 냉각수 폐순환회로가 형성시키며 냉각수유입배관(23) 또는 냉각수유출배관(24) 관로상에 냉각수순환펌프(22)를 설치하고, 증발기(11) - 증발기체통로(117) - 흡수기(12)로 구성되는 공간의 압력을 낮추는 진공펌프(미도시)로 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     A vaporizing heat exchange tube 116 is installed inside the sealed evaporator 11 and a refrigerant spraying device 16 is installed on the upper part of the evaporation heat exchange tube 116. The refrigerant spraying device 16 is installed in the evaporator 11 through the upper refrigerant spraying device 16, The evaporation heat exchange tube 116 is connected to the cold heat source 10 through the closed circulation pipe and the refrigerant 112 is supplied to the lower part of the evaporator 11, And the evaporator body passage 117 is connected to the evaporator 11 and the absorber 12 in such a manner that the evaporator 11 and the absorber 12 penetrate through the absorber 12. An absorption heat exchange tube 115 is installed inside the sealed absorber 12, And an absorber solution outflow pipe 19 is provided on the pipe so that the absorbent solution outflow pipe 122 is provided so as to pass through one side of the regenerator 13 from the lower part of the inside of the absorber 12, Through the absorbing solution injector (17) inside the absorber (12) The absorbing solution heat exchanger 111 is installed so that the solution flowing through the absorbing solution outflow pipe 122 and the solution flowing into the absorbing solution inflow pipe 123 is installed to be absorbed in the lower part of the inside of the absorber 12 A heating device 110 is installed so as to fill the solution 113 and to heat the regenerator 13 and a condensing passage (not shown) sealed at one side and a cooling water passage (not shown) at another side The condenser cooling tower 70 is installed and the condenser body passage 118 is connected to one side of the upper side of the regenerator 13 and the condensing duct inlet port of the condenser combined cooling tower 70 so as to penetrate the condenser duct outlet port of the condenser- A refrigerant outflow pipe 120 is provided so that one side of the injection pipe 121 is passed through the T branch and the cooling water outlet port of the condenser combined cooling tower 70 is connected to the inlet of the absorption heat exchange tube 115 through a cooling water outlet pipe 24 Cooling of the condenser-combined cooling tower (70) The cooling water channel-absorbing heat exchange tube 115 of the condenser-combined cooling tower 70 is connected to the channel inlet and the outlet of the absorption heat exchange tube 115 by the cooling water inflow pipe 23 and the cooling water circulation cycle of the cooling water channel of the condenser- A cooling water circulation pump 22 is provided on the cooling water inflow pipe 23 or the cooling water inflow pipe 24 and a space formed by the evaporator 11 and the evaporator body passage 117 and the absorber 12 And a vacuum pump (not shown) for lowering the pressure of the refrigerant. 제8항에 있어서, 응축기결합냉각탑(70)의 외함(81) 내부에 다수개의 응축튜브가 수직으로 설치된 수직형노출응축기(83)를 설치하고 수직형노출응축기(83) 유입구는 재생기(13) 상부와 연결된 응축기체통로(118)를 연결하고 수직형노출응축기(83) 유출구는 냉매유출배관(120)과 연결되어 밀폐된 응축유로를 구성하며 수직형노출응축기(83) 상부에 하나 이상의 분사노즐이 설치된 분사장치(82)를 설치하여 유입구에 냉각수유입배관(23)을 연결하고 냉각수(25)가 고이는 외함(81) 내부 하부 일측에 냉각수유출배관(24)을 설치하여 냉각수유로를 형성하고 분사장치(82) 상부에는 냉매의 외부 분산을 막기 위하여 엘리미네이터(84)가 설치되며 외함(81) 측면 하부에 다수의 공기유입구(86)를 설치하고 외함(81) 상부 일측에 공기유출구(87)를 형성시키고 공기유출구(87) 하부 또는 상부에 냉각팬(85)을 설치하여 구성하는 것을 특징으로 하는 응축시스템을 개선시킨 흡수식냉동기.     9. The method of claim 8, wherein a vertical type of exposed condenser (83) is provided with a plurality of condensing tubes vertically installed inside the enclosure (81) of the condenser combined cooling tower (70) And the outlet of the vertical type outdoor condenser 83 is connected to the refrigerant outflow pipe 120 to constitute a closed condensed water flow passage and the upper portion of the vertical type outdoor condenser 83 is connected to one or more spray nozzles A cooling water outlet pipe 23 is connected to the inlet port and a cooling water outlet pipe 24 is installed on the lower side of the inside of the enclosure 81 in which the cooling water 25 is poured to form a cooling water flow path, An eliminator 84 is installed on the upper part of the device 82 to prevent external dispersion of the refrigerant and a plurality of air inflow ports 86 are provided below the side surfaces of the enclosure 81 and air outlets 87 And the air outlet 87 and the bottom Which improve the condensing system that is characterized in that configuration by installing the cooling fans 85 in the upper absorption chiller.
KR1020150127346A 2015-09-09 2015-09-09 Absorption type chiller with improved condensing system KR20170030159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150127346A KR20170030159A (en) 2015-09-09 2015-09-09 Absorption type chiller with improved condensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150127346A KR20170030159A (en) 2015-09-09 2015-09-09 Absorption type chiller with improved condensing system

Publications (1)

Publication Number Publication Date
KR20170030159A true KR20170030159A (en) 2017-03-17

Family

ID=58501994

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150127346A KR20170030159A (en) 2015-09-09 2015-09-09 Absorption type chiller with improved condensing system

Country Status (1)

Country Link
KR (1) KR20170030159A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297120A (en) * 2018-09-27 2019-02-01 江苏三木化工股份有限公司 A kind of industrial water refrigeration system and working method
CN109378555A (en) * 2018-12-06 2019-02-22 山东大学 Thermal Management System for EV Battery Packs based on sorption type refrigerating technology
CN110052047A (en) * 2019-04-18 2019-07-26 株洲三特环保节能股份有限公司 Differential pressure type evaporative cooling equipment and its method for solution of zinc sulfate condensing crystallizing
CN113790547A (en) * 2021-10-19 2021-12-14 安徽普泛能源技术有限公司 Siphon evaporation equipment with heat exchange structure and operation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297120A (en) * 2018-09-27 2019-02-01 江苏三木化工股份有限公司 A kind of industrial water refrigeration system and working method
CN109378555A (en) * 2018-12-06 2019-02-22 山东大学 Thermal Management System for EV Battery Packs based on sorption type refrigerating technology
CN109378555B (en) * 2018-12-06 2024-04-16 山东大学 Electric automobile battery pack thermal management system based on absorption refrigeration technology
CN110052047A (en) * 2019-04-18 2019-07-26 株洲三特环保节能股份有限公司 Differential pressure type evaporative cooling equipment and its method for solution of zinc sulfate condensing crystallizing
CN113790547A (en) * 2021-10-19 2021-12-14 安徽普泛能源技术有限公司 Siphon evaporation equipment with heat exchange structure and operation method and application thereof
CN113790547B (en) * 2021-10-19 2022-08-12 安徽普泛能源技术有限公司 Siphon evaporation equipment with heat exchange structure and operation method and application thereof

Similar Documents

Publication Publication Date Title
KR20170030159A (en) Absorption type chiller with improved condensing system
CN106482384B (en) Superposition type solution and serial double-effect lithium bromide absorption type refrigeration heat pump unit
KR101010031B1 (en) Eliminator of absorption chiller - heater
KR101060776B1 (en) Absorption Chiller
CN204063674U (en) Lithium bromide absorption refrigerating set
KR101363492B1 (en) High efficiency hybrid cooling/heating water apparatus with absorption type
JP3935610B2 (en) Heat exchanger and absorption refrigerator
KR101690303B1 (en) Triple effect absorption chiller
JP5055071B2 (en) Absorption refrigerator
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
CN103717982A (en) Absorption refrigeration machine
CN106440477B (en) The series-parallel double-effect lithium bromide absorption type refrigerating heat pump unit of superposition type solution
CN106403354B (en) Superposition type solution parallel double-effect lithium bromide absorption type refrigeration heat pump unit
KR20080094985A (en) Hot-water using absorption chiller
JP3935611B2 (en) Evaporator and absorber and absorption refrigerator
CN104406326A (en) Steam-liquid-solid three-phase energy accumulator
JP7080001B2 (en) Absorption chiller
JP6364238B2 (en) Absorption type water heater
CN216409355U (en) High-temperature generator and refrigerating machine
KR20170030160A (en) Absorption type chiller discharging steam to outside
WO2018150516A1 (en) Absorption refrigerator
KR100517000B1 (en) Double effect model direct connection absorbtion type refrigerator
CN211120100U (en) Integrated refrigerated lithium bromide refrigerator
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
KR101342379B1 (en) Low temperature generator and absorption type chiller-heater including the same