KR20170027599A - Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same - Google Patents

Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same Download PDF

Info

Publication number
KR20170027599A
KR20170027599A KR1020150124433A KR20150124433A KR20170027599A KR 20170027599 A KR20170027599 A KR 20170027599A KR 1020150124433 A KR1020150124433 A KR 1020150124433A KR 20150124433 A KR20150124433 A KR 20150124433A KR 20170027599 A KR20170027599 A KR 20170027599A
Authority
KR
South Korea
Prior art keywords
leu
val
gly
asp
glu
Prior art date
Application number
KR1020150124433A
Other languages
Korean (ko)
Inventor
김용환
르쾅안투안
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020150124433A priority Critical patent/KR20170027599A/en
Publication of KR20170027599A publication Critical patent/KR20170027599A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/08Phosphoric triester hydrolases (3.1.8)
    • C12Y301/08001Aryldialkylphosphatase (3.1.8.1), i.e. paraoxonase

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a paraoxonase 1 mutant having an enhanced hydrolytic activity of an organophosphate papraoxone compound, and to a method for producing the same. More specifically, according to the paraoxonase 1 mutant of the present invention, one or more of isoleucine (I74) which is 74th amino acid, histidine (H115) which is 115th amino acid, threonine (T332) which is 332th amino acid, and valine (V346) which is 346th amino acid from amino acid positions of human recombinant paraoxonase 1 having an amino acid sequence of SEQ ID NO: 1 are substituted by amino acid selected from the group consisting of phenylalanine (F), tryptophan (W), serine (S), and alanine (A), and an hydrolytic activity of an organophosphate papraoxone compound is enhanced compared to wild-type paraoxonase 1.

Description

유기인계 파라옥손 화합물의 가수분해 활성이 증가된 파라옥소나아제 1 변이체 및 그 제조방법{PARAOXONASE 1 MUTANTS WITH ENHANCED HYDROLYTIC PROFICIENCY FOR ORGANOPHOSPHATE PARAOXONE AND AND METHOD FOR MANUFACTURING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a paraxoxanthin first variant having increased hydrolytic activity of an organophosphorus paraoxone compound and a method for producing the same, and a method for producing the same. BACKGROUND ART < RTI ID = 0.0 > Paraoxonase < / RTI >

본 발명은 자연계 및 인체에 해가 될 수 있는 유기인계 화합물, 특히 유기인계 파라옥손 화합물의 가수분해 활성이 야생형 파라옥소나아제 1에 비해 증가된 파라옥소나아제 1 변이체 및 그 제조방법에 관한 것이다.
The present invention relates to a first step of increasing the hydrolytic activity of an organophosphorus compound, especially an organophosphorus paraxone compound, which can be harmful to the human body and human body, compared to wild type paraoxonase I, and a method for producing the same .

유기인계 화합물(Organophosphates, OPs)은 신경계에서 신경전달물질인 아세틸콜린(acetylcholine)을 가수분해하는데 핵심적인 역할을 하는 효소인 아세틸콜린 에스테라아제(acetylcholinesterase)를 억제하고, 아세틸콜린의 과도한 축적을 야기하여 신경 기능을 손상시키는 독성이 강한 물질로 알려져 있다. 따라서, 유기인계 화합물은 주로 농약, 살충제 또는 신경가스와 같은 화학무기용 재료로서 사용되고 있다.Organophosphates (OPs) inhibit acetylcholinesterase, an enzyme that plays a key role in the hydrolysis of the neurotransmitter acetylcholine in the nervous system, and cause excessive accumulation of acetylcholine, Is known to be a toxic substance that damages the body. Therefore, organophosphorous compounds are mainly used as chemical-inorganic materials such as pesticides, pesticides or nerve gases.

이러한 유기인계 화합물의 예로는 파라옥손(paraoxon), 파라티온(parathion), 아자메티포스(azametiphos), 아진포스(azinphos), 벤술리드(bensulide), 말라옥손(malaoxon), 말리티온(malathion), 헤프테토포스 (heptenophos), 디클로보스(dichlorvos), 디알리포스(dialifos), 디아지논(diazinon), 디클로펜티온 (dichlofenthion), 디메토에이트(dimethoate), 디메틸빈포스(dimethylvinphos), 디옥사벤조포스 (dioxabenzofos), 디설포톤(disulfoton), 데메톤 에스(demethon S), 에디펜포스(edifenphos), 에테폰 (ethephon), 에티온(ethion), 에토프로포스(ethoprophos), 클로펜빈포스(chlorfenvinphos), 클로피리포스 (chlorpyrifos), 페니트로티온(fenitrothion), 펜티온(fenthion), 포노포스(fonofos), 포모티온(formothion), 헵테노포스(heptenophos), 이프로벤포스(iprobenfos), 이사조포스(isazofos), 이속사티온(isoxathion), 메카밤 (mecarbam), 메타미도포스(methamidophos), 메티다티온(methidathion), 모노크로토포스(monocrotophos), 날레드(naled), 오메토에이트(omethoate), 폭심(phoxim), 피림포스(pirimphos), 프로페노포스(profenofos), 프로파 포스(propaphos), 프로티오포스(prothiofos), 피라클로포스(pyraclofos), 피라조포스(pyrazophos), 피리다펜티온(pyridaphenthion), 퀴날포스(quinalphos), 터부포스(terbufos), 테트라클로빈포스(tetrachlorvinphos), 티오메톤(thiometon), 톨클로포스(tolclofos), 트리아조포스(triazophos), 트리클로폰(trichlorphon), 바미도티온(vamidothion) 및 코우마포스(coumaphos) 등을 들 수 있다.Examples of such organophosphorous compounds include paraoxon, parathion, azametiphos, azinphos, bensulide, malaoxon, malathion, But are not limited to, heptenophos, dichlorvos, dialifos, diazinon, dichlofenthion, dimethoate, dimethylvinphos, dioxa But are not limited to, dioxabenzofos, disulfoton, demethon S, edifenphos, ethephon, ethion, ethoprophos, chlorfenvinphos, chlorpyrifos, fenitrothion, fenthion, fonofos, formothion, heptenophos, iprobenfos, Isazofos, isoxathion, mecarbam, methamidophos, methamphetamine, But are not limited to, methidathion, monocrotophos, naled, omethoate, phoxim, pirimphos, profenofos, propaphos, Prothiofos, pyraclofos, pyrazophos, pyridaphenthion, quinalphos, terbufos, tetrachlorvinphos, tetrachlorophosphoric acid, Thiometon, tolclofos, triazophos, trichlorphon, vamidothion, coumaphos, and the like.

만약 이와 같은 유기인계 화합물에 노출될 경우, 체내에서 아세틸콜린이 분해되지 않아 신경계에 심각한 손상을 입을 수 있으므로, 주위 환경으로부터 이러한 유기인계 화합물들이 포함되어 있는 살충제, 농약 등을 제거하기 위한 방법에 관한 여러 연구가 이루어지고 있다.If the organophosphorus compound is exposed to such an organophosphorus compound, acetylcholine may not be decomposed in the body, resulting in serious damage to the nervous system. Therefore, a method for removing pesticides, pesticides, Several studies have been conducted.

대한민국 등록특허공보 제0186932호는 유기인 화합물 제거용 흡착/분해형 분말 조성물에 관한 것으로, 보다 상세하게는 분해제로서 양이온 교환수지 및 음이온과 흡착제로서 BET 비표면적 2000 m2/g인 고성능 활성탄을 유효성분으로서 함유하는 유기인 화합물 제거용 흡착/분해형 분말 조성물을 제공하고 있다.Korean Patent Publication No. 0186932 relates to an adsorption / decomposition type powder composition for removing organophosphorus compounds, and more particularly, to a method for adsorbing / decomposing a high-performance activated carbon having a BET specific surface area of 2000 m 2 / g as a cation exchange resin and an anion and an adsorbent And an adsorbing / decomposing type powder composition for removing organic phosphorus compounds contained as an active ingredient.

파라옥소나아제 1(Paraoxonase 1, PON1)은 포유류 세포에 존재하며, 다양한 유기인계 화합물을 가수분해할 수 있는 혈청 효소로 알려져 있으며, 이들의 해독제로서 사용할 수 있다. 파라옥소나아제 1이 가수분해 가능한 대표적인 유기인계 화합물로는 살충체의 원료인 디에틸-파라옥손(diethyl-paraoxon, EPO), 디메틸-파라옥손(dimethyl-paraoxon, MPO), 디아지논-옥손(diazinon-oxon, DZO) 및 클로로피리포스-옥손(chloropyrifos-oxon, CPO) 등이 알려져 있다. 파라옥소나아제 1은 또한 화학무기로 잘 알려져 있는 신경가스인 사린(sarin), 소만(soman) 및 VX 역시 분해 가능한 것으로 알려져 있다.Paraoxonase 1 (PON1) exists in mammalian cells and is known as a serum enzyme capable of hydrolyzing various organophosphorus compounds and can be used as an antidote thereof. Representative organic phosphorus compounds that can be hydrolyzed by paraoxonase I include diethyl-paraoxone (EPO), dimethyl-paraoxone (MPO), diazinonoxone diazinon-oxone, DZO) and chloropyrifos-oxon (CPO). Paraoxonase I is also known to be capable of degrading sarin, soman and VX, which are well known chemical weapons gases.

파라옥소나아제 1은 그것의 포유동물에 대한 적합성(즉, 무독성(non-toxic) 및 최소 면역 반응) 때문에, 유기인계 화합물에 대한 갑작스러운 노출에 대한 생체 내(in vivo) 치료 및 환경으로부터의 이들 화합물의 제거를 위한 후보 물질, 즉 농약중독 방지제, 잔류농약 제거제 및 화학무기 제독제 등의 용도로 주목을 받고 있다.Because of its suitability for mammals (i.e., non-toxic and minimal immune responses), paraoxonase I has been shown to be effective in in vivo treatment for sudden exposure to organophosphorus compounds, And are attracting attention as candidates for the removal of these compounds, that is, pesticide poisoning agents, residual pesticide poisoning agents and chemical-chemical poisoning agents.

그러나, 많은 노력에도 불구하고 파라옥소나아제의 구조 및 작용 기전은 여전히 잘 알려져 있지 않다. 야생형 파라옥소나아제 1은 그것들의 잘 특성화되어 있는 기질에 대한 가수분해 활성이 낮아 상업적 적용이 어려운 상태이다(A. Aharoni, L. Gaidukov, S. Yagur, L. Toker, I. Silman and D. S. Tawfik, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 482-487).However, despite many efforts, the structure and mechanism of action of paraoxonase is still unknown. The wild-type paraoxonase I is poorly commercialized due to its low hydrolytic activity on their well characterized substrates (A. Aharoni, L. Gaidukov, S. Yagur, L. Toker, I. Silman and DS Tawfik , Proc. Natl. Acad. Sci. USA, 2004, 101, 482-487).

따라서, 상업적 적용이 가능할 수 있도록 야생형 파라옥소나아제 1의 활성을 높이는 연구가 필요한 실정이다.
Therefore, there is a need for studies to increase the activity of wild-type paraoxonase I so as to be commercially applicable.

KRKR 10-018693210-0186932 B1B1 (2011.12.29)(December 29, 2011)

이에 본 발명자들은 유기인계 화합물 중 파라옥손 화합물을 가수분해할 수 있는 파라옥소나아제 1이 산업적 생산성을 가질 수 있도록, 파라옥소나아제 1의 단백질 3차원 구조를 변화시킴으로써 유기인계 파라옥손 화합물에 증가된 가수분해 활성을 갖도록 파라옥소나아제 1을 설계 및 개량하여 본 발명을 완성하게 되었다.Thus, the present inventors have found that, by changing the three-dimensional structure of the protein of paraoxonase I so that the paraoxonease 1 capable of hydrolyzing the paraoxone compound in the organophosphorus compound has industrial productivity, The present inventors have completed the present invention by designing and improving paraoxonase I.

따라서, 본 발명은 유기인계 파라옥손 화합물의 가수분해 활성이 증가된 파라옥소나아제 1 변이체를 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a first paraoxonin A variant having increased hydrolytic activity of an organophosphorus paraoxone compound.

또한, 본 발명은 상기 파라옥소나아제 1 변이체를 코딩하는 유전자를 제공하는 것을 목적으로 한다.In addition, the present invention aims to provide a gene coding for the above-mentioned paraoxonase first variant.

또한, 본 발명은 상기 유전자를 포함하는 재조합 발현 벡터를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a recombinant expression vector containing the gene.

또한, 본 발명은 상기 파라옥소나아제 1 변이체의 제조방법을 제공하는 것을 목적으로 한다.
It is still another object of the present invention to provide a process for producing the above-mentioned paraoxonase first variant.

상기와 같은 목적을 달성하기 위해, 본 발명은 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I), 115번째 아미노산인 히스티딘(H), 332번째 아미노산인 트레오닌(T) 또는 346번째 아미노산인 발린(V) 중 하나 이상이 페닐알라닌(F), 트립토판(W), 세린(S) 및 알라닌(A)으로 이루어진 군으로부터 선택된 어느 하나의 아미노산으로 치환된, 유기인계 파라옥손 화합물의 가수분해 활성이 증가된 파라옥소나아제 1 변이체를 제공한다.In order to achieve the above object, the present invention provides a human recombinant pPO system having the amino acid sequence of SEQ ID NO: 1, wherein the isoleucine (I), histidine (H) Threonine (T) or amino acid 346 (valine) is substituted with any one amino acid selected from the group consisting of phenylalanine (F), tryptophan (W), serine (S) and alanine Wherein the hydrolytic activity of the organophosphorus paraoxone compound is increased.

또한, 본 발명은 상기 파라옥소나아제 1 변이체를 코딩하는 유전자를 제공한다.In addition, the present invention provides a gene encoding the above-mentioned paraoxonase first variant.

또한, 본 발명은 상기 유전자를 포함하는 재조합 발현 벡터를 제공한다.The present invention also provides a recombinant expression vector comprising the gene.

또한, 본 발명은 (a) 제10항의 발현 벡터를 미생물에 형질전환하여 재조합 미생물을 제조하는 단계; (b) 상기 제조된 재조합 미생물을 배양하여 파라옥소나아제 1 변이체를 발현하는 단계; 및 (c) 상기 배앙물로부터 파라옥소나아제 1 변이체를 회수하는 단계를 포함하는 제1항의 파라옥소나아제 1 변이체의 제조방법을 제공한다.
(A) transforming the expression vector of the present invention into a microorganism to produce a recombinant microorganism; (b) culturing the produced recombinant microorganism to express a paraoxonase first variant; And (c) recovering the first paraoxonase first variant from the embryo.

본 발명에 따르면 야생형 파라옥소나아제 1의 아미노산 서열에서 선택적으로 돌연변이를 일으킴으로써, 안정하고 경제적인 방법으로 유기인계 파라옥손 화합물의 가수분해 활성이 야생형 파라옥소나아제 1에 비해 증가된 파라옥소나아제 1 변이체를 제공할 수 있다. 본 발명에 따른 파라옥소나아제 1 변이체는 여러 가지 유기인계 유해 화합물, 특히 파라옥손 화합물에 대하여 높은 가수분해 반응속도를 가짐으로써 유기인계 화합물들을 무독화시킬 수 있으므로, 유기인계 화합물의 무독화 제제의 제조에 유용하게 사용될 수 있다.
According to the present invention, by selectively mutating in the amino acid sequence of the wild-type paraoxonase I, the hydrolytic activity of the organophosphorus paraoxone compound is increased by a stable and economical method, A first variant can be provided. The first paraoxonase mutant according to the present invention has a high rate of hydrolysis of various organophosphorus compounds, especially paraoxone compounds, thereby detoxifying the organophosphorus compounds. Therefore, And can be usefully used for manufacturing.

도 1은 파라옥소나아제 1의 반응 기전을 나타낸 모식도이다.
도 2은 유기인계 파라옥손 화합물인 디에틸-파라옥손(diethyl-paraoxon, EPO) 및 디메틸-파라옥손(dimethyl-paraoxon, MPO)과 파라옥소나아제 1의 결합 구조를 가상으로 나타낸 이미지이다. 여기에서, 오렌지색은 EPO를 나타내고, 파랑색은 MPO를 나타낸다.
도 3는 본 발명에 따른 파라옥소나아제 1 변이체와 유기인계 파라옥손 화합물인 디에틸-파라옥손(EPO)의 반응성을 시간에 따라 측정한 그래프이다.
도 4는 본 발명에 따른 파라옥소나아제 1 변이체와 유기인계 파라옥손 화합물인 디메틸-파라옥손(MPO)의 반응성을 시간에 따라 측정한 그래프이다.
Fig. 1 is a schematic diagram showing the reaction mechanism of paraoxonase No. 1.
Fig. 2 is an image virtually showing the coupling structure of diethyl-paraoxone (EPO) and dimethyl-paraoxone (MPO), which are organophosphorus paraoxone compounds, and paraoxonase I. Fig. Here, the orange color represents EPO and the blue color represents MPO.
FIG. 3 is a graph showing the time-dependent reactivity of the first paraoxonase mutant according to the present invention and diethyl-paraoxone (EPO) as an organic phosphorus-based paraoxone compound.
FIG. 4 is a graph showing the time-dependent reactivity of the first paraoxonase mutant according to the present invention and dimethyl-paraoxone (MPO), which is an organic phosphorus-based paraoxone compound.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.

명명법nomenclature

본 발명의 상세한 설명 및 청구항에서, 아미노산 잔기에 관하여 종래의 한 문자 및 세 문자 코드가 사용된다.
In the description and claims of the present invention, conventional one letter and three letter codes are used with respect to amino acid residues.

아미노산의 명명Nomenclature of amino acids

A = Ala = 알라닌(Alanine)A = Ala = alanine

V = Val = 발린(Valine)V = Val = Valine

L = Leu = 류신(Leucine)L = Leu = Leucine < RTI ID = 0.0 >

I = Ile = 이소류신(Isoleucine)I = Ile = isoleucine < RTI ID = 0.0 >

F = Phe = 페닐알라닌(Phenylalanine)F = Phe = phenylalanine < RTI ID = 0.0 >

W = Trp = 트립토판(Tryptophan)W = Trp = Tryptophan

S = Ser = 세린(Serine)S = Ser = Serine

T = Thr = 트레오닌(Threonine)T = Thr = Threonine

D = Asp = 아스파르트산(Asparatic acid)D = Asp = Asparatic acid

H = His = 히스티딘(Histidine)
H = His = Histidine

변이체의 명명Nomenclature of Variants

본 발명에 따라 제조되거나 설계된 여러 효소 변이체를 기술함에 있어, 다음과 같은 명명법을 사용하였다.In describing various enzyme variants produced or designed according to the present invention, the following nomenclature was used.

본래의 아미노산 / 위치 / 치환 아미노산Original amino acid / position / substituted amino acid

다중 돌연변이는 플러스 기호(+)로 분리하여 표시하였다.
Multiple mutations were separated by a plus sign (+).

본 발명은 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74), 115번째 아미노산인 히스티딘(H115), 332번째 아미노산인 트레오닌(T332) 및 346번째 아미노산인 발린(V346) 중 하나 이상이 페닐알라닌(F), 트립토판(W), 세린(S) 및 알라닌(A)으로 이루어진 군으로부터 선택된 어느 하나의 아미노산으로 치환된, 유기인계 파라옥손 화합물의 가수분해 활성이 증가된 파라옥소나아제 1 변이체를 제공한다.(I74), histidine (H115) as the 115th amino acid, threonine (T332) as the 332nd amino acid, and 346th amino acid as the amino acid sequence of the human recombinant pfaxonase I having the amino acid sequence of SEQ ID NO: Wherein one or more of the amino acids valine (V346) is substituted with any one amino acid selected from the group consisting of phenylalanine (F), tryptophan (W), serine (S) and alanine (A) To provide a first paraoxonase variant with increased degradation activity.

상기 유기인계 파라옥손 화합물은 특별히 한정되지 않으나, 상업적으로 이용 가능한 디메틸-파라옥손(dimethyl-paraoxon, MPO), 디에틸-파라옥손(diethyl-paraoxon, EPO), 디아지논-옥손(diazinon-oxon, DZO) 및 클로로피리포스-옥손(chloropyrifos-oxon, CPO) 등을 들 수 있다.The organic phosphorus-based paraoxone compound is not particularly limited, but may be a commercially available dimethyl-paraoxone (MPO), diethyl-paraoxone (EPO), diazinon-oxone, DZO) and chloropyrifos-oxone (CPO).

Figure pat00001
Figure pat00001

현재 두 가지 다른, 그러나 보완적인 전략이 단백질의 최적화(optimization)와 재설계(redesign)에 대해서 수행되어오고 있다. 이는 일반적으로 컴퓨터 모델링으로도 알려져 있는 '합리적 설계(rational design)'와 '인위적 진화(directed evolution)'로 알려져 있다.Currently, two different but complementary strategies have been implemented for protein optimization and redesign. This is known as 'rational design' and 'directed evolution', also commonly known as computer modeling.

합리적 설계는 원하는 성질, 특히 선택성(selectivity), 거울상 선택성(enantioselectivity) 및 열적 안정성(thermal stability) 등을 가지는 단백질을 만들도록 아미노산 배열을 예측함으로써 분자들(단백질)을 만들거나 변경하기 위해서 특별히 이용되고 있다. 인위적 진화는 유전자원에 각종 돌연변이를 주어 라이브러리를 만든 후, 이 라이브러리 내에 우리가 원하는 활성으로 개량된 변이체를 초고속으로 스크리닝하는 두 단계를 반복함으로써 최종적으로 우리가 원하는 최적 활성의 단백질을 얻는 기술이다.Rational design is specifically used to create or modify molecules (proteins) by predicting amino acid sequences to produce proteins with desired properties, particularly selectivity, enantioselectivity, and thermal stability have. An artificial evolution is a technique to obtain a protein of optimal activity finally by repeating two steps of making a library by giving various mutations to a genetic circle, and then screening the mutant which is actively improved as desired in this library at a very high speed.

합리적 설계에 의한 효소의 개량은 한정된 수의 변이 효소만을 생성하기 때문에 특별한 스크리닝 시스템은 필요하지 않지만, 대상효소의 촉매작용 메커니즘(catalytic mechanism)이나 기질의 결합특성 또는 기질 특이성의 결정요인 등에 대하여 상세히 알고 있어야 한다.Although it is not necessary to have a special screening system because the enzymatic modification by rational design generates only a limited number of mutant enzymes, it is necessary to know in detail the catalytic mechanism of the target enzyme, the binding property of the enzyme or the determinants of the substrate specificity .

본 발명에서는, 야생형 파라옥소나아제 1의 유기인계 화합물에 대한 가수분해 활성을 개량하기 위한 합리적 설계를 위하여, 표적 단백질에 작용하는 리간드를 도킹하여 상호작용을 분석하는 분자적 도킹(molecular docking)을 수행하였다. 표적 단백질로서 대부분의 유기인계 화합물에 대한 촉매적 효율이 낮은 포유동물 유래의 야생형 파라옥소나아제 1을 치료학적 촉매 제거제로 사용하기 위한 시도로서 DNA 셔플링을 통한 인위적 진화에 의해 만들어진 인간 재조합 파라옥소나아제 1인 G3C9 rePON1(서열번호 1의 아미노산 서열, 서열번호 13의 염기서열)을 사용하였다.In the present invention, molecular docking for analyzing interactions by docking a ligand acting on a target protein is proposed for a reasonable design to improve the hydrolytic activity of the first organophosphorous compound of wild type p-dioxin Respectively. As an attempt to use the wild-type paraoxonase I from mammals, which has low catalytic efficiency for most of the organophosphorus compounds as a target protein, as a therapeutic catalyst scavenger, the human recombinant paraoxone produced by artificial evolution through DNA shuffling The first G3C9 rePON1 (the amino acid sequence of SEQ ID NO: 1, the nucleotide sequence of SEQ ID NO: 13) was used.

본 발명에서는 또한 G3C9 rePON1의 조작을 위한 모델 리간드로서 디에틸-파라옥손(EPO)을 사용하였다. 디에틸-파라옥손(EPO)은 다른 유기인계 화합물들(즉, MPO, DZO 및 CPO)과의 구조적 유사성 때문에 유기인계 화합물에 대한 지오바실러스 카우스토필러스(Geobacillus kaustophilus) HTA426으로부터 유래된 락토나아제(lactonase)의 인위적 진화를 위한 리간드 모델로서 사용되었다.The present invention also uses diethyl-paraoxone (EPO) as a model ligand for the manipulation of G3C9 rePONl. Diethyl-paraoxone (EPO) is a lactonease derived from Geobacillus kaustophilus HTA426 against an organophosphorus compound due to structural similarity with other organophosphorus compounds (i.e., MPO, DZO and CPO) lactonase) as a ligand model for artificial evolution.

이에 당업자들은 디에틸-파라옥손(EPO)의 가수분해 활성을 향상시키기 위한 파라옥소나아제 1에서의 인위적 변이는 다른 유기인계 화합물에 대한 가수분해 활성 또한 상호 관련적으로 향상시킬 것으로 판단하여, G3C9 rePON1의 인위적 진화를 위한 모델 리간드로서 디에틸-파라옥손(EPO)를 사용하였다.Accordingly, those skilled in the art have determined that an artificial mutation in paraoxonase I to improve the hydrolytic activity of diethyl-paraoxone (EPO) will also improve the hydrolytic activity of other organophosphorus compounds in a correlated manner. Thus, G3C9 Diethyl-paraoxone (EPO) was used as a model ligand for artificial evolution of rePON1.

서로 다른 유기인계 파라옥손 화합물에 대한 선택적 활성 부위(selective pocket)를 알아내기 위하여, G3C9 rePON1과 여러 유기인계 파라옥손 화합물 중 서로 다른 크기의 O,O-디알킬기(O,O-dialkyl groups)를 가지는 두 개의 파라옥손 화합물 즉, 디에틸-파라옥손(EPO) 또는 디메틸-파라옥손(MPO)과 파라옥소나아제 1 간의 분자적 도킹을 수행하였다. O, O - dialkyl groups ( O, O - dialkyl groups) of G3C9 rePON1 and several organophosphorus paraoxone compounds were investigated in order to find selective pocket for different organophosphorus paraoxone compounds. A molecular docking between the two paraoxone compounds, diethyl-paraoxone (EPO) or dimethyl-paraoxone (MPO), and paraoxonase I was performed.

즉, 분자구조 모델링 프로그램을 이용하여 가상으로 G3C9 rePON1과의 결합구조를 만들어본 결과(도 2), 상기 디에틸-파라옥손(EPO) 및 디메틸-파라옥손(MPO)이 각각 G3C9 rePON1에 결합할 경우, 결합 부위로 제공되는 G3C9 rePON1의 69번째 아미노산인 류신(leucine)(L69), 74번째 아미노산인 이소류신(isoleucine)(I74), 115번째 아미노산인 히스티딘(Histidine)(H115), 269번째 아미노산인 아스파르트산(Aspartic acid)(D269), 332번째 아미노산인 트레오닌(T332) 및 346번째 아미노산인 발린(V346)이 기질과의 결합에 중요한 것을 확인할 수 있었다.That is, the binding structure with G3C9 rePON1 was virtually created using a molecular structure modeling program (FIG. 2), and the diethyl-paraoxone (EPO) and dimethyl-paraoxone (MPO) Leucine (L69), the 74th amino acid, isoleucine (I74), the 115th amino acid histidine (H115), the 69th amino acid of G3C9 rePON1 provided as a binding site, and the 269th amino acid It was confirmed that aspartic acid (D269), threonine (T332) of 332 amino acid and valine (V346) of amino acid 346 were important for binding to the substrate.

따라서, 유기인계 파라옥손 화합물에 대하여 높은 가수분해 활성을 갖는 파라옥소나아제 1 변이체를 제조하기 위하여, 상기 파라옥소나아제 1의 아미노산 위치 중 74번째 이소류신(I74), 115번째 히스티딘(H115), 332번째 트레오닌(T332) 및 346번째 발린(V346) 중 하나 이상을 위치-지정 돌연변이(Site-directed mutagenesis) 방법을 이용하여 페닐알라닌(F), 트립토판(W), 세린(S) 및 알라닌(A)으로 이루어진 군으로부터 선택된 어느 하나의 아미노산으로 치환하였다.Therefore, in order to prepare the first paroxonase variant having a high hydrolytic activity against the organophosphorus paraoxone compound, the 74th isoleucine (I74), the 115th histidine (H115), the 125th histidine (F), tryptophan (W), serine (S), and alanine (A) using a site-directed mutagenesis method using one or more of the 332 th threonine (T332) and the 346th valine (V346) ≪ / RTI >

본 발명의 파라옥소나아제 1 변이체는, 이하와 같이 제조할 수 있다.The first paraoxonase mutant of the present invention can be produced as follows.

우선, 파라옥소나아제 1 변이체를 코딩하는 DNA를 포함하는 플라스미드를 준비하고, 이 플라스미드를 이용하여 임의의 숙주 세포를 형질전환하여 형질 전환체 또는 세포주를 얻는다. 다음으로, 상기의 형질 전환체나 세포주를 배양하여 파라옥소나아제 1 변이체를 산생한다.First, a plasmid containing a DNA encoding a first para-soybean mutant is prepared, and an arbitrary host cell is transformed using the plasmid to obtain a transformant or a cell line. Next, the above transformant or cell line is cultured to produce the first paraoxonase mutant.

상기에서 만들어진 파라옥소나아제 1 변이체들을 염기분석으로 각각의 위치에서 아미노산 치환이 일어났는지 확인하였다. 이 변이체를 함유한 콜로니들을 배양한 후 활성을 측정한 결과, 상기 파라옥소나아제 1 변이체가 야생형 파라옥소나아제 1에 비해 기질인 유기인계 파라옥손 화합물(즉, 디에틸-파라옥손(EPO) 또는 디메틸-파라옥손(MPO))에 대하여 높은 가수분해 활성을 보임을 확인하였다.The first Paraoxonase mutants prepared above were analyzed for their amino acid substitutions at each position by base analysis. As a result of measuring the activity after culturing the colonies containing this mutant, it was found that the organophosphorus paraxone compound (i.e., diethyl-paraoxone (EPO)) in which the first paraoxonase mutant was a substrate compared to wild- Or dimethyl-paraoxone (MPO)).

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74)이 페닐알라닌(F)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(I74F)일 수 있다. 여기에서 상기 파라옥소나아제 1 변이체는 서열번호 2의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is a mutant in which isoleucine (I74), which is the 74th amino acid of the amino acid sequence of human recombinant pALPO3NAA 1st amino acid sequence having the amino acid sequence of SEQ ID NO: 1, is substituted with phenylalanine (I74F). ≪ / RTI > Wherein said paraoxonase first variant may have the amino acid sequence of SEQ ID NO: 2.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 332번째 아미노산인 트레오닌(T332)이 세린(S)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(T332S)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 3의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is one in which threonine (T332), which is the 332nd amino acid among the amino acid positions of the first human recombinant pAXO3 having the amino acid sequence of SEQ ID NO: 1, is substituted with serine (S) (T332S). ≪ / RTI > Here, the first paraoxonase mutant may have the amino acid sequence of SEQ ID NO: 3.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 346번째 아미노산인 발린(V346)이 알라닌(A)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(V346A)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 4의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is a variant in which valine (V346), which is the 346th amino acid in the amino acid position of the first human recombinant pAXO3 having the amino acid sequence of SEQ ID NO: 1, is substituted with alanine (V346A). ≪ / RTI > Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 4.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74)이 페닐알라닌(F)으로 치환되어 있으며, 115번째 아미노산인 히스티딘(H115)이 트립토판(W)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(I74F + H115W)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 5의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is substituted with phenylalanine (F), isoleucine (I74), which is the 74th amino acid of the amino acid sequence of the human recombinant pPAO gene having the amino acid sequence of SEQ ID NO: 1, (I74F + H115W), which is characterized in that the 115th amino acid histidine (H115) is substituted with tryptophan (W). Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 5.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74)이 페닐알라닌(F)으로 치환되어 있으며, 332번째 아미노산인 트레오닌(T332)이 세린(S)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(I74F + T332S)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 6의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is substituted with phenylalanine (F), isoleucine (I74), which is the 74th amino acid of the amino acid sequence of the human recombinant pPAO gene having the amino acid sequence of SEQ ID NO: 1, (I74F + T332S), wherein the threonine (T332), which is the 332nd amino acid, is substituted with serine (S). Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 6.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74)이 페닐알라닌(F)으로 치환되어 있으며, 346번째 아미노산인 발린(V346)이 알라닌(A)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(I74F + V346A)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 7의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is substituted with phenylalanine (F), isoleucine (I74), which is the 74th amino acid of the amino acid sequence of the human recombinant pPAO gene having the amino acid sequence of SEQ ID NO: 1, (I74F + V346A) which is characterized in that the 346th amino acid valine (V346) is substituted with alanine (A). Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 7.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 115번째 아미노산인 히스티딘(H115)이 트립토판(W)으로 치환되어 있으며, 332번째 아미노산인 트레오닌(T332)이 세린(S)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(H115W + T332S)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 8의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is substituted with tryptophan (W), histidine (H115), which is the 115th amino acid of the first amino acid position of the human recombinant pPAR gene having the amino acid sequence of SEQ ID NO: 1, (H115W + T332S), which is characterized in that threonine (T332) at position 332 is substituted with serine (S). Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 8.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 115번째 아미노산인 히스티딘(H115)이 트립토판(W)으로 치환되어 있으며, 346번째 아미노산인 발린(V346)이 알라닌(A)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(H115W + V346A)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 9의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is substituted with tryptophan (W), histidine (H115), which is the 115th amino acid of the first amino acid position of the human recombinant pPAR gene having the amino acid sequence of SEQ ID NO: 1, (H115W + V346A), which is characterized in that the 346th amino acid valine (V346) is substituted with alanine (A). Here, the first paraoxonase mutant may have the amino acid sequence of SEQ ID NO: 9.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 332번째 아미노산인 트레오닌(T332)이 세린(S)으로 치환되어 있으며, 346번째 아미노산인 발린(V346)이 알라닌(A)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(T332S + V346A)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 10의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is substituted with serine (S), threonine (T332) which is the 332nd amino acid of the first amino acid position of the human recombinant pPO synthase having the amino acid sequence of SEQ ID NO: 1, (T332S + V346A), which is characterized in that the 346th amino acid valine (V346) is substituted with alanine (A). Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 10.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74)이 페닐알라닌(F)으로 치환되어 있고, 115번째 아미노산인 히스티딘(H115)이 트립토판(W)으로 치환되어 있으며, 332번째 아미노산인 트레오닌(T332)이 세린(S)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(I74F + H115W + T332S)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 11의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is an isoleucine (I74), which is the 74th amino acid of the amino acid sequence of the first human recombinant pPO synthase having the amino acid sequence of SEQ ID NO: 1, is substituted with phenylalanine (F) (I74F + H115W + H115W + H115W) wherein the 115th amino acid histidine (H115) is replaced by tryptophan (W), and the 332nd amino acid threonine (T332) T332S). Here, the first paraoxonase mutant may have the amino acid sequence of SEQ ID NO: 11.

본 발명에 있어서, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74)이 페닐알라닌(F)으로 치환되어 있고, 115번째 아미노산인 히스티딘(H115)이 트립토판(W)으로 치환되어 있으며, 346번째 아미노산인 발린(V346)이 알라닌(A)으로 치환되어 있는 것을 특징으로 하는 파라옥소나아제 1 변이체(I74F + H115W + V346A)일 수 있다. 여기에서, 상기 파라옥소나아제 1 변이체는 서열번호 12의 아미노산 서열을 가질 수 있다.In the present invention, the first paraoxonase mutant is an isoleucine (I74), which is the 74th amino acid of the amino acid sequence of the first human recombinant pPO synthase having the amino acid sequence of SEQ ID NO: 1, is substituted with phenylalanine (F) (I74F + H115W + H115W) which is characterized in that histidine (H115) as the 115th amino acid is substituted by tryptophan (W) and valine V346 as the 346th amino acid is substituted by alanine V346A). Here, the first paraoxonase variant may have the amino acid sequence of SEQ ID NO: 12.

즉, 상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열에서 다음의 돌연변이 중 적어도 하나에 해당하는 위치에서의 돌연변이를 포함한다:That is, said first paraoxonase variant comprises a mutation at a position corresponding to at least one of the following mutations in the amino acid sequence of SEQ ID NO: 1:

I74F, T332S, V346A, I74F + H115W, I74F + T332S, I74F + V346A, H115W + T332S, H115W + V346A, T332S + V346A, I74F + H115W + T332S 또는 I74F + H115W + V346A.I74F + H115W + V346A, I74F + H342A, I74F + H343A, I74F + H342A, I74F + H342A, I74F + H115W + V346A, I74F + H115W + T342A.

이와 같이, 본 발명은 인위적 진화에 기초한 합리적 설계에 의하여 인간 재조합 파라옥소나아제 1(G3C9 rePON1)의 아미노산에 변이를 일으킴으로써 유기인계 파라옥손 화합물에 대한 가수분해 활성이 강화된 다양한 파라옥소나아제 1 변이체를 얻을 수 있었다.As described above, the present invention is based on the rational design based on an artificial evolution, and it is possible to produce a variety of para-isoanase (G3C9 rePON1) having enhanced hydrolytic activity against the organophosphorus paraxone compound by causing mutation in the amino acid of the human recombinant para- 1 < / RTI >

본 발명의 바람직한 구현에서, 본 발명에 따른 파라옥소나아제 1 변이체(H115W + T332S)와 파라옥소나아제 1 변이체(I74F + H115W + T332S)의 디에틸-파라옥손(EPO) 및 디메틸-파라옥손(MPO)에 대한 가수분해 활성은 대조군인 야생형 G3C9 rePON1의 가수분해 활성에 비해 상당히 높은 것을 확인할 수 있었다.In a preferred embodiment of the present invention, diethyl-paraoxone (EPO) and dimethyl-para-oxone (H115W + T332S) of the paraoxonase first variant (H115W + T332S) and paraoxonase first variant (I74F + H115W + T332S) (MPO) was significantly higher than the hydrolytic activity of the wild type G3C9 rePON1 of the control group.

즉, 상기 두 파라옥소나아제 1 변이체들은 야생형에 비해 디에틸-파라옥손(EPO) 및 디메틸-파라옥손(MPO)의 가수분해에 대한 촉매적 효율이 극적으로 증가하였다. That is, the two paraoxonane first mutants dramatically increased catalytic efficiency for the hydrolysis of diethyl-paraoxone (EPO) and dimethyl-paraoxone (MPO) compared to the wild type.

25℃에서 디에틸-파라옥손(EPO)의 가수분해에 대한 H115W/T332S 변이체 및 I74F/H115W/T332S 변이체의 촉매적 효율(Kcat/Km)은 각각 1.01 × 105 및 9.39 × 104 M-1·S-1에 도달하였으며, 이들 값은 야생형의 촉매적 효율(2.6 × 103 M-1·s-1)에 비해 각각 39.0 및 36.1배 높은 것이었다. 또한, 25℃에서 디메틸-파라옥손(MPO)의 가수분해에 대한 G3C9 rePON1 H115W/T332S 변이체 및 I74F/H115W/T332S 변이체의 촉매적 효율(Kcat/Km)은 각각 2.83 × 104 및 2.01 × 104 M-1·S-1에 도달하였으며, 이들 값은 야생형의 촉매적 효율(7.07 × 102 M-1·s-1)에 비해 각각 40.0 및 28.5배 높은 것이었다.The catalytic efficiencies (K cat / K m ) of H115W / T332S mutants and I74F / H115W / T332S mutants for the hydrolysis of diethyl-paraoxone (EPO) at 25 ° C were 1.01 × 10 5 and 9.39 × 10 4 M -1 · S -1 and these values were 39.0 and 36.1 times higher than the catalytic efficiency of the wild type (2.6 × 10 3 M -1 · s -1 ), respectively. In addition, the catalytic efficiencies (K cat / K m ) of the G3C9 rePON1 H115W / T332S variants and I74F / H115W / T332S variants for the hydrolysis of dimethyl-paraoxone (MPO) at 25 ° C were 2.83 × 10 4 and 2.01 × 10 4 M -1 · S -1 , which were 40.0 and 28.5 times higher than the wild type catalytic efficiency (7.07 × 10 2 M -1 · s -1 ), respectively.

따라서, 본 발명의 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산의 특히 H115W + T332S 또는 I74F + H115W + T332S에 해당하는 위치에서의 돌연변이를 포함하는 것이 더욱 바람직하다.Thus, the first paraoxonase variant of the present invention comprises a mutation at a position corresponding to the amino acid sequence of the human recombinant pPAO gene having the amino acid sequence of SEQ ID NO: 1, particularly H115W + T332S or I74F + H115W + T332S Is more preferable.

본 발명의 파라옥소나아제 1 변이체는 또한 이와 기능적 또는 실질적으로 동등한 활성을 갖는 기능적 동등물 또는 기능적 유도체를 본 발명의 범위에 포함한다. 이러한 기능적 동등물에는 서열번호 2 내지 12로 표시되는 아미노산 서열에서의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의한 변이체를 포함한다.The paraoxonase first variants of the present invention also include within its scope functional equivalents or functional derivatives having functional or substantially equivalent activity thereto. Such functional equivalents include variants by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, of the amino acid residues in the amino acid sequence shown in SEQ ID NOS: 2 to 12.

본 발명에 따른 파라옥소나아제 1 변이체는 야생형 파라옥소나아제 1의 가수분해 활성보다 약 2.4 내지 39배 증가된 가수분해 활성을 갖는다.The first paraoxonase variant according to the present invention has a hydrolysis activity which is about 2.4 to 39 times greater than the hydrolysis activity of wild-type paraoxonase I.

게다가, 본 발명의 파라옥소나아제 1 변이체들과 그것들의 야생형들은 온도 변화에 대해 유사하게 거동하였고, 대략 35℃의 최적 온도를 갖는다. 즉, 35℃에서의 특이적 활성이 25℃에서보다 1.4 ~ 1.6배 더 높았다. 따라서, 진화적 변이체에서의 변이는 그것들의 열적 활성(thermal activity)에는 영향을 주지 않음을 알 수 있다(데이터 미도시).In addition, the first paraoxonase variants of the invention and their wild type behaved similarly with respect to temperature change and have an optimum temperature of approximately 35 ° C. That is, the specific activity at 35 ° C was 1.4 to 1.6 times higher than at 25 ° C. Thus, it can be seen that variations in evolutionary mutants do not affect their thermal activity (data not shown).

본 발명에 따른 파라옥소나아제 1 변이체들은 또한 DZO 및 CPO와 같은 커다란 O,O-디알킬기를 가지는 유기인계 파라옥손 화합물들에 대해서도 가수분해 활성이 현저하게 증가될 것으로 예상된다.It is expected that the first paraoxonase variants according to the present invention will also have a significantly increased hydrolytic activity against organophosphorus paraoxone compounds having large O, O -dialkyl groups such as DZO and CPO.

본 발명은 또한 상기 파라옥소나아제 1 변이체를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding said paraoxonase first variant.

상기 파라옥소나아제 1 변이체들을 코딩하는 유전자는 바람직하게는 서열번호 13 ~ 24 중 어느 하나의 염기 서열을 가질 수 있다.The gene encoding the first paraoxonase first variants may preferably have a nucleotide sequence of any one of SEQ ID NOS: 13 to 24.

상기 서열들 중 어느 하나의 아미노산 또는 염기 서열이 치환, 결실, 삽입 및 부가되어 돌연변이가 일어남으로써, 상기 본 발명에 따른 아미노산 서열 또는 염기서열과 적어도 70%, 80%, 90%, 또는 95% 이상의 서열 동일성을 가지는 아미노산 서열 또는 염기서열 또한 본 발명에 포함될 수 있다.It is preferable that at least 70%, 80%, 90%, or 95% or more of the amino acid sequence or the base sequence of the present invention is substituted or deleted by substitution, deletion, insertion and addition of any one of the above sequences. An amino acid sequence or a base sequence having sequence identity may also be included in the present invention.

상기 "서열 동일성"이란, 2개의 폴리뉴클레오티드 간 잔기의 서열 유사성을 말한다. 상기 "서열 동일성"은 비교 대상의 염기 서열의 영역에 걸쳐, 최적한 상태로 얼라인먼트된 2개의 염기서열을 비교함으로써 결정될 수 있다. 여기에서, 비교대상의 폴리뉴클레오티드는, 2개의 서열의 최적한 얼라인먼트를 위한 참고서열 (예컨대 컨센서스 서열 등)과 비교하여, 부가 또는 결실 (예컨대, 갭, 오버행 등)을 갖고 있어도 된다. 서열 동일성의 수치는 양 방의 서열에 존재하는 동일한 핵산염기를 결정하여, 적합부위의 수를 결정하고, 이어서 비교대상의 서열영역 내의 염기의 총수로, 상기 적합부위의 수를 나누어, 얻어진 수치에 100을 곱함으로써, 산출될 수 있다. 핵산 사 이의 서열 동일성은, 예컨대, 서열 해석 소프트, 구체적으로는 BLASTN, FASTA 등을 사용하여 측정된다. 상기 BLASTN은, http://www.ncbi.nlm.nih. gov/BLAST/에서 일반적으로 이용할 수 있다.The term "sequence identity" refers to sequence similarity between two polynucleotide residues. Said "sequence identity" can be determined by comparing the two nucleotide sequences optimally aligned over the region of the base sequence to be compared. Here, the polynucleotide to be compared may have addition or deletion (e.g., gap, overhang, etc.) in comparison with a reference sequence (for example, consensus sequence or the like) for optimal alignment of two sequences. The numerical value of the sequence identity is determined by determining the same nucleotide base present in both sequences and determining the number of suitable sites and then dividing the number of sites by the total number of bases in the sequence region of the comparison subject, By multiplying it by the following equation. Sequence identity between the nucleic acid sequences is measured using, for example, sequence analysis software, specifically BLASTN, FASTA and the like. The BLASTN is available from http://www.ncbi.nlm.nih. gov / BLAST /.

본 발명은 또한 상기 파라옥소나아제 1 변이체를 코딩하는 유전자를 포함하는 재조합 발현 벡터를 제공한다.The present invention also provides a recombinant expression vector comprising a gene encoding said paraoxonase first variant.

본 발명에서, "벡터 (vector)"는 적합한 숙주 내에서 DNA를 발현 시킬 수 있는 적합한 조절 서열에 작동 가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질 전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 것이 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주 세포 당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질 전환된 숙주 세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있도록 하는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 접합(ligation) 할 수 있다. In the present invention, "vector" means a DNA product containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in an appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector And (c) a restriction enzyme cleavage site allowing the foreign DNA fragment to be inserted. Although there is no appropriate restriction site for cleavage, the use of a synthetic oligonucleotide adapter or linker according to conventional methods allows for easy ligation of the vector and foreign DNA.

아울러, 상기 유전자는 다른 핵산 서열과 기능적 관계로 배치될 때 "작동 가능하게 연결(operably linked)" 된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들) 일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비리더(leader)에 대한 DNA는 폴리펩티드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩티드에 대한 DNA에 작동 가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능 하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동 가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동 가능하게 연결된다. 일반적으로 "작동 가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 접합에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다. In addition, the gene is "operably linked" when placed in a functional relationship with another nucleic acid sequence. This may be the gene and regulatory sequence (s) linked in such a way as to enable gene expression when a suitable molecule (e. G., Transcriptional activator protein) is attached to the regulatory sequence (s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a whole protein participating in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to a coding sequence if it affects the transcription of the sequence; Or a ribosome binding site is operably linked to a coding sequence if positioned to facilitate translation. Generally, "operably linked" means that the linked DNA sequences are in contact and, in the case of a secretory leader, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by conjugation at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않고, 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 상태에서, 다른 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택하여 적용할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이고, 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, not all vectors function equally well in expressing the DNA sequence of the present invention, and likewise all hosts do not function equally in the same expression system. However, those skilled in the art can appropriately select from among various vectors, expression control sequences, and hosts without departing from the scope of the present invention without undue experimentation. For example, in selecting a vector, the host should be considered, since the vector must be replicated within it, and the number of copies of the vector, the ability to control the number of copies, and other proteins encoded by the vector, The expression of the antibiotic marker should also be considered.

본 발명에서 사용 가능한 발현 벡터는 특별히 제한되는 것은 아니며 공지된 발현벡터를 사용할 수 있으나, 바람직하게는 상기 유전자를 포함한 벡터를 사용할 수 있다.The expression vector that can be used in the present invention is not particularly limited, and a known expression vector may be used. Preferably, a vector containing the gene may be used.

더욱 바람직하게는, 상기 발현 벡터는 삽입된 유전자가 발현되도록 조절하는 프로모터를 가진다. 본 발명의 바람직한 구현에서, 발현 벡터는 T7/lac 프로모터를 가지고 있어 IPTG를 첨가하여 삽입된 유전자를 발현하는 pET-22T(+)를 사용하였다.More preferably, the expression vector has a promoter that regulates the expression of the inserted gene. In a preferred embodiment of the present invention, the expression vector has a T7 / lac promoter and pET-22T (+) expressing the inserted gene by the addition of IPTG was used.

본 발명은 또한The present invention also

(a) 상기 발현 벡터를 미생물에 형질전환하여 재조합 미생물을 제조하는 단계;(a) transforming the expression vector into a microorganism to produce a recombinant microorganism;

(b) 상기 제조된 재조합 미생물을 배양하여 파라옥소나아제 1 변이체를 발현하는 단계; 및(b) culturing the produced recombinant microorganism to express a paraoxonase first variant; And

(c) 상기 배앙물로부터 파라옥소나아제 1 변이체를 회수하는 단계(c) recovering the first paraoxonase variant from said embryo

를 포함하는 제1항의 파라옥소나아제 1 변이체의 제조방법을 제공한다.Or a pharmaceutically acceptable salt thereof.

본 발명의 발현 벡터로 형질전환되는 미생물은 특별히 한정되지 않으나, 본 발명의 파라옥소나아제 1 변이체를 생산할 수 있는 것이라면 어떠한 것이라도 사용할 수 있으며, 바람직하게는 입수가 용이하고 쉬운 대장균 등을 들 수 있다.The microorganism transformed with the expression vector of the present invention is not particularly limited, but any microorganism capable of producing the first Paraoxonase variant of the present invention can be used. Preferably, Escherichia coli, which is easy to obtain, have.

상기 형질전환된 재조합 미생물은 임의의 형질전환 방법에 따라 제조할 수 있다. 본 발명의 "형질전환 (transformation)"은 DNA를 숙주로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것으로 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미한다. 일반적으로 형질전환방법에는, 특히, 원형질세포의 형질전환은 Sambrook 등의 'Molecular Cloning' 저서에서 1.82 섹션에 기술된 칼슘 클로라이드를 이용한 heat shock 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법(electroporaton, (Neumann et al., EMBO J., 1:841, 1982)), 인산칼슘(CaPO4) 침전, 염화칼슘 (CaCl2)침전, 미세주입법(microinjection), 초산 리튬-DMSO법 등이 이용 가능하다. 또한, 본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자 조작 방법을 사용할 수 있으며, 일 예로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터, 렌티바이러스 벡터 또는 비바이러스성 벡터를 이용하는 방법을 들 수 있다.The transformed recombinant microorganism can be produced according to any transformation method. "Transformation" of the present invention refers to a phenomenon in which DNA is introduced as a host and DNA can be cloned as a chromosome factor or by chromosome integration completion, introducing an external DNA into a cell to cause an artificial genetic change . In general, transformation methods, particularly transformation of plasma cells, can be readily accomplished using the heat shock method with calcium chloride as described in Section 1.82 of Sambrook et al., &Quot; Molecular Cloning ". Alternatively, electroporaton (Neumann et al., EMBO J. 1: 841, 1982), calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, lithium acetate -DMSO method and the like can be used. As a method for inserting the gene into the chromosome of the host cell, a commonly known gene manipulation method can be used in the present invention. Examples of the method include a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, a herpes simplex A virus vector, a poxvirus vector, a lentivirus vector or a nonviral vector may be used.

본 발명의 재조합 미생물을 배양하는 조건은 특별히 한정되지 않으나, 온도가 25 내지 37℃이고, pH 조건이 pH 6 내지 8인 것이 바람직하다.Conditions for culturing the recombinant microorganism of the present invention are not particularly limited, but it is preferable that the temperature is 25 to 37 占 폚 and the pH condition is pH 6 to 8.

상기 배양된 재조합 미생물로부터의 변이체의 회수는 통상적인 생화학 분리 기술, 예를 들어 단백질 침전제에 의한 처리(염석법), 원심분리, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착 크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토래피 등을 이용할 수 있으며, 통상적으로 순도가 높은 단백질을 분리하기 위하여 이들을 조합하여 이용할 수 있다.The recovery of the mutant from the cultured recombinant microorganism can be carried out by conventional biochemical separation techniques such as treatment with a protein precipitant (salting-out method), centrifugation, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration) , Adsorption chromatography, ion exchange chromatography, affinity chromatography and the like can be used. In order to separate proteins having high purity, they can be used in combination.

본 발명에 따른 상기 파라옥소나아제 1 변이체를 이용하여 다양한 유기인계 파라옥손 화합물을 가수분해할 수 있다. 상기 유기인계 파라옥손 화합물을 가수분해하는 pH 조건은 특별히 한정되지 않으나, pH 7.5 내지 11.5인 것이 바람직하다.The first paraoxonase first variant according to the present invention can be used to hydrolyze various organophosphorus paraoxone compounds. The pH condition for hydrolyzing the organophosphorus paraoxone compound is not particularly limited, but it is preferably pH 7.5 to 11.5.

이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예는 본 발명의 한 형태를 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다. 특히, 하기 실시예에서는 유기인계 파라옥손 화합물들 중 디에틸-파라옥손(EPO) 또는 디메틸-파라옥손(MPO)에 대한 활성 증가만을 확인하였으나, 이를 포함한 다른 유기인계 화합물에 대해서도 본 발명의 변이체가 뛰어난 가수분해 활성을 가지는 것은 당업자에게 자명할 것이다.
Hereinafter, the present invention will be described concretely with reference to Examples. However, the following Examples are intended to illustrate one embodiment of the present invention, but the scope of the present invention is not limited by the following Examples. Particularly, in the following examples, only the increase in the activity of diethyl-paraoxone (EPO) or dimethyl-paraoxone (MPO) among the organic phosphorus-based paraoxone compounds was confirmed, but the mutants of the present invention It will be apparent to those skilled in the art to have excellent hydrolytic activity.

[실시예][Example]

실시예 1: 구조분석을 통한 파라옥소나아제 1의 변이 위치 선정Example 1: Selection of mutation position of paraoxonase No. 1 through structural analysis

야생형 파라옥소나아제 1의 새로운 변이체를 제조하기 위하여, 인위적 진화에 의해 만들어진 인간 재조합 파라옥소나아제 1인 G3C9 rePON1의 X선 결정학에 의해 얻은 구조를 사용하였다. 상기 G3C9 rePON1의 구조는 단백질 데이터 은행(protein data bank; PDB)에 3srg로 등록되어 있다.To prepare a new variant of wild-type paraoxonase I, the structure obtained by X-ray crystallography of human recombinant paraoxonase No. 1 G3C9 rePONl made by artificial evolution was used. The structure of the G3C9 rePON1 is registered in the protein data bank (PDB) as 3srg.

본 발명자들은 파라옥소나아제 1의 변이 위치를 선정하기 위하여, 가상으로 여러 가지 유기인계 파라옥손계 화합물 중 디에틸-파라옥손(EPO) 및 디메틸 파라옥손(MPO)과 파라옥소나아제 1 (PDB ID: 3srg)의 결합 구조를 트리포스 사의 소프트웨어 SYBYL?-X(Tripos, ver. 2.1) 프로그램을 이용하여 분자구조 모델링을 수행하였다. 그 결과를 도 2에 나타내었다.In order to select the position of the paraoxonase 1 mutation, the inventors of the present invention virtually synthesized diethyl-paraoxone (EPO) and dimethylparoxone (MPO) and paraoxonase I (PDB ID: 3srg) was subjected to molecular structure modeling using the software SYBYL? -X (Tripos, ver. 2.1) software of TRIFOS. The results are shown in Fig.

도 2를 참고하면, 유기인계 파라옥손 화합물 중 디에틸-파라옥손(EPO) 또는 디메틸 파라옥손(MPO)과 파라옥소나아제 1이 결합할 경우에는 결합 부위로 제공되는 파라옥소나아제 1의 69번째 아미노산인 류신(leucine)(L69), 74번째 아미노산인 이소류신(isoleucine)(I74), 115번째 아미노산인 히스티딘(Histidine)(H115), 269번째 아미노산인 아스파르트산(Aspartic acid)(D269), 332번째 아미노산인 트레오닌(T332) 및 346번째 아미노산인 발린(V346)이 기질과의 결합에 중요한 것을 확인할 수 있었다.Referring to FIG. 2, when diethyl-paraoxone (EPO) or dimethylparoxone (MPO) in the organophosphorus paraoxone compound is combined with paraoxonase 1, the first paraoxonase 69 Leucine (L69), the 74th amino acid isoleucine (I74), the 115th amino acid histidine (H115), the 269th amino acid aspartic acid (D269), 332 Threonine (T332) and valine (V346), the 346th amino acid, were found to be important for binding to the substrate.

상기 디에틸-파라옥손(EPO) 및 디메틸 파라옥손(MPO)은 그것들의 O,O-디알킬기를 제외하고는 G3C9 rePON1의 활성 부위에 유사하게 위치하였다. 파라옥손의 5가의 산소-음이온성(oxy-anionic) 중간물질의 수산기(hydroxide group)에 대한 안정화 인자(stabilizing factor)로서 기능하는 잔기인 269번째 아미노산인 아스파르트산(D269)의 동일한 부위 상에 있는 332번째 아미노산인 트레오닌(T332) 및 346번째 아미노산인 발린(V346)은 디메틸-파라옥손(MPO)의 O-메틸과 근접하게 접촉하고 있었다. The diethyl-paraoxone (EPO) and dimethylparaxone (MPO) were similarly located in the active site of G3C9 rePON1 except for their O, O -dialkyl groups. (D269), which is the 269th amino acid residue (D269), which acts as a stabilizing factor for the hydroxyl group of the pentasaccharide oxy-anionic intermediate of paraoxone Threonine (T332) at amino acid 332 and valine (V346) at amino acid 346 were in close contact with O-methyl of dimethyl-paraoxone (MPO).

디메틸-파라옥손(MPO)의 O-메틸 탄소에서부터 Cγ1(V346), Cγ2(V346) 및 Cγ2(T332)에 이르는 거리는 각각 4.18, 3.5 및 4.85 Å 이었다.Dimethyl-p-O- oxone from methyl carbon (MPO) C γ1 (V346) , C γ2 (V346) and the distance C was γ2 respectively, 4.18, 3.5 and 4.85 Å up to (T332).

디에틸-파라옥손(EPO)은 디메틸-파라옥손(MPO)에 비해 더 큰 O,O-디알킬기를 가지고 있어 T332와 V346으로 이루어진 활성 부위에 잘 맞을 수 없었다. 따라서, 디에틸-파라옥손(EPO)은 디메틸-파라옥손(MPO)의 O-메틸에 비해 T334와 V346으로부터 시계 반대방향으로 더 밀어내지고 회전되어야 한다.Diethyl - paraoxone (EPO) had a larger O, O - dialkyl group than dimethyl - paraoxone (MPO) and could not fit well to the active site composed of T332 and V346. Therefore, diethyl-paraoxone (EPO) must be further pushed counterclockwise from T334 and V346 and rotated compared to O-methyl of dimethyl-paraoxone (MPO).

이러한 이동은 D269의 OD1에 가까운 곳으로 디에틸-파라옥손(EPO)의 O4를 이동시키고, 그것들 사이에서의 2.66 Å의 거리가 2.95 Å인 산소 원자의 반데르 발스 지름보다 더 짧기 때문에, 반데르 발스 상호작용(van der Waals interaction)에 입체 장해(steric hindrance)를 야기한다.This shifts the O 4 of diethyl-paraoxone (EPO) to near OD 1 of D269 and since the distance of 2.66 A between them is shorter than the Van der Waals diameter of the oxygen atom of 2.95 A, Causing van der Waals interactions with steric hindrance.

이러한 입체 장해는 파라옥소나아제 1과 디메틸-파라옥손(MPO) 사이에서 계산된 저해 상수(0.801)에 비해 큰 값의 파라옥소나아제 1과 디에틸-파라옥손(EPO) 사이에서 계산된 저해 상수(inhibitor constant)(이는 미카엘리스 멘텐 상수(Michaelis Menten constant, Km)와 동일함)(4.49)에 대한 원인일 수 있다.This steric hindrance is a calculated inhibition between the large values of paraoxonase I and diethyl-paraoxone (EPO) relative to the inhibition constant (0.801) calculated between paraoxonase I and dimethyl-paraoxone (MPO) It may be the cause of the inhibitor constant (which is the same as the Michaelis Menten constant, K m ) (4.49).

이에 발명자들은 T332 및 V346을 더 작은 잔기로 치환하기 위한 위치-지정 돌연변이(site-directed mutagenesis)가 디에틸-파라옥손(EPO)의 O-에틸을 수용하기 위한 공간을 형성할 수 있을 것이라는 가설을 세우고, 이러한 변이가 디에틸-파라옥손(EPO)에 대한 G3C9 rePON1의 가수분해 활성을 향상시킬 것으로 기대하였다.The inventors then hypothesized that a site-directed mutagenesis to displace T332 and V346 into smaller residues could form a space to accommodate the O-ethyl of diethyl-paraoxone (EPO) , And these mutations were expected to improve the hydrolytic activity of G3C9 rePON1 on diethyl-paraoxone (EPO).

게다가, 디에틸-파라옥손(EPO)의 O-에틸 탄소에 대한 I74의 Cγ1 및 Cγ2로부터의 각각의 거리는 4.5 및 4.53 Å인 반면, Cd2 (L69) 및 디메틸-파라옥손(MPO)의 O-메틸 탄소 사이의 거리는 2.85 Å 이었다. 따라서, 각각 디에틸-파라옥손(EPO)의 O-에틸 및 디메틸-파라옥손(MPO)의 O-메틸과 근접하게 접촉하고 있는 두 개의 잔기, 즉 74번째 아미노산인 이소류신(I74) 및 69번째 아미노산인 류신(L69) 또한 위치-지정 돌연변이의 표적으로 선택하였다.In addition, the respective distances from C γ1 and C γ2 of I74 to the O-ethyl carbon of diethyl-paraoxone (EPO) are 4.5 and 4.53 Å, respectively, while that of C d2 (L69) and dimethyl-paraoxone The distance between O-methyl carbon was 2.85 Å. Thus, two residues in close contact with O-methyl of diethyl-paraoxone (EPO) and O-methyl of dimethyl-paraoxone (MPO), respectively, namely isoleucine (I74) and 69th amino acid Inrucine (L69) was also selected as a target for location-directed mutagenesis.

상기와 같은 이유로 하기 표 1에 나타낸 바와 같은 11종의 변이체를 선별하였다.For the above reasons, 11 kinds of mutants as shown in the following Table 1 were selected.

변이체 후보Variant candidates No.No. 변이체 후보Variant candidates 1One G3C9 rePON1 I74F (이소류신 → 페닐알라닌)G3C9 rePON1 I74F (isoleucine → phenylalanine) 22 G3C9 rePON1 T332S (트레오닌 → 세린)G3C9 rePON1 T332S (threonine → serine) 33 G3C9 rePON1 V346A (발린 → 알라닌)G3C9 rePON1 V346A (valine → alanine) 44 G3C9 rePON1 I74F + H115W (이소류신 → 페닐알라닌 / 히스티딘 → 트립토판)G3C9 rePON1 I74F + H115W (isoleucine → phenylalanine / histidine → tryptophan) 55 G3C9 rePON1 I74F + T332S (이소류신 → 페닐알라닌 / 트레오닌 → 세린)G3C9 rePON1 I74F + T332S (isoleucine → phenylalanine / threonine → serine) 66 G3C9 rePON1 I74F + V346A (이소류신 → 페닐알라닌 / 발린 → 알라닌)G3C9 rePON1 I74F + V346A (isoleucine → phenylalanine / valine → alanine) 77 G3C9 rePON1 H115W + T332S (히스티딘 → 트립토판 / 트레오닌 → 세린)G3C9 rePON1 H115W + T332S (histidine → tryptophan / threonine → serine) 88 G3C9 rePON1 H115W + V346A (히스티딘 → 트립토판 / 발린 → 알라닌)G3C9 rePON1 H115W + V346A (histidine → tryptophan / valine → alanine) 99 G3C9 rePON1 T332S + V346A (트레오닌 → 세린 / 발린 → 알라닌)G3C9 rePON1 T332S + V346A (threonine → serine / valine → alanine) 1010 G3C9 rePON1 I74F + H115W + T332S
(이소류신 → 페닐알라닌 / 히스티딘 → 트립토판 / 트레오닌 → 세린)
G3C9 rePON1 I74F + H115W + T332S
(Isoleucine → phenylalanine / histidine → tryptophan / threonine → serine)
1111 G3C9 rePON1 I74F + H115W + V346A
(이소류신 → 페닐알라닌 / 히스티딘 → 트립토판 / 발린 → 알라닌)
G3C9 rePON1 I74F + H115W + V346A
(Isoleucine → phenylalanine / histidine → tryptophan / valine → alanine)

실시예 2: 파라옥소나아제 1 변이체의 제조Example 2: Preparation of paraoxonase first variant

서열번호 1의 아미노산 서열을 가지는 G3C9 rePON1 야생형을 이용하여 파라옥소네이즈 1 변이체를 제조하기 위한 프라이머를 하기 표 2에 나타낸 바와 같이 제작하였고, 이를 서열번호 25 ~ 54에 나타내었다.A primer for preparing a paraoxonase 1 mutant using the G3C9 rePON1 wild type having the amino acid sequence of SEQ ID NO: 1 was prepared as shown in Table 2 below and shown in SEQ ID NOs: 25 to 54.

프라이머 서열Primer sequence 서열번호SEQ ID NO: 프라이머primer 서열
(5'- seq. - 3')
order
(5'-seq-3 ')
2525 MF_L69AMF_L69A AGT TCC GGC GCA AAA TAT CCG GGT ATT ATG TCCAGT TCC GGC GCA AAA TAT CCG GGT ATT ATG TCC 2626 MR_ L69AMR_ L69A CGG ATA TTT TGC GCC GGA ACT GAT AAA CGC CAGCGG ATA TTT TGC GCC GGA ACT GAT AAA CGC CAG 2727 MF_ L69VMF_L69V AGT TCC GGC GTT AAA TAT CCG GGT ATT ATG TCCAGT TCC GGC GTT AAA TAT CCG GGT ATT ATG TCC 2828 MR _L69VMR _L69V CGG ATA TTT AAC GCC GGA ACT GAT AAA CGC CAGCGG ATA TTT AAC GCC GGA ACT GAT AAA CGC CAG 2929 MF_L69IMF_L69I AGT TCC GGC ATT AAA TAT CCG GGT ATT ATG TCCAGT TCC GGC ATT AAA TAT CCG GGT ATT ATG TCC 3030 MR_L69IMR_L69I CGG ATA TTT AAT GCC GGA ACT GAT AAA CGC CAGCGG ATA TTT AAT GCC GGA ACT GAT AAA CGC CAG 3131 MF_I74AMF_I74A TAT CCG GGT GCT ATG TCC TTC GAT CCG GAC AAATAT CCG GGT GCT ATG TCC TTC GAT CCG GAC AAA 3232 MR_I74AMR_I74A GAA GGA CAT AGC ACC CGG ATA TTT CAG GCC GGAGAA GGA CAT AGC ACC CGG ATA TTT CAG GCC GGA 3333 MF_I74VMF_I74V TAT CCG GGT GTT ATG TCC TTC GAT CCG GAC AAATAT CCG GGT GTT ATG TCC TTC GAT CCG GAC AAA 3434 MR_I74VMR_I74V GAA GGA CAT AAC ACC CGG ATA TTT CAG GCC GGAGAA GGA CAT AAC ACC CGG ATA TTT CAG GCC GGA 3535 MF_I74LMF_I74L TAT CCG GGT CTT ATG TCC TTC GAT CCG GAC AAATAT CCG GGT CTT ATG TCC TTC GAT CCG GAC AAA 3636 MR_I74LMR_I74L GAA GGA CAT AAG ACC CGG ATA TTT CAG GCC GGAGAA GGA CAT AAG ACC CGG ATA TTT CAG GCC GGA 3737 MF_I74FMF_I74F TAT CCG GGT TTC ATG TCC TTC GAT CCG GAC AAA TCA GGCTAT CCG GGT TTC ATG TCC TTC GAT CCG GAC AAA TCA GGC 3838 MR_I74FMR_I74F GAA GGA CAT GAA ACC CGG ATA TTT CAG GCC GGA ACT GATGAA GGA CAT GAA ACC CGG ATA TTT CAG GCC GGA ACT GAT 3939 MF_I74WMF_I74W TAT CCG GGT TGG ATG TCC TTC GAT CCG GAC AAA TCA GGCTAT CCG GGT TGG ATG TCC TTC GAT CCG GAC AAA TCA GGC 4040 MR_I74WMR_I74W GAA GGA CAT CCA ACC CGG ATA TTT CAG GCC GGA ACT GATGAA GGA CAT CCA ACC CGG ATA TTT CAG GCC GGA ACT GAT 4141 MF_H115WMF_H115W TTT AAT CCG TGG GGC ATT AGC ACC TTC ACG GAT GTTT AAT CCG TGG GGC ATT AGC ACC TTC ACG GAT G 4242 MR_H115WMR_H115W GCT AAT GCC CCA CGG ATT AAA CGA TGA GAT ATCGCT AAT GCC CCA CGG ATT AAA CGA TGA GAT ATC 4343 MF_T332AMF_T332A CAA GGT TCC GCT GTG GCA GCA GTT TAT AAA GGTCAA GGT TCC GCT GTG GCA GCA GTT TAT AAA GGT 4444 MF_T332AMF_T332A TGC TGC CAC AGC GGA ACC TTG CAG GAC GGT ACCTGC TGC CAC AGC GGA ACC TTG CAG GAC GGT ACC 4545 MF_T332SMF_T332S CAA GGT TCC TCT GTG GCA GCA GTT TAT AAA GGT AAA CTGCAA GGT TCC TCT GTG GCA GCA GTT TAT AAA GGT AAA CTG 4646 MR_T332SMR_T332S TGC TGC CAC AGA GGA ACC TTG CAG GAC GGT ACC ATT TTCTGC TGC CAC AGA GGA ACC TTG CAG GAC GGT ACC ATT TTC 4747 MF_T332VMF_T332V CAA GGT TCC GTA GTG GCA GCA GTT TAT AAA GGTCAA GGT TCC GTA GTG GCA GCA GTT TAT AAA GGT 4848 MR_T332VMR_T332V TGC TGC CAC TAC GGA ACC TTG CAG GAC GGT ACCTGC TGC CAC TAC GGA ACC TTG CAG GAC GGT ACC 4949 MF_V346AMF_V346A ATT GGC ACC GCT TTC CAC AAA GCT CTG TAC TGTATT GGC ACC GCT TTC CAC AAA GCT CTG TAC TGT 5050 MR_V346AMR_V346A TTT GTG GAA AGC GGT GCC AAT CAG CAG TTT ACCTTT GTG GAA AGC GGT GCC AAT CAG CAG TTT ACC 5151 MF_V346L:MF_V346L: ATT GGC ACC CTT TTC CAC AAA GCT CTG TAC TGTATT GGC ACC CTT TTC CAC AAA GCT CTG TAC TGT 5252 MR_V346LMR_V346L TTT GTG GAA AAG GGT GCC AAT CAG CAG TTT ACCTTT GTG GAA AAG GGT GCC AAT CAG CAG TTT ACC 5353 MF_V346IMF_V346I ATT GGC ACC ATT TTC CAC AAA GCT CTG TAC TGTATT GGC ACC ATT TTC CAC AAA GCT CTG TAC TGT 5454 MR_V346IMR_V346I TTT GTG GAA AAT GGT GCC AAT CAG CAG TTT ACCTTT GTG GAA AAT GGT GCC AAT CAG CAG TTT ACC

* MF: 정방향 프라이머(forward primer)* MF: forward primer

* MR: 역방향 프라이머(reverse primer)
MR: Reverse primer

공지의 분자생물학적 지식으로 아미노산 한 종에 여러 개의 뉴클레오티드 조합이 있을 수 있으므로 빈번하게 발생하는 대표적인 것으로 선택하여 프라이머를 디자인하였다.Because of the known molecular biology knowledge, there may be several nucleotide combinations in one species of amino acid.

상기 프라이머를 이용하여 위치-지정 돌연변이를 수행하였고, 상기의 프라이머를 이용하여 중합효소연쇄반응을 통하여 파라옥소네이즈 1 변이체를 코딩하는 유전자들을 얻었다. 얻어진 파라옥소네이즈 1 변이체를 코딩하는 유전자의 단편을 제한효소 NdeI와 XhoI를 이용하여 절단하고, 공지의 분자생물학적 기술로 T7/lac 프로모터를 가지고 있어 IPTG(isopropyl-1-thio-β-D-galactopyranoside)를 첨가하여 삽입된 유전자를 발현하는 pET-22T(+) 벡터에 도입하여 파라옥소나아제 1 변이체 벡터를 제작하였고, 각각을 변이체 1 - 11로 명명하였다.Site-directed mutagenesis was performed using the primers, and genes coding for the paraoxonase 1 variant were obtained by polymerase chain reaction using the primers. A fragment of the gene coding for the obtained paraoxonase 1 mutant was digested with restriction enzymes NdeI and XhoI to obtain a T7 / lac promoter according to a known molecular biology technique, and IPTG (isopropyl-1-thio-β-D-galactopyranoside ) Was added to the pET-22T (+) vector expressing the inserted gene to construct a first para-oxonase mutant vector, which was named mutant 1 - 11.

상기 변이체들을 대장균(Escherichia coli) BL21(DE3)에 형질 전환하여 재조합 대장균을 제조하였다.
The mutants were transformed into Escherichia coli BL21 (DE3) to prepare recombinant E. coli.

실시예 3: 파라옥소나아제 1 변이체들의 디에틸-파라옥손(EPO)에 대한 가수분해 활성 측정Example 3: Determination of the hydrolytic activity of diaryl-paraoxone (EPO) of paraoxonase first variants

3-1. 디에틸-파라옥손(EPO)에 대한 가수분해 속도 측정3-1. Measurement of hydrolysis rate for diethyl-paraoxone (EPO)

파라옥소나아제 1 변이체들의 디에틸-파라옥손(EPO)에 대한 가수분해 활성의 증가 정도를 확인하기 위하여, 상기 제조된 재조합 대장균 및 대조군으로서 G3C9 rePON1을 사용하여 동력학적 계수(kimetic parameter)를 측정하였다.In order to confirm the degree of increase in the hydrolytic activity of diaryl parapoxone (EPO) of the first paraoxonase mutants, the kinetic parameters were measured using the prepared recombinant E. coli and G3C9 rePON1 as a control group Respectively.

상기 제조된 재조합 대장균들을 37℃에서 암피실린 (ampicilin)(1 mg/ml)이 포함된 LB 배지에 배양하였다. 상기 배양액에 0.1M IPTG를 첨가하여 파라옥소나아제 1 변이체들의 효소 발현을 유도한 후, 200 rpm의 진탕 배양기에서 16시간을 추가로 배양하였다.The prepared recombinant E. coli were cultured at 37 ° C in LB medium containing ampicillin (1 mg / ml). 0.1 M IPTG was added to the culture solution to induce enzyme expression of the first variants of paraoxonase, followed by further culturing for 16 hours in a shaking incubator at 200 rpm.

상기 배양액을 원심분리하여 재조합 대장균을 회수한 후, 파쇄 버퍼(50mM NaH2PO4, 300mM NaCl, 10mM imidazole)에 재조합 대장균을 재현탁하여 초음파 분쇄기로 파쇄하였다. 상기 파쇄된 세포액에서 Ni-NTA 컬럼을 사용하여 히스티딘 표지된 파라옥소나아제 1 변이체들을 선택적으로 분리하였다.The culture solution was centrifuged to recover the recombinant E. coli, and the recombinant E. coli was resuspended in a disruption buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole) and disrupted with an ultrasonic mill. The histidine-labeled paraoxonase first variants were selectively isolated using a Ni-NTA column in the shredded cell lysate.

상기 분리된 각각의 파라옥소나아제 1 변이체 0.5 mg/L를 0.5 mM EPO, 50mM 글리신 버퍼(sodium glycine buffer, pH 10.5), 1 mM CaCl2 가 포함된 반응액에 투입하였다.0.5 mg / L of each of the separated paraoxonase first variants was added to a reaction solution containing 0.5 mM EPO, 50 mM sodium glycine buffer (pH 10.5) and 1 mM CaCl 2 .

파라옥소나아제 1은 파라옥손을 p-니트로페놀(p-nitrophenol)과 디에틸 포스페이트(diethyl phosphate)로 가수분해하며, 반응이 일어나면 반응액의 pH가 감소하고 전자 (e-)를 생성하게 된다. 이 과정에서 생성된 p-니트로페놀은 노란색의 발색을 나타내는데, 이 발색반응을 412 nm의 파장에서 흡광도를 측정하여 분석할 수 있다.Paraoxonase 1 hydrolyzes paraoxone with p-nitrophenol and diethyl phosphate. When the reaction occurs, the pH of the reaction solution decreases and electrons (e - ) are produced . The resulting p-nitrophenol exhibits a yellow color, which can be analyzed by measuring the absorbance at a wavelength of 412 nm.

디에틸-파라옥손(EPO)이 가수분해되어 생성된 p-니트로페놀을 412 nm에서의 흡광도를 측정하여 가수분해 활성을 측정하였다. 측정된 p-니트로페놀의 몰당 흡광계수는 16,900 M-1·cm-1값을 이용하였고, 그 결과를 하기 표 3에 나타내었다.The hydrolysis activity of p-nitrophenol produced by hydrolysis of diethyl-paraoxone (EPO) was measured by measuring the absorbance at 412 nm. The extinction coefficient per mole of measured p-nitrophenol was 16,900 M -1 · cm -1 , and the results are shown in Table 3 below.

디에틸-파라옥손(EPO)의 가수분해에 대한 파라옥소나아제 1 변이체의 동력학적 계수(kinetic paramemter)The kinetic parameters of the first paraoxonase variant for the hydrolysis of diethyl-paraoxone (EPO) G3C9 rePON1sG3C9 rePON1s 효소의 kcat
(s-1)
The enzyme k cat
(s -1 )
효소의 km
(mM)
K m of enzyme
(mM)
효소의 kcat/Km
(M-1·s-1)
K cat / K m of enzyme
(M -1 s -1 )
대조군(야생형)Control (wild type) 0.8180.818 0.7000.700 2.60×103 2.60 x 10 3 변이체 1(I74F)Variant 1 (I74F) 3.1623.162 0.3490.349 9.06×103 (3.49)9.06 × 10 3 ( 3.49 ) 변이체 2(T332S)Variant 2 (T332S) 5.9065.906 0.3120.312 1.89×104 (7.29)1.89 x 10 < 4 > ( 7.29 ) 변이체 3(V346A)Variant 3 (V346A) 3.4023.402 0.5980.598 5.69×103 (2.19)5.69 x 10 3 ( 2.19 ) 변이체 4(I74F + H115W)Variant 4 (I74F + H115W) 7.6717.671 0.4790.479 1.60×104 (6.16)1.60 x 10 4 ( 6.16 ) 변이체 5(I74F + T332S)Mutant 5 (I74F + T332S) 4.1914.191 0.2980.298 1.41×104 (5.42)1.41 × 10 4 ( 5.42 ) 변이체 6(I74F + V346A)Variant 6 (I74F + V346A) 10.43710.437 0.6760.676 1.54×104 (5.94)1.54 × 10 4 ( 5.94 ) 변이체 7(H115W + T332S)Variant 7 (H115W + T332S) 12.14612.146 0.1200.120 1.01×105 (39.02)1.01 × 10 5 (39.02) 변이체 8(H115W + V346A)Variant 8 (H115W + V346A) 10.46410.464 1.4061.406 7.44×103 (2.86)7.44 × 10 3 ( 2.86 ) 변이체 9(T332S + V346A)Variant 9 (T332S + V346A) 2.9452.945 0.4730.473 6.23×103 (2.40)6.23 × 10 3 ( 2.40 ) 변이체 10(I74F + H115W + T332S)Variant 10 (I74F + H115W + T332S) 12.90912.909 0.1370.137 9.39×104 (36.13)9.39 x 10 < 4 > ( 36.13 ) 변이체 11(I74F + H115W + V346A)Variant 11 (I74F + H115W + V346A) 22.92722.927 1.2901.290 1.78×104 (6.84)1.78 x 10 4 ( 6.84 )

* 괄호값은 대조군인 야생형 파라옥소나아제 1에 비하여 활성이 증가한 배수를 나타냄.
* The parentheses indicate the multiplication by which the activity is increased as compared to the wild type Paraoxonase No. 1 of the control group.

상기 표 3에 나타낸 바와 같이, 실시예 1 내지 11에서 발현된 파라옥소나아제 1 변이체는 대조군인 야생형 G3C9 rePON1에 비해 활성이 상당히 증가한 것을 확인할 수 있었다. As shown in the above Table 3, it was confirmed that the first paraoxonase first variants expressed in Examples 1 to 11 significantly increased the activity as compared with wild type G3C9 rePON1 as the control group.

특히, 상기 변이체 7 및 10은 74번째 아미노산, 115번째 아미노산 및 332번째 아미노산을 치환한 것으로, 이들 아미노산 잔기가 디에틸-파라옥손(EPO)의 가수분해에 중요한 것을 확인할 수 있었다.
In particular, it was confirmed that the mutants 7 and 10 were substituted with the 74th amino acid, the 115th amino acid and the 332th amino acid, and these amino acid residues were important for the hydrolysis of diethyl-paraoxone (EPO).

3-2. 시간에 따른 디에틸-파라옥손(EPO)의 가수분해 전환율 측정3-2. Measurement of hydrolytic conversion of diethyl-paraoxone (EPO) over time

상기 실시예 3-1에서 디에틸-파라옥손(EPO)에 대해 높은 반응성을 보였던 변이체 7 및 10을 이용하여 시간에 따른 디에틸-파라옥손(EPO)에 대한 가수분해 정도를 측정하였다. 생성된 p-니트로페닐은 앞서 언급한 것과 동일한 방법으로 측정하였고, 그 결과를 도 3에 나타내었다.The degree of hydrolysis of diethyl-paraoxone (EPO) with time was measured using variants 7 and 10 which showed high reactivity with diethyl-paraoxone (EPO) in Example 3-1. The resulting p-nitrophenyl was measured in the same manner as described above, and the results are shown in Fig.

도 3에 나타난 바와 같이, 변이체 7과 10에서 발현된 파라옥소나아제 1에 의해 촉매된 디에틸-파라옥손(EPO)의 전환은 각각 25℃에서 대략 20분 및 25분 후 거의 100%에 도달하였으며, 이는 야생형에 의해 촉매된 전환(840분 또는 14시간)보다 각각 42.0배 및 33.6배 더 빠른 것이었다(도 3).As shown in FIG. 3, the conversion of diethyl-paraoxone (EPO) catalyzed by paraoxonase first expressed in variants 7 and 10 reached approximately 100% after approximately 20 and 25 minutes at 25 ° C, respectively , Which was 42.0 and 33.6 times faster than the wild-type-catalyzed conversion (840 or 14 hours, respectively) (Fig. 3).

즉, 상기 변이체 7과 10에서 발현된 파라옥소나아제 1 은 반응 시간에 따라 현저히 빠르게 기질인 디에틸-파라옥손(EPO)을 가수분해하는 것을 확인할 수 있었다.
That is, it was confirmed that the paraoxonase 1 expressed in the mutants 7 and 10 hydrolyzes the substrate diethyl-paraoxone (EPO) remarkably rapidly according to the reaction time.

실시예 4: 파라옥소나아제 1 변이체들의 디메틸-파라옥손(MPO)에 대한 가수분해 효소 활성 측정Example 4: Determination of hydrolytic activity of dimethyl para-oxone (MPO) of para-oxonase first variants

4-1. 디메틸-파라옥손(MPO)에 대한 가수분해 속도 측정 4-1. Measurement of hydrolysis rate for dimethyl-paraoxone (MPO)

상기 실시예 3에서 디에틸-파라옥손(EPO)에 대해 높은 가수분해 활성을 보였던 변이체 7과 10에서 발현된 파라옥소나아제 1의 디메틸-파라옥손(MPO)에 대한 가수분해 활성의 증가 정도를 확인하기 위하여, 상기 실시에 3에 언급한 바와 같이 동력학적 계수(kimetic parameter)를 측정하였다. 그 결과를 표 4에 나타내었다.The increase in the hydrolytic activity of the first paraoxonase first dimethyl-paraoxone (MPO) expressed in variants 7 and 10, which showed high hydrolytic activity against diethyl-paraoxone (EPO) For confirmation, a kinetic parameter was measured as mentioned in Example 3 above. The results are shown in Table 4.

디메틸-파라옥손(MPO)의 가수분해에 대한 파라옥소나아제 1 변이체의 동력학적 계수(kinetic paramemter)The kinetic parameters of the first paraoxonase variant for the hydrolysis of dimethyl-paraoxone (MPO) G3C9 rePON1sG3C9 rePON1s 효소의 kcat
(s-1)
The enzyme k cat
(s -1 )
효소의 km
(mM)
K m of enzyme
(mM)
효소의 kcat/Km
(s-1·M-1)
K cat / K m of enzyme
(s -1 M -1 )
대조군(야생형)Control (wild type) 0.2230.223 0.3160.316 7.07×102 7.07 × 10 2 변이체 7
(H115W + T332S)
Variant 7
(H115W + T332S)
6.5726.572 0.2320.232 2.83×104 (40.01)2.83 × 10 4 ( 40.01 )
변이체 10
(I74F + H115W + T332S)
Variant 10
(I74F + H115W + T332S)
6.3226.322 0.3140.314 2.01×104 (28.48)2.01 × 10 4 ( 28.48 )

* 괄호값은 대조군인 야생형 파라옥소나아제 1에 비하여 활성이 증가한 배수를 나타냄.
* The parentheses indicate the multiplication by which the activity is increased as compared to the wild type Paraoxonase No. 1 of the control group.

그 결과, 두 개의 파라옥소나아제 1 변이체들, 즉 변이체 7(H115W/T332S) 및 변이체 10(I74F/H115W/T332S)이 대조군인 야생형 파라옥소나아제 1에 비해 디메틸-파라옥손(MPO)의 가수분해에 현저한 개선을 명확하게 나타내었다.As a result, it was found that the two para-oxonaphtha first variants, i.e., variant 7 (H115W / T332S) and variant 10 (I74F / H115W / T332S) Significant improvements in hydrolysis are clearly shown.

즉, 상기 표 4에서 알 수 있는 바와 같이, 변이체 7과 10에서 발현된 파라옥소나아제 1은 디에틸-파라옥손(EPO)뿐만 아니라 디메틸-파라옥손(MPO)에 대해서도 효소 반응성이 크게 증가하였다.Namely, as can be seen from the above Table 4, the enzyme activity of paraoxonase I expressed in mutants 7 and 10 was greatly increased not only for diethyl-paraoxone (EPO) but also for dimethyl-paraoxone (MPO) .

상기 변이체 7 및 10에서 발현된 파라옥소나아제 1은 74번째 아미노산, 115번째 아미노산, 332번째 아미노산을 치환한 것으로, 이들 아미노산 잔기가 디메틸-파라옥손(MPO)의 가수분해에도 중요한 것을 확인할 수 있었다.
It was confirmed that paraoxonase 1 expressed in the mutants 7 and 10 was substituted with the 74th amino acid, the 115th amino acid and the 332st amino acid, and these amino acid residues were also important for the hydrolysis of dimethyl-paraoxone (MPO) .

4-2. 시간에 따른 디메틸-파라옥손(MPO)의 가수분해 전환율 측정4-2. Measurement of hydrolytic conversion of dimethyl-paraoxone (MPO) over time

상기 실시예 4-1에서 디메틸-파라옥손(MPO)에 대해서도 높은 반응성을 보였던 변이체 7과 10을 이용하여 시간에 따른 디메틸-파라옥손(MPO)에 대한 가수분해 정도를 측정하였다. 생성된 p-니트로페닐은 앞서 언급한 것과 동일한 방법으로 측정하였고, 그 결과를 도 4에 나타내었다.The degree of hydrolysis to dimethyl-paraoxone (MPO) was measured over time using variants 7 and 10 which showed high reactivity to dimethyl-paraoxone (MPO) in Example 4-1. The resulting p-nitrophenyl was measured in the same manner as described above, and the results are shown in Fig.

도 4에 나타난 바와 같이, 변이체 7과 10에서 발현된 파라옥소나아제 1에 의해 촉매된 디메틸-파라옥손(MPO)의 전환은 82 ~ 85%에 도달하였다. 변이체 7(H115W/T332S) 및 변이체 10(I74F/H115W/T332S)에 의해 촉매된, 대략 82%의 디메틸-파라옥손(MPO)를 전환하기 위한 시간은 대략 10분으로 야생형에 의해 촉매된 시간인 600분(10시간)보다 급격히 감소하였다.As shown in FIG. 4, the conversion of dimethyl-paraoxone (MPO) catalyzed by paraoxonane first expressed in variants 7 and 10 reached 82-85%. The time for conversion of approximately 82% dimethyl-paraoxone (MPO) catalyzed by variant 7 (H115W / T332S) and variant 10 (I74F / H115W / T332S) was approximately 10 min. 600 hours (10 hours).

<110> Kwangwoon University Industry-Academic Collaboration Foundation <120> PARAOXONASE 1 MUTANTS WITH ENHANCED HYDROLYTIC PROFICIENCY FOR ORGANOPHOSPHATE PARAOXONE AND METHOD FOR MANUFACTURING THE SAME <130> 0001 <160> 54 <170> KopatentIn 2.0 <210> 1 <211> 355 <212> PRT <213> Human <400> 1 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 2 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (74) <223> Isoleucine -> Phenylalanine <400> 2 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 3 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (332) <223> Threonine -> Serine <400> 3 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 4 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 4 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 5 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (74) <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> (115) <223> Histidine -> Tryptophan <400> 5 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 6 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (74) <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> (332) <223> Threonine -> Serine <400> 6 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 7 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (74) <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 7 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 8 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (115) <223> Histidine -> Tryptophan <220> <221> VARIANT <222> (332) <223> Threonine -> Serine <400> 8 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 9 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (115) <223> Histidine -> Tryptophan <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 9 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 10 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (332) <223> Threonine -> Serine <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 10 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 11 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (74) <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> (115) <223> Histidine -> Tryptophan <220> <221> VARIANT <222> (332) <223> Threonine -> Serine <400> 11 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 12 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (74) <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> (115) <223> Histidine -> Tryptophan <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 12 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu 1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val 35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp 65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val 85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe 100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys 180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205 Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val 290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr 340 345 350 Cys Glu Leu 355 <210> 13 <211> 1065 <212> DNA <213> Human <400> 13 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 14 <211> 1065 <212> DNA <213> Human <400> 14 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 15 <211> 1065 <212> DNA <213> Human <400> 15 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 16 <211> 1065 <212> DNA <213> Human <400> 16 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 17 <211> 1065 <212> DNA <213> Human <400> 17 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 18 <211> 1065 <212> DNA <213> Human <400> 18 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 19 <211> 1065 <212> DNA <213> Human <400> 19 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 20 <211> 1065 <212> DNA <213> Human <400> 20 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 21 <211> 1065 <212> DNA <213> Human <400> 21 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 22 <211> 1065 <212> DNA <213> Human <400> 22 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 23 <211> 1065 <212> DNA <213> Human <400> 23 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 24 <211> 1065 <212> DNA <213> Human <400> 24 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 25 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_L69A <400> 25 agttccggcg caaaatatcc gggtattatg tcc 33 <210> 26 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_L69A <400> 26 cggatatttt gcgccggaac tgataaacgc cag 33 <210> 27 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_L69V <400> 27 agttccggcg ttaaatatcc gggtattatg tcc 33 <210> 28 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_L69V <400> 28 cggatattta acgccggaac tgataaacgc cag 33 <210> 29 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_L69I <400> 29 agttccggca ttaaatatcc gggtattatg tcc 33 <210> 30 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_L69I <400> 30 cggatattta atgccggaac tgataaacgc cag 33 <210> 31 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74A <400> 31 tatccgggtg ctatgtcctt cgatccggac aaa 33 <210> 32 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74A <400> 32 gaaggacata gcacccggat atttcaggcc gga 33 <210> 33 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74V <400> 33 tatccgggtg ttatgtcctt cgatccggac aaa 33 <210> 34 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74V <400> 34 gaaggacata acacccggat atttcaggcc gga 33 <210> 35 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74L <400> 35 tatccgggtc ttatgtcctt cgatccggac aaa 33 <210> 36 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74L <400> 36 gaaggacata agacccggat atttcaggcc gga 33 <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74F <400> 37 tatccgggtt tcatgtcctt cgatccggac aaatcaggc 39 <210> 38 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74F <400> 38 gaaggacatg aaacccggat atttcaggcc ggaactgat 39 <210> 39 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74W <400> 39 tatccgggtt ggatgtcctt cgatccggac aaatcaggc 39 <210> 40 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74W <400> 40 gaaggacatc caacccggat atttcaggcc ggaactgat 39 <210> 41 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer MF_H115W <400> 41 tttaatccgt ggggcattag caccttcacg gatg 34 <210> 42 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_H115W <400> 42 gctaatgccc cacggattaa acgatgagat atc 33 <210> 43 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332A <400> 43 caaggttccg ctgtggcagc agtttataaa ggt 33 <210> 44 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332A <400> 44 tgctgccaca gcggaacctt gcaggacggt acc 33 <210> 45 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332S <400> 45 caaggttcct ctgtggcagc agtttataaa ggtaaactg 39 <210> 46 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MR_T332S <400> 46 tgctgccaca gaggaacctt gcaggacggt accattttc 39 <210> 47 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332V <400> 47 caaggttccg tagtggcagc agtttataaa ggt 33 <210> 48 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_T332V <400> 48 tgctgccact acggaacctt gcaggacggt acc 33 <210> 49 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_V346A <400> 49 attggcaccg ctttccacaa agctctgtac tgt 33 <210> 50 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_V346A <400> 50 tttgtggaaa gcggtgccaa tcagcagttt acc 33 <210> 51 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_V346L <400> 51 attggcaccc ttttccacaa agctctgtac tgt 33 <210> 52 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_V346L <400> 52 tttgtggaaa agggtgccaa tcagcagttt acc 33 <210> 53 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_V346I <400> 53 attggcacca ttttccacaa agctctgtac tgt 33 <210> 54 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_V346I <400> 54 tttgtggaaa atggtgccaa tcagcagttt acc 33 <110> Kwangwoon University Industry-Academic Collaboration Foundation <120> PARAOXONASE 1 MUTANTS WITH ENHANCED HYDROLYTIC PROFICIENCY FOR          ORGANOPHOSPHATE PARAOXONE AND METHOD FOR MANUFACTURING THE SAME <130> 0001 <160> 54 <170> Kopatentin 2.0 <210> 1 <211> 355 <212> PRT <213> Human <400> 1 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 2 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <74> <223> Isoleucine -> Phenylalanine <400> 2 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 3 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> <223> Threonine -> Serine <400> 3 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 4 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 4 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 5 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <74> <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <115> <223> Histidine -> Tryptophan <400> 5 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 6 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <74> <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> <223> Threonine -> Serine <400> 6 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 7 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <74> <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 7 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 8 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <115> <223> Histidine -> Tryptophan <220> <221> VARIANT <222> <223> Threonine -> Serine <400> 8 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 9 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <115> <223> Histidine -> Tryptophan <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 9 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 10 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <222> <223> Threonine -> Serine <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 10 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 11 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <74> <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <115> <223> Histidine -> Tryptophan <220> <221> VARIANT <222> <223> Threonine -> Serine <400> 11 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Ser Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 12 <211> 355 <212> PRT <213> Human <220> <221> VARIANT <74> <223> Isoleucine -> Phenylalanine <220> <221> VARIANT <115> <223> Histidine -> Tryptophan <220> <221> VARIANT <222> (346) <223> Valine -> Alanine <400> 12 Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu   1 5 10 15 Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg              20 25 30 Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Val          35 40 45 Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe      50 55 60 Ile Ser Ser Gly Leu Lys Tyr Pro Gly Phe Met Ser Phe Asp Pro Asp  65 70 75 80 Lys Ser Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Val                  85 90 95 Val Leu Glu Leu Gly Ile Thr Gly Asn Thr Leu Asp Ile Ser Ser Phe             100 105 110 Asn Pro Trp Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr         115 120 125 Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe     130 135 140 Lys Phe Gln Glu Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160 His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu                 165 170 175 His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Lys             180 185 190 Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr         195 200 205 Ser Pro Asn Val Val Val Ala Glu Gly Phe Asp Phe Ala Asn     210 215 220 Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240 Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu                 245 250 255 Thr Pro Leu Lys Ser Leu Asp Phe Asp Thr Leu Val Asp Asn Ile Ser             260 265 270 Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly         275 280 285 Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Gly Ser Glu Val     290 295 300 Leu Arg Ile Gln Asp Ile Leu Ser Glu Glu Pro Lys Val Thr Val Val 305 310 315 320 Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val                 325 330 335 Tyr Lys Gly Lys Leu Leu Ile Gly Thr Ala Phe His Lys Ala Leu Tyr             340 345 350 Cys Glu Leu         355 <210> 13 <211> 1065 <212> DNA <213> Human <400> 13 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 14 <211> 1065 <212> DNA <213> Human <400> 14 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 15 <211> 1065 <212> DNA <213> Human <400> 15 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 16 <211> 1065 <212> DNA <213> Human <400> 16 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 17 <211> 1065 <212> DNA <213> Human <400> 17 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 18 <211> 1065 <212> DNA <213> Human <400> 18 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 19 <211> 1065 <212> DNA <213> Human <400> 19 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 20 <211> 1065 <212> DNA <213> Human <400> 20 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 21 <211> 1065 <212> DNA <213> Human <400> 21 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 22 <211> 1065 <212> DNA <213> Human <400> 22 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggta ttatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgcatggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 23 <211> 1065 <212> DNA <213> Human <400> 23 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tcctctgtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgtttt ccacaaagct ctgtactgtg aactg 1065 <210> 24 <211> 1065 <212> DNA <213> Human <400> 24 atggcaaaac tgaccgctct gacgctgctg ggtctgggtc tggcactgtt tgatggtcag 60 aaaagctctt ttcaaacccg tttcaacgtg catcgcgaag tgacgccggt tgaactgccg 120 aactgcaatc tggtcaaagg cgtggataac ggttctgaag acctggaaat tctgccgaat 180 ggtctggcgt ttatcagttc cggcctgaaa tatccgggtt tcatgtcctt cgatccggac 240 aaatcaggca aaatcctgct gatggatctg aatgaagaag acccggtggt tctggaactg 300 ggcattaccg gtaacacgct ggatatctca tcgtttaatc cgtggggcat tagcaccttc 360 acggatgaag acaacaccgt gtatctgctg gtcgtgaatc acccggatag ctctagtacg 420 gtcgaagtgt tcaaattcca ggaagaagaa aaatcgctgc tgcatctgaa aaccattcgt 480 cacaaactgc tgccgagcgt taacgatatc gttgcggtcg gtccggaaca tttttacgcg 540 acgaatgatc actatttcgc cgacccgtac ctgaaatctt gggaaatgca tctgggcctg 600 gcctggtcgt ttgtcaccta ttacagcccg aacgacgtgc gcgttgtcgc agaaggtttt 660 gatttcgcta acggcattaa tatcagtccg gatggtaaat atgtgtacat tgcggaactg 720 ctggcccata aaatccacgt ttatgaaaaa catgccaact ggaccctgac gccgctgaaa 780 tccctggatt ttgacaccct ggtcgataat atttcagttg acccggtcac gggcgatctg 840 tgggttggtt gccacccgaa cggcatgcgt atcttctatt acgacccgaa aaatccgccg 900 ggctctgaag tgctgcgcat tcaggatatc ctgagtgaag aaccgaaagt taccgtggtt 960 tacgcagaaa atggtaccgt cctgcaaggt tccacggtgg cagcagttta taaaggtaaa 1020 ctgctgattg gcaccgcttt ccacaaagct ctgtactgtg aactg 1065 <210> 25 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_L69A <400> 25 agttccggcg caaaatatcc gggtattatg tcc 33 <210> 26 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_L69A <400> 26 cggatatttt gcgccggaac tgataaacgc cag 33 <210> 27 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_L69V <400> 27 agttccggcg ttaaatatcc gggtattatg tcc 33 <210> 28 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_L69V <400> 28 cggatattta acgccggaac tgataaacgc cag 33 <210> 29 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_L69I <400> 29 agttccggca ttaaatatcc gggtattatg tcc 33 <210> 30 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_L69I <400> 30 cggatattta atgccggaac tgataaacgc cag 33 <210> 31 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74A <400> 31 tatccgggtg ctatgtcctt cgatccggac aaa 33 <210> 32 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74A <400> 32 gaaggacata gcacccggat atttcaggcc gga 33 <210> 33 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74V <400> 33 tatccgggtg ttatgtcctt cgatccggac aaa 33 <210> 34 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74V <400> 34 gaaggacata acacccggat atttcaggcc gga 33 <210> 35 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74L <400> 35 tatccgggtc ttatgtcctt cgatccggac aaa 33 <210> 36 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74L <400> 36 gaaggacata agacccggat atttcaggcc gga 33 <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74F <400> 37 tatccgggtt tcatgtcctt cgatccggac aaatcaggc 39 <210> 38 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74F <400> 38 gaaggacatg aaacccggat atttcaggcc ggaactgat 39 <210> 39 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MF_I74W <400> 39 tatccgggtt ggatgtcctt cgatccggac aaatcaggc 39 <210> 40 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MR_I74W <400> 40 gaaggacatc caacccggat atttcaggcc ggaactgat 39 <210> 41 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer MF_H115W <400> 41 tttaatccgt ggggcattag caccttcacg gatg 34 <210> 42 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_H115W <400> 42 gctaatgccc cacggattaa acgatgagat atc 33 <210> 43 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332A <400> 43 caaggttccg ctgtggcagc agtttataaa ggt 33 <210> 44 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332A <400> 44 tgctgccaca gcggaacctt gcaggacggt acc 33 <210> 45 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332S <400> 45 caaggttcct ctgtggcagc agtttataaa ggtaaactg 39 <210> 46 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer MR_T332S <400> 46 tgctgccaca gaggaacctt gcaggacggt accattttc 39 <210> 47 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_T332V <400> 47 caaggttccg tagtggcagc agtttataaa ggt 33 <210> 48 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_T332V <400> 48 tgctgccact acggaacctt gcaggacggt acc 33 <210> 49 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_V346A <400> 49 attggcaccg ctttccacaa agctctgtac tgt 33 <210> 50 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_V346A <400> 50 tttgtggaaa gcggtgccaa tcagcagttt acc 33 <210> 51 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_V346L <400> 51 attggcaccc ttttccacaa agctctgtac tgt 33 <210> 52 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_V346L <400> 52 tttgtggaaa agggtgccaa tcagcagttt acc 33 <210> 53 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MF_V346I <400> 53 attggcacca ttttccacaa agctctgtac tgt 33 <210> 54 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer MR_V346I <400> 54 tttgtggaaa atggtgccaa tcagcagttt acc 33

Claims (13)

서열번호 1의 아미노산 서열을 가지는 인간 재조합 파라옥소나아제 1의 아미노산 위치 중 74번째 아미노산인 이소류신(I74), 115번째 아미노산인 히스티딘(H115), 332번째 아미노산인 트레오닌(T332) 및 346번째 아미노산인 발린(V346) 중 하나 이상이 페닐알라닌(F), 트립토판(W), 세린(S) 및 알라닌(A)으로 이루어진 군으로부터 선택된 어느 하나의 아미노산으로 치환된, 유기인계 파라옥손 화합물의 가수분해 활성이 야생형 파라옥소나아제 1에 비해 증가된 파라옥소나아제 1 변이체.(I74), histidine (H115) which is the 115th amino acid, threonine (T332) which is the 332nd amino acid and threonine (T332) which is the amino acid of the 346th amino acid Wherein at least one of valine V346 is substituted with any one amino acid selected from the group consisting of phenylalanine (F), tryptophan (W), serine (S) and alanine (A) Increased paraoxonase first variant compared to wild type paraoxonase I. 제1항에 있어서,
상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열에서 다음의 돌연변이 중 적어도 하나에 해당하는 위치에서의 돌연변이:
I74F, T332S, V346A, I74F + H115W, I74F + T332S, I74F + V346A, H115W + T332S, H115W + V346A, T332S + V346A, I74F + H115W + T332S 또는 I74F + H115W + V346A
를 포함하는 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 1,
Wherein said first paraoxonase variant is a mutation at a position corresponding to at least one of the following mutations in the amino acid sequence of SEQ ID NO:
I74F + H115W + V346A, I74F + T342A, I74F + T342A, I74F + T342A, T342A +
/ RTI &gt; a first variant of para-oxonase.
제1항에 있어서,
상기 파라옥소나아제 1 변이체는 서열번호 1의 아미노산 서열에서 특히 H115W + T332S, I74F + H115W + T332S에 해당하는 위치에서의 돌연변이를 포함하는 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 1,
Wherein said first paraoxonase variant comprises a mutation at a position corresponding to H115W + T332S, I74F + H115W + T332S in the amino acid sequence of SEQ ID NO: 1.
제1항에 있어서,
상기 변이체는 서열번호 2 내지 12 중 어느 하나의 아미노산 서열을 갖는 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 1,
Wherein said variant has an amino acid sequence of any one of SEQ ID NOS: 2 to 12.
제1항에 있어서,
상기 파라옥소나아제 1 변이체는 야생형 파라옥소나아제 1의 가수분해 활성보다 2.4 내지 39배 증가된 가수분해 활성을 갖는 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 1,
Wherein said paraoxonase first variant has a hydrolytic activity that is 2.4-39 times greater than the hydrolysis activity of wild-type paraoxonase I. &lt; RTI ID = 0.0 &gt; 1. &lt; / RTI &gt;
제1항에 있어서,
상기 유기인계 파라옥손 화합물은 디메틸-파라옥손(dimethyl-paraoxon, MPO), 디에틸-파라옥손(diethyl-paraoxon, EPO), 디아지논-옥손(diazinon-oxon, DZO) 또는 클로로피리포스-옥손(chloropyrifos-oxon, CPO)인 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 1,
The organophosphorus paraoxone compound may be selected from the group consisting of dimethyl-paraoxone (MPO), diethyl-paraoxone (EPO), diazinon-oxone (DZO), chloropyrimidine- chloropyrifos-oxon, CPO). &lt; / RTI &gt;
제6항에 있어서,
상기 유기인계 파라옥손 화합물은 디메틸-파라옥손(MPO)인 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 6,
Wherein said organophosphorus paraoxone compound is dimethyl-paraoxone (MPO).
제6항에 있어서,
상기 유기인계 파라옥손 화합물은 디에틸-파라옥손(EPO)인 것을 특징으로 하는 파라옥소나아제 1 변이체.
The method according to claim 6,
Wherein said organophosphorus paraoxone compound is diethyl-paraoxone (EPO).
제1항의 파라옥소나아제 1 변이체를 코딩하는 유전자.A gene encoding the first paraoxonase variant of claim 1. 제9항에 있어서,
상기 유전자는 서열번호 13 내지 24의 중 어느 하나의 염기 서열을 가지는 것을 특징으로 하는 유전자.
10. The method of claim 9,
Wherein the gene has the nucleotide sequence of any one of SEQ ID NOS: 13 to 24.
제9항의 유전자를 포함하는 재조합 발현 벡터.A recombinant expression vector comprising the gene of claim 9. (a) 제10항의 발현 벡터를 미생물에 형질전환하여 재조합 미생물을 제조하는 단계;
(b) 상기 제조된 재조합 미생물을 배양하여 파라옥소나아제 1 변이체를 발현하는 단계; 및
(c) 상기 배앙물로부터 파라옥소나아제 1 변이체를 회수하는 단계
를 포함하는 제1항의 파라옥소나아제 1 변이체의 제조방법.
(a) transforming the expression vector of claim 10 into a microorganism to produce a recombinant microorganism;
(b) culturing the produced recombinant microorganism to express a paraoxonase first variant; And
(c) recovering the first paraoxonase variant from said embryo
&Lt; / RTI &gt; of claim 1, wherein the first variant of paraoxonase is selected from the group consisting of:
제12항에 있어서,
상기 미생물은 대장균인 것을 특징으로 하는 파라옥소나아제 1 변이체의 제조방법.
13. The method of claim 12,
Wherein the microorganism is Escherichia coli.
KR1020150124433A 2015-09-02 2015-09-02 Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same KR20170027599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150124433A KR20170027599A (en) 2015-09-02 2015-09-02 Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150124433A KR20170027599A (en) 2015-09-02 2015-09-02 Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20170027599A true KR20170027599A (en) 2017-03-10

Family

ID=58410869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150124433A KR20170027599A (en) 2015-09-02 2015-09-02 Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20170027599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274521B1 (en) * 2020-02-20 2021-07-07 국방과학연구소 Recombinant pon1-oph hybrid for catalytic organophosphorus nerve argent and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186932B1 (en) 1996-07-23 1999-04-15 배문한 Absorptive/reactive powder composition for decontaminating organophosphorous compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186932B1 (en) 1996-07-23 1999-04-15 배문한 Absorptive/reactive powder composition for decontaminating organophosphorous compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274521B1 (en) * 2020-02-20 2021-07-07 국방과학연구소 Recombinant pon1-oph hybrid for catalytic organophosphorus nerve argent and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20190112586A1 (en) Engineered Nucleases and Their Uses for Nucleic Acid Assembly
US20200172895A1 (en) Using split deaminases to limit unwanted off-target base editor deamination
Garinot-Schneider et al. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis
US20140148361A1 (en) Generation and Expression of Engineered I-ONUI Endonuclease and Its Homologues and Uses Thereof
EP0869174B1 (en) Method for cloning and producing the SpeI restriction endonuclease
CN116157144A (en) Uracil stabilizing proteins and active fragments and variants thereof and methods of use
Alnoch et al. Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11
Smith et al. Genetic selection for critical residues in ribonucleases
Farnoosh et al. A review on engineering of organophosphorus hydrolase (OPH) enzyme
US20090246756A1 (en) Thermostable polypeptide having polynucleotide kinase activity and/or phosphatase activity
RU2487937C2 (en) Signal peptides tat for production of proteins in procaryotes
KR20170027599A (en) Paraoxonase 1 mutants with enhanced hydrolytic proficiency for organophosphate paraoxone and and method for manufacturing the same
CN108424943B (en) Method for producing 2 &#39;-deoxy-2&#39; -fluoro-beta-D-arabinosyladenylate
KR100888513B1 (en) Novel N-Acetylglucosamine-2-Epimerase and Method for Producing CMP-neuraminic acid Using the Same
CN110819620A (en) Method for carrying out gene mutation on rhodobacter sphaeroides
JP2019511926A (en) Beta-lactamase mutant
CN112662643A (en) Organophosphorus anhydrase, coding gene thereof and application of organophosphorus anhydrase in degradation of organophosphorus pesticides
CN114480345B (en) MazF mutant, recombinant vector, recombinant engineering bacterium and application thereof
Schmiedel et al. Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus
KR20150136884A (en) Organophosphorous Hydrolase Varient and Method for Preparing Thereof
EP3701022A1 (en) Beta-lactamase variants
KR20120036635A (en) Novel genes encoding low temperature-adapted esterases
Acquistapace An investigation into the structural determinants of the positional specificity of hydrolysis of myo-inositol hexakisphosphate by HP phytases
US9617525B2 (en) Phosphotriesterase enzymes, methods and compositions related thereto
SCHWARZHOFEN Reconstructing molecular evolution by changing substrate specificities within the amidohydrolase superfamily of enzymes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment