KR20170020780A - 스케일러블 비디오 데이터의 부호화 또는 복호화 하는 방법 및 장치 - Google Patents

스케일러블 비디오 데이터의 부호화 또는 복호화 하는 방법 및 장치 Download PDF

Info

Publication number
KR20170020780A
KR20170020780A KR1020167035050A KR20167035050A KR20170020780A KR 20170020780 A KR20170020780 A KR 20170020780A KR 1020167035050 A KR1020167035050 A KR 1020167035050A KR 20167035050 A KR20167035050 A KR 20167035050A KR 20170020780 A KR20170020780 A KR 20170020780A
Authority
KR
South Korea
Prior art keywords
layer
information
unit
encoding
video
Prior art date
Application number
KR1020167035050A
Other languages
English (en)
Inventor
최병두
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20170020780A publication Critical patent/KR20170020780A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/187Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

일 실시예에 따라, 각각의 부호화된 비디오 시퀀스에 포함된 레이어 중 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보를 비트스트림으로부터 획득하는 단계; 제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 단계; 및 제2 레이어에 포함되는 제2 픽쳐가, 복호화 된 제1 픽쳐를 참조하여 제1 레이어 및 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 단계를 포함할 수 있으며, 제1 레이어는 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고, 제2 레이어는 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하고, 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 경우, 제1 정보는 0보다 큰 값인 것을 특징으로 하는 비디오 복호화 방법이 제공될 수 있다.

Description

스케일러블 비디오 데이터의 부호화 또는 복호화 하는 방법 및 장치{METHOD AND APPARATUS FOR CODING AND DECODING SCALABLE VIDEO DATA}
일 실시예에 따른 서로 다른 복호화 방식으로 복호화 된 영상을 포함하는 복수개의 레이어를 이용하여 비디오 데이터를 부호화 또는 복호화 하는 방법 및 장치에 관한 것이다.
비디오 데이터는 소정의 데이터 압축 표준, 예를 들면 MPEG(Moving Picture Expert Group) 표준에 따른 코덱에 의하여 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다.
다양한 통신망과 단말기에 대응하여 정보의 양을 적절히 조절하고 전송하기 위한 비디오 압축 방식으로 스케일러블 비디오 코딩(SVC: Scalable Video Coding)이 있다. 스케일러블 비디오 코딩에서는 다양한 전송 네트워크와 다양한 수신 단말에 적응적으로 서비스가 가능한 기본 레이어(base layer)과 향상 레이어(enhancement layer)의 영상을 제공한다.
최근에는 3차원 멀티미디어 기기 및 3차원 멀티미디어 컨텐츠의 보급에 따라 3차원 비디오 코딩을 위한 다시점 비디오 코딩(Multiview Video Coding)기술이 너리 확산되고 있다.
이와 같이 최근에는 복수개의 레이어를 이용하는 스케일러블 비디오를 부호화 또는 복호화 하는 방법에 있어서 각 레이어에 포함되는 픽쳐를 부호화 또는 복호화 할 때 다른 레이어가 참조될 수 있다. 즉, 픽쳐를 부호화 또는 복호화 할 때 샘플을 예측하기 위하여 다른 레이어가 참조될 수 있다. 이러한 참조 과정을 통해 부호화 또는 복호화의 효율을 향상시킬 수 있다.
다만 참조 대상이 되는 기본 레이어의 픽쳐가 사용한 복호화 방식이 참조하려는 레이어의 픽쳐가 사용한 복호화 방식과 다른 복호화 방식을 이용하여 복호화 된 경우에 이용할 수 있는 기존의 방법은 어렵고 비효율적이다. 따라서 서로 다른 복호화 방식을 이용하여 복호화 된 레이어 간의 참조를 통하여 픽쳐를 부호화 또는 복호화 하는 방법을 좀더 효율적으로 수행하기 위한 방법을 제공할 필요가 있다.
일 실시예들은 부호화 또는 복호화 과정에서 필요한 신택스(syntax) 또는 시맨틱(semantic)을 재정의함으로써, 서로 다른 복호화 방식으로 복호화 된 영상을 포함하는 복수개의 레이어를 이용한 부호화 또는 복호화를 효율적으로 수행하기 위한 방법 및 장치를 제공할 수 있다.
상기 기술적 과제 해결을 위하여, 복수개의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 방법에 있어서, 각각의 부호화된 비디오 시퀀스(coded video sequences, 이하 CVS)에 포함된 레이어 중 비디오에 대한 비디오 파라미터 세트(video parameter set)의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보를 비트스트림으로부터 획득하는 단계; 제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 단계; 및 제2 레이어에 포함되는 제2 픽쳐가, 복호화 된 제1 픽쳐를 참조하여 제1 레이어 및 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 단계를 포함할 수 있으며, 제1 레이어는 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고, 제2 레이어는 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하고, 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 경우, 제1 정보는 0보다 큰 값인 것을 특징으로 하는 비디오 복호화 방법이 제공될 수 있다.
상기 기술적 과제를 해결하기 위하여 또 다른 일 실시예에 따라 각각의 부호화된 비디오 시퀀스(CVS)에서 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보를 비트스트림으로부터 획득하는 제1 정보 획득부; 제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 제1 픽쳐 복호화부; 및 제2 레이어에 포함되는 제2 픽쳐에서 제1 픽쳐를 참조하여 제1 레이어 및 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 제2 픽쳐 복호화부를 포함할 수 있고, 제1 레이어는 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고, 제2 레이어는 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하는 복수의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 장치가 제공될 수 있다.
상기 기술적 과제 해결을 위하여 또 다른 일 실시예에 따른 비디오 복호화 방법을 구현하기 위한 프로그램이 저장된 컴퓨터 판독 가능 기록매체가 제공될 수 있다.
일 실시예에 따라 복수개의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 경우, 참조 대상이 되는 기본 레이어의 픽쳐가 사용한 복호화 방식과 참조하려는 레이어의 픽쳐가 사용한 복호화 방식이 다른 경우, 복호화 과정에서 필요한 신택스 또는 시맨틱을 재정의하여 효율적으로 픽쳐를 복호화 또는 부호화 할 수 있다.
도 1a는 일 실시예에 따른 스케일러블 비디오를 부호화 하는 스케일러블 비디오 부호화 장치의 구성을 나타낸 블록도이다.
도 1b는 일 실시예에 따른 스케일러블 비디오를 복호화 하는 스케일러블 비디오 복호화 장치의 구성을 나타낸 블록도이다.
도 1c는 일 실시예에 따른 제1 정보에 대응하는 시맨틱을 나타내는 도면이다.
도 2a는 기본 레이어 및 향상 레이어가 서로 다른 방식으로 부호화 또는 복호화 되는지 판단하지 않고 향상 레이어가 향상 레이어보다 하위 레이어를 참조하는 방법을 도시한 것이다.
도 2b는 일 실시예에 따른 스케일러블 비디오 부호화 과정에서 스케일링 리스트 데이터를 참조할지에 대한 신택스 엘리먼트 및 시맨틱을 나타낸 것이다.
도 2c는 일 실시예에 따른 스케일러블 비디오의 레이어 간에 참조 가능한 레이어의 픽쳐를 결정하기 위한 시간적 식별자의 최대값에 대한 정보를 처리하는 과정을 도시한다.
도 2d는 일 실시예에 따른 비디오 파라미터 세트에 대한 비디오 사용성 정보(video usability information)의 신택스 일부를 도시한다.
도 3a는 일 실시예에 따른 복수개의 레이어로 구성되는 스케일러블 비디오를 나타낸다.
도 3b는 일 실시예에 따른 스케일러블 비디오 부호화 시스템를 나타낸 도면이다.
도 4a는 일 실시예에 따른 NAL 단위 헤더를 나타낸 도면이다.
도 4b는 일 실시예에 따른 스케일러블 비디오의 부호화된 데이터를 포함하는 NAL 단위들을 나타낸다.
도 5는 다양한 실시예에 따른 레이어 집합을 설명하기 위한 도면이다.
도 6는 출력 레이어 서브 집합을 설명하기 위한 도면이다.
도 7은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 8은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 9는 일 실시예에 따른 부호화단위의 개념을 도시한다.
도 10은 일 실시예에 따른 부호화단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 11은 일 실시예에 따른 부호화단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 12는 일 실시예에 따른 심도별 부호화단위 및 파티션을 도시한다.
도 13은 일 실시예에 따른, 부호화단위 및 변환단위의 관계를 도시한다.
도 14는 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 15는 일 실시예에 따른 심도별 부호화단위를 도시한다.
도 16, 17 및 18은 일 실시예에 따른, 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 19 는 표 1의 부호화 모드 정보에 따른 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 20 은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 21은 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 22는 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 23및 24는, 일 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 25는 일 실시예에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 26 은 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
발명의 실시를 위한 최선의 형태
일 실시예에 따라, 복수개의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 방법에 있어서 각각의 부호화된 비디오 시퀀스(coded video sequences, 이하 CVS)에 포함된 레이어 중 비디오에 대한 비디오 파라미터 세트(video parameter set)의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보를 비트스트림으로부터 획득하는 단계; 제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 단계; 및 제2 레이어에 포함되는 제2 픽쳐가, 복호화 된 제1 픽쳐를 참조하여 제1 레이어 및 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 단계를 포함할 수 있으며, 제1 레이어는 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고, 제2 레이어는 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하고, 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 경우, 제1 정보는 0보다 큰 값인 것을 특징으로 하는 비디오 복호화 방법이 제공될 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 비트스트림으로부터 획득하는 단계를 더 포함할 수 있으며, 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 제1 정보는 0보다 큰 값인 것을 특징으로 할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제2 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자의 값은 0보다 큰 값인 것을 특징으로 할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 픽쳐를 참조하는 단계는 복수개의 레이어가 서로 동일한 방식으로 참조하지 않는 경우, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지 판단하지 않고 복수개의 레이어 중 제2 레이어보다 하위의 레이어에 해당하는 적어도 하나의 하위 레이어를 참조하는 단계를 포함할 수 있으며, 하위 레이어는 제1 레이어를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 예측을 수행하는 단계는 제2 레이어가 하위 레이어를 직접 참조하는 것으로 결정된 경우, 제2 레이어가 하위 레이어를 참조하는 방식에 대한 제3 정보를 비트스트림으로부터 획득하는 단계; 및 제3 정보에 기초하여 제1 레이어 및 제2 레이어 간에 샘플 예측 및 움직임 예측 중 적어도 하나를 수행하는 단계를 포함할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 비트스트림으로부터 획득하는 단계; 및 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우 제2 레이어가 제1 레이어의 시퀀스 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제4 정보를 획득하는 단계를 더 포함할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 비트스트림으로부터 획득하는 단계; 및 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 제2 레이어는 제1 레이어의 픽쳐 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제5 정보를 획득하는 단계를 더 포함할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 비트스트림으로부터 획득하는 단계; 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 복수개의 레이어 중 하나인 제3 레이어에 포함되는 제3 픽쳐가 참조하는 제2 픽쳐의 시간적 식별자의 최대값에 대한 정보를 포함하는 제6 정보를 획득하는 단계; 및 제6 정보에 기초하여 제3 픽쳐가 제2 픽쳐 중 최대값 이하의 시간적 식별자의 값을 가지는 픽쳐를 참조하는 단계를 더 포함할 수 있고, 제3 레이어는 제2 레이어 보다 상위 레이어에 해당하는 것을 특징으로 할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제6 정보를 획득하는 단계는 제2 픽쳐가 참조하는 제1 픽쳐의 시간적 식별자의 최대값을 미리 결정된 시간적 식별자의 값으로 결정하는 단계를 더 포함할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 픽쳐를 참조하는 픽쳐들의 복호화가 모두 끝난 후, 제1 레이어의 하위 복호화 픽쳐 버퍼에 저장된 복원 픽쳐를 비워진 상태로 설정하는 단계를 더 포함할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 비트스트림으로부터 획득하는 단계; 및 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 제2 픽쳐에 대한 픽쳐 파라미터 세트(picture parameter set) 및 시퀀스 파라미터 세트(sequence parameter set)를 결정함에 있어서 제1 픽쳐에 대한 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하는 제한을 적용할지를 나타내는 제7 정보를 비트스트림으로부터 획득하는 단계를 더 포함할 수 있고, 제7 정보는 제한을 항상 적용하는 것은 아닌 것을 특징으로 할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 획득하는 단계; 및 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 비디오에 대한 비디오 파라미터 세트(video parameter set)를 참조하는 부호화된 비디오 시퀀스(CVS)에서 허용되는 레이어 식별자의 최대값을 나타내는 제8 정보를 비트스트림으로부터 획득하는 단계를 더 포함할 수 있고, 최대 개수는 1보다 큰 것을 특징으로 할 수 있다.
일 실시예에 따른 비디오 복호화 방법은, 제1 레이어 및 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 비트스트림으로부터 획득하는 단계; 및 제2 정보가 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP(Intra Random Access Point) 픽쳐를 포함한다는 제한이 적용되는지를 나타내는 제9 정보를 비트스트림으로부터 획득하는 단계를 더 포함할 수 있고, 제9 정보는 제한이 항상 적용되는 것은 아님을 나타내는 것을 특징으로 할 수 있다.
일 실시예에 따라, 복수의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 장치에 있어서, 각각의 부호화된 비디오 시퀀스(CVS)에서 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보를 비트스트림으로부터 획득하는 제1 정보 획득부; 제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 제1 픽쳐 복호화부; 및 제2 레이어에 포함되는 제2 픽쳐에서 제1 픽쳐를 참조하여 제1 레이어 및 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 제2 픽쳐 복호화부를 포함할 수 있고, 제1 레이어는 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고, 제2 레이어는 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하는 복수의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 장치가 제공될 수 있다.
일 실시예에 따른 비디오 복호화 방법을 구현하기 위한 프로그램이 저장된 컴퓨터 판독 가능 기록매체가 제공될 수 있다.
발명의 실시를 위한 형태
이하 도 1a 내지 도 6을 참조하여, 다양한 실시예에 따라 스케일러블 비디오 부호화 방법 또는 복호화 방법이 제안된다. 또한, 도 7 내지 도 19 를 참조하여, 앞서 제안한 깊이 영상 복호화 기법 및 깊이 영상 부호화 기법에 적용 가능한 다양한 실시예에 따른 트리 구조의 부호화 단위에 기초한 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 또한, 도 20 내지 도 26을 참조하여, 앞서 제안한 비디오 부호화 방법, 비디오 복호화 방법이 적용 가능한 다양한 실시예들이 개시된다.
이하, "영상"은 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀들이 샘플들일 수 있다.
이하 "스케일러블(scalable) 비디오"는 복수개의 레이어를 이용하여 출력될 수 있는 비디오 컨텐츠를 구성하는 멀티 레이어(multilayer) 비디오를 의미할 수 있다. 복수개의 레이어를 포함하는 비디오 데이터를 부호화 하는 방법에 따라, 동일한 비디오 컨텐츠는 시각적, 공간적 또는 품질적으로 다른 형식으로 출력될 수 있다.
도 1a는 일 실시예에 따른 스케일러블 비디오를 부호화 하는 스케일러블 비디오 부호화 장치(10)의 구성을 나타낸 블록도이다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 복수개의 레이어를 이용한 부호화 과정을 수행할 수 있다. 즉, 비디오 컨텐츠가 다양한 품질의 비디오 시퀀스로 출력될 수 있도록, 스케일러블 비디오는 복수개의 레이어를 이용하여 부호화 될 수 있다. 이러한 스케일러블 비디오에 대한 설명은 도 3a에서 구체적으로 설명하도록 한다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 부호화 또는 복호화 하는 방식에서 지원하는 레이어의 최대 개수보다 1 적은 수를 나타내는 제1 정보를 포함하는 비트스트림을 생성할 있는 제1 정보 생성부(11)를 포함할 수 있다. 즉, 제1 정보 생성부(11)는 상기 제1 정보를 포함하는 비트스트림을 생성할 수 있으며, 생성된 제1 정보를 이용하면 스케일러블 비디오를 부호화 하는 방식에서 지원하는 레이어의 최대 개수가 결정될 수 있다. 따라서, 스케일러블 비디오 부호화 장치(10)는 제1 정보에 해당하는 값보다 1이 더 큰 값을 비디오를 복호화 하는 방식에서 지원하는 레이어의 최대 개수로 결정할 수 있다.
일 실시예에 따라, 스케일러블 비디오는 제1 레이어, 제2 레이어를 포함하는 복수개의 레이어로 구성될 수 있다. 제1 레이어는 복수개의 레이어 중 최하위 레이어일 수 있다. 최하위 레이어란 복수개의 레이어 중 가장 기본이 되는 레이어인 기본 레이어(base layer)를 의미할 수 있다. 즉, 제1 레이어는 복수개의 레이어를 구분하는 레이어 식별자의 값이 가장 작은 레이어일 수 있으며, 상기 레이어 식별자는 상기 레이어에 대한 NAL 단위 헤더에 포함된 식별자일 수 있고, 제1 레이어에 대한 레이어 식별자의 값은 0일 수 있다. 일 실시예에 따르면 제2 레이어는 복수개의 레이어 중 기본 레이어와 다른 레이어일 수 있으며, 기본 레이어인 제1 레이어 보다 상위 레이어에 해당할 수 있다. 즉, 제2 레이어의 레이어 식별자의 값은 제1 레이어의 레이어 식별자의 값보다 큰 값일 수 있다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 복수개의 레이어 중 제1 레이어에 포함되는 제1 픽쳐를 부호화 하는 제1 픽쳐 부호화부(12)를 포함할 수 있다. 스케일러블 비디오 부호화 장치(10)는 제1 레이어를 포함하는 적어도 하나의 레이어로 구성된 엑세스 단위(access unit)를 포함하는 비디오 시퀀스(Video Sequence)를 부호화 할 수 있다. 스케일러블 비디오 부호화 장치(10)에 포함되는 제1 픽쳐 부호화부(12)는 제1 레이어에 포함되는 제1 픽쳐를 부호화할 수 있다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 복수개의 레이어 중 제2 레이어에 포함되는 제2 픽쳐를 부호화 하는 제2 픽쳐 부호화부(13)를 포함할 수 있다. 스케일러블 비디오 부호화 장치(10)는 제2 레이어를 포함하는 적어도 하나의 레이어로 구성된 비디오 시퀀스를 부호화 할 수 있다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)는 제2 픽쳐를 부호화 하기 위하여 제1 픽쳐 부호화부(12)에서 부호화한 제1 픽쳐를 참조할 수 있다. 즉, 제2 레이어에 포함된 픽쳐를 부호화 하기 위하여 제2 레이어와 다른 레이어에 해당하는 제1 레이어에 포함된 픽쳐를 참조할 수 있다. 스케일러블 비디오 부호화 장치(10)는 제1 레이어가 기본 레이어인 경우 향상 레이어인 제2 레이어의 픽쳐는 기본 레이어를 구성하는 픽쳐를 참조함으로써 제2 픽쳐의 부호화를 위해 필요한 비트스트림을 효율적으로 관리할 수 있다. 다만 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어 간에 부호화 또는 복호화 방식에서의 차이가 있는 경우 상호간의 참조 과정에서 불필요한 과정이 포함될 수 있다. 따라서, 본 발명의 일 실시예는 제1 레이어 및 제2 레이어 간의 부호화 또는 복호화 방식의 차이가 있는 경우 효율적인 부호화 또는 복호화 과정의 수행을 위해, 신택스(syntax) 또는 시맨틱(symantic)을 재정의하고 불필요한 과정을 생략하는 등의 방법을 통한 효율적인 부호화 또는 복호화 방법을 제공할 수 있다.
일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)에서 부호화 하는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 방식을 이용하는 경우라면, 스케일러블 비디오 부호화 장치(10)는 제1 정보에 기초하여 스케일러블 비디오의 비디오 파라미터 세트(VPS)를 참조하는 레이어의 개수가 복수개인 것을 전제로 부호화 과정을 수행할 수 있다. 예를 들면, 현재 부호화 하는 비디오가 복수개의 레이어를 포함하는 스케일러블 비디오에 해당하고 복수개의 레이어 중 기본 레이어와 나머지 향상 레이어가 서로 다른 부호화 방식을 이용하는 경우임에도 불구하고 제1 정보가 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 개수가 단일한 것임을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)의 부호화 과정에서 오류가 발생하였다거나 부호화된 비디오 시퀀스(CVS)를 획득하는 스케일러블 비디오 복호화 장치(14) 측에서 수행하는 복호화 과정에서 오류가 발생하였다는 것을 판단할 수 있다.
도 1b는 일 실시예에 따른 스케일러블 비디오를 복호화 하는 스케일러블 비디오 복호화 장치(14)의 구성을 나타낸 블록도이다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오 재생을 위하여 복수개의 레이어 중 적어도 하나의 레이어를 이용한 복호화 과정을 수행할 수 있다. 즉, 비디오 컨텐츠가 다양한 품질의 비디오 시퀀스로 출력될 수 있도록, 스케일러블 비디오는 복수개의 레이어를 이용하여 복호화 될 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 부호화 또는 복호화 하는 방식에서 지원하는 레이어의 최대 개수보다 1 적은 수를 나타내는 제1 정보를 비트스트림으로부터 획득할 수 있는 제1 정보 획득부(15)를 포함할 수 있다. 즉, 제1 정보 획득부(15)에서 획득한 제1 정보를 이용하면 비디오를 복호화 하는 방식에서 지원하는 레이어의 최대 개수가 결정될 수 있다. 따라서, 스케일러블 비디오 복호화 장치(14)는 제1 정보에 해당하는 값보다 1이 더 큰 값을 비디오를 복호화 하는 방식에서 지원하는 레이어의 최대 개수로 결정할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)에서 복호화 하는 스케일러블 비디오는 제1 레이어, 제2 레이어를 포함하는 복수개의 레이어로 구성될 수 있다. 제1 레이어는 복수개의 레이어 중 최하위 레이어일 수 있다. 최하위 레이어란 복수개의 레이어 중 가장 기본이 되는 레이어인 기본 레이어(base layer)를 의미할 수 있다. 즉, 제1 레이어는 복수개의 레이어를 구분하는 레이어 식별자의 값이 가장 작은 레이어일 수 있으며, 상기 레이어 식별자는 상기 레이어에 대한 NAL 단위 헤더에 포함된 식별자일 수 있고, 제1 레이어에 대한 레이어 식별자의 값은 0일 수 있다. 일 실시예에 따르면 제2 레이어는 복수개의 레이어 중 기본 레이어와 다른 레이어일 수 있으며, 기본 레이어인 제1 레이어 보다 상위 레이어에 해당할 수 있다. 즉, 제2 레이어의 레이어 식별자의 값은 제1 레이어의 레이어 식별자의 값보다 큰 값일 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 복수개의 레이어 중 제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 제1 픽쳐 복호화부(16)를 포함할 수 있다. 스케일러블 비디오 복호화 장치(14)는 제1 레이어를 포함하는 적어도 하나의 레이어로 구성된 엑세스 단위를 포함하는 비디오 시퀀스를 복호화 할 수 있다. 스케일러블 비디오 복호화 장치(14)에 포함되는 제1 픽쳐 복호화부(16)는 제1 레이어에 포함되는 제1 픽쳐를 복호화 할 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 복수개의 레이어 중 제2 레이어에 포함되는 제2 픽쳐를 복호화 하는 제2 픽쳐 복호화부(17)를 포함할 수 있다. 스케일러블 비디오 복호화 장치(14)는 제2 레이어를 포함하는 적어도 하나의 레이어로 구성된 비디오 시퀀스를 복호화 할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)에서 복호화 하는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 방식을 이용하는 경우라면, 스케일러블 비디오 복호화 장치(14)는 제1 정보에 기초하여 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 개수가 복수개인 것을 전제로 복호화 과정을 수행할 수 있다. 예를 들면, 현재 복호화 하는 비디오가 복수개의 레이어를 포함하는 스케일러블 비디오에 해당하고 복수개의 레이어 중 기본 레이어와 나머지 향상 레이어가 서로 다른 부호화 방식을 이용하는 경우임에도 불구하고 제1 정보가 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 개수가 단일한 것임을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)의 부호화 과정에서 오류가 발생하였다거나 부호화된 비디오 시퀀스(CVS)를 획득하는 스케일러블 비디오 복호화 장치(14) 측에서 수행하는 복호화 과정에서 오류가 발생하였다는 것을 판단할 수 있다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 예를 들면, 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 동일한 부호화 방식으로 부호화 되는 경우 제2 정보는 0보다 큰 값으로서 1에 해당할 수 있다. 이에 반해, 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 경우 제2 정보는 0의 값에 해당할 수 있다. 따라서 이러한 제2 정보를 이용함으로써 비트스트림의 수신측인 복호화 장치 측에서는 기본 레이어가 향상 레이어와 동일한 부호화 방식으로 부호화 된 것인지 결정할 수 있다.
일 실시예에 따르면 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용함에 따라 제2 정보가 0이 아닌 값인 경우, 비디오 시퀀스에 포함된 레이어 중 스케일러블 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보는 0보다 큰 값일 수 있다. 즉, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용하는 경우, 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 수가 복수개인 것을 나타내는 제1 정보 및 0인 값을 나타내는 제2 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 동일한 부호화 방식으로 부호화 되는 경우 제2 정보는 0보다 큰 값으로서 1에 해당할 수 있다. 이에 반해, 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 경우 제2 정보는 0의 값에 해당할 수 있다. 따라서 이러한 제2 정보를 획득한 스케일러블 비디오 복호화 장치(14)는 제2 정보에 기초하여 기본 레이어가 향상 레이어와 동일한 부호화 방식으로 부호화 된 것인지 결정할 수 있다.
일 실시예에 따르면 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용함에 따라 제2 정보가 0이 아닌 값인 경우, 부호화된 비디오 시퀀스(CVS)에 포함된 레이어 중 스케일러블 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수에 대한 정보를 나타내는 제1 정보는 0보다 큰 값일 수 있다. 즉, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용하는 경우, 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 수가 복수개인 것을 나타내는 제1 정보 및 0인 값을 나타내는 제2 정보를 비트스트림으로부터 획득할 수 있다. 따라서, 스케일러블 비디오 복호화 장치(14)는 획득한 제2 정보에 따라 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용하는 것으로 결정된 경우, 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 수가 복수개인 것으로 결정할 수 있다.
도 1c는 일 실시예에 따라 제1 정보에 대응하는 시맨틱을 나타낸다.
도 1c를 참조하면, 일 실시예에 따라 제1 정보는 비디오 파라미터 세트를 참조하는 레이어의 개수의 최대값에 대한 정보를 포함할 수 있다. 예를 들면, 제1 정보에 해당할 수 있는 vps_max_layers_minus1에 1을 더하면 현재 부복호화 하는 비디오의 비디오 파라미터 세트를 참조하는 레이어의 최대 개수가 결정될 수 있다. 이러한 vps_max_layers_minus1는 비트스트림의 적합성(bitstream conformance) 요청에 따라 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용하는 경우 0보다 큰 값을 나타낼 수 있다. 즉, 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식을 이용하는 경우 vps_max_layers_minus1 + 1은 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 개수의 최대값에 해당할 수 있다.
일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오의 비디오 파라미터 세트에 대한 NAL 단위의 식별자의 값이 0보다 큰 값인 VPS NAL 단위를 포함하는 비트스트림을 생성할 수 있다. 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 방식으로 부호화 될 수 있는 경우, 스케일러블 비디오 부호화 장치(10)는 향상 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자가 0을 나타내는 VPS NAL 단위를 포함하는 비트스트림을 생성할 수 있다. 이에 반해, 일 실시예에 따라 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 부호화 방식으로 부호화 되는 경우, 스케일러블 비디오 부호화 장치(10)는 향상 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자가 0보다 큰 값을 나타내는 VPS NAL 단위를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오의 비디오 파라미터 세트에 대한 NAL 단위의 식별자의 값이 0보다 큰 값인 VPS NAL 단위를 비트스트림으로부터 획득할 수 있다. 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 방식으로 부호화 될 수 있는 경우, 스케일러블 비디오 복호화 장치(14)는 향상 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자가 0을 나타내는 VPS NAL 단위를 비트스트림으로부터 획득할 수 있다. 이에 반해, 일 실시예에 따라 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 다른 복호화 방식으로 복호화 되는 경우, 스케일러블 비디오 복호화 장치(14)는 향상 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자가 0보다 큰 값을 나타내는 VPS NAL 단위를 비트스트림으로부터 획득할 수 있다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)에서 부호화 하는 스케일러블 비디오를 구성하는 기본 레이어인 제1 레이어 및 향상 레이어인 제2 레이어가 서로 다른 방식으로 부호화 되는 경우라면, 스케일러블 비디오 부호화 장치(10)는 제1 정보에 기초하여 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 개수가 복수개인 것을 전제로 부호화 과정을 수행할 수 있다. 기본 레이어 및 향상 레이어가 서로 다른 방식을 이용하여 부호화 되는 경우 제2 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자가 0보다 큰 값을 나타내는 VPS NAL 단위를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 스케일러블 비디오 복호화 장치(14)에서 복호화 하는 스케일러블 비디오를 구성하는 기본 레이어인 제1 레이어 및 향상 레이어인 제2 레이어가 서로 다른 방식으로 복호화 되는 경우라면, 스케일러블 비디오 복호화 장치(14)는 제1 정보에 기초하여 스케일러블 비디오의 비디오 파라미터 세트를 참조하는 레이어의 개수가 복수개인 것을 전제로 복호화 과정을 수행할 수 있다. 제1 레이어 및 제2 레이어가 서로 다른 방식을 이용하여 복호화 되는 경우 제2 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자가 0보다 큰 값을 나타내는 VPS NAL 단위를 비트스트림으로부터 획득할 수 있다.
도 2a는 일 실시예에 따라 기본 레이어 및 향상 레이어가 서로 다른 방식으로 부호화 또는 복호화 되는지 판단하지 않고 향상 레이어가 향상 레이어보다 하위 레이어를 참조하는 방법을 도시한 것이다.
일 실시예에 따라, 다이렉트 디펜던트 레이어(direct dependent layer)는 특정 레이어가 직접적으로 참조하는 레이어를 의미할 수 있다. i번째 레이어와 다이렉트 디펜던트 한 j번째 레이어는 i번째 레이어의 인터레이어예측 과정에서 참조될 수 있다. 예를 들어, 레이어 식별자가 2인 레이어가 레이어 식별자가 1인 레이어를 참조하고, 레이어 식별자가 1인 레이어가 레이어 식별자가 0인 레이어를 참조하는 경우, 레이어 식별자가 2인 레이어의 디펜던트 레이어는 다이렉트 디펜던트 레이어(레이어 식별자가 1인 레이어)를 포함한다. 한편, 레이어 식별자가 2인 레이어의 디펜던트 레이어는 간접적으로 참조하는 레이어(레이어 식별자가 0인 레이어)를 포함한다. 일 실시예에 따른 인터레이어예측은 인터레이어샘플예측 및 인터레이어움직임예측을 포함할 수 있으며, 이러한 다이렉트 디펜던트 레이어 간의 인터레이어예측에 대하여는 도 3b에서 구체적으로 설명하도록 한다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)에서 부호화 하는 스케일러블 비디오를 구성하는 기본 레이어인 제1 레이어 및 향상 레이어인 제2 레이어가 서로 다른 방식으로 부호화 되는 경우, 스케일러블 비디오 부호화 장치(10)는 제1 레이어 및 제2 레이어 간에 서로 다른 방식으로 부호화 되는지 여부에 불문하고 제2 레이어 보다 하위의 레이어에 해당하는 적어도 하나의 레이어를 참조하여 제2 레이어를 부호화 할 수 있다. 도 2a를 참조하면, 스케일러블 비디오 부호화 장치(10)는 i 레이어 및 j 레이어 간의 다이렉트 디펜던트한지 여부에 대한 정보(예를 들면, direct_dependency_flag[i][j])에 기초하여 i 레이어가 j 레이어에 다이렉트 디펜던트한 것으로 결정할 수 있다. i 레이어가 j 레이어에 다이렉트 디펜던트한 것으로 결정된 경우, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 적어도 하나의 레이어 중 i 레이어가 i 레이어 보다 하위 레이어인 j 레이어를 참조하는 방식에 대한 정보(예를 들면, direct_dependency_type[i][j])를 포함하는 비트스트림을 생성할 수 있다. 일 실시예에 따라 i 레이어는 기본 레이어 외의 적어도 하나의 레이어 중 하나에 해당할 수 있으며, i 레이어가 참조하는 레이어인 j 레이어는 i 레이어보다 하위 레이어에 해당한다. 일 실시예에 따르면, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어와 향상 레이어가 서로 다른 부호화 방식을 이용하여 부호화 되는지 여부에 불문하고 i 레이어에 대한 반복문(21)을 수행하기 시작하는 레이어를 기본 레이어 외의 적어도 하나의 레이어 중 최하위 레이어로 결정할 수 있다. 스케일러블 비디오 부호화 장치(10)는 결정된 j 레이어에 대한 반복문(22)을 수행할 수 있고, j 레이어는 기본 레이어를 포함하는 것으로서 i 레이어의 하위 레이어인 적어도 하나의 레이어 중 하나일 수 있다.
일 실시예에 따른 도 2a를 참조하면, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행할 것인지에 대한 플래그(예를 들면, default_direct_dependency_flag)를 포함하는 비트스트림을 생성할 수 있다. 상기 획득한 플래그가 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행하는 것을 나타내는 경우, 모든 레이어들 간에 동일하게 수행하기 위한 인터레이어 샘플 예측(inter layer sample prediction) 및 인터레이어 모션 예측(inter layer motion prediction) 중 적어도 하나를 나타내는 신택스(예를 들면, default_direct_dependecy_type)를 포함하는 비트스트림을 생성할 수 있다.
반면, 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행하는 것을 나타내지 않는 경우, 스케일러블 비디오 부호화 장치(10)는 i 레이어에 대한 반복문(21)을 수행할 수 있다. 스케일러블 비디오 부호화 장치(10)는 i의 값이 1부터 최대 레이어의 개수-1이 될 때 까지 (for(i=1;i<=vps_max_layers_minus1;i++)), 각 i마다 j의 값이 0부터 i-1 될 때까지 반복하여, 인덱스가 i인 i 레이어가 인덱스가 j인 j 레이어에 다이렉트 디펜던트한 경우(if(direct_dependency_flag[i][j])), j 레이어를 이용하여 I 레이어를 인터레이어 예측하는 유형을 나타내는 정보인 제3 정보(예를 들면, direct_dependency_type[i][j])를 포함하는 비트스트림을 생성할 수 있다.
한편 레이어 식별자가 iNuhLid인 레이어의 모든 다이렉트 디펜던트 레이어가 레이어 식별자가 iNuhLid인 레이어를 인터레이어 샘플 예측 및 인터레이어 모션 예측하기 위해 이용된다고 결정되면, 스케일러블 비디오 부호화 장치(10)는 레이어 식별자가 iNuhLid인 레이어의 모든 다이렉트 디펜던트 레이어가 레이어 식별자가 iNuhLid인 레이어를 인터레이어 샘플 예측 및 인터레이어 모션 예측하기 위해 이용된다고 결정하고, 모든 다이렉트 디펜던트 레이어를 이용하여 레이어 식별자가 iNuhLid인 레이어를 인터레이어 샘플 예측 및 모션 예측할 수 있다.
일 실시예에 따라 스케일러블 비디오 복호화 장치(14)에서 복호화 하는 스케일러블 비디오를 구성하는 기본 레이어인 제1 레이어 및 향상 레이어인 제2 레이어가 서로 다른 방식으로 복호화 되는 경우, 스케일러블 비디오 복호화 장치(14)는 제1 레이어 및 제2 레이어 간에 서로 다른 방식으로 복호화 되는지 여부에 불문하고 제2 레이어 보다 하위의 레이어에 해당하는 적어도 하나의 레이어를 참조하여 제2 레이어를 복호화 할 수 있다. 도 2a를 참조하면, 스케일러블 비디오 복호화 장치(14)는 i 레이어 및 j 레이어 간의 다이렉트 디펜던트한지 여부에 대한 정보(예를 들면, direct_dependency_flag[i][j])에 기초하여 i 레이어가 j 레이어에 다이렉트 디펜던트한 것으로 결정할 수 있다. i 레이어가 j 레이어에 다이렉트 디펜던트한 것으로 결정된 경우, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 적어도 하나의 레이어 중 i 레이어가 i 레이어 보다 하위 레이어인 j 레이어를 참조하는 방식에 대한 정보(예를 들면, direct_dependency_type[i][j])를 비트스트림으로부터 획득할 수 있다. 일 실시예에 따라 i 레이어는 기본 레이어 외의 적어도 하나의 레이어 중 하나에 해당할 수 있으며, i 레이어가 참조하는 레이어인 j 레이어는 i 레이어보다 하위 레이어에 해당한다. 일 실시예에 따르면, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어와 향상 레이어가 서로 다른 복호화 방식을 이용하여 복호화 되는지 여부에 불문하고 i 레이어에 대한 반복문(21)을 수행하기 시작하는 레이어를 기본 레이어 외의 적어도 하나의 레이어 중 최하위 레이어로 결정할 수 있다. 스케일러블 비디오 복호화 장치(14)는 결정된 j 레이어에 대한 반복문(22)을 수행할 수 있고, j 레이어는 기본 레이어를 포함하는 것으로서 i 레이어의 하위 레이어인 적어도 하나의 레이어 중 하나일 수 있다.
일 실시예에 따른 도 2a를 참조하면, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행할 것인지에 대한 플래그(예를 들면, default_direct_dependency_flag)를 비트스트림으로부터 획득할 수 있다. 상기 획득한 플래그가 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행하는 것을 나타내는 경우, 모든 레이어들 간에 동일하게 수행하기 위한 인터레이어 샘플 예측(inter layer sample prediction) 및 인터레이어 모션 예측(inter layer motion prediction) 중 적어도 하나를 나타내는 신택스(예를 들면, default_direct_dependecy_type)를 비트스트림으로부터 획득할 수 있다.
반면, 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행하는 것을 나타내지 않는 경우, 스케일러블 비디오 복호화 장치(14)는 i 레이어에 대한 반복문(21)을 수행할 수 있다. 스케일러블 비디오 복호화 장치(14)는 i의 값이 1부터 최대 레이어의 개수-1이 될 때 까지 (for(i=1;i<=vps_max_layers_minus1;i++)), 각 i마다 j의 값이 0부터 i-1 될 때까지 반복하여, 인덱스가 i인 i 레이어가 인덱스가 j인 j 레이어에 다이렉트 디펜던트한 경우(if(direct_dependency_flag[i][j])), j 레이어를 이용하여 I 레이어를 인터레이어 예측하는 유형을 나타내는 정보인 제3 정보(direct_dependency_type[i][j])를 비트스트림으로부터 획득할 수 있다.
한편 레이어 식별자가 iNuhLid인 레이어의 모든 다이렉트 디펜던트 레이어가 레이어 식별자가 iNuhLid인 레이어를 인터레이어 샘플 예측 및 인터레이어 모션 예측하기 위해 이용된다고 결정되면, 스케일러블 비디오 복호화 장치(14)는 레이어 식별자가 iNuhLid인 레이어의 모든 다이렉트 디펜던트 레이어가 레이어 식별자가 iNuhLid인 레이어를 인터레이어 샘플 예측 및 인터레이어 모션 예측하기 위해 이용된다고 결정하고, 모든 다이렉트 디펜던트 레이어를 이용하여 레이어 식별자가 iNuhLid인 레이어를 인터레이어 샘플 예측 및 모션 예측할 수 있다.
한편, 본 발명의 일 실시예에 따른 스케일러블 비디오 부호화 장치(10) 또는 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 모든 레이어들 간에 동일한 방식으로 예측을 수행하는 것을 나타내는 경우, 모든 레이어가 동일한 예측 방법을 이용하여 인터레이어 예측을 수행하는 것으로 결정한다고 설명하였지만, 이에 제한되지 않고, 미리 디펜던트 레이어를 이용하여 인터레이어 모션 예측 또는 인터레이어 샘플 예측 중 어떤 인터레이어 예측을 수행할 수 있는지를 미리 디폴트로 설정하고, 상기 설정에 따라 인터레이어 모션 예측 또는 인터레이어 예측의 수행 가능 여부를 결정할 수 있다. 한편, 본 발명의 일 실시에에 따른 스케일러블 비디오 부호화 장치(10) 또는 스케일러블 비디오 복호화 장치(14)는 인터레이어 예측 유형으로 인터레이어 샘플 예측 및 인터레이어 모션 예측을 설명하고 있지만, 이에 제한되지 않고, 인터레이어 예측을 수행할 때, 예측하는 대상(샘플, 모션 등)은 다양할 수 있다.
일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 생성할 수 있다. 예를 들면, 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 동일한 부호화 방식으로 부호화 되는 경우 제2 정보는 0보다 큰 값으로서 1에 해당할 수 있다. 이에 반해, 기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 경우 제2 정보는 0의 값에 해당할 수 있다. 일 실시예에 따라 획득된 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 것을 나타내는 경우, 제1 레이어 및 제2 레이어 간에 인터레이어움직임예측을 수행하는 것이 곤란할 수 있다. 따라서 동일한 방식으로 제1 레이어 및 제2 레이어가 부호화 된 경우에 수행될 수 있는 인터레이어움직임예측에서 참조될 수 있는 스케일링 리스트 데이터(scaling list data)는 참조하지 않는 것이 효율적일 수 있다.
도 2b는 스케일러블 비디오 부호화 과정에서 스케일링 리스트 데이터를 참조할지에 대한 신택스 엘리먼트 및 시맨틱을 나타낸 것이다.
일 실시예에 따라 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 것을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)는 제2 레이어가 제1 레이어의 시퀀스 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제4 정보를 포함하는 비트스트림을 생성할 수 있다. 스케일링 리스트 데이터에 대한 신택스의 참조 여부에 대한 정보인 제4 정보(예를 들면, sps_infer_scaling_list_flag)가 스케일링 리스트 데이터를 참조하지 않는 것으로 나타내는 경우(예를 들면, 제4 정보가 0의 값을 나타내는 경우) 스케일러블 비디오 부호화 장치(10)는 제4 정보에 기초하여 스케일링 리스트 데이터에 대한 신택스 구조(syntax structure)를 참조하지 않을 수 있다.
또 다른 일 실시예에 따르면, 획득된 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 것을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)는 제2 레이어가 제1 레이어의 픽쳐 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제5 정보를 포함하는 비트스트림을 생성할 수 있다. 스케일링 리스트 데이터에 대한 신택스의 참조 여부에 대한 정보인 제5 정보(예를 들면, pps_infer_scaling_list_flag)가 스케일링 리스트 데이터를 참조하지 않는 것으로 나타내는 경우(예를 들면, 제5 정보가 0의 값을 나타내는 경우) 스케일러블 비디오 부호화 장치(10)는 제5 정보에 기초하여 스케일링 리스트 데이터에 대한 신택스 구조(syntax structure)를 참조하지 않을 수 있다.
일 실시예에 따라 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 것을 나타내는 경우, 스케일러블 비디오 복호화 장치(14)는 제2 레이어가 제1 레이어의 시퀀스 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제4 정보를 비트스트림으로부터 획득할 수 있다. 스케일링 리스트 데이터에 대한 신택스의 참조 여부에 대한 정보인 제4 정보(예를 들면, sps_infer_scaling_list_flag)가 스케일링 리스트 데이터를 참조하지 않는 것으로 나타내는 경우(예를 들면, 제4 정보가 0의 값을 나타내는 경우) 스케일러블 비디오 복호화 장치(14)는 제4 정보에 기초하여 스케일링 리스트 데이터에 대한 신택스 구조(syntax structure)를 참조하지 않을 수 있다.
또 다른 일 실시예에 따르면, 획득된 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 부호화 방식으로 부호화 되는 것을 나타내는 경우, 스케일러블 비디오 복호화 장치(14)는 제2 레이어가 제1 레이어의 픽쳐 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제5 정보를 비트스트림으로부터 획득할 수 있다. 스케일링 리스트 데이터에 대한 신택스의 참조 여부에 대한 정보인 제5 정보(예를 들면, pps_infer_scaling_list_flag)가 스케일링 리스트 데이터를 참조하지 않는 것으로 나타내는 경우(예를 들면, 제5 정보가 0의 값을 나타내는 경우) 스케일러블 비디오 복호화 장치(14)는 제5 정보에 기초하여 스케일링 리스트 데이터에 대한 신택스 구조(syntax structure)를 참조하지 않을 수 있다.
일 실시예에 따라, 스케일링 리스트 데이터 참조 과정은 제1 레이어 및 제2 레이어 간에 인터레이어움직임예측이 수행되는 경우 레이어 간의 특성 차이에 따라 움직임 벡터를 조절할 수 있는 스케일링 과정에 필요한 데이터를 참조하는 과정에 대응할 수 있다. 일 실시예에 따라 스케일러블 비디오 부호화 장치(10) 또는 스케일러블 비디오 복호화 장치(14)는 제1 레이어와 제2 레이어가 서로 다른 부복호화 방식으로 부호화 또는 복호화 됨에 따라 인터레이어움직임예측을 수행하기 어려운 경우 제4 정보 또는 제5 정보에 기초하여 스케일링 리스트 데이터를 참조하지 않음으로써 비트스트림을 효율적으로 관리할 수 있다.
도 2c는 스케일러블 비디오의 레이어 간에 참조 가능한 레이어의 픽쳐를 결정하기 위한 시간적 식별자의 최대값에 대한 정보를 처리하는 과정을 도시한다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)는 제3 레이어에 포함되는 픽쳐인 제3 픽쳐가 참조하는 제2 픽쳐의 시간적 식별자의 최대값에 대한 정보를 포함하는 제6 정보를 포함하는 비트스트림을 생성할 수 있다. 일 실시예에 따라 제3 레이어는 스케일러블 비디오를 구성하는 복수개의 레이어 중 하나로서 제2 레이어 보다 상위 레이어에 해당할 수 있다.
도 2c를 참조하면 스케일러블 비디오 부호화 장치(10)는 부호화 하려는 스케일러블 비디오의 VPS 익스텐션에서는 제3 픽쳐가 참조하는 제2 픽쳐의 시간적 식별자의 최대값에 대한 정보를 나타내는 제6 정보가 비트스트림 상에 존재하는지에 대한 플래그(예를 들면, max_tid_ref_present_flag)를 포함하는 비트스트림을 생성할 수 있다. 스케일러블 비디오 부호화 장치(10)는 생성한 상기 플래그에 기초하여 제6 정보(예를 들면, max_tid_il_ref_pics_plus1[i][j])가 존재하는지 여부를 결정하는 조건문(23)을 수행할 수 있다. 생성한 상기 플래그에 기초하여 제6 정보가 존재하는 것으로 결정된 경우, 스케일러블 비디오 부호화 장치(10)는 참조되는 레이어인 i 레이어에 대한 반복문(24) 및 참조하는 레이어인 j 레이어에 대한 반복문(25)을 수행할 수 있다. 다만 제1 레이어 및 제2 레이어가 서로 다른 부호화 방식으로 부호화 된 경우, 제2 레이어에 포함된 제2 픽쳐가 참조하려는 기본 레이어인 제1 레이어의 제1 픽쳐를 부호화 하는 방법에서 인터레이어예측을 제공하지 않거나 제2 픽쳐에서와 다른 방식으로 인터레이어예측을 수행하는 경우가 있을 수 있다. 이러한 경우 스케일러블 비디오 부호화 장치(10)가 제2 픽쳐를 부호화 하는 과정에서 인터레이어예측 수행 시, 제1 픽쳐를 참조하지 않기 위하여 제6 정보를 포함하는 비트스트림을 생성하지 않을 수 있다. 따라서 i 레이어를 위한 반복문(24)은 제1 레이어가 아닌 제1 레이어의 상위 레이어에서부터 시작될 수 있다.
일 실시예에 따라 i 레이어를 위한 반복문(24)은 제1 레이어보다 레이어 식별자가 1만큼 큰 제2 레이어에서부터 시작될 수 있다. 일 실시예에 따른 스케일러빌리티 비디오 부호화 장치(10)는 제2 레이어에 포함된 제2 픽쳐를 부호화 하기 위하여 참조 가능한 제3 레이어가 제2 레이어와 다이렉트 디펜던트한 관계에 있는지 여부에 대한 정보를 생성할 수 있다.
일 실시예에 따라 제3 레이어가 제2 레이어와 다이렉트 디펜던트한 관계에 있는지 여부에 대한 정보는 제2 정보에 대응할 수 있다. 생성된 제2 정보에 기초하여 제3 레이어가 제2 레이어를 참조할 수 있는 다이렉트 디펜던트한 관계로 결정된 경우, 스케일러블 비디오 부호화 장치(10)는 제2 레이어에서 참조 가능한 제3 레이어의 제3 픽쳐에 대한 시간적 식별자의 최대값에 대한 정보인 제6 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)는 제6 정보에 기초하여 제3 레이어를 부호화 하는 과정에서 참조 가능한 제2 레이어의 픽쳐들 중 최대값 이하의 시간적 식별자의 값을 가지는 픽쳐만을 참조하여 제3 레이어에 포함된 제3 픽쳐를 부호화 할 수 있다.
일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)는 제2 픽쳐가 레이어 간에 인터레이어예측을 수행함에 있어서 참조 가능한 제1 픽쳐의 시간적 식별자의 최대값을 미리 결정된 시간적 식별자의 값으로 결정할 수 있다. 예를 들면 스케일러블 비디오 부호화 장치(10)는 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우 제2 픽쳐의 인터레이어예측 수행 시 제1 레이어의 제1 픽쳐들 중 시간적 식별자의 값이 7보다 작은 픽쳐들을 참조할 수 있다. 즉, 서로 다른 부호화 방식으로 부호화 된 제1 레이어 및 제2 레이어 간의 인터레이어예측 수행 시 참조할 시간적 식별자의 최대값에 대한 정보인 제6 정보를 포함하는 비트스트림을 생성하지 않는 대신, 미리 결정된 값으로 시간적 식별자의 최대값을 결정하고 미리 결정된 값을 이용하여 제2 레이어의 제2 픽쳐를 부호화 할 수 있다,
일 실시예에 따라 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 획득할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오 복호화 장치(14)는 제3 레이어에 포함되는 픽쳐인 제3 픽쳐가 참조하는 제2 픽쳐의 시간적 식별자의 최대값에 대한 정보를 포함하는 제6 정보를 비트스트림으로부터 획득할 수 있다. 일 실시예에 따라 제3 레이어는 스케일러블 비디오를 구성하는 복수개의 레이어 중 하나로서 제2 레이어 보다 상위 레이어에 해당할 수 있다.
도 2c를 참조하면 스케일러블 비디오 복호화 장치(14)는 복호화 하려는 스케일러블 비디오의 VPS 익스텐션에서는 제3 픽쳐가 참조하는 제2 픽쳐의 시간적 식별자의 최대값에 대한 정보를 나타내는 제6 정보가 비트스트림 상에 존재하는지에 대한 플래그(예를 들면, max_tid_ref_present_flag)를 비트스트림으로부터 획득할 수 있다. 스케일러블 비디오 복호화 장치(14)는 획득한 상기 플래그에 기초하여 제6 정보(예를 들면, max_tid_il_ref_pics_plus1[i][j])가 존재하는지 여부를 결정하는 조건문(23)을 수행할 수 있다. 획득한 상기 플래그에 기초하여 제6 정보가 존재하는 것으로 결정된 경우, 스케일러블 비디오 복호화 장치(14)는 참조되는 레이어인 i 레이어에 대한 반복문(24) 및 참조하는 레이어인 j 레이어에 대한 반복문(25)을 수행할 수 있다. 다만 제1 레이어 및 제2 레이어가 서로 다른 복호화 방식으로 복호화 된 경우, 제2 레이어에 포함된 제2 픽쳐가 참조하려는 기본 레이어인 제1 레이어의 제1 픽쳐를 복호화 하는 방법에서 인터레이어예측을 제공하지 않거나 제2 픽쳐에서와 다른 방식으로 인터레이어예측을 수행하는 경우가 있을 수 있다. 이러한 경우 스케일러블 비디오 복호화 장치(14)가 제2 픽쳐를 복호화 하는 과정에서 인터레이어예측 수행 시, 제1 픽쳐를 참조하지 않기 위하여 제6 정보를 획득하지 않을 수 있다. 따라서 i 레이어를 위한 반복문(24)은 제1 레이어가 아닌 제1 레이어의 상위 레이어에서부터 시작될 수 있다.
일 실시예에 따라 i 레이어를 위한 반복문(24)은 제1 레이어보다 레이어 식별자가 1만큼 큰 제2 레이어에서부터 시작될 수 있다. 일 실시예에 따른 스케일러빌리티 비디오 복호화 장치(14)는 제2 레이어에 포함된 제2 픽쳐를 복호화 하기 위하여 참조가능한 제3 레이어가 제2 레이어와 다이렉트 디펜던트한 관계에 있는지 여부에 대한 정보를 비트스트림으로부터 획득할 수 있다.
일 실시예에 따라 제3 레이어가 제2 레이어와 다이렉트 디펜던트한 관계에 있는지 여부에 대한 정보는 제2 정보에 대응할 수 있다. 생성된 제2 정보에 기초하여 제3 레이어가 제2 레이어를 참조할 수 있는 다이렉트 디펜던트한 관계로 결정된 경우, 스케일러블 비디오 복호화 장치(14)는 제2 레이어에서 참조 가능한 제3 레이어의 제3 픽쳐에 대한 시간적 식별자의 최대값에 대한 정보인 제6 정보를 비트스트림으로부터 획득할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)는 제6 정보에 기초하여 제3 레이어를 복호화 하는 과정에서 참조 가능한 제2 레이어의 픽쳐들 중 최대값 이하의 시간적 식별자의 값을 가지는 픽쳐 만을 참조하여 제3 레이어에 포함된 제3 픽쳐를 복호화 할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 획득할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오 복호화 장치(14)는 제2 픽쳐가 레이어 간에 인터레이어예측을 수행함에 있어서 참조가능한 제1 픽쳐의 시간적 식별자의 최대값을 미리 결정된 시간적 식별자의 값으로 결정할 수 있다. 예를 들면 스케일러블 비디오 복호화 장치(40)는 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우 제2 픽쳐의 인터레이어예측 수행 시 제1 레이어의 제1 픽쳐들 중 시간적 식별자의 값이 7보다 작은 픽쳐들을 참조할 수 있다. 즉, 서로 다른 복호화 방식으로 복호화 된 제1 레이어 및 제2 레이어 간의 인터레이어예측 수행 시 참조할 시간적 식별자의 최대값에 대한 정보인 제6 정보를 포함하는 비트스트림을 획득하지 않는 대신, 미리 결정된 값으로 시간적 식별자의 최대값을 결정하고 미리 결정된 값을 이용하여 제2 레이어의 제2 픽쳐를 복호화 할 수 있다,
일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우, 제2 레이어에 포함된 픽쳐에 대한 복호화를 끝낸 후 기본 레이어인 제1 레이어에 대한 하위 복호화 픽쳐 버퍼(sub-decoded picture buffer)가 비워진 상태로 설정할 수 있다. 종래기술에 따른 부호화 과정에서는 스케일러블 비디오를 구성하는 복수개의 레이어에 대한 복호화 과정이 끝난 이후에 기본 레이어에 대한 하위 복호화 픽쳐 버퍼를 비워진 상태로 설정하였다. 다만 복수개의 레이어 중 기본 레이어를 참조하지 않는 레이어들에 대한 복호화 가 끝날 때까지 기본 레이어에 대한 하위 복호화 픽쳐 버퍼를 저장하고 있는 것은 비효율적일 수 있다.
따라서 본 발명의 일 실시예에 따라, 스케일러블 비디오 부호화 장치(10)는 기본 레이어를 참조하는 레이어에 대한 부호화가 모두 끝난 후에 기본 레이어에 대한 하위 복호화 픽쳐 버퍼를 비워진 상태로 설정할 수 있다. 예를 들면, 스케일러블 비디오를 구성하는 복수개의 레이어 가운데 기본 레이어인 제1 레이어를 참조하는 레이어가 제2 레이어에 해당하는 경우, 제2 레이어의 부호화가 끝난 뒤라면, 제1 레이어 및 제2 레이어를 제외한 다른 레이어에 대한 부호화 과정이 끝나기 전이라도 제1 레이어에 대한 하위 복호화 픽쳐 버퍼를 비워진 상태로 설정할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 획득할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우, 제2 레이어에 포함된 픽쳐에 대한 복호화를 끝낸 후 기본 레이어인 제1 레이어에 대한 하위 복호화 픽쳐 버퍼(sub-decoded picture buffer)가 비워진 상태로 설정할 수 있다. 종래기술에 따른 복호화 과정에서는 스케일러블 비디오를 구성하는 복수개의 레이어에 대한 복호화 과정이 끝난 이후에 기본 레이어에 대한 하위 복호화 픽쳐 버퍼를 비워진 상태로 설정하였다. 다만 복수개의 레이어 중 기본 레이어를 참조하지 않는 레이어들에 대한 복호화 가 끝날 때까지 기본 레이어에 대한 하위 복호화 픽쳐 버퍼를 저장하고 있는 것은 비효율적일 수 있다.
따라서 본 발명의 일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)는 기본 레이어를 참조하는 레이어에 대한 복호화가 모두 끝난 후에 기본 레이어에 대한 하위 복호화 픽쳐 버퍼를 비워진 상태로 설정할 수 있다. 예를 들면, 스케일러블 비디오를 구성하는 복수개의 레이어 가운데 기본 레이어인 제1 레이어를 참조하는 레이어가 제2 레이어에 해당하는 경우, 제2 레이어의 복호화가 끝난 뒤라면, 제1 레이어 및 제2 레이어를 제외한 다른 레이어에 대한 복호화 과정이 끝나기 전이라도 제1 레이어에 대한 하위 복호화 픽쳐 버퍼를 비워진 상태로 설정할 수 있다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오에 대한 비디오 파라미터 세트(VPS)를 참조하는 부호화된 비디오 시퀀스(CVS)에서 허용되는 레이어 식별자의 최대값을 나타내는 제8 정보를 포함하는 비트스트림을 생성할 수 있다. 일 실시예에 따라, VPS를 참조하는 CVS에서 허용되는 레이어의 최대 개수는 1보다 큰 것을 특징으로 할 수 있다. 제2 정보가 스케일러블 비디오를 구성하는 제1 레이어와 제2 레이어가 서로 다른 방식으로 부호화 되는 것을 나타낸다는 것은, 부호화 하려는 비디오를 구성하는 레이어의 개수가 복수개인 것을 전제로 한다. 제2 정보에 기초하여 엑세스 단위에 포함된 픽쳐들의 레이어 식별자의 종류도 복수개인 점을 고려한다면, 스케일러블 비디오 부호화 장치(10)는 제2 정보 및 제8 정보에 기초하여 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 현재 스케일러블 비디오의 레이어 개수가 복수개가 맞는지 확인할 수 있다. 만일 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 방식으로 부호화 되는 것을 나타내는 반면, 제8 정보가 나타내는 값에 기초하였을 때 VPS를 참조하는 CVS에서 허용되는 레이어의 최대 개수는 1보다 크지 않은 것으로 확인되는 경우, 부호화 과정 또는 복호화 과정에서 오류가 발생한 것으로 판단될 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오에 대한 비디오 파라미터 세트(VPS)를 참조하는 부호화된 비디오 시퀀스(CVS)에서 허용되는 레이어 식별자의 최대값을 나타내는 제8 정보를 포함하는 비트스트림을 생성할 수 있다. 일 실시예에 따라, VPS를 참조하는 CVS에서 허용되는 레이어의 최대 개수는 1보다 큰 것을 특징으로 할 수 있다. 제2 정보가 스케일러블 비디오를 구성하는 제1 레이어와 제2 레이어가 서로 다른 방식으로 복호화 되는 것을 나타낸다는 것은, 복호화 하려는 비디오를 구성하는 레이어의 개수가 복수개인 것을 전제로 한다. 제2 정보에 기초하여 엑세스 단위에 포함된 픽쳐들의 레이어 식별자의 종류도 복수개인 점을 고려한다면, 스케일러블 비디오 복호화 장치(14)는 제2 정보 및 제8 정보에 기초하여 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 현재 스케일러블 비디오의 레이어 개수가 복수개가 맞는지 확인할 수 있다. 만일 제2 정보가 제1 레이어와 제2 레이어가 서로 다른 방식으로 복호화 되는 것을 나타내는 반면, 제8 정보가 나타내는 값에 기초하였을 때 VPS를 참조하는 CVS에서 허용되는 레이어의 최대 개수는 1보다 크지 않은 것으로 확인되는 경우, 부호화 과정 또는 복호화 과정에서 오류가 발생한 것으로 판단될 수 있다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)는 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP(Intra Random Access Point) 픽쳐를 포함한다는 제한이 적용되는지에 대한 제9 정보를 포함하는 비트스트림을 생성할 수 있고, 제9 정보는 상기 제한이 항상 적용되지는 않음을 나타내는 것을 특징으로 할 수 있다. 스케일러 비디오 부호화 장치(10)에서 비트스트림의 임의 접근 가능 시점(random access point)이 생성되는 경우, 스케일러블 비디오 복호화 장치(14)는 부호화 장치에서 생성된 임의 접근 가능 시점부터 복호화를 수행할 수 있다. 임의 접근 가능 시점의 엑세스 단위 내에 포함된 기본 레이어는 IRAP 픽쳐로 부호화되고 상위 레이어들은 IRAP 픽쳐가 아닌 픽쳐(이하, non-IRAP 픽쳐) 혹은 IRAP 픽쳐들로 부호화될 수 있다. 엑세스 단위는 동시에 디스플레이될 수 있는 NAL 단위 또는 픽쳐들의 집합을 의미한다.
일 실시예에 따라, non-VCL NAL 단위는 비디오를 부호화 또는 복호화 하는 데 필요한 정보로서 실제 비디오 데이터에 대한 것이 아닌 정보(예를 들면, 비디오 파라미터 세트, 시퀀스 파라미터 세트, 픽쳐 파라미터 세트)를 전송하는 RBSP를 포함하는 NAL 단위를 의미할 수 있다. 이와 달리 VCL NAL 단위는 실제로 부호화된 슬라이스 세그먼트의 RBSP 등의 비디오 데이터를 포함하는 NAL 단위를 의미할 수 있다.
기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 동일한 방식으로 부호화 되고 제9 정보가 1의 값을 나타내는 경우, 동일한 하나의 엑세스 단위의 모든 VCL NAL 단위는 레이어 식별자(예를 들면, nuh_layer_id)가 동일하다는 제한 또는 하나의 엑세스 단위의 VCL NAL 단위가 두 종류의 레이어 식별자를 가지고 상기 레이어 식별자 중 큰 레이어 식별자에 대한 픽쳐는 IRAP 픽쳐에 해당한다는 제한이 적용될 수 있다. 이와 달리 제1 레이어와 제2 레이어가 서로 다른 방식으로 부호화 되는 경우 제9 정보는 상기 제한이 적용되지 않는 것을 나타낼 수 있다. 예를 들면, 제1 레이어와 제2 레이어가 서로 다른 방식으로 부호화 되는 경우 제9 정보는 0의 값을 나타낼 수 있으나, 본 발명이 이러한 실시예에 한정되지는 않는다. 스케일러블 비디오의 경우 복수개의 레이어로 구성될 수 있으므로 엑세스 단위에 포함된 픽쳐들의 레이어 식별자의 종류도 복수개인 점을 고려하였을 때, 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우 제9 정보를 이용하지 않음으로써 효율적으로 비트스트림 관리될 수 있다.일 실시예에 따라 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하지 않는 것을 나타내는 경우, 상기 IRAP 픽쳐에 대한 제한이 적용되는지 여부를 나타내는 제9 정보를 포함하는 비트스트림을 생성할 수 있다. 나아가, 제9 정보가 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP 픽쳐를 포함한다는 제한이 항상 적용되지는 않음을 나타내는 경우, 스케일러블 비디오 부호화 장치(10)는 제10 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 제9 정보가 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP 픽쳐를 포함한다는 제한이 적용됨을 나타내는 경우, 제10 정보는 스케일러블 비디오를 구성하는 복수개의 레이어 중 두 개의 레이어에 대한 픽쳐들이 하나의 동일한 엑세스 단위에 있고 상위 레이어에 대한 픽쳐인 IRAP 픽쳐는 하위 레이어에 대한 픽쳐를 참조하는 인터레이어 예측 과정을 통해 부호화 하는 것을 나타낼 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우, 스케일러블 비디오 복호화 장치(14)는 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP 픽쳐를 포함한다는 제한이 적용되는지에 대한 제9 정보를 포함하는 비트스트림을 생성할 수 있고, 제9 정보는 상기 제한이 항상 적용되지는 않음을 나타내는 것을 특징으로 할 수 있다. 스케일러 비디오 복호화 장치(14)에서 비트스트림의 임의 접근 가능 시점(random access point)이 생성되는 경우, 스케일러블 비디오 복호화 장치(14)는 부호화 장치에서 생성된 임의 접근 가능 시점부터 복호화를 수행할 수 있다. 임의 접근 가능 시점의 엑세스 단위 내에 포함된 기본 레이어는 IRAP 픽쳐로 복호화 되고 상위 레이어들은 IRAP 픽쳐가 아닌 픽쳐(이하, non-IRAP 픽쳐) 혹은 IRAP 픽쳐들로 복호화 될 수 있다. 엑세스 단위는 동시에 디스플레이될 수 있는 NAL 단위 또는 픽쳐들의 집합을 의미한다.
기본 레이어인 제1 레이어와 향상 레이어인 제2 레이어가 서로 동일한 방식으로 복호화 되고 제9 정보가 1의 값을 나타내는 경우, 동일한 하나의 엑세스 단위의 모든 VCL NAL 단위는 레이어 식별자(예를 들면, nuh_layer_id)가 동일하다는 제한 또는 하나의 엑세스 단위의 VCL NAL 단위가 두 종류의 레이어 식별자를 가지고 상기 레이어 식별자 중 큰 레이어 식별자에 대한 픽쳐는 IRAP 픽쳐에 해당한다는 제한이 적용될 수 있다. 이와 달리 제1 레이어와 제2 레이어가 서로 다른 방식으로 복호화 되는 경우 제9 정보는 상기 제한이 적용되지 않는 것을 나타낼 수 있다. 예를 들면, 제1 레이어와 제2 레이어가 서로 다른 방식으로 복호화 되는 경우 제9 정보는 0의 값을 나타낼 수 있으나, 본 발명이 이러한 실시예에 한정되지는 않는다. 스케일러블 비디오의 경우 복수개의 레이어로 구성될 수 있으므로 엑세스 단위에 포함된 픽쳐들의 레이어 식별자의 종류도 복수개인 점을 고려하였을 때, 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우 제9 정보를 이용하지 않음으로써 효율적으로 비트스트림이 관리될 수 있다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않는 것을 나타내는 경우, 상기 IRAP 픽쳐에 대한 제한이 적용되는지 여부를 나타내는 제9 정보를 포함하는 비트스트림을 생성할 수 있다. 나아가, 제9 정보가 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP 픽쳐를 포함한다는 제한이 항상 적용되지는 않음을 나타내는 경우, 스케일러블 비디오 복호화 장치(14)는 제10 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 제9 정보가 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP 픽쳐를 포함한다는 제한이 적용됨을 나타내는 경우, 제10 정보는 스케일러블 비디오를 구성하는 복수개의 레이어 중 두 개의 레이어에 대한 픽쳐들이 하나의 동일한 엑세스 단위에 있고 상위 레이어에 대한 픽쳐인 IRAP 픽쳐는 하위 레이어에 대한 픽쳐를 참조하는 인터레이어 예측 과정을 통해 복호화 하는 것을 나타낼 수 있다.
도 2d는 비디오 파라미터 세트에 대한 비디오 사용성 정보(video usability information)의 신택스 일부를 도시한다.
일 실시예에 따라 비디오 사용성 정보는 휘도 성분, 색차 성분을 복호화 하는 과정에서 사용되지는 않지만, 디코더 정합(decoder conformance)이나 출력 타이밍 정합(output timing conformance)에 사용될 수 있는 정보를 의미할 수 있다. 이러한 비디오 파라미터 세트에 대한 비디오 사용성 정보 없이 스케일러블 비디오를 복호화 하는 경우 복호화 과정에서 에러가 발생할 수 있다.
일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 i번째 레이어와 다이렉트 디펜던트 한 레이어의 개수에 대한 정보(예를 들면, NumDirectRefLayers[layer_id_in_nuh[i]])에 기초하여 i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인지 여부를 결정할 수 있다. i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인 경우, 일 실시예에 따른 스케일러블 비디오 부호화 장치(10)는 제2 픽쳐에 대한 픽쳐 파라미터 세트(picture parameter set) 및 시퀀스 파라미터 세트(sequence parameter set)를 결정함에 있어서 제1 픽쳐에 대한 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하는 제한을 적용할지를 나타내는 제7 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 부호화 방식을 이용하는지에 대한 정보인 제2 정보를 포함하는 비트스트림을 생성할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않고 i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인 경우, 스케일러블 비디오 부호화 장치(10)는 제2 픽쳐에 대한 픽쳐 파라미터 세트(picture parameter set) 및 시퀀스 파라미터 세트(sequence parameter set)를 결정함에 있어서 제1 픽쳐에 대한 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하는 제한을 적용할지를 나타내는 제7 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 제7 정보는 상기 제한을 항상 적용하는 것은 아닌 것을 나타낼 수 있다. 예를 들면, 스케일러블 비디오 부호화 장치(10)는 부호화 하려는 i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인 경우, 제7 정보인 base_layer_parameter_set_compatibility_flag[i]의 값이 0을 나타내는 비트스트림을 생성할 수 있다. 0의 값을 나타내는 base_layer_parameter_set_compatibility_flag[i]에 따르면, i번째 레이어와 관련하여 기본 레이어의 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하여야 한다는 제한이, VPS를 참조하는 슬라이스 세그먼트 NAL 단위의 부호화 과정에서 적용되지 않을 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 i번째 레이어와 다이렉트 디펜던트 한 레이어의 개수에 대한 정보(예를 들면, NumDirectRefLayers[layer_id_in_nuh[i]])에 기초하여 i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인지 여부를 결정할 수 있다. i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인 경우, 일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 제2 픽쳐에 대한 픽쳐 파라미터 세트(picture parameter set) 및 시퀀스 파라미터 세트(sequence parameter set)를 결정함에 있어서 제1 픽쳐에 대한 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하는 제한을 적용할지를 나타내는 제7 정보를 비트스트림으로부터 획득할 수 있다.
일 실시예에 따라 스케일러블 비디오 복호화 장치(14)는 스케일러블 비디오를 구성하는 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 비트스트림으로부터 획득할 수 있다. 제2 정보가 기본 레이어 및 향상 레이어가 서로 동일한 복호화 방식을 이용하지 않고 i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인 경우, 스케일러블 비디오 복호화 장치(14)는 제2 픽쳐에 대한 픽쳐 파라미터 세트(picture parameter set) 및 시퀀스 파라미터 세트(sequence parameter set)를 결정함에 있어서 제1 픽쳐에 대한 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하는 제한을 적용할지를 나타내는 제7 정보를 비트스트림으로부터 획득할 수 있다.
일 실시예에 따라 제7 정보는 상기 제한을 항상 적용하는 것은 아닌 것을 나타낼 수 있다. 예를 들면, 스케일러블 비디오 복호화 장치(14)는 복호화 하려는 i번째 레이어에 다이렉트 디펜던트 한 레이어의 개수가 0인 경우, 제7 정보인 base_layer_parameter_set_compatibility_flag[i]의 값이 0을 나타내는 비트스트림을 생성할 수 있다. 0의 값을 나타내는 base_layer_parameter_set_compatibility_flag[i]에 따르면, i번째 레이어와 관련하여 기본 레이어의 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하여야 한다는 제한이, VPS를 참조하는 슬라이스 세그먼트 NAL 단위의 복호화 과정에서 적용되지 않을 수 있다.
스케일러블 비디오 부호화 장치(10) 및 스케일러블 비디오 복호화 장치(14)와 관련하여 상기 설명한 내용은 스케일러블 비디오를 부호화 하는 방법 또는 스케일러블 비디오를 복호화 하는 방법에 대응하는 내용을 장치 관점에서 설명한 것이므로, 상기 설명한 특징들에 기초하여 스케일러블 비디오 부호화 방법 또는 스케일러블 비디오 복호화 방법이 수행될 수 있다.
도 3a는 복수개의 레이어로 구성되는 스케일러블 비디오(30)를 나타낸다. 스케일러블 비디오(30)은 서로 다른 스케일러블 확장 유형을 갖는 적어도 하나의 비디오 시퀀스들(21,22,23)을 포함할 수 있다.
다양한 네트워크 환경과 다양한 단말기에서 최적의 서비스를 제공할 수 있도록 하기 위해서, 스케일러블 비디오 부호화 장치(10)는 다양한 공간적 해상도(spatial resolution), 다양한 화질(quality), 다양한 프레임율(frame-rate), 서로 다른 시점을 갖는 스케일러블 비디오 시퀀스들을 부호화하여 스케일러블한 비트스트림을 출력할 수 있다. 즉, 스케일러블 비디오 부호화 장치(10)는 다양한 스케일러빌리티 타입에 따라 입력 영상을 부호화하여 스케일러블 비디오 비트스트림을 생성하여 출력할 수 있다. 스케일러빌리티는 시간적, 공간적, 화질적, 다시점적 스케일러빌리티 및 이러한 스케일러빌리티의 조합을 포함한다. 이러한 스케일러빌리티들은 각 유형에 따라 구분 될 수 있다. 또한, 스케일러빌리티들은 각 유형 내에서 차원 식별자로 구분될 수 있다.
예를 들어, 스케일러빌리티는 시간적, 공간적, 화질적 및 다시점적 스케일러빌리티와 같은 스케일러빌리티 타입을 가진다. 그리고 각 유형에 따라 스케일러빌리티 차원 식별자로 구분될 수 있다. 예를 들어, 서로 다른 스케일러빌리티를 가진다면 서로 다른 차원 식별자를 가질 수 있다. 예를 들어, 해당 스케일러빌리티 타입에 대한 고차원적인 스케일러빌리티일수록 스케일러빌리티 차원을 높게 할당할 수도 있다.
비트스트림으로부터 유효한(valid) 서브스트림들로 분리될 수 있는 경우 비트스트림은 스케일러블(scalable)하다고 불린다. 공간적으로 스케일러블한 비트스트림은 다양한 해상도의 서브스트림들을 포함한다. 동일한 스케일러빌리티 타입에서 서로 다른 스케일러빌리티를 구별하기 위하여 스케일러빌리티 차원을 사용한다. 스케일러빌리티 차원은 스케일러빌리티 차원 식별자로 표현될 수 있다.
일 실시예에 따라 시간적으로 스케일러블한 비트스트림은 다양한 프레임율을 갖는 서브스트림들을 포함할 수 있다. 예를 들어, 시간적으로 스케일러블한 비트스트림은 7.5Hz의 프레임율, 15Hz의 프레임율, 30Hz의 프레임율, 60Hz의 프레임율을 갖는 서브스트림으로 분리될 수 있다. 일 실시예에 따라 화질적으로 스케일러블한 비트스트림은 CGS(Coarse-Grained Scalability) 방식, MGS(Medium-Grained Scalability) 방식, FGS(Fine-Grained Scalability) 방식에 따라서 서로 다른 화질(quality)를 갖는 서브스트림으로 분리될 수 있다. 시간적 스케일러빌리티도 서로 다른 프레임율에 따라 서로 다른 차원으로 구분될 수 있으며, 화질적 스케일러빌리티도 서로 다른 방식에 따라 서로 다른 차원으로 구분될 수 있다.
일 실시예에 따라, 공간적으로 스케일러블한 비트스트림은 QVGA, VGA, WVGA 등과 같은 서로 다른 해상도를 갖는 서브스트림으로 분리될 수 있다. 예를 들어, 서로 다른 해상도를 갖는 각 레이어는 차원식별자를 사용하여 구별될 수 있다. 예를 들어, QVGA 서브스트림은 공간적 스케일러빌리티 차원 식별자 값으로 0을 가질 수 있고, VGA 서브스트림은 공간적 스케일러빌리티 차원 식별자 값으로 1을 가질 수 있고, WVGA 서브스트림은 공간적 스케일러빌리티 차원 식별자 값으로 2를 가질 수 있다.
일 실시예에 따라, 다시점 스케일러블 비트스트림은 하나의 비트스트림 내에서 서로 다른 시점의 서브 스트림들을 포함할 수 있다. 일 실시예로 스테레오 스코픽(stereo scopic) 영상의 경우 비트스트림은 좌측 영상과 우측 영상을 포함한다. 또한, 스케일러블 비트스트림은 다시점 영상 및 뎁스맵(depth map)의 부호화된 데이터에 관한 서브스트림들을 포함할 수 있다.
일 실시예에 따른 스케일러블 비디오(30)가 다시점 비디오인 경우, 기본 레이어인 제1 레이어의 비디오 시퀀스(31)는 제1 시점의 픽쳐들을 포함할 수 있다. 이 경우 제1 시점 비디오들에는 제1 픽쳐(34)가 포함될 수 있다. 제1 레이어와 같이, 향상 레이어인 제2 레이어의 비디오 시퀀스(32)는 제2 시점의 픽쳐들을 포함할 수 있다. 이 경우 제2 시점 비디오들에는 제2 픽쳐(35)가 포함될 수 있다. 나아가 향상 레이어가 셋 이상인 경우, 기본 레이어 영상들과 첫번째 향상 레이어 영상들, 두번째 향상 레이어 영상들, ...... , n번째 향상 레이어 영상들이 부호화될 수도 있다. 이에 따라 기본 레이어 영상들의 부호화 결과가 기본 레이어 스트림으로 출력되고, 첫번째, 두번째, ...... , n번째 향상 레이어 영상들의 부호화 결과가 각각 첫번째, 두번째, ...... , n번째 향상 레이어 스트림으로 출력될 수 있다. 이러한 제n 레이어의 비디오 시퀀스(33)는 제n 시점의 픽쳐들을 포함할 수 있다. 또 다른 일 실시예로, 제1 레이어의 비디오 시퀀스(31)는 기본 레이어의 좌시점 비디오, 제2 레이어의 비디오 시퀀스(32)는 기본 레이어의 우시점 비디오, 제n 레이어의 비디오 시퀀스(33)은 향상 레이어의 우시점 비디오일 수 있다. 다만 본 발명에서는 전술한 실시예에 한정되지 않고, 서로 다른 스케일러블 확장 유형을 갖는 비디오 시퀀스들(21, 22, 23)은 각각 서로 다른 속성(attribute)을 갖는 픽쳐들을 포함할 수 있다.
다양한 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 동일 레이어의 영상들을 참조하여 현재영상을 예측하는 인터 예측(Inter Prediction)을 수행할 수 있다. 인터 예측을 통해, 현재영상과 참조영상 사이의 움직임 정보를 나타내는 모션 벡터(motion vector) 및 현재영상과 참조영상 사이의 잔차 성분(residual)이 생성될 수 있다.
또한, 다양한 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 기본 레이어 영상들을 참조하여 향상 레이어 영상들을 예측하는 인터레이어 예측(Inter-layer Prediction)을 수행할 수 있다. 스케일러블 비디오 복호화 장치(14)는 첫 번째 향상 레이어 영상들을 참조하여 두 번째 향상 레이어 영상들을 예측하는 인터레이어 예측을 수행할 수도 있다. 인터레이어 예측을 통해, 현재영상과 다른 레이어의 참조영상 사이의 위치 차이성분 및 현재영상과 다른 레이어의 참조영상 사이의 잔차 성분이 생성될 수 있다.
일 실시예에 따른 스케일러블 비디오 복호화 장치(14)가 둘 이상의 향상 레이어를 허용하는 경우에는, 복수개의 레이어 간의 예측 구조에 따라 하나의 기본 레이어 영상들과 둘 이상의 향상 레이어 영상들 간의 인터레이어 예측을 수행할 수도 있다. 기본 레이어와 향상 레이어에서 수행될 수 있는 인터레이어 예측 시스템에 대하여는 이하 도 3b에서 구체적으로 설명하도록 한다.
서로 다른 스케일러블 확장 유형은 서로 결합될 수 있다. 즉, 스케일러블 비디오 비트스트림은 시간적, 공간적, 화질적, 다시점적 스케일러빌리티 중 적어도 하나가 서로 다른 영상들로 구성된 복수개의 레이어들의 비디오 시퀀스들을 부호화한 서브스트림들을 포함할 수 있다. 일 실시예에 따라, 제1 레이어의 비디오 시퀀스(31), 제2 레이어의 비디오 시퀀스(32) 및 제 n(n은 정수) 레이어의 비디오 시퀀스(33)들은 해상도, 화질, 시점 중 적어도 하나가 서로 다른 비디오 시퀀스들일 수 있다. 또한, 제1 레이어의 비디오 시퀀스(31), 제2 레이어의 비디오 시퀀스(32) 및 제 n(n은 정수) 레이어의 비디오 시퀀스(33)들 중 하나의 레이어의 비디오 시퀀스는 기본 레이어의 비디오 시퀀스고, 다른 레이어의 비디오 시퀀스들은 향상 레이어의 비디오 시퀀스일 수 있다.
도 3b은 일 실시예에 따른 스케일러블 비디오 부호화 시스템(16000)를 나타낸 도면이다.
멀티 레이어 부호화 시스템(16000)은 기본 레이어 부호화단(16100)과 향상 레이어 부호화단(16600), 그리고 기본 레이어 부호화단(16100)와 향상 레이어 부호화단(16600) 간의 인터-레이어 예측단(16500)으로 구성된다.
기본 레이어 부호화단(16100)는, 기본 레이어 비디오 시퀀스를 입력받아 영상마다 부호화한다. 향상 레이어 부호화단(16600)은, 향상 레이어 비디오 시퀀스를 입력받아 영상마다 부호화한다. 기본 레이어 부호화단(16100)과 향상 레이어 부호화단(16200)의 동작들 중에서 중복되는 동작은 동시에 후술한다.
블록 분할부(16180, 16680)를 통해 입력 영상(저해상도 영상, 고해상도 영상)은, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등으로 분할된다. 블록 분할부(16180, 16680)로부터 출력된 부호화 단위의 부호화를 위해, 부호화 단위의 예측단위별로 인트라예측 또는 인터예측이 수행될 수 있다. 예측 스위치(16480, 16980)는, 예측단위의 예측모드가 인트라 예측모드 또는 인터 예측모드인지 여부에 따라, 움직임 보상부(16400, 16900)로부터 출력된 이전 복원영상을 참조하여 인터 예측이 수행되거나, 또는 인트라 예측부(16450, 16950)로부터 출력된 현재 입력 영상 내에서 현재 예측단위의 이웃 예측단위를 이용하여 인트라 예측이 수행될 수 있다. 인터 예측을 통해 예측단위별로 레지듀 정보가 생성될 수 있다.
부호화 단위의 예측단위별로, 예측단위와 주변영상 간의 레지듀 성분이 변환/양자화부(16200, 16700)에 입력된다. 변환/양자화부(16200, 16700)는, 부호화 단위의 변환단위를 기초로, 변환단위별로 변환 및 양자화를 수행하여 양자화된 변환계수를 출력할 수 있다.
스케일링/역변환부(16250, 16750)는, 다시 부호화 단위의 변환단위별로 양자화된 변환계수에 대해 스케일링 및 역변환을 수행하여 공간영역의 레지듀 성분을 생성할 수 있다. 예측 스위치(16480, 16980)에 의해 인터 모드로 제어되는 경우에, 레지듀 성분은 이전 복원영상 또는 이웃 예측단위와 합성됨으로써, 현재 예측단위를 포함하는 복원영상이 생성되고 현재 복원영상은 스토리지(16300, 16800)에 저장될 수 있다. 현재 복원영상은 다시 다음에 부호화되는 예측단위의 예측모드에 따라 인트라예측부(16450, 16950)/움직임보상부(16400, 16900)로 전달될 수 있다.
특히, 인터모드의 경우, 인루프필터링(In-Loop Filtering)부(16350, 16850)는, 스토리지(16300, 16800)에 저장된 복원영상에 대해, 부호화 단위별로 디블로킹 필터링, 원본영상과 복원영상 간의 부호화 오차를 보상하기 위해 SAO (Sample Adaptive Offset) 필터링 중 적어도 하나의 필터링을 수행할 수 있다. 부호화 단위 및 부호화 단위에 포함된 예측 단위 및 변환 단위 중 적어도 하나에 대해 디블로킹 필터링 및 SAO (Sample Adaptive Offset) 필터링 중 적어도 하나의 필터링이 수행될 수 있다.
디블로킹 필터링은 데이터 단위의 블록킹 현상을 완화시키기 위한 필터링이고, SAO 필터링은 데이터 부호화 및 복호화에 의해 변형되는 픽셀값을 보상하기 위한 필터링이다. 인루프필터링부(16350, 16850)에 의해 필터링된 데이터는, 예측 단위별로 움직임보상부(16400, 16900)에게 전달될 수 있다. 다시 블록분할부(16180, 16680)로부터 출력된, 다음 순서의 부호화 단위의 부호화를 위해, 움직임보상부(16400, 16900) 및 블록분할부(16180, 16680)가 출력한 현재 복원영상과 다음 부호화 단위 간의 레지듀 성분이 생성될 수 있다.
이러한 식으로, 입력 영상의 부호화 단위마다 전술한 부호화 동작이 반복될 수 있다.
또한, 인터레이어 예측을 위해 향상 레이어 부호화단(16600)은, 기본 레이어 부호화단(16100)의 스토리지(16300)에 저장된 복원영상을 참조할 수 있다. 기본 레이어 부호화단(16100)의 부호화 컨트롤부(16150)는 기본 레이어 부호화단(16100)의 스토리지(16300)를 제어하여, 기본 레이어 부호화단(16100)의 복원영상을 향상 레이어 부호화단(16600)에게 전달할 수 있다. 전달된 기본 레이어 복원영상은, 향상 레이어 예측영상으로서 이용될 수 있다.
인터-레이어 예측단(16500)의 인루프 필터링부(16550)는, 기본 레이어와 향상 레이어의 영상 간에 해상도가 다른 경우에, 기본 레이어의 복원영상을 업샘플링하여 향상 레이어 부호화단(16600)으로 전달할 수도 있다. 따라서 업샘플링된 기본 레이어 복원영상이 향상 레이어 예측영상으로서 이용될 수 있다.
향상 레이어 부호화단(16600)의 부호화 컨트롤부(16650)가 스위치(16980)를 제어하여 인터-레이어 예측이 수행되는 경우에는, 인터-레이어 예측단(16500)을 통해 전달된 기본 레이어 복원영상을 참조하여 향상 레이어 영상을 예측할 수도 있다.
영상의 부호화를 위해, 부호화 단위, 예측 단위, 변환 단위를 위한 각종 부호화 모드를 설정할 수 있다. 예를 들어, 부호화 단위에 대한 부호화 모드로서, 심도 또는 분할 정보(split flag) 등이 설정될 수 있다. 예측 단위에 대한 부호화 모드로서, 예측 모드, 파티션 타입, 인트라 방향 정보, 참조리스트 정보 등이 설정될 수 있다. 변환 단위에 대한 부호화 모드로서, 변환심도 또는 분할정보 등이 설정될 수 있다.
기본레이어 부호화단(16100)은, 부호화 단위를 위한 다양한 심도들, 예측 단위에 대한 다양한 예측모드들, 다양한 파티션 타입들, 다양한 인트라 방향들, 다양한 참조리스트들, 변환단위를 위한 다양한 변환심도를 각각 적용하여 부호화를 수행한 결과에 따라, 부호화 효율이 가장 높은 부호화심도, 예측모드, 파티션타입, 인트라 방향/참조리스트, 변환심도 등을 결정할 수 있다. 기본레이어 부호화단(16100)에서 결정되는 상기 열거된 부호화 모드에 한정되지는 않는다.
기본레이어 부호화단(16100)의 부호화 컨트롤부(16150)는, 각각 구성요소들의 동작에 다양한 부호화 모드들이 적절히 적용될 수 있도록 제어할 수 있다. 또한, 부호화 컨트롤부(16150)는, 향상 레이어 부호화단(16600)의 인터-레이어 부호화를 위해, 향상 레이어 부호화단(16600)이 기본레이어 부호화단(16100)의 부호화 결과를 참조하여 부호화 모드 또는 레지듀 성분을 결정하도록 제어할 수 있다.
예를 들어, 향상 레이어 부호화단(16600)은, 기본레이어 부호화단(16100)의 부호화 모드를 향상 레이어 영상을 위한 부호화 모드로서 그대로 이용하거나, 기본레이어 부호화단(16100)의 부호화 모드를 참조하여 향상 레이어 영상을 위한 부호화 모드를 결정할 수 있다. 기본레이어 부호화단(16100)의 부호화 컨트롤부(16150)는 기본레이어 부호화단(16100)의 향상 레이어 부호화단(16600)의 부호화 컨트롤부(16650)의 제어 신호를 제어하여, 향상 레이어 부호화단(16600)이 현재 부호화 모드를 결정하기 위해, 기본레이어 부호화단(16100)의 부호화 모드로부터 현재 부호화 모드를 이용할 수 있다.
특히, 일 실시예에 따른 향상 레이어 부호화단(16600)은 인터레이어 예측 오차를 SAO 파라미터를 이용하여 부호화할 수 있다. 따라서, 기본 레이어 복원영상으로부터 결정된 향상 레이어 예측영상과 향상 레이어 복원영상 간의 예측 오차를 SAO 파라미터의 오프셋으로서 부호화할 수 있다.
도 3b에서 도시된 멀티 레이어 부호화 시스템(16000)과 유사하게, 인터레이어 예측 방식에 따른 멀티 레이어 복호화 시스템도 구현될 수 있다. 즉, 멀티 레이어 복호화 시스템은, 기본레이어 비트스트림 및 향상 레이어 비트스트림을 수신할 수 있다. 멀티 레이어 복호화 시스템의 기본레이어 복호화단에서 기본레이어 비트스트림을 복호화하여 기본 레이어 영상들을 복원할 수 있다. 멀티 레이어 복호화 시스템의 향상 레이어 복호화단에서는, 기본레이어 복원영상과 파싱한 부호화정보를 이용하여 향상 레이어 비트스트림을 복호화하여 향상 레이어 영상들을 복원할 수 있다. 일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 이러한 멀티 레이어 복호화 시스템을 포함할 수 있다.
도 4a는 일 실시예에 따른 NAL 단위 헤더를 나타낸 도면이다.
도 4a를 참조하면, NAL 단위 헤더는 총 2바이트의 길이를 갖는다. NAL 단위 헤더는 NAL 단위의 식별을 위한 비트로써 0의 값을 갖는 forbidden_zero_bit (F)(31), NAL 단위의 종류를 나타내는 식별자(nal unit type, 이하 "NUT"라 한다)(32), NAL 단위가 속하는 레이어를 구별하기 위한 레이어 식별자(33) 및 NAL 단위의 시간적 식별자(termporal ID)(34) 포함한다. NAL 단위가 속하는 레이어를 구별하기 위한 레이어 식별자(33)는 비디오가 단일 레이어로 구성되는 경우에는 0값을 가질 수 있었으나, 스케일러블 비디오와 같이 복수개의 레이어로 구성되는 경우 스케일러블 비디오를 구성하는 복수개의 레이어에 대한 레이어 식별자(33)의 값은 0이상의 값을 가질 수 있다. 일 실시예에 따라, 스케일러블 비디오를 구성하는 복수개의 레이어 중 기본 레이어는 레이어 식별자(33)의 값이 0일 수 있고, 향상 레이어는 레이어 식별자(33)의 값이 1 이상일 수 있다. 일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 기본 레이어를 포함하는 복수개의 레이어를 이용하여 스케일러블 비디오를 복호화 함으로써 비디오 컨텐츠를 재생할 수 있다.
도 4b는 일 실시예에 따른 스케일러블 비디오의 부호화된 데이터를 포함하는 NAL 단위들을 나타낸다.
스케일러블 비디오 복호화 장치(14)는 부호화된 스케일러블 비디오 데이터 및 부가 정보를 포함하는 NAL(Network Abstraction Layer) 단위들을 비트스트림으로부터 획득할 수 있다. 비디오 파라미터 세트(Video Parameter Set, 이하 "VPS"라 함)는 멀티 레이어 비디오에 포함된 스케일러블 비디오 시퀀스들(42, 43, 44)에 적용되는 정보를 포함할 수 있다. VPS에 관한 정보를 포함하는 NAL 단위를 VPS NAL 단위(41)라 한다.
VPS NAL 단위(41)는 스케일러블 비디오를 구성하는 비디오 시퀀스들(42, 43, 44)에 의하여 공유되는 공통적인 신택스 엘리먼트(syntax element), 불필요한 정보의 전송을 막기 위하여 동작점(operation point)에 관한 정보, 프로파일(profile)이나 레벨과 같이 세션 논의(session negotiation) 단계에서 필요한 동작점에 관한 필수 정보 등을 포함한다. 일 실시예에 따라, 스케일러빌리티 비디오에서 구현되는 스케일러빌리티는 스케일러빌리티 식별자에 의해 식별될 수 있고, VPS NAL 단위(41)에는 이러한 스케일러빌리티 식별자와 관련된 스케일러빌리티 정보가 포함될 수 있다. 스케일러빌리티 정보는 스케일러블 비디오에 포함된 스케일러블 비디오 시퀀스들(42, 43, 44)에 적용되는 스케일러빌리티를 결정하기 위한 정보일 수 있다.
스케일러빌리티 정보는 스케일러블 비디오에 포함된 스케일러블 비디오 시퀀스들(42, 43, 44)에 적용되는 스케일러빌리티 유형 및 스케일러빌리티 차원에 대한 정보를 포함한다. 일 실시예에 따라, 스케일러빌리티 정보는 NAL 단위 헤더에 포함된 레이어 식별자의 값으로부터 직접적으로 획득될 수 있다. 레이어 식별자는 VPS와 관련된 복수개의 레이어들 간의 구분을 위한 식별자이다. VPS는 각 레이어에 대한 레이어 식별자를 VPS 익스텐션(VPS extension)을 통하여 시그널링할 수 있다. VPS의 각 레이어에 대한 레이어 식별자는 VPS NAL 단위에 포함되어 시그널링될 수 있다. 예를 들어, VPS의 특정 레이어에 속하는 NAL 단위들의 레이어 식별자는 VPS NAL 단위에 포함될 수 있다. 예를 들어, VPS에 속하는 NAL 단위의 레이어 식별자는 VPS 익스텐션(VPS extension)을 통하여 시그널링 될 수 있다. 따라서, 일 실시예에 따른 스케일러블 비디오 복호화 장치(14)는 VPS를 사용할 수 있고 VPS에 속하는 NAL 단위들의 레이어에 대한 스케일러빌리티 정보를 해당 NAL 단위들의 레이어 식별자를 사용하여 획득할 수 있다. 이러한 VPS에는 VPS 식별자가 포함될 수 있다. VPS는 SPS와 참조 관계에 있기 때문에, VPS를 참조하는 SPS에는 SPS가 참조하는 VPS를 식별하기 위한 VPS 식별자가 포함될 수 있다.
복수개의 레이어로 구성된 스케일러블 비디오에 대한 비디오 파라미터 세트인 VPS에 대한 NAL 단위인 VPS NAL 단위에는 NAL 단위의 헤더에 레이어 식별자를 포함될 수 있고 상기 레이어 식별자의 값은 0일 수 있다. 예를 들면, VPS에 대한 정보가 바이트 정렬(byte aligned)되어 NAL 단위로 캡슐화 된 신택스인 VPS RBSP(Raw Byte Sequence Payload)가 VPS 시간적 식별자(TemporalID)의 값이 0인 적어도 하나의 엑세스 단위(access unit)에 포함되거나 또는 VPS RBSP가 스케일러블 비디오 재생을 위하여 현재 사용하는 복호화 방식 외의 방법인 외적 복호화 방식에 제공되는 경우, VPS 식별자를 포함하는 VPS NAL 단위의 레이어 식별자는 0일 수 있다. 다만 본 발명의 일 실시예에 따르면 이러한 VPS NAL 단위의 레이어 식별자는, 스케일러블 비디오의 기본 레이어가 외적 복호화 방식에 의해 부호화 된 비디오 시퀀스를 포함하는 경우 0보다 큰 값을 가질 수 있다. 이에 대하여는 이하 도 4a, 도 4b에서 구체적으로 설명하도록 한다.
일 실시예에 따라 레이어 식별자는 VPS NAL 단위(31)뿐만 아니라, 각 계층의 SPS(Sequence Parameter Set) 정보를 포함하는 SPS NAL 단위들(42a, 43a, 44a) 또는 각 계층의 PPS(Picture Parameter Set) 정보를 포함하는 PPS NAL 단위들(42b, 43b, 44b)에 포함될 수도 있다.
SPS는 하나의 계층의 비디오 시퀀스에 공통적으로 적용되는 정보를 포함한다. 이러한 SPS를 포함하는 SPS NAL(42a, 43a, 44a)들 각각은 비디오 시퀀스들(42, 43, 44) 각각에 공통적으로 적용되는 정보를 포함한다.
PPS는 하나의 계층의 픽쳐들에 공통적으로 적용되는 정보를 포함한다. 이러한 PPS를 포함하는 PPS NAL(42b, 43b, 44b)들 각각은 동일 계층의 픽쳐들에 공통적으로 적용되는 정보를 포함한다. PPS는 픽쳐 전체의 부호화 모드, 예를 들어 엔트로피 부호화 모드, 픽쳐 단위의 양자화 파라미터 초기값 등에 관한 정보를 포함할 수 있다. PPS는 모든 픽쳐마다 생성될 필요는 없다. 즉, PPS가 없는 경우에는 이전에 존재하는 PPS를 이용하고, PPS에 포함된 정보가 갱신될 필요가 있는 경우에 새롭게 PPS가 설정되고, 설정된 PPS에 관한 정보를 포함하는 PPS NAL 단위가 생성될 수 있다.
슬라이스 세그먼트는 적어도 하나의 최대 부호화 단위의 부호화 데이터를 포함하며, 이러한 슬라이스 세그먼트는 슬라이스 세그먼트 NAL들(42c, 43c, 44c)에 포함되어 전송될 수 있다.
도 4b에 도시된 바와 같이, 하나의 스케일러블 비디오는 스케일러블 비디오 시퀀스들(42, 43, 44)를 포함한다. 시퀀스를 식별하기 위해서, 각 레이어의 SPS에는 SPS 식별자(sequence_parameter_set_id)가 포함될 수 있다. PPS에 SPS 식별자를 지정함으로써 PPS가 포함된 시퀀스를 식별할 수 있다. 또한, PPS에는 PPS 식별자(picture_parameter_set_id)가 포함되고, 슬라이스 세그먼트는 슬라이스 세그먼트에 포함된 PPS 식별자를 참조함으로써 슬라이스 세그먼트가 어떤 PPS를 참조하는지를 식별할 수 있다. 또한, 슬라이스 세그먼트가 참조하는 PPS 식별자가 가리키는 SPS 식별자를 이용하여 슬라이스 세그먼트에 이용되는 SPS 및 레이어에 대한 정보를 식별할 수 있다. 즉, PPS는 SPS를 참조하는 관계일 수 있다. 예를 들어, 제1 레이어 SPS NAL(42a)의 SPS 식별자(sequence_parameter_set_id)가 0의 값을 갖는다고 가정한다. 이 경우, 제1 레이어 비디오 시퀀스(42)에 포함된 제1 레이어 PPS NAL(42b)는 0의 값을 갖는 SPS 식별자(sequence_parameter_set_id)를 포함한다. 또한, 제1 레이어 PPS NAL(42b)의 PPS 식별자(picture_parameter_set_id)가 0의 값을 갖는다고 가정한다. 이 경우, 제1 레이어 PPS NAL(42b)를 참조하는 제1 레이어 슬라이스 세그먼트 NAL(42c)은 0의 값을 갖는 PPS 식별자(picture_parameter_set_id)를 갖는다.
도 4b에서는 하나의 VPS를 구성하는 예를 도시하고 있으나, 도 4b에 도시된 바와 같은 스케일러블 비디오의 구성을 다시 복수 개로 구성하는 것도 가능하다. 이와 같은 경우 복수 개의 스케일러블 비디오 중 NAL 단위들이 포함되는 스케일러블 비디오를 식별하기 위하여 SPS NAL 단위에 VPS 식별자(video_parameter_set_id)를 포함시킬 수 있다. 예를 들어, VPS NAL(31)의 VPS 식별자(video_parameter_set_id)가 0의 값을 갖는 경우, 하나의 스케일러블 비디오에 포함되는 SPS NAL(42a, 43a, 44a)들에는 0의 값을 갖는 VPS 식별자(video_parameter_set_id)가 포함될 수 있다.
도 5는 다양한 실시예에 따른 레이어 집합을 설명하기 위한 도면이다.
스케일러블 비디오 부호화 장치(10)는 스케일러블 비디오 중 적어도 하나의 레이어를 포함하는 레이어 집합을 결정할 수 있다. 이때, 결정되는 레이어 집합의 개수는 여러 개일 수 있다. 한편 본 실시예에서는 레이어 식별자는 레이어 마다 다른 값일 수 있으며, 레이어 식별자가 가장 작은 레이어는 기본 레이어라고 가정한다. 또한, 레이어 식별자가 큰 레이어는 향상 레이어로, 다른 레이어들이 모두 복호화 된 후에 이를 참조하여 복호화 되는 레이어일 수 있다.
일 실시예에 따른 부호화된 스케일러블 비디오(500)는 4개의 레이어를 포함한다고 가정한다. 각각의 레이어는 서로 다른 레이어 식별자를 갖는다. 이때 스케일러블 비디오(500)는 다음과 같은 3가지 레이어 집합을 갖고 있을 수 있다. 제1 레이어 집합(510)은 스케일러블 비디오(500)에 포함된 모든 레이어를 포함할 수 있다. 제2 레이어 집합(520)은 스케일러블 비디오에 포함된 3개의 레이어를 포함할 수 있다. 레이어 집합군(540)은 적어도 하나의 레이어 집합을 포함할 수 있다. 일 예로, 레이어 집합군(540)은 제1 레이어 집합(510) 및 제2 레이어 집합(520)을 포함할 수 있다. 한편, 제3 레이어 집합(530)은 스케일러블 비디오에 포함된 2개의 레이어를 포함할 수 있다.
추가 레이어 집합군(545)은 적어도 하나의 추가 레이어 집합(additional layer set)을 포함할 수 있다. 일 실시예에 따라, 추가 레이어 집합은 기본 레이어를 제외한 적어도 하나의 향상 레이어의 레이어 서브트리(layer subtree)를 포함하는 것으로 정의될 수 있으며, 레이어 서브트리란 참조 관계에 있는 레이어들의 집합인 서브트리에 포함되는 참조 레이어들의 집합을 의미할 수 있다. 일 실시예에 따라, 스케일러블 비디오(500)에 포함되는 기본 레이어가 스케일러블 비디오(500)에 포함된 나머지 레이어와 다른 부호화 방식을 이용하여 부호화 된 경우, 추가 레이어 집합의 개수는 1개 이상일 수 있다. 일 실시예에 따르면 이러한 추가 레이어 집합의 레이어에는 비-기본적이고 독립적인 레이어(independent non-base layer)를 포함할 수 있다. 예를 들면, 추가 레이어 집합군(545)은 추가 레이어 집합인 제3 레이어 집합(530)을 포함할 수 있다.
한편, 출력 레이어 집합군(550)은 적어도 하나의 레이어 집합군을 포함할 수 있다. 일 예로, 출력 레이어 집합군(550)는 레이어 집합군(540), 추가 레이어 집합군(545)를 포함할 수 있다.
한편 출력 레이어 집합군(550)에 포함된 레이어 집합을 출력 레이어 집합이라고 한다. 일 예로, 출력 레이어 집합군(550)은 제1 레이어 집합(510), 제 2 레이어 집합(520), 제3 레이어 집합(530)을 포함할 수 있다.
스케일러블 비디오 복호화 장치(14)는 출력 레이어 집합군(550) 중 하나의 출력 레이어 집합을 결정할 수 있다. 이렇게 결정된 출력 레이어 집합군을 타겟 출력 레이어 집합이라고 한다. 스케일러블 비디오 복호화 장치(14)는 결정된 타겟 출력 레이어 집합을 타겟 복호화 레이어 집합으로 하여 타겟 출력 레이어 집합에 포함된 레이어들을 복호화 할 수 있다.
스케일러블 비디오 복호화 장치(14)는 복호화 가능한 레이어들을 조합하여 레이어 집합들을 결정할 수 있다.
한편, 스케일러블 비디오 부호화 장치(10)는 출력 레이어 집합군을 결정한 후에, 출력 레이어 집합 군에 포함된 출력 레이어 집합의 개수를 나타내는 정보를 생성하고, 생성된 출력 레이어 집합의 개수를 나타내는 정보를 포함하는 비트스트림을 생성할 수 있다.
스케일러블 비디오 복호화 장치(14)는 상기 생성된 비트스트림을 획득하고, 획득된 비트스트림으로부터 출력 레이어 집합의 개수를 나타내는 정보를 획득하고, 획득된 정보를 이용하여 출력 레이어 집합군을 결정할 수 있다.
한편 스케일러블 비디오 부호화 장치(10)는 출력 레이어 집합군 중 타겟 출력 레이어 집합을 결정하고, 결정된 타겟 출력 레이어 집합에 포함된 레이어들을 포함하는 비트스트림을 생성할 수 있다.
스케일러블 비디오 복호화 장치(14)는 비트스트림으로부터 츨력 레이어 집합의 개수에 대한 정보를 기초로 출력 레이어 집합군을 결정할 수 있다.
일 실시예에 따라, 스케일러블 비디오 복호화 장치(14)는 결정된 출력 레이어 집합군 중에서 복호화 하는 타겟 출력 레이어 집합을 미리 결정할 수 있다. 예를 들어, 스케일러블 비디오 복호화 장치(14)는 비트스트림을 수신하기 전에 레이어 집합(510,520,530) 중 제1 레이어 집합(510)를 복호화 하는 타겟 출력 레이어 집합으로 결정할 수 있다. 다만 이에 제한되지 않고, 스케일러블 비디오 부호화 장치(10)가 출력 레이어 집합군 중 타겟 출력 레이어 집합을 결정하면, 출력 레이어 집합군 중 타겟 출력 레이어 집합을 나타내는 인덱스를 생성한다. 스케일러블 비디오 복호화 장치(14)는 생성된 비트스트림을 획득한다. 스케일러블 비디오 복호화 장치(14)는 획득된 비트스트림으로부터 타겟 출력 레이어 집합을 나타내는 인덱스를 획득하고, 획득된 인덱스를 이용하여 출력 레이어 집합군에서 타겟 출력 레이어 집합을 결정하고, 타겟 출력 레이어 집합에 포함된 레이어를 복호화 할 수 있다.
한편, 스케일러블 비디오 복호화 장치(14)는 출력 레이어 집합의 개수에 관한 정보 및 인덱스에 기초하여 출력 레이어 집합군을 결정하고, 결정된 출력 레이어 집합군 중 타겟 출력 레이어 집합인 제1 레이어 집합(510)을 결정하면, 비트스트림에 포함된 레이어들이 제1 레이어 집합(510)에 포함된 레이어들을 모두 가지고 있는지를 결정할 수 있다. 스케일러블 비디오 복호화 장치(14)는 제1 레이어 집합(510)에 포함된 레이어를 모두 가지고 있다고 판단되면 제1 레이어 집합(510)에 포함된 레이어들을 복호화 하여 영상을 복원할 수 있다.
구체적으로 스케일러블 비디오 복호화 장치(14)는 레이어 집합의 개수(NumLayerSets)는 비트스트림으로 획득된 레이어 집합의 개수-1을 나타내는 신택스 요소 vps_num_layer_sets_minus1 및 추가 레이어 집합의 개수를 나타내는 신택스 요소 num_add_layer_set에 기초하여 결정될 수 있다. 한편 출력 레이어 집합의 개수(NumOutputLayerSets)는 레이어 집합의 개수(NumLayerSets) 및 비트스트림으로부터 획득된 추가 출력 레이어 집합(num_add_olss)에 기초하여 결정될 수 있다.
도 6는 일 실시예에 따른 출력 레이어 서브 집합을 설명하기 위한 도면이다.
도 6를 참조하면, 스케일러블 비디오 복호화 장치(14)는 도 5의 제2 레이어 집합(520)을 타겟 출력 레이어 집합으로 결정하였다고 가정한다.
스케일러블 비디오 복호화 장치(14)는 제1 레이어 집합(510)에 포함된 레이어(511) 중 적어도 하나를 복호화한다. 하지만 스케일러블 비디오 복호화 장치(14)는 복호화 된 레이어를 모두 디스플레이하지 않고, 복호화 된 레이어 중 적어도 하나의 레이어를 디스플레이할 수 있다.
스케일러블 비디오 복호화 장치(30)는 제2 레이어 집합(520)에 포함된 레이어 중 출력하기 위한 레이어를 결정할 수 있다. 구체적으로 스케일러블 비디오 복호화 장치(30)는 제2 레이어 집합(520)에 포함된 레이어 중 출력하기 위한 레이어를 포함하는 출력 레이어 서브 집합을 결정할 수 있다.
예를 들어, 일 실시예에 따른 제1 출력 레이어 서브 집합(560)은 제2 레이어 집합(520)에 포함된 레이어 중 레이어 식별자가 최대인 레이어(512)만을 포함할 수 있다. 스케일러블 비디오가 공간적인 스케일러빌리티 타입을 갖는 경우, 레이어 식별자가 가장 작은 레이어는 저해상도의 레이어이고, 가장 높은 레이어는 고해상도의 레이어이다. 고해상도의 레이어는 저해상도의 레이어를 참조한다. 따라서 고해상도의 레이어가 복호화되면, 저해상도의 레이어는 중복된 정보를 포함하므로 저해상도의 레이어는 디스플레이될 필요가 없다. 따라서 레이어 식별자가 최대인 레이어(512)가 제1 출력 레이어 서브 집합(560)에 포함될 수 있다.
또 다른 일 실시예에 따른 제2 출력 레이어 서브 집합(570)은 제2 레이어 집합(520)에 포함된 모든 레이어(511)를 포함할 수 있다. 이러한 일 실시예로 스케일러블 비디오가 다시점적 스케일러빌리티 타입을 갖는 경우, 좌시점, 우시점, 중앙 시점을 나타내는 레이어를 포함할 수 있다. 레이어 집합에 포함된 레이어들은 각각 좌시점, 우시점, 중앙 시점을 나타내는 레이어들로 모두 디스플레이 될 수 있다.
한편 제3 출력 레이어 서브 집합(580)은 제2 레이어 집합(520)에 있는 레이어 중 가장 작은 레이어 식별자를 갖는 레이어(513)를 포함할 수 있다.
스케일러블 비디오 복호화 장치(14)는 출력 레이어 서브 집합을 나타내는 인덱스를 획득하고, 획득된 인덱스를 이용하여 출력 레이어 서브 집합(540,550,560) 중 하나의 출력 레이어 서브 집합을 결정할 수 있다.
스케일러블 비디오 복호화 장치(14)는 결정된 타겟 출력 레이어 서브 집합에 포함된 레이어를 복호화한 후에 디스플레이 할 수 있다.
한편 도 5를 참조하여 전술한 바에 따르면, 레이어 식별자의 값이 가장 작은 레이어는 기본 레이어이고, 레이어 식별자의 값이 가장 큰 레이어는 향상 레이어 중 가장 나중에 부호화 또는 복호화 될 수 있는 레이어인 것을 가정하였으나, 이에 제한되지 않고, 레이어 식별자의 값이 크더라도 그보다 레이어 식별자의 값이 작은 레이어를 참조하지 않고 독립적으로 부호화될 수 있다.
한편, 도 5에 도시된 레이어는 프라이머리 영상(Primary Image)을 나타내는 레이어임을 가정하여 상술하였으나, 이에 제한되지 않고, 부가 영상을 나타내는 레이어들을 포함할 수 있다. 예를 들어, 부가 영상으로 알파 플레인 영상 및 뎁스 영상을 포함할 수 있다. 이러한 부가 영상은 프라이머리 영상을 복호화 하는데 참조하는 영상일 뿐, 직접 출력되어 디스플레이되는 영상은 아니다.
따라서 스케일러블 비디오 복호화 장치(14)는 부가 영상을 나타내는 레이어를 제외한 나머지 레이어들을 출력 레이어 서브 집합으로 결정할 수 있다.
한편, 도 6를 참조하여 전술한 바에 따르면 제2 레이어 집합(520)이 타겟 출력 레이어 집합으로 결정된 것을 전제로 상술하고 있으나, 이에 제한되지 않고, 스케일러블 비디오 복호화 장치(14)는 출력 레이어 집합군만 결정하고 있을 뿐, 타겟 출력 레이어 집합을 먼저 결정하지 않고 나중에 타겟 출력 레이어 집합을 나중에 결정할 수 있다. 이 경우, 스케일러블 비디오 복호화 장치(14)는 레이어 집합(510,520,530) 각각에 대해 출력 레이어 서브집합을 결정할 수 있다.
예를 들어, 스케일러블 비디오 복호화 장치(14)는 레이어 집합(510, 520, 530)을 포함하는 출력 레이어 집합군을 결정하고, 각각의 레이어 집합(510,520,530)의 레이어 식별자의 값이 가장 큰 레이어 즉, 제1 레이어 집합(510)의 경우 레이어 식별자의 값이 가장 큰 4번 레이어, 제2 레이어 집합(520)의 경우 레이어 식별자의 값이 가장 큰 3번 레이어, 제3 레이어 집합(530)의 경우 레이어 식별자의 값이 가장 큰 2번 레이어를 출력 레이어 서브 집합으로 결정하고, 각 출력 레이어 서브 집합을 포함하는 출력 레이어 서브집합군을 결정할 수 있다. 이때, 스케일러블 비디오 복호화 장치(14)는 출력 레이어 서브 집합군을 나타내는 인덱스를 기초로 출력 레이어 서브 집합군을 결정할 수 있다.
한편, 스케일러블 비디오 복호화 장치(14)는 타겟 출력 레이어 집합이 결정되면, 출력 레이어 서브 집합군 중 하나의 타겟 출력 레이어 서브 집합을 결정할 수 있다. 즉, 타겟 출력 레이어 집합에 포함된 적어도 하나의 레이어를 포함하는 타겟 출력 레이어 서브 집합이 결정될 수 있다. 예를 들어, 스케일러블 비디오 복호화 장치(14)가 출력 레이어 집합군에서 타겟 출력 레이어 집합으로 제1 레이어 집합(510)을 결정하면, 출력 레이어 서브 집합군에서 제1 출력 레이어 서브 집합(560)을 결정하고, 제1 출력 레이어 서브 집합(560)에 포함된 레이어 식별자의 값이 가장 큰 레이어(512)을 출력 레이어로 결정할 수 있다.
도 7 은 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽쳐를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽쳐를 구획할 수 있다. 현재 픽쳐가 최대 부호화 단위보다 크다면, 현재 픽쳐의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽쳐의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽쳐의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 최종 심도로 결정한다. 결정된 최종 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 최종 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 최종 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 최종 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 최종 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 최종 심도로 결정된 심도의 부호화 단위들을 포함한다. 최종 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 최종 심도는, 다른 영역에 대한 최종 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 최종 심도의 부호화 단위, 즉 더 이상 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 부호화 단위가 분할된 파티션은, 부호화 단위 및 부호화 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위가 분할된 형태의 데이터 단위 및 부호화 단위와 동일한 크기의 데이터 단위를 포함할 수 있다. 예측의 기반이 되는 파티션은 ‘예측 단위’라 지칭될 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 모드는 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
심도별 분할 정보는, 심도뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 심도뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 모드, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 9 내지 19를 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 분할정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 분할정보는, 심도 정보, 예측 단위의 파티션 모드 정보, 예측 모드 정보, 변환 단위의 분할 정보 등을 포함할 수 있다.
최종 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 심도의 부호화 단위마다 적어도 하나의 분할정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 분할정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 심도가 다를 수 있으므로, 데이터에 대해 심도 및 분할정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽쳐, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽쳐 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽쳐 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽쳐의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽쳐당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 8 은 다양한 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할정보 등 각종 용어의 정의는, 도 7 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽쳐에 대한 헤더, 시퀀스 파라미터 세트 또는 픽쳐 파라미터 세트로부터 현재 픽쳐의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 심도 및 분할정보는, 하나 이상의 심도 정보에 대해 설정될 수 있으며, 심도별 분할정보는, 해당 부호화 단위의 파티션 모드 정보, 예측 모드 정보 및 변환 단위의 분할 정보 등을 포함할 수 있다. 또한, 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 심도 및 분할정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 심도 및 분할정보다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 심도 및 분할정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 심도 및 분할정보가 기록되어 있다면, 동일한 심도 및 분할정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 심도 및 분할정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽쳐를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 모드, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화 할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 심도별 부호화 단위의 예측 단위의 파티션 모드 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 심도다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 모드, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화 할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화 할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
도 3a를 참조하여 전술한 영상 복호화 장치(30)는, 수신된 제1 레이어 영상스트림 및 제2 레이어 영상스트림을 복호화하여 제1 레이어 영상들 및 제2 레이어 영상들을 복원하기 위해, 비디오 복호화 장치(200)를 시점 개수만큼 포함할 수 있다.
제1 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제1 레이어 영상스트림으로부터 추출된 제1 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 제1 레이어 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제1 레이어 영상들을 복원할 수 있다.
제2 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제2 레이어 영상스트림으로부터 추출된 제2 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는, 제2 레이어 영상들의 샘플들의 부호화 단위들마다 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제2 레이어 영상들을 복원할 수 있다.
추출부(220)는, 제1 레이어 영상과 제2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 오차와 관련된 정보를 비트스트림으로부터 획득할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽쳐에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 분할정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 9 는 다양한 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 10에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 10 은 다양한 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 픽쳐 부호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다. 즉, 인트라 예측부(420)는 현재 영상(405) 중 인트라 모드의 부호화 단위에 대해 예측 단위별로 인트라 예측을 수행하고, 인터 예측부(415)는 인터 모드의 부호화 단위에 대해 예측단위별로 현재 영상(405) 및 복원 픽쳐 버퍼(410)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 현재 영상(405)은 최대부호화 단위로 분할된 후 순차적으로 인코딩이 수행될 수 있다. 이때, 최대 부호화 단위가 트리 구조로 분할될 부호화 단위에 대해 인코딩을 수행될 수 있다.
인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터를 현재 영상(405)의 인코딩되는 부호화 단위에 대한 데이터로부터 빼줌으로써 레지듀 데이터를 생성하고, 레지듀 데이터는 변환부(425) 및 양자화부(430)를 거쳐 변환 단위별로 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(445), 역변환부(450)을 통해 공간 영역의 레지듀 데이터로 복원된다. 복원된 공간 영역의 레지듀 데이터는 인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터와 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터로 복원된다. 복원된 공간 영역의 데이터는 디블로킹부(455) 및 SAO 수행부(460)를 거쳐 복원 영상으로 생성된다. 생성된 복원 영상은 복원 픽쳐 버퍼(410)에 저장된다. 복원 픽쳐 버퍼(410)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 변환부(425) 및 양자화부(430)에서 양자화된 변환 계수는 엔트로피 부호화부(435)를 거쳐 비트스트림(440)으로 출력될 수 있다.
일 실시예에 따른 영상 부호화부(400)가 비디오 부호화 장치(100)에 적용되기 위해서, 영상 부호화부(400)의 구성 요소들인 인터 예측부(415), 인트라 예측부(420), 변환부(425), 양자화부(430), 엔트로피 부호화부(435), 역양자화부(445), 역변환부(450), 디블로킹부(455) 및 SAO 수행부(460)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행할 수 있다.
특히, 인트라 예측부(420)및 인터예측부(415) 는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 모드 및 예측 모드를 결정하며, 변환부(425)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 쿼드 트리에 따른 변환 단위의 분할 여부를 결정할 수 있다.
도 11 은 다양한 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
엔트로피 복호화부(515)는 비트스트림(505)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(520) 및 역변환부(525)는 양자화된 변환 계수로부터 레지듀 데이터를 복원한다.
인트라 예측부(540)는 인트라 모드의 부호화 단위에 대해 예측 단위 별로 인트라 예측을 수행한다. 인터 예측부(535)는 현재 영상 중 인터 모드의 부호화 단위에 대해 예측 단위 별로 복원 픽쳐 버퍼(530)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(540) 또는 인터 예측부(535)를 거친 각 모드의 부호화 단위에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터가 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(545) 및 SAO 수행부(550)를 거쳐 복원 영상(560)으로 출력될 수 있다. 또한, 복원 픽쳐 버퍼(530)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
비디오 복호화 장치(200)의 픽쳐 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 엔트로피 복호화부(515) 이후의 단계별 작업들이 수행될 수 있다.
영상 복호화부(500)가 일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서, 영상 복호화부(500)의 구성 요소들인 엔트로피 복호화부(515), 역양자화부(520), 역변환부(525), 인트라 예측부(540), 인터 예측부(535), 디블로킹부(545) 및 SAO 수행부(550)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반하여 작업을 수행할 수 있다.
특히, 인트라 예측부(540)및 인터 예측부(535)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위마다 파티션 모드 및 예측 모드를 결정하며, 역변환부(525)는 부호화 단위마다 쿼드 트리구조에 따른 변환단위의 분할 여부를 결정할 수 있다.
도 10의 부호화 동작 및 도 11의 복호화 동작은 각각 단일 레이어에서의 비디오스트림 부호화 동작 및 복호화 동작을 상술한 것이다. 따라서, 도 3ba의 영상 부호화 장치(40)가 둘 이상의 레이어의 비디오스트림을 부호화한다면, 레이어별로 영상부호화부(400)를 포함할 수 있다. 유사하게, 도 3a의 복호화 장치(30)가 둘 이상의 레이어의 비디오스트림을 복호화한다면, 레이어별로 영상복호화부(500)를 포함할 수 있다.
도 12 는 다양한 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 심도 및 파티션 모드로 선택될 수 있다.
도 13 은 다양한 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 14 는 다양한 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 분할정보로서, 각각의 심도의 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 모드에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 모드에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 모드에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 15 는 다양한 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 모드(912), 2N_0xN_0 크기의 파티션 모드(914), N_0x2N_0 크기의 파티션 모드(916), N_0xN_0 크기의 파티션 모드(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 모드는 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 모드마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 모드(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 모드(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 모드의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 모드(942), 크기 2N_1xN_1의 파티션 모드(944), 크기 N_1x2N_1의 파티션 모드(946), 크기 N_1xN_1의 파티션 모드(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 모드(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 모드(992), 크기 2N_(d-1)xN_(d-1)의 파티션 모드(994), 크기 N_(d-1)x2N_(d-1)의 파티션 모드(996), 크기 N_(d-1)xN_(d-1)의 파티션 모드(998)을 포함할 수 있다.
파티션 모드 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 모드가 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 모드(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 심도가 심도 d-1로 결정되고, 파티션 모드는 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 심도를 결정하고, 해당 파티션 모드 및 예측 모드가 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 심도로 결정될 수 있다. 심도, 및 예측 단위의 파티션 모드 및 예측 모드는 분할정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 심도의 분할 정보만이 '0'으로 설정되고, 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 심도로 파악하고, 해당 심도에 대한 분할정보를 이용하여 복호화에 이용할 수 있다.
도 16, 17 및 18은 다양한 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 모드며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 모드, 파티션(1032)은 NxN의 파티션 모드다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 모드 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
Figure pct00001
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 심도이므로, 심도에 대해서 파티션 모드 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 모드에서 정의될 수 있으며, 스킵 모드는 파티션 모드 2Nx2N에서만 정의될 수 있다.
파티션 모드 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 모드 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 모드 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 모드 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 모드 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 모드가 대칭형 파티션 모드이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 모드이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 19 는 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 모드 정보는, 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 모드에 따라 변경될 수 있다.
예를 들어, 파티션 모드 정보가 대칭형 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 모드 정보가 비대칭형 파티션 모드 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 19 를 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 7 내지 19를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽쳐 및 픽쳐 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 도 1a 내지 19를 참조하여 전술된 영상 부호화 방법 및/또는 비디오 부호화 방법은, '비디오 부호화 방법'으로 통칭한다. 또한, 앞서 도 1a 내지 19를 참조하여 전술된 영상 복호화 방법 및/또는 비디오 복호화 방법은 '비디오 복호화 방법'으로 지칭한다
또한, 앞서 도 1a 내지 19를 참조하여 전술된 영상 부호화 장치(40), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '비디오 부호화 장치'로 통칭한다. 또한, 앞서 도 1a 내지 19를 참조하여 전술된 영상 복호화 장치(30), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '비디오 복호화 장치'로 통칭한다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 20 는 다양한 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 양자화 파라미터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 22를 참조하여 후술된다.
도 21은 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 일 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 20 및 21에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 일 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 22 는 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 24에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화 할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 23 및 24를 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 23은, 다양한 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화 된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화 된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 24 는 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 일 실시예에 따른 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 비디오 복호화 방법을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(12620)를 거쳐 디스플레이화면(12520)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(12520)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(12650)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(12580)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(12580)에서 재생될 수 있다.
휴대폰(12500) 또는 다른 형태의 통신단말기는 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 일 실시예에 따른 비디오 부호화 장치만을 포함하는 송신단말기이거나, 일 실시예에 따른 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
일 실시예에 따른 통신시스템은 도 24를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 25는 다양한 실시예에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 25의 일 실시예에 따른 디지털 방송 시스템은, 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 일 실시예에 따른 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화 할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 일 실시예에 따른 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 일 실시예에 따른 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화 된 비디오가 재생될 수 있다.
비디오 신호는, 일 실시예에 따른 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 일 실시예에 따른 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 26은 다양한 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
일 실시예에 따른 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14000), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14000)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14000)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14000)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14000)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14000)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14000)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 24을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14000)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14000)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14000)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14000)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14000)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 도 1a 내지 19를 참조하여 전술한 일 실시예에 따른 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 일 실시예에 따른 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 도 1a 내지 19를 참조하여 전술한 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
도 1a 내지 19를 참조하여 전술된 영상 부호화 방법 및 영상 복호화 방법, 영상 부호화 장치 및 영상 복호화 장치가 활용되는 다양한 실시예들이 도 20 내지 도 26에서 전술되었다. 하지만, 도 1a 내지 19를 참조하여 전술된 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 20 내지 도 26의 실시예들에 한정되지 않는다.
이제까지 개시된 다양한 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 명세서에서 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 명세서의 개시 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 명세서의 개시범위에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 복수개의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 방법에 있어서,
    각각의 부호화된 비디오 시퀀스(coded video sequences)에 포함된 레이어 중 상기 스케일러블 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수보다 1이 적은 수를 나타내는 제1 정보를 비트스트림으로부터 획득하는 단계;
    제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 단계; 및
    제2 레이어에 포함되는 제2 픽쳐가, 복호화 된 상기 제1 픽쳐를 참조하여 상기 제1 레이어 및 상기 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 단계를 포함하고,
    상기 제1 레이어는 상기 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고,
    상기 제2 레이어는 상기 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하고,
    상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 경우, 상기 제1 정보는 0보다 큰 값인 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  2. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 상기 비트스트림으로부터 획득하는 단계를 더 포함하고,
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 상기 제1 정보는 0보다 큰 값인 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  3. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제2 레이어가 참조하는 비디오 파라미터 세트에 대한 NAL 단위의 식별자의 값은 0보다 큰 값인 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  4. 제 1 항에 있어서, 상기 제1 픽쳐를 참조하는 단계는
    상기 복수개의 레이어가 서로 동일한 방식으로 참조하지 않는 경우, 상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지 판단하지 않고 상기 복수개의 레이어 중 상기 제2 레이어보다 하위의 레이어에 해당하는 적어도 하나의 하위 레이어를 참조하는 단계를 포함하며,
    상기 하위 레이어는 상기 제1 레이어를 포함하는 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  5. 제 4 항에 있어서, 상기 예측을 수행하는 단계는
    상기 제2 레이어가 상기 하위 레이어를 직접 참조하는 것으로 결정된 경우, 상기 제2 레이어가 상기 하위 레이어를 참조하는 방식에 대한 제3 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제3 정보에 기초하여 상기 제1 레이어 및 상기 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 단계를 포함하는 스케일러블 비디오 복호화 방법.
  6. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우 상기 제2 레이어가 상기 제1 레이어의 시퀀스 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제4 정보를 획득하는 단계를 더 포함하는 스케일러블 비디오 복호화 방법.
  7. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 상기 제2 레이어는 상기 제1 레이어의 픽쳐 파라미터 세트 상의 스케일링 리스트 데이터를 참조하지 않는 것을 나타내는 제5 정보를 획득하는 단계를 더 포함하는 스케일러블 비디오 복호화 방법.
  8. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 상기 비트스트림으로부터 획득하는 단계;
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 상기 복수개의 레이어 중 하나인 제3 레이어에 포함되는 제3 픽쳐가 참조하는 상기 제2 픽쳐의 시간적 식별자의 최대값에 대한 정보를 포함하는 제6 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제6 정보에 기초하여 상기 제3 픽쳐가 상기 제2 픽쳐 중 상기 최대값 이하의 시간적 식별자의 값을 가지는 픽쳐를 참조하는 단계를 더 포함하고,
    상기 제3 레이어는 상기 제2 레이어 보다 상위 레이어에 해당하는 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  9. 제 8 항에 있어서, 상기 제6 정보를 획득하는 단계는
    상기 제2 픽쳐가 참조하는 상기 제1 픽쳐의 시간적 식별자의 최대값을 미리 결정된 시간적 식별자의 값으로 결정하는 단계를 더 포함하는 스케일러블 비디오 복호화 방법.
  10. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 픽쳐를 참조하는 픽쳐들에 대한 복호화가 모두 끝난 후, 상기 제1 레이어의 하위 복호화 픽쳐 버퍼에 저장된 복원 픽쳐를 비워진 상태로 설정하는 단계를 더 포함하는 스케일러블 비디오 복호화 방법.
  11. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 상기 제2 픽쳐에 대한 픽쳐 파라미터 세트(picture parameter set) 및 시퀀스 파라미터 세트(sequence parameter set)를 결정함에 있어서 상기 제1 픽쳐에 대한 픽쳐 파라미터 세트 및 시퀀스 파라미터 세트를 참조하는 제한을 적용할지를 나타내는 제7 정보를 상기 비트스트림으로부터 획득하는 단계를 더 포함하고,
    상기 제7 정보는 상기 제한을 항상 적용하는 것은 아닌 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  12. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 정보인 제2 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 상기 스케일러블 비디오에 대한 비디오 파라미터 세트(video parameter set)를 참조하는 부호화된 비디오 시퀀스(Coded Video Sequence)에서 허용되는 레이어 식별자의 최대값을 나타내는 제8 정보를 상기 비트스트림으로부터 획득하는 단계를 더 포함하고,
    상기 최대값은 1보다 큰 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  13. 제 1 항에 있어서, 상기 스케일러블 비디오 복호화 방법은
    상기 제1 레이어 및 상기 제2 레이어가 서로 동일한 복호화 방식을 이용하는지에 대한 제2 정보를 상기 비트스트림으로부터 획득하는 단계; 및
    상기 제2 정보가 상기 제1 레이어 및 상기 제2 레이어가 서로 다른 복호화 방식을 이용하는 것을 나타내는 경우, 상기 스케일러블 비디오의 엑세스 단위에 포함된 모든 비디오 부호화 레이어의 데이터 단위가 동일한 레이어 식별자를 가진다는 제한 또는 상기 스케일러블 비디오의 엑세스 단위의 비디오 부호화 레이어의 데이터 단위가 IRAP(Intra Random Access Point) 픽쳐를 포함한다는 제한이 적용되는지에 대한 제9 정보를 상기 비트스트림으로부터 획득하는 단계를 더 포함하고,
    상기 제9 정보는 상기 제한이 항상 적용되는 것은 아님을 나타내는 것을 특징으로 하는 스케일러블 비디오 복호화 방법.
  14. 복수의 레이어를 포함하는 스케일러블 비디오를 복호화 하는 장치에 있어서,
    각각의 부호화된 비디오 시퀀스(coded video sequences)에서 상기 스케일러블 비디오에 대한 비디오 파라미터 세트의 참조가 허용되는 레이어의 최대 개수보다 1이 적은 수를 나타내는 제1 정보를 상기 비트스트림으로부터 획득하는 제1 정보 획득부;
    제1 레이어에 포함되는 제1 픽쳐를 복호화 하는 제1 픽쳐 복호화부; 및
    제2 레이어에 포함되는 제2 픽쳐에서 상기 제1 픽쳐를 참조하여 상기 제1 레이어 및 상기 제2 레이어 간에 인터레이어샘플예측 및 인터레이어움직임예측 중 적어도 하나를 수행하는 제2 픽쳐 복호화부를 포함하고,
    상기 제1 레이어는 상기 복수개의 레이어 중 가장 하위 레이어에 해당하는 기본 레이어인 것을 특징으로 하고,
    상기 제2 레이어는 상기 제1 레이어와 다른 복호화 방식을 이용하는 레이어인 것을 특징으로 하는 스케일러블 비디오 복호화 장치.
  15. 제 1 항 및 제 13 항 중 어느 한 항의 스케일러블 비디오 복호화 방법을 구현하기 위한 프로그램이 저장된 컴퓨터 판독 가능 기록매체.
KR1020167035050A 2014-06-20 2015-06-18 스케일러블 비디오 데이터의 부호화 또는 복호화 하는 방법 및 장치 KR20170020780A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462014838P 2014-06-20 2014-06-20
US62/014,838 2014-06-20
PCT/KR2015/006161 WO2015194869A1 (ko) 2014-06-20 2015-06-18 스케일러블 비디오 데이터의 부호화 또는 복호화 하는 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20170020780A true KR20170020780A (ko) 2017-02-24

Family

ID=54935784

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167035050A KR20170020780A (ko) 2014-06-20 2015-06-18 스케일러블 비디오 데이터의 부호화 또는 복호화 하는 방법 및 장치

Country Status (3)

Country Link
US (1) US20170201766A1 (ko)
KR (1) KR20170020780A (ko)
WO (1) WO2015194869A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127850A (ko) * 2017-03-20 2019-11-13 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 고급 비디오 데이터 스트림 추출 및 다중 해상도 비디오 송신
WO2021246840A1 (ko) * 2020-06-06 2021-12-09 엘지전자 주식회사 스케일러빌리티를 위한 서브-비트스트림 추출 기반 영상 코딩 장치 및 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021061489A1 (en) * 2019-09-24 2021-04-01 Futurewei Technologies, Inc. Signaling of dpb parameters for multi-layer video bitstreams
US11825107B2 (en) * 2019-12-27 2023-11-21 Tencent America LLC Method for parameter set reference in coded video stream
US20230224502A1 (en) * 2020-06-09 2023-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Providing semantic information with encoded image data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232775A (ja) * 2012-04-27 2013-11-14 Sharp Corp 動画像復号装置、および動画像符号化装置
US20140098851A1 (en) * 2012-10-04 2014-04-10 Qualcomm Incorporated Indication of video properties
WO2014058210A1 (ko) * 2012-10-08 2014-04-17 삼성전자 주식회사 다시점 비디오의 인터 레이어 예측 구조에 따른 비디오 스트림 부호화 방법 및 그 장치, 다시점 비디오의 인터 레이어 예측 구조에 따른 비디오 스트림 복호화 방법 및 그 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127850A (ko) * 2017-03-20 2019-11-13 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 고급 비디오 데이터 스트림 추출 및 다중 해상도 비디오 송신
KR20210131451A (ko) * 2017-03-20 2021-11-02 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 고급 비디오 데이터 스트림 추출 및 다중 해상도 비디오 송신
KR20220095246A (ko) * 2017-03-20 2022-07-06 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 고급 비디오 데이터 스트림 추출 및 다중 해상도 비디오 송신
US11386660B2 (en) 2017-03-20 2022-07-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Advanced video data stream extraction and multi-resolution video transmission
US11721103B2 (en) 2017-03-20 2023-08-08 Ge Video Compression, Llc Advanced video data stream extraction and multi-resolution video transmission
WO2021246840A1 (ko) * 2020-06-06 2021-12-09 엘지전자 주식회사 스케일러빌리티를 위한 서브-비트스트림 추출 기반 영상 코딩 장치 및 방법

Also Published As

Publication number Publication date
US20170201766A1 (en) 2017-07-13
WO2015194869A1 (ko) 2015-12-23

Similar Documents

Publication Publication Date Title
KR102290421B1 (ko) 랜덤 엑세스를 위한 멀티 레이어 비디오 부호화 방법 및 그 장치, 랜덤 엑세스를 위한 멀티 레이어 비디오 복호화 방법 및 그 장치
KR102281282B1 (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
KR102270787B1 (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR102246546B1 (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
KR20160132859A (ko) 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치
KR20160132893A (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
KR102091139B1 (ko) 다시점 비디오의 인터 레이어 예측 구조에 따른 비디오 스트림 부호화 방법 및 그 장치, 다시점 비디오의 인터 레이어 예측 구조에 따른 비디오 스트림 복호화 방법 및 그 장치
KR102216128B1 (ko) 움직임 벡터 결정 방법 및 그 장치
KR20150081236A (ko) 효율적인 파라미터 전달을 사용하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20140093641A (ko) 디코더 설정을 위한 비디오 부호화 방법 및 그 장치, 디코더 설정에 기초한 비디오 복호화 방법 및 그 장치
KR20150043220A (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
KR20170023000A (ko) 인터 레이어 비디오 부복호화를 위한 깊이 영상의 예측 모드 전송 방법 및 장치
KR20140122202A (ko) 계층 식별자 확장에 따른 비디오 스트림 부호화 방법 및 그 장치, 계층 식별자 확장에 따른 따른 비디오 스트림 복호화 방법 및 그 장치
KR102212211B1 (ko) 멀티 레이어 비디오의 복호화 및 부호화를 위한 버퍼 관리 방법 및 장치
KR20150043222A (ko) 멀티 레이어 비디오 부호화 방법 및 그 장치, 멀티 레이어 비디오 복호화 방법 및 그 장치
KR20150105264A (ko) 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
KR20170100564A (ko) 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
KR102248848B1 (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
KR20130119379A (ko) 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
KR20150043218A (ko) 부가 영상을 부호화하기 위한 스케일러블 비디오 부호화 방법 및 장치, 부가 영상을 복호화하기 위한 스케일러블 비디오 복호화 방법 및 장치
KR20150043226A (ko) 깊이 인트라 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR20150073132A (ko) 휘도 보상을 이용한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20140123914A (ko) 랜덤 엑세스를 위한 멀티 레이어 비디오 부호화 방법 및 그 장치, 랜덤 엑세스를 위한 멀티 레이어 비디오 복호화 방법 및 그 장치
KR20170019361A (ko) 깊이 블록을 이용하는 멀티 레이어 비디오 부호화 방법 및 멀티 레이어 비디오 복호화 방법
KR20150076135A (ko) 뎁스 부호화 방법 및 그 장치, 복호화 방법 및 그 장치