KR20170013939A - Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition - Google Patents

Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition Download PDF

Info

Publication number
KR20170013939A
KR20170013939A KR1020167036775A KR20167036775A KR20170013939A KR 20170013939 A KR20170013939 A KR 20170013939A KR 1020167036775 A KR1020167036775 A KR 1020167036775A KR 20167036775 A KR20167036775 A KR 20167036775A KR 20170013939 A KR20170013939 A KR 20170013939A
Authority
KR
South Korea
Prior art keywords
composition
group
polymer
semiconductor device
sacrificial material
Prior art date
Application number
KR1020167036775A
Other languages
Korean (ko)
Inventor
시게마사 나카스기
다카후미 기누타
고 노야
Original Assignee
에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. filed Critical 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘.
Publication of KR20170013939A publication Critical patent/KR20170013939A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/04Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

[과제]
원하는 온도에서 완전히 분해 기화되는 희생 재료로 이루어진 희생 영역을 형성시킬 수 있는 공극 형성용 조성물과 그것을 사용한 반도체 장치의 제조방법의 제공.
[해결 수단]
하기 화학식 (1):

Figure pct00012

또는 하기 화학식 (2):
Figure pct00013

[화학식 (1) 및 (2)에서,
Ar1, Ar2, 및 Ar2'는 각각 독립적으로, 비치환 또는 치환된 방향족기이고,
L1 및 L2는 각각 독립적으로, 산소, 황, 알킬, 설폰, 아미드, 케톤 또는 하기 화학식 (3):
Figure pct00014

{화학식 (3)에서,
Ar3은 방향족기이고,
L3은 질소, 붕소, 및 인으로 이루어진 그룹으로부터 선택되는 3가 원자이다}로 이루어진 그룹으로부터 선택된다]
으로 표시되는 적어도 1종의 반복 단위를 5개 이상 포함하는 중합체와,
용제를 포함하는 것을 특징으로 하는, 공극 형성용 조성물.[assignment]
A composition for void formation capable of forming a sacrificial region made of a sacrificial material which is completely decomposed at a desired temperature and a method for manufacturing a semiconductor device using the same.
[Solution]
(1): < EMI ID =
Figure pct00012

(2): < EMI ID =
Figure pct00013

[In the formulas (1) and (2)
Ar 1 , Ar 2 , and Ar 2 ' are each independently an unsubstituted or substituted aromatic group,
L 1 and L 2 are each independently selected from the group consisting of oxygen, sulfur, alkyl, sulfone, amide, ketone,
Figure pct00014

{In the formula (3)
Ar 3 is an aromatic group,
And L < 3 > is a trivalent atom selected from the group consisting of nitrogen, boron, and phosphorus.
A polymer comprising at least 5 repeating units represented by the following formula
A composition for forming voids, which comprises a solvent.

Description

공극 형성용 조성물, 그 조성물을 사용하여 형성된 공극을 구비한 반도체 장치, 및 그 조성물을 사용한 반도체 장치의 제조방법{VOID FORMING COMPOSITION, SEMICONDUCTOR DEVICE PROVIDED WITH VOIDS FORMED USING COMPOSITION, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING COMPOSITION}TECHNICAL FIELD [0001] The present invention relates to a composition for forming a cavity, a semiconductor device having a cavity formed by using the composition, and a method for manufacturing a semiconductor device using the composition. BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] }

본 발명은, 반도체 소자 등에서의 금속 배선간에 용이하게 공극(空隙) 구조를 형성시키는 것이 가능한 공극 형성용 조성물, 및 그 조성물을 사용한 금속 배선간의 공극 형성 방법에 관한 것이다.The present invention relates to a composition for forming voids that can easily form a void structure between metal wirings in a semiconductor device or the like, and a method for forming voids between metal wirings using the composition.

종래, 반도체 소자 등에서의 층간 절연막으로서, CVD법 등의 진공 프로세스로 형성된 실리카(SiO2) 막이 많이 사용되고 있다. 또한, 주로 평탄화를 목적으로 하여 SOG(Spin on Glass)막이라고 불리는 테트라알콕시실란의 가수 분해 생성물을 주성분으로 하는 도포형의 절연막도 사용되고 있다. 최근, 반도체 소자 등의 고집적화에 따라, 배선 상호간의 기생 용량을 저감하여 배선 지연을 개선하는 것을 목적으로, 저유전율의 층간 절연막에 대한 요구가 높아지고 있다. 배선 상호간의 기생 용량을 저감시키는 방법으로서, 예를 들어 특허문헌 1, 특허문헌 2 및 특허문헌 3에 기재되어 있는 것과 같은, 배선간에 공극이 형성된 반도체 장치가 제안되어 있다. 이들 문헌에 기재된 방법에서는, 우선 금속 배선 사이를 유기 레지스트나 실리카 화합물 등의 충전물로 채운 후, 에칭 또는 애싱에 의해 그 충전물을 제거하여 금속 배선간에 공극을 형성시키고 있다. 하지만, 이러한 방법은 조작이 번잡하여 개선의 여지가 있었다. 또한, 배선간에 공극을 형성시키기 위해 사용하는 충전물이, 예를 들어 특허문헌 4, 특허문헌 5 및 특허문헌 6에 제안되어 있다. 하지만, 이들 충전물은 400℃ 부근에서의 열 안정성이 충분하지 않고, 배선 상호간의 기생 용량의 충분한 저감이 불가능하기 때문에, 개선의 여지가 있었다.Conventionally, a silica (SiO 2 ) film formed by a vacuum process such as a CVD method is widely used as an interlayer insulating film in a semiconductor device or the like. In addition, a coating type insulating film mainly composed of a hydrolysis product of tetraalkoxysilane called SOG (Spin on Glass) film is mainly used for planarization. 2. Description of the Related Art In recent years, there has been an increasing demand for an interlayer insulating film with a low dielectric constant for the purpose of reducing parasitic capacitance between wirings and improving interconnection delay with high integration of semiconductor devices and the like. As a method for reducing the parasitic capacitance between the wirings, there has been proposed a semiconductor device in which a gap is formed between wirings as described in, for example, Patent Document 1, Patent Document 2 and Patent Document 3. In the methods described in these documents, the spaces between metal wires are first filled with a filler such as an organic resist or a silica compound, and then the filler is removed by etching or ashing to form voids between the metal wires. However, this method has a problem in operation because of complicated operation. Further, a filling material used for forming a gap between wirings is proposed in, for example, Patent Document 4, Patent Document 5, and Patent Document 6. However, these packings have insufficient thermal stability at around 400 DEG C, and it is impossible to sufficiently reduce the parasitic capacitance between the wirings, and thus there is room for improvement.

일본 공개특허공보 특개평9-172068호Japanese Patent Application Laid-Open No. 9-172068 일본 공개특허공보 특개평8-83839호Japanese Patent Application Laid-Open No. 8-83839 일본 공개특허공보 특개2001-85519호Japanese Patent Application Laid-Open No. 2001-85519 일본 공개특허공보 특개2003-342375호Japanese Patent Application Laid-Open No. 2003-342375 일본 공개특허공보 특개2004-63749호Japanese Patent Application Laid-Open No. 2004-63749 일본 공개특허공보 특개2009-275228호Japanese Patent Application Laid-Open No. 2009-275228

본 발명은 상기 사정을 감안하여 이루어진 것으로서, 특정 내열 온도와 특정 열분해 온도를 갖는 공극 형성용 조성물과, 그것을 사용한 반도체 장치의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a composition for forming voids having a specific heat resistance temperature and a specific thermal decomposition temperature, and a method for producing a semiconductor device using the same.

본 발명에 의한 공극 형성용 조성물은,The composition for forming voids according to the present invention,

하기 화학식 (1):(1): < EMI ID =

Figure pct00001
Figure pct00001

또는 하기 화학식 (2):(2): < EMI ID =

Figure pct00002
Figure pct00002

[화학식 (1) 및 (2)에서,[In the formulas (1) and (2)

Ar1, Ar2, 및 Ar2'는 각각 독립적으로, 1개 이상의 벤젠환을 포함하는 방향족기이고, 상기 방향족기는 알킬, 아릴, 알콕시, 니트로, 아미드, 디알킬아미노, 설폰아미드, 이미드, 카르복시, 설폰산 에스테르, 알킬아미노, 및 아릴아미노로 이루어진 그룹으로부터 선택되는 치환기로 치환되어 있어도 좋고,Ar 1 , Ar 2 , and Ar 2 ' are each independently an aromatic group containing at least one benzene ring, and the aromatic group is selected from the group consisting of alkyl, aryl, alkoxy, nitro, amide, dialkylamino, sulfonamide, Carboxy, sulfonic acid ester, alkylamino, and arylamino, and the substituents may be the same or different,

L1 및 L2는 각각 독립적으로, 산소, 황, 알킬렌, 설폰, 이미드, 카르보닐 또는 하기 화학식 (3):L 1 and L 2 are each independently selected from the group consisting of oxygen, sulfur, alkylene, sulfone, imide, carbonyl,

Figure pct00003
Figure pct00003

{화학식 (3)에서,{In the formula (3)

Ar3은 1개 이상의 벤젠환을 포함하는 방향족기이고, 상기 방향족기는 알킬, 아릴, 알콕시, 니트로, 이미드, 디알킬아미노, 설폰아미드, 이미드, 카르복시, 설폰산 에스테르, 알킬아미노 및 아릴아미노로 이루어진 그룹으로부터 선택되는 치환기로 치환되어 있어도 좋고,Ar 3 is an aromatic group containing at least one benzene ring and the aromatic group is selected from the group consisting of alkyl, aryl, alkoxy, nitro, imide, dialkylamino, sulfonamide, imide, carboxy, sulfonic acid ester, alkylamino and arylamino Or a substituent selected from the group consisting of

L3은 질소, 붕소, 및 인으로 이루어진 그룹으로부터 선택되는 3가 원자이다}로 이루어진 그룹으로부터 선택된다]And L < 3 > is a trivalent atom selected from the group consisting of nitrogen, boron, and phosphorus.

으로 표시되는 적어도 1종의 반복 단위를 5개 이상 포함하는 중합체와,A polymer comprising at least 5 repeating units represented by the following formula

용제를 포함하는 것을 특징으로 하는 것이다.And a solvent.

또한, 본 발명에 의한 배선간의 공극 형성 방법은, 반도체 기판 위에 형성된 다공질인 절연막의 표면을 상기 공극 형성용 조성물로 피복하는 공정과, 상기 공극 형성용 조성물을 반도체 기판 위에 매립하는 공정과, 상기 공극 형성용 조성물을 제거하는 공정에 의해 금속 배선간에 공극을 형성하는 것을 특징으로 하는 것이다.A method for forming voids between wirings according to the present invention includes the steps of covering a surface of a porous insulating film formed on a semiconductor substrate with the void forming composition; a step of filling the void forming composition on a semiconductor substrate; And forming voids between the metal wirings by a step of removing the forming composition.

본 발명에 의하면, 다공질 재료에, 특정 내열 온도와 특정 열분해 온도를 갖는 중합체를 포함하는 공극 형성용 조성물을 적용함으로써, 다층 배선간에 간편하게 공극을 형성할 수 있고, 원하는 특성을 갖는 반도체 장치를 용이하게 제조할 수 있다.According to the present invention, by applying a composition for forming voids containing a polymer having a specific heat-resistant temperature and a specific thermal decomposition temperature to a porous material, voids can be easily formed between multilayer wirings and a semiconductor device having desired characteristics can be easily Can be manufactured.

[도 1] 도 1 (A) 내지 (D)는, 본 발명의 일 실시형태에 따른 반도체 장치의 제조방법의 일부분을 나타내는 모식 단면도이다.1 is a schematic cross-sectional view showing a part of a method of manufacturing a semiconductor device according to an embodiment of the present invention;

이하, 본 발명의 실시형태에 대하여 상세하게 설명하면 이하와 같다.Hereinafter, the embodiments of the present invention will be described in detail.

[공극 형성용 조성물][Composition for forming voids]

본 발명은 공극 형성용 조성물에 관한 것이다. 여기서, 공극 형성용 조성물이란, 반도체 장치의 제조 과정 등에 있어서, 기판의 금속 배선간 등에 공극을 형성시키기 위한 조성물이다. 보다 구체적으로는, 기판 표면의 공극이나 공공(空孔) 등을 충전할 수 있고, 그 후 일정한 온도 이하에서는 안정적이고, 일정한 온도를 넘으면 기화 등에 의해 용이하게 제거할 수 있다는 성질을 갖는 것이다.The present invention relates to a composition for forming voids. Here, the composition for forming voids is a composition for forming voids, for example, between metal wires of a substrate in a process of manufacturing a semiconductor device or the like. More specifically, it has a property that it can be filled with voids and vacancies on the surface of the substrate, is stable at a certain temperature or lower, and can be easily removed by vaporization or the like when the temperature exceeds a certain temperature.

이 공극 형성용 조성물은 특정 중합체와 용제를 포함한다. 이 특정 중합체는,The composition for forming voids includes a specific polymer and a solvent. This particular polymer,

하기 화학식 (1):(1): < EMI ID =

Figure pct00004
Figure pct00004

또는or

하기 화학식 (2):(2): < EMI ID =

Figure pct00005
Figure pct00005

[화학식 (1) 및 (2)에서,[In the formulas (1) and (2)

Ar1, Ar2, 및 Ar2'는 각각 독립적으로, 1개 이상의 벤젠환을 포함하는 방향족기이고, 상기 방향족기는 알킬, 아릴, 알콕시, 니트로, 아미드, 디알킬아미노, 설폰아미드, 카르복시, 설폰산 에스테르, 알킬아미노 및 아릴아미노로 이루어진 그룹으로부터 선택되는 치환기로 치환되어 있어도 좋고,Ar 1 , Ar 2 , and Ar 2 ' are each independently an aromatic group containing one or more benzene rings, and the aromatic group is selected from the group consisting of alkyl, aryl, alkoxy, nitro, amide, dialkylamino, sulfonamide, A sulfonic acid group, a sulfonic acid group, a sulfonic acid group, a sulfonic acid group, a sulfonic acid group, a sulfonic acid group, a sulfonic acid group,

L1 및 L2는 각각 독립적으로, 산소, 황, 알킬렌, 설폰, 이미드, 카르보닐 또는 하기 화학식 (3):L 1 and L 2 are each independently selected from the group consisting of oxygen, sulfur, alkylene, sulfone, imide, carbonyl,

Figure pct00006
Figure pct00006

{화학식 (3)에서,{In the formula (3)

Ar3은 1개 이상의 벤젠환을 포함하는 방향족기이고, 상기 방향족기는 알킬, 아릴, 알콕시, 니트로, 아미드, 디알킬아미노, 설폰아미드, 이미드, 카르복시, 설폰산 에스테르, 알킬아미노 및 아릴아미노로 이루어진 그룹으로부터 선택되는 치환기로 치환되어 있어도 좋고,Ar 3 is an aromatic group containing at least one benzene ring and the aromatic group is selected from the group consisting of alkyl, aryl, alkoxy, nitro, amide, dialkylamino, sulfonamide, imide, carboxy, sulfonic acid ester, alkylamino and arylamino Or a substituent selected from the group consisting of < RTI ID = 0.0 >

L3은 질소, 붕소, 및 인으로 이루어진 그룹으로부터 선택되는 3가 원자이다}으로 이루어진 그룹으로부터 선택된다]And L < 3 > is a trivalent atom selected from the group consisting of nitrogen, boron, and phosphorus.

으로 표시되는 적어도 1종의 반복 단위를 포함하는 것이다. 이 중합체는, 상기 반복 단위를 5개 이상 포함하고 있다. 또한, 반복 단위를 2종류 이상 포함하는 경우에는, 반복 단위를 랜덤으로 포함하는 랜덤 중합체라도, 각 반복 단위의 블록을 포함하는 블록 공중합체라도 좋다. 또한, 이 중합체는, 본 발명의 효과를 해치지 않는 범위에서 상기한 반복 단위와는 다른 반복 단위를 포함하고 있어도 좋다.And at least one repeating unit represented by the formula The polymer contains at least 5 repeating units. When two or more kinds of repeating units are contained, a random polymer containing random repeating units or a block copolymer containing blocks of each repeating unit may be used. Further, the polymer may contain a repeating unit different from the above-mentioned repeating unit within a range not to impair the effect of the present invention.

화학식 (1) 및 화학식 (2)에서, Ar1, Ar2, 및 Ar2'는 1개 이상의 벤젠환을 포함하는 방향족기이다. 이들 방향족기는 바람직하게는 벤젠환을 1개만 포함하는 것이지만, 나프탈렌환, 안트라센환 등의 축합 방향환을 포함하고 있어도 좋다. 또한, Ar1, Ar2, 및 Ar2'는 2가기이지만, 그 결합손의 위치는 특별히 한정되지 않고, o-위치, m-위치 또는 p-위치의 어느 것이라도 좋다. 하지만, 합성의 용이성이나 내열성의 관점에서, p-위치에 2개의 결합손을 갖는 것이 바람직하다. 또한 Ar1, Ar2, 및 Ar2'는 치환기를 갖고 있어도 좋다. 치환기로서는 알킬, 아릴, 알콕시, 니트로, 아미드, 디알킬아미노, 설폰아미드, 카르복시, 설폰산 에스테르, 알킬아미노, 및 아릴아미노로 이루어진 그룹으로부터 선택되지만, 이 치환기가 과도하게 부피가 크면, 중합체 주쇄에 의한 특성이 손상되는 경우가 있으므로, 치환기에 포함되는 탄소수가 10 이하인 것이 바람직하다.In the formulas (1) and (2), Ar 1 , Ar 2 , and Ar 2 ' are aromatic groups containing at least one benzene ring. These aromatic groups preferably contain only one benzene ring, but may contain condensed aromatic rings such as a naphthalene ring and an anthracene ring. Ar 1 , Ar 2 , and Ar 2 ' are 2-positions, but the positions of the bonding hands are not particularly limited and may be any of o-position, m-position, and p-position. However, from the viewpoint of ease of synthesis and heat resistance, it is preferable to have two bonding hands at the p-position. Ar 1 , Ar 2 , and Ar 2 ' may have a substituent. The substituent is selected from the group consisting of alkyl, aryl, alkoxy, nitro, amide, dialkylamino, sulfonamide, carboxy, sulfonic acid ester, alkylamino, and arylamino; however, if the substituent is excessively bulky, , The number of carbon atoms contained in the substituent is preferably 10 or less.

또한, L1 및 L2는 방향환을 결합하는 연결기이다. 이 연결기는, 산소, 황, 알킬렌, 설폰, 이미드, 및 카르보닐로부터 선택된다. 연결기가 알킬렌인 경우에는, 그 탄소수가 1 내지 3인, 비교적 짧은 알킬렌기가 바람직하다. 또한, 화학식 (3)으로 표시되는 연결기라도 좋다. 화학식 (3)에서 Ar3은 Ar1 등과 동일한 구조의 방향족기(단, 1가기)로부터 선택된다. 또한, Ar3이 치환기로서 방향족기를 추가로 갖는 경우에는, 중합체는 이른바 분기쇄 구조를 가지게 된다. 본 발명에서는, 본 발명의 효과를 해치지 않는 범위에서 분기쇄 구조를 갖고 있어도 좋지만, 분기가 많은 중합체를 사용하면 내열성이 저하되는 경향이 있다. 따라서, 본 발명에 사용되는 중합체는 직쇄상 구조를 갖는 것이 바람직하다.Further, L 1 and L 2 are linking groups for bonding aromatic rings. The linking group is selected from oxygen, sulfur, alkylene, sulfone, imide, and carbonyl. When the connecting group is alkylene, a relatively short alkylene group having 1 to 3 carbon atoms is preferable. The linking group represented by the formula (3) may also be used. In the formula (3), Ar 3 is selected from aromatic groups having the same structure as that of Ar 1 and the like (however, monovalent). When Ar 3 further has an aromatic group as a substituent, the polymer has a so-called branched chain structure. The present invention may have a branching chain structure within the range that does not impair the effect of the present invention. However, when a polymer having a large number of branches is used, the heat resistance tends to decrease. Therefore, the polymer used in the present invention preferably has a linear structure.

또한 L3은 질소, 붕소 또는 인 중 어느 하나로부터 선택되고, 특별히 한정되지 않는다. 이들 중, 중합체의 입수 또는 합성의 용이함의 관점에서 질소 또는 붕소인 것이 바람직하다.L 3 is selected from nitrogen, boron or phosphorus, and is not particularly limited. Of these, nitrogen or boron is preferred from the viewpoint of availability of the polymer or ease of synthesis.

종래, 공극 형성용 조성물에는, 방향환을 포함하는 중합체가 사용되고 있었는데, 그것들은 대부분의 경우 폴리스티렌과 같이 측쇄에 방향족환을 갖는 것이었다. 이에 대하여, 본 발명자들의 검토에 의하면, 방향환을 주쇄 중에 포함하고, 방향환끼리가 상기한 L1, 또는 L2로 표시되는 연결기에 의해 결합되어 있는 경우, 열 안정성이 높고, 공극 형성용 조성물에 사용하면 우수한 특성을 발휘하는 것이 발견되었다.Conventionally, in the composition for forming voids, polymers containing aromatic rings have been used, and most of them have aromatic rings in the side chains such as polystyrene. On the other hand, according to the examination by the inventors of the present invention, when the aromatic ring is contained in the main chain and the aromatic rings are bonded to each other by the linking group represented by L 1 or L 2 described above, It has been found that it exhibits excellent properties.

본 발명에 사용할 수 있는 중합체의 분자량은, 목적에 따라 임의로 조정할 수 있다. 일반적으로는, 질량 평균 분자량이 1,000 내지 1,000,000인 것이 바람직하고, 3,000 내지 500,000인 것이 보다 바람직하다. 본 발명에 있어서, 질량 평균 분자량이란, 폴리스티렌 환산의 질량 평균 분자량을 말한다. 또한, 조성물을 도포하는 경우의 침투성이나, 형성되는 피막의 균일성 등의 관점에서 중합체의 분자량 분포는 작은 것이 바람직하다.The molecular weight of the polymer usable in the present invention can be arbitrarily adjusted depending on the purpose. Generally, the weight average molecular weight is preferably 1,000 to 1,000,000, more preferably 3,000 to 500,000. In the present invention, the mass average molecular weight refers to the mass average molecular weight in terms of polystyrene. From the viewpoints of permeability when applying the composition and uniformity of the formed film, the molecular weight distribution of the polymer is preferably small.

본 발명에 의한 공극 형성용 조성물은 용매를 포함한다. 이 용매는, 상기 중합체를 용해할 수 있는 것이 필요하다.The composition for forming voids according to the present invention comprises a solvent. This solvent needs to be capable of dissolving the polymer.

이러한 용매는 예를 들어, 물, 에탄올, 이소프로판올(IPA), 락트산 에틸(EL), 프로필렌 글리콜 모노메틸 에테르 아세테이트(PGMEA), 프로필렌 글리콜 모노메틸 에테르(PGME), 아세톤, 메틸 이소부틸 케톤(MIBK), 메틸 이소부틸 카르비놀(MIBC), 메틸 아밀 케톤(MAK), 테트라하이드로푸란(THF), γ-부티롤락톤(GBL), N-메틸 피 롤리돈(NMP), 디메틸아세트아미드(DMAC), 사이클로헥사논, 클로로벤젠, 클로로포름, 아세토니트릴 및 톨루엔 등을 들 수 있다. 이들 중, 용해성의 관점에서, THF, GBL, NMP, DMAC, 사이클로헥사논, 클로로벤젠, 클로로포름, 또는 톨루엔이 바람직하고, 도포성의 관점에서, THF, GBL, 사이클로헥사논, 클로로벤젠 또는 톨루엔이 바람직하다. 또한, 필요에 따라 이들 용매를 2종류 이상 조합하여 사용해도 좋다. 예를 들어, 경시(經時) 안정성의 관점에서는, THF, GBL, NMP, DMAC, 사이클로헥사논과 클로로벤젠의 혼합 용매가 바람직하다.Such solvents include, for example, water, ethanol, isopropanol (IPA), ethyl lactate (EL), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), acetone, methyl isobutyl ketone (MIBK) , Methyl isobutyl carbinol (MIBC), methyl amyl ketone (MAK), tetrahydrofuran (THF),? -Butyrolactone (GBL), N-methylpyrrolidone (NMP), dimethylacetamide Cyclohexanone, chlorobenzene, chloroform, acetonitrile, and toluene. Of these, THF, GBL, NMP, DMAC, cyclohexanone, chlorobenzene, chloroform or toluene are preferable from the viewpoint of solubility, and THF, GBL, cyclohexanone, chlorobenzene or toluene is preferable Do. If necessary, two or more of these solvents may be used in combination. For example, from the viewpoint of stability over time, a mixed solvent of THF, GBL, NMP, DMAC, cyclohexanone and chlorobenzene is preferable.

본 발명에 의한 공극 형성용 조성물은, 상기 중합체와 상기 용매를 필수로 하는 것이다. 여기서, 조성물에 포함되는 중합체의 함유량은, 대상이 되는 공극의 사이즈, 조성물의 점도 등에 따라서 적절히 조정되지만, 조성물의 총 질량을 기준으로 하여, 일반적으로 0.2 내지 20질량%, 바람직하게는 0.3 내지 10질량%, 보다 바람직하게는 0.5 내지 5질량%이다.The composition for forming voids according to the present invention essentially comprises the polymer and the solvent. Here, the content of the polymer contained in the composition is appropriately adjusted in accordance with the size of the void to be a target and the viscosity of the composition, but is generally from 0.2 to 20% by mass, preferably from 0.3 to 10% by mass, Mass%, more preferably 0.5 to 5 mass%.

본 발명에 의한 공극 형성용 조성물은, 필요에 따라 기타 성분을 포함할 수도 있다. 구체적으로는, 계면 활성제, 평활제, 및 살균제 등을 들 수 있다. 이들 중, 조성물의 도포성의 관점에서 조성물은 계면 활성제를 포함하는 것이 바람직하다. 계면 활성제는, 종래 알려져 있는 임의의 것을 사용할 수 있지만, 특히 알킬렌 글리콜쇄 함유 계면 활성제가 바람직하다. 이들 첨가제는 원칙적으로 미세 패턴 형성용 조성물의 성능에는 영향을 주지 않는 것이며, 통상 조성물의 전 질량을 기준으로 하여 일반적으로 1% 이하, 바람직하게는 0.1% 이하, 보다 바람직하게는 0.05% 이하의 함유량이 된다.The composition for forming voids according to the present invention may contain other components as required. Specific examples thereof include surfactants, smoothing agents, and bactericides. Among them, the composition preferably contains a surfactant in view of the applicability of the composition. As the surfactant, any of conventionally known surfactants can be used, but an alkylene glycol chain-containing surfactant is particularly preferable. These additives in principle do not affect the performance of the composition for forming a fine pattern and are generally generally not more than 1%, preferably not more than 0.1%, more preferably not more than 0.05%, based on the total mass of the composition .

또한, 본 발명에 의한 공극 형성용 조성물은, 폭이 좁은 트렌치나 작은 공공 내에 침투할 필요가 있기 때문에, 그 점도가 중요한 의미를 갖는 경우가 있다. 조성물의 점도는, 사용하는 목적 등에 따라 적절히 조정된다. 하지만, 공극 형성용 조성물을 공공 내에 침투시키는 경우에는, 도포 후의 조성물을 고온 조건 하에 둠으로써 점도를 저하시켜서 공공 내에 침투시킬 수도 있다. 이러한 경우에는, 상온에서 비교적 점도가 높은 조성물이라도 공공 내에 충분히 침투시킬 수 있다.Further, since the composition for forming voids according to the present invention needs to penetrate into a narrow trench or a small pore, the viscosity may have a significant meaning in some cases. The viscosity of the composition is appropriately adjusted depending on the intended use and the like. However, when the void-forming composition is permeated into the void, the composition after the application may be placed under high-temperature conditions to lower the viscosity and permeate into the void. In such a case, even a composition having a relatively high viscosity at room temperature can sufficiently penetrate into the pore.

[배선간의 공극 형성 방법 및 반도체 장치의 제조방법][Method of forming gap between wirings and method of manufacturing semiconductor device]

본 발명에 의한 배선간의 공극 형성 방법 및 반도체 장치의 제조방법은, 미리 형성되어 있던 공극, 공공, 홈, 오목부 등을 갖는 재료를, 반도체 장치의 제조 과정에서 보호하는 것이다. 본 발명에서는, 이러한 자료를 총칭하여 다공질 재료라고 한다. 본 발명을 적용하려고 하는 저유전율 재료의 대부분은 복수의 공공을 갖는 다공질 재료이다. 즉, 이러한 다공질 재료는 밀도가 낮기 때문에, 예를 들어 드라이 에칭 처리 등을 실시하면, 물리적 또는 화학적으로 손상을 받기 쉽다. 또한, 재료 중에 공공이 포함되는 재료는, 그 표면에 공공에 기인하는 오목부 등이 산재하지만, 그 가장자리부는 평탄 부분에 비교하여 물리적 또는 화학적으로 손상을 받기 쉽다. 본 발명에 의한 제2 방법은 그러한 손상을 방지하는 것이다. 이러한 방법을 도면을 참조하면서 설명하면 이하와 같다.The method for forming voids between wirings and the method of manufacturing a semiconductor device according to the present invention protects a material having voids, voids, grooves, concavities, and the like that have been formed in advance in the process of manufacturing a semiconductor device. In the present invention, these data are collectively referred to as a porous material. Most of the low dielectric constant materials to which the present invention is applied are porous materials having a plurality of openings. That is, since such a porous material has a low density, if it is subjected to, for example, dry etching treatment or the like, it is easily damaged physically or chemically. In addition, a material including pores in the material has scattered concavities or the like due to pores on the surface thereof, but the edges are more susceptible to physical or chemical damage than the flat portions. The second method according to the present invention is to prevent such damage. Such a method will be described with reference to the drawings.

우선, 다공질 재료(100)의 표면에 공극 형성용 조성물(101)을 도포한다(도 1 (A)). 다공질 재료로서는, 예를 들어 이산화규소나 폴리아미드로 이루어진 재료를 들 수 있다. 또한, 다공질 재료에 형성되어 있는 공공 또는 공극의 크기나 공공률(空孔率)은, 목적으로 하는 반도체 장치에 요구되는 성능 등에 따라서 변화되지만, 일반적으로 공공의 평균 직경은 100nm 이하이며, 바람직하게는 40nm 이하이다. 또한 일반적으로 공공률은 5 내지 70%이고, 바람직하게는 5 내지 50%이다. 여기서, 공공의 평균 직경은 투과형 전자 현미경(TEM)으로 관찰함으로써 측정할 수 있고, 또한 공공률은 유전율을 사용하여 대수(對數) 혼합 법칙에 따라 계산함으로써 구할 수 있다.First, the void forming composition 101 is applied to the surface of the porous material 100 (Fig. 1 (A)). As the porous material, for example, a material made of silicon dioxide or polyamide can be cited. The size or porosity of the pores or voids formed in the porous material varies depending on the performance required for the intended semiconductor device and the like, but generally the average diameter of the pores is 100 nm or less, Is 40 nm or less. Also, the porosity is generally 5 to 70%, preferably 5 to 50%. Here, the average diameter of the pores can be measured by observing with a transmission electron microscope (TEM), and the porosity can be obtained by calculating the porosity according to the law of algebraic mixing using the permittivity.

다공질 재료(100)의 표면에 도포된 공극 형성용 조성물은, 경시에 따라 다공질 재료에 침투하여 공공을 충전하지만, 가압 또는 가열에 의해 침투를 가속할 수도 있다. 특히 가온하는 것이 바람직하다. 온도 상승에 의해 조성물의 점도가 낮아져, 공공으로의 침투가 가속화되기 때문이다. 또한, 공극 형성용 조성물의 도포 성이나 침투성 등을 고려하여, 사용하는 용매를 선택하는 것이 바람직하다.The composition for forming voids applied to the surface of the porous material 100 may permeate the porous material with time to fill the void, but may accelerate penetration by pressurization or heating. Particularly, it is preferable to warm up. This is because the viscosity of the composition is lowered by raising the temperature, and penetration into the air is accelerated. Further, it is preferable to select the solvent to be used in consideration of the coating property and permeability of the composition for forming voids.

다공질 재료(100)에 공극 형성용 조성물을 충분히 침투시킨 후, 가열하는 등에 의해 조성물 중의 용매의 일부 또는 전부를 증발시켜 공공 내의 조성물을 고화시켜서, 희생 재료(101A)로 전환시킨다. 그 후, 필요에 따라 표면에 노출되어 있는 희생 재료를 제거하고, 공공 안이 희생 재료로 채워진 다공질 재료를 얻을 수 있다(도 1 (B)). 이 채워진 공공 부분이 희생 영역이 된다.A part of or all of the solvent in the composition is evaporated by heating the porous material 100 sufficiently after the composition for forming voids is sufficiently infiltrated to solidify the composition in the hollow and convert it into sacrificial material 101A. Thereafter, if necessary, the sacrificial material exposed on the surface is removed, and a porous material filled with the sacrificial material can be obtained (Fig. 1 (B)). This filled public part becomes a sacrifice area.

이어서, 플라즈마 에칭 또는 드라이 에칭 등에 의해 재료의 표면을 가공하고, 예를 들어 홈 구조(103)와 같은 오목부를 형성시킨다(도 1 (C)). 또한, 이 방법에서 다공질 재료의 표면 가공에 채용되는 플라즈마 에칭 또는 드라이 에칭은, 희생 재료를 제거할 때에 행해지는 플라즈마 처리와는 다른 조건으로 수행된다. 구체적으로는, 다공질 재료가 이산화규소로 이루어진 것인 경우에는, 드라이 에칭에 사용하는 가스로서 CF4, CHF3, 및 이들의 혼합 가스가 선택되는 것이 일반적이다. 이때, 본 발명에 의한 방법에서는, 공공 안이 희생 재료로 채워져 있음으로써, 재료 전체의 기계적 강도도 높기 때문에, 리소그래피 처리, 플라즈마 에칭, 또는 드라이 에칭에 의한 손상을 받기 어렵다.Then, the surface of the material is processed by, for example, plasma etching or dry etching to form a concave portion such as the groove structure 103 (Fig. 1 (C)). Further, the plasma etching or the dry etching employed in the surface processing of the porous material in this method is performed under a condition different from the plasma processing performed in removing the sacrificial material. Specifically, when the porous material is made of silicon dioxide, CF 4 , CHF 3 , and a mixed gas thereof are generally selected as a gas used for dry etching. At this time, in the method according to the present invention, since the cavity is filled with the sacrificial material, since the mechanical strength of the whole material is high, it is difficult to be damaged by lithography treatment, plasma etching, or dry etching.

플라즈마 처리 또는 에칭 처리 후, 홈 구조(103)에, 예를 들어 화학 기상 성장법 등에 의해 금속 재료를 충전하여 금속 배선을 형성시킨 후, 희생 재료를 선택적으로 제거한다. 희생 재료를 선택적으로 제거하는 방법은 특별히 한정되지 않지만, 가열에 의해 희생 재료를 분해시켜서 제거하는 방법, 플라즈마 처리에 의해 제거하는 방법, 희생 재료를 용해하는 용매에 의해 용해시켜 제거하는 방법, 고에너지선을 조사하여 제거하는 방법 등이 바람직하고, 가열에 의해 수행하는 것이 특히 바람직하다. 희생 재료의 분해 제거를 가열에 의해 수행하는 경우에는, 재료 전체를 가열함으로써, 공공에 충전되어 있던 희생 재료(101A)를 분해 기화시켜서 제거할 수 있다(도 1 (D)). 이 결과, 희생 영역이 중공 상태로 되돌아와 공극(104)이 형성된다. 이렇게 하여, 플라즈마 에칭 또는 드라이 에칭 과정에서 손상을 주지 않고 표면이 가공된 다공질 재료를 얻을 수 있다. 이와 같이 손상을 받지 않은 다공질 재료를 사용하여 제조된 반도체 장치는 결함이 적으므로, 높은 생산성으로 제조할 수 있다.After the plasma treatment or the etching treatment, the metal structure is filled in the groove structure 103 by, for example, chemical vapor deposition or the like to form a metal wiring, and then the sacrificial material is selectively removed. The method of selectively removing the sacrificial material is not particularly limited, but a method of decomposing and removing the sacrificial material by heating, a method of removing by sacrificial material, a method of dissolving and removing the sacrificial material by a solvent for dissolving the sacrificial material, And a method of removing by irradiation of a line is preferable, and it is particularly preferable to perform by heating. When the sacrificial material is decomposed and removed by heating, the sacrificial material 101A filled in the vacancy can be decomposed and removed by heating the entire material (Fig. 1 (D)). As a result, the sacrificial region returns to the hollow state and the cavity 104 is formed. In this manner, a porous material whose surface has been processed without damaging the plasma etching or dry etching process can be obtained. The semiconductor device manufactured using the porous material that has not been damaged in this manner has few defects, and thus can be manufactured with high productivity.

이러한 반도체 장치의 제조방법에 있어서, 공극 형성용 조성물은 도포성 및 다공질 재료로의 침투성이 우수한 것이 바람직하다. 따라서, 용매로서는, MIBK 등의 비극성 용매가 바람직하게 사용된다. 조성물의 침투성을 양호하게 유지하기 위해, 조성물에 포함되는 중합체의 분자량을 조정할 수도 있다. 이러한 경우, 중합체의 질량 평균 분자량은 일반적으로 1,000 내지 150,000이고, 1,500 내지 50,000인 것이 바람직하다. 또한, 플라즈마 에칭 또는 드라이 에칭 시에는 분해 기화되지 않고, 그 후의 가열에 의해 완전히 분해 기화되는 것이 바람직하다. 플라즈마 에칭 또는 드라이 에칭의 조건이나, 가열 온도는 여러 가지 이유에 의해 조정되기 때문에, 희생 재료가 분해 기화되는 온도는 그것에 따라 조정된다. 하지만, 일반적으로는, 희생 재료는 예를 들어 400℃에서 실질적으로 분해 기화되지 않고, 예를 들면 600℃에서 실질적으로 완전히 분해 기화되는 것이 바람직하다. 구체적으로는, 불활성 가스 분위기 중 또는 공기 중에서 희생 재료를 400℃에서 1시간 가열했을 때의 중량 감소가 5% 이하인 것이 바람직하고, 3% 이하인 것이 보다 바람직하고, 또한, 600℃에서 1시간 가열했을 때의 중량 감소가 80% 이상인 것이 바람직하고, 90% 이상인 것이 보다 바람직하다. 또한, 본 발명에 의한 공극 형성용 조성물은, 고형분의 대부분이 상기 중합체이기 때문에, 이 조성물로 형성되는 희생 재료는 실질적으로 상기 중합체로 이루어진 것이다. 따라서, 희생 재료의 중량 감소와, 중합체 자체의 중량 감소는 실질적으로 일치한다.In such a method for producing a semiconductor device, it is preferable that the composition for forming voids is excellent in coatability and permeability to a porous material. Therefore, as the solvent, a non-polar solvent such as MIBK is preferably used. In order to maintain good permeability of the composition, the molecular weight of the polymer contained in the composition may be adjusted. In this case, the mass average molecular weight of the polymer is generally from 1,000 to 150,000, preferably from 1,500 to 50,000. In plasma etching or dry etching, it is preferable that the decomposition gasification is not carried out at all, but is completely decomposed by the subsequent heating. Since the conditions of the plasma etching or the dry etching and the heating temperature are adjusted for various reasons, the temperature at which the sacrificial material is decomposed is adjusted accordingly. However, in general, it is preferable that the sacrificial material is not substantially decomposed at 400 deg. C, for example, completely decomposed at 600 deg. C, for example. Concretely, it is preferable that the weight loss when the sacrificial material is heated in an inert gas atmosphere or in the air at 400 ° C for 1 hour is preferably 5% or less, more preferably 3% or less, and more preferably 600 ° C Is preferably 80% or more, more preferably 90% or more. In addition, since the composition for forming voids according to the present invention contains most of the solid content of the polymer, the sacrificial material formed from the composition is substantially composed of the polymer. Thus, the weight loss of the sacrificial material and the weight loss of the polymer itself are substantially consistent.

이하, 본 발명을 더욱 상세한 실시예에 기초하여 설명하겠지만, 본 발명은 이들 실시예에 한정되지 않는다. 또한, 이하에서 「부」는 특별히 언급이 없는 한 질량 기준이다. 또한, 시험 및 평가는 하기와 같이 행하였다.Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, " part " is on a mass basis unless otherwise specified. The test and evaluation were carried out as follows.

[분자량][Molecular Weight]

겔 침투 크로마토그래피(GPC)에 의해, 중합체의 수 평균 분자량(Mn), 질량 평균 분자량(Mw) 및 분자량 분포(Mw/Mn)를 폴리스티렌 환산값으로서 측정하였다.The number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were measured as polystyrene conversion values by gel permeation chromatography (GPC).

[중량 감소][Weight reduction]

질소 분위기 중 또는 공기 중, 중량 측정법(TG)에 의해, 20℃/분으로 승온하고, 400℃에서 1시간 가열했을 때의 중량 변화와 600℃에서 1시간 가열했을 때의 중량 변화를 각각 측정하였다.The weight change was measured by a gravimetric method (TG) in a nitrogen atmosphere or in air at a heating rate of 20 DEG C / min, and a change in weight when heated at 400 DEG C for 1 hour and a change in weight when heated at 600 DEG C for 1 hour, respectively .

[다공질 SiO2로의 중합체 조성물의 매립 및 공극 형성의 확인][Confirmation of Burying of Porous Polymer Composition with Porous SiO 2 and Formation of Cavity]

분광 엘립소미터에 의해, 파장 633nm에서의 굴절률의 변화에 의해 중합체의 매립과 공극 형성의 유무를 확인하였다.The presence of polymer filling and void formation was confirmed by the spectroscopic ellipsometer by changing the refractive index at a wavelength of 633 nm.

[중합체 합성예 1][Polymer Synthesis Example 1]

(폴리-4-메틸트리페닐렌아민(중합체 P1)의 합성)(Synthesis of poly-4-methyltriphenyleneamine (polymer P1)

교반기, 응축기, 가열 장치, 질소 도입관 및 온도 제어 장치를 부착한 반응기에, 질소 분위기 하에서 염화철(III)(무수)(519부), 클로로포름(4330부)을 첨가하고, 반응 온도를 50℃로 유지하였다. 그 후, 클로로포름(440부)에 용해시킨 4-메틸트리페닐아민(212부)을 첨가하여 교반하였다. 그 후, 반응 온도를 50℃로 유지하여 0.5시간 반응시켰다.(III) (anhydrous) (519 parts) and chloroform (4330 parts) were added to a reactor equipped with a stirrer, a condenser, a heating device, a nitrogen introduction pipe and a temperature control device under a nitrogen atmosphere, Respectively. Then, 4-methyltriphenylamine (212 parts) dissolved in chloroform (440 parts) was added and stirred. Thereafter, the reaction was continued for 0.5 hour while maintaining the reaction temperature at 50 캜.

반응 종료 후, 반응 용액을 아세톤(54,000부)에 주입하여 분체를 여과하였다. 그 분체를 클로로포름(4000부)에 용해시키고, 불용 부분을 여과로 제거하고, 그 여과액에 1질량%의 암모니아 수용액(4000부)을 첨가하여 클로로포름 용액을 추출하였다. 또한, 클로로포름 용액을 농축하고, 그 용액을 아세톤(54,000부)에 주입하여 분말을 여과하고, 90℃에서 진공 건조함으로써 중합체 P1을 85부(수율: 40%) 수득하였다.After completion of the reaction, the reaction solution was poured into acetone (54,000 parts) and the powder was filtered. The powder was dissolved in chloroform (4000 parts). The insoluble portion was removed by filtration. An aqueous 1% by mass ammonia solution (4000 parts) was added to the filtrate, and the chloroform solution was extracted. The chloroform solution was concentrated, and the solution was poured into acetone (54,000 parts). The powder was filtered, and vacuum-dried at 90 占 폚 to obtain 85 parts of polymer P1 (yield: 40%).

GPC(테트라하이드로푸란)에 의해 분자량을 측정한 바, 수 평균 분자량(Mn)=2170Da, 질량 평균 분자량(Mw)=3991Da, 분자량 분포(Mw/Mn)=1.84이었다.The molecular weight was measured by GPC (tetrahydrofuran). The number average molecular weight (Mn) was 2170 Da, the weight average molecular weight (Mw) was 3991 Da and the molecular weight distribution (Mw / Mn) was 1.84.

[중합체 합성예 2][Polymer Synthesis Example 2]

(폴리-4-메틸트리페닐렌아민(중합체 P2)의 합성)(Synthesis of poly-4-methyltriphenyleneamine (polymer P2)

반응 시간을 0.5시간에서 1시간으로 바꾼 것 이외에는 합성예 1과 동일하게 행한 바, 중합체 P2를 87부(수율: 41%) 수득하였다. GPC(클로로포름)에 의해 분자량을 측정한 바, 수 평균 분자량(Mn)=3157Da, 질량 평균 분자량(Mw)=6030Da, 분자량 분포(Mw/Mn)=1.91이었다.And that the reaction time was changed from 0.5 hour to 1 hour, 87 parts (yield: 41%) of Polymer P2 was obtained. The number average molecular weight (Mn) was 3157 Da, the weight average molecular weight (Mw) was 6030 Da, and the molecular weight distribution (Mw / Mn) was 1.91 as measured by GPC (chloroform).

[실시예 1][Example 1]

중합체 P1(10부)에 사이클로헥사논(275부)를 첨가하고, 실온에서 30분간 교반하여 공극 형성용 조성물을 조제하였다.Cyclohexanone (275 parts) was added to polymer P1 (10 parts) and stirred at room temperature for 30 minutes to prepare a composition for forming voids.

조제한 공극 형성용 조성물을 다공질의 SiO2 웨이퍼 위에 스핀 코트에 의해 도포하고, 150℃, 질소 분위기 하에서 5분간 진공 핫 플레이트 위에서 가열하여 공극 형성용 중합체 박막을 수득하였다. 이 공극 형성용 중합체 박막의 중량 감소를 상기 방법에 의해 측정한 바, 400℃(공기 분위기 하)에서 1시간 가열했을 때의 중량 감소는 0.03%이고, 600℃(공기 분위기 하)에서 1시간 가열했을 때의 중량 감소는 99.23%이었다.The composition for forming voids was coated on a porous SiO 2 wafer by spin coating and heated on a vacuum hot plate at 150 ° C for 5 minutes under a nitrogen atmosphere to obtain a thin film of a polymer for void formation. The weight reduction of the polymer film for forming voids was measured by the above method. As a result, the weight loss when heated for 1 hour at 400 占 폚 (under an air atmosphere) was 0.03%, and heating was performed at 600 占 폚 Weight loss was 99.23%.

다음으로 공극 형성용 중합체 박막을 330℃, 질소 분위기 하에서 5분간 진공 핫 플레이트 위에서 가열하여, 공극 형성용 중합체 박막을 다공질의 SiO2 웨이퍼에 매립하였다. 또한, 조제한 용제인 사이클로헥사논으로 20초간 린스함으로써 다공질의 SiO2 웨이퍼 위의 여분의 공극 형성용 중합체 박막을 제거하였다. 이 공극 형성용 중합체 박막이 매립된 다공질의 SiO2 웨이퍼를 분광 엘립소미터로 측정한 결과, 파장 633nm에서의 굴절률(n값)은 1.46이었다. 또한, 400℃, 공기 분위기 하에서 1분간 가열 후의 다공질의 SiO2 웨이퍼를 분광 엘립소미터로 측정한 결과, 파장 633nm에서의 굴절률(n값)은 1.46이었다. 또한, 600℃에서 1시간, 공기 분위기 하에서 가열함으로써 공극 형성용 중합체 박막을 가열분해시켰다. 가열분해 후의 다공질의 SiO2 웨이퍼를 분광 엘립소미터로 측정한 결과, 파장 633nm에서의 굴절률(n값)은 1.31이고, 처리 안된 다공질의 SiO2 웨이퍼의 굴절률(n값)과 동일한 값이었다.Next, the pore-forming polymer thin film was heated on a vacuum hot plate at 330 ° C under a nitrogen atmosphere for 5 minutes to fill the pore-forming polymer thin film into a porous SiO 2 wafer. Further, by rinsing with cyclohexanone, which is a solvent prepared, for 20 seconds, an extra thin film of the polymer for forming voids on the porous SiO 2 wafer was removed. The porous SiO 2 wafer having the void-forming polymer thin film embedded therein was measured by a spectroscopic ellipsometer, and as a result, the refractive index (n value) at a wavelength of 633 nm was 1.46. Further, the porous SiO 2 wafer after heating at 400 ° C for 1 minute under air atmosphere was measured with a spectroscopic ellipsometer, and as a result, the refractive index (n value) at a wavelength of 633 nm was 1.46. Further, the polymer thin film for void formation was heated and decomposed by heating at 600 DEG C for 1 hour in an air atmosphere. As a result of measuring the SiO 2 wafer after heat decomposition as porous El spectral ellipsometer, it was the same value as the refractive index (n value) is the refractive index (n value) of 1.31, and the treatment of the porous SiO 2 untested wafer at a wavelength of 633nm.

[실시예 2 내지 실시예 7 및 비교예 1 및 비교예 2][Examples 2 to 7 and Comparative Example 1 and Comparative Example 2]

공극 형성용 조성물의 각 성분을, 표 1에 나타낸 바와 같이 변경한 것 외에는 실시예 1과 동일하게 하여, 실시예 2 내지 실시예 7 및 비교예 1 및 비교예 2의 조성물을 조제하고 평가하였다. 얻어진 결과는 표 1에 기재한 바와 같았다.The compositions of Examples 2 to 7 and Comparative Examples 1 and 2 were prepared and evaluated in the same manner as in Example 1 except that each component of the composition for forming voids was changed as shown in Table 1. [ The results obtained are shown in Table 1.

Figure pct00007
Figure pct00007

Figure pct00008
Figure pct00008

100 다공질 재료
101 공극 형성용 조성물
101A 희생 영역
103 홈 구조
104 공극
100 porous material
101 Composition for forming voids
101A sacrifice area
103 Home Structure
104 air gap

Claims (9)

하기 화학식 (1):
Figure pct00009

또는 하기 화학식 (2):
Figure pct00010

[화학식 (1) 및 (2)에서,
Ar1, Ar2, 및 Ar2'는 각각 독립적으로, 1개 이상의 벤젠환을 포함하는 방향족기이고, 상기 방향족기는 알킬, 아릴, 알콕시, 니트로, 아미드, 디알킬아미노, 설폰아미드, 이미드, 카르복시, 설폰산 에스테르, 알킬아미노 및 아릴아미노로 이루어진 그룹으로부터 선택되는 치환기로 치환되어 있어도 좋고,
L1 및 L2는 각각 독립적으로, 산소, 황, 알킬렌, 설폰, 아미드, 카르보닐 또는 하기 화학식 (3):
Figure pct00011

{화학식 (3)에서,
Ar3은 1개 이상의 벤젠환을 포함하는 방향족기이고, 상기 방향족기는 알킬, 아릴, 알콕시, 니트로, 아미드, 디알킬아미노, 설폰아미드, 이미드, 카르복시, 설폰산 에스테르, 알킬아미노, 및 아릴아미노로 이루어진 그룹으로부터 선택되는 치환기로 치환되어 있어도 좋고,
L3은 질소, 붕소, 및 인으로 이루어진 그룹으로부터 선택되는 3가 원자이다}로 이루어진 그룹으로부터 선택된다]
으로 표시되는 적어도 1종의 반복 단위를 5개 이상 포함하는 중합체와,
용제를 포함하는 것을 특징으로 하는, 공극 형성용 조성물.
(1): < EMI ID =
Figure pct00009

(2): < EMI ID =
Figure pct00010

[In the formulas (1) and (2)
Ar 1 , Ar 2 , and Ar 2 ' are each independently an aromatic group containing at least one benzene ring, and the aromatic group is selected from the group consisting of alkyl, aryl, alkoxy, nitro, amide, dialkylamino, sulfonamide, Carboxy, sulfonic acid ester, alkylamino, and arylamino, each of which may be substituted with a substituent selected from the group consisting of
L 1 and L 2 are each independently selected from the group consisting of oxygen, sulfur, alkylene, sulfone, amide, carbonyl,
Figure pct00011

{In the formula (3)
Ar 3 is an aromatic group containing at least one benzene ring and the aromatic group is selected from the group consisting of alkyl, aryl, alkoxy, nitro, amide, dialkylamino, sulfonamide, imide, carboxy, sulfonic acid ester, alkylamino, Or a substituent selected from the group consisting of
And L < 3 > is a trivalent atom selected from the group consisting of nitrogen, boron, and phosphorus.
A polymer comprising at least 5 repeating units represented by the following formula
A composition for forming voids, which comprises a solvent.
제1항에 있어서, 상기 Ar1, Ar2, 및 Ar2'가 벤젠환을 1개 포함하는 방향족기인, 공극 형성용 조성물.The composition according to claim 1, wherein Ar 1 , Ar 2 , and Ar 2 ' are aromatic groups containing one benzene ring. 제1항 또는 제2항에 있어서, 상기 중합체의 질량 평균 분자량이 1,000 내지 1,000,000인, 공극 형성용 조성물.The composition according to any one of claims 1 to 3, wherein the polymer has a mass average molecular weight of 1,000 to 1,000,000. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 중합체의 함유율이, 조성물의 총 질량을 기준으로 하여 0.2 내지 20질량%인, 공극 형성용 조성물.4. The composition for forming voids according to any one of claims 1 to 3, wherein the content of the polymer is 0.2 to 20% by mass based on the total mass of the composition. 제1항 내지 제4항 중 어느 한 항에 있어서, 불활성 가스 분위기 중 또는 공기 중, 400℃에서 1시간 가열했을 때의 중량 감소가 5% 이하, 또한 600℃에서 1시간 가열했을 때의 중량 감소가 80% 이상인, 공극 형성용 조성물.The method according to any one of claims 1 to 4, wherein the weight loss when heated in an inert gas atmosphere or in air at 400 占 폚 for 1 hour is 5% or less, and when the heating is carried out at 600 占 폚 for 1 hour, Is 80% or more. 복수의 공공(空孔)을 갖는 다공질 재료를 구비하여 이루어진 반도체 장치를 제조하는 방법으로서,
상기 다공질 재료에, 제1항 내지 제5항 중 어느 한 항에 기재된 공극 형성용 조성물을 도포하여 상기 조성물을 상기 공공 중에 충전하고,
상기 조성물에 포함되는 용매의 일부 또는 전부를 증발시켜 희생 재료로 이루어진 희생 영역을 형성시키고,
상기 다공질 재료의 표면에 오목부를 형성시키고,
상기 오목부에 금속 재료를 충전하여 금속 배선을 형성시키고,
상기 희생 재료를 선택적으로 제거함으로써, 상기 희생 영역을 중공(中空) 상태로 되돌리는 공정을 포함하는 것을 특징으로 하는, 반도체 장치의 제조방법.
A method of manufacturing a semiconductor device comprising a porous material having a plurality of voids,
The void-forming composition according to any one of claims 1 to 5 is applied to the porous material, the composition is filled in the void,
A part or all of the solvent contained in the composition is evaporated to form a sacrificial region made of a sacrificial material,
A concave portion is formed on the surface of the porous material,
A metal material is filled in the concave portion to form a metal wiring,
And a step of returning the sacrificial region to a hollow state by selectively removing the sacrificial material.
제6항에 있어서, 상기 다공질 재료의 공공률(空孔率)이 5 내지 70%인, 방법.The method according to claim 6, wherein the porosity of the porous material is 5 to 70%. 제6항 또는 제7항에 있어서, 상기 희생 재료의 제거가, 가열에 의해 희생 재료를 분해시켜서 제거하는 방법, 플라즈마 처리에 의해 제거하는 방법, 희생 재료를 용해하는 용매에 의해 용해시켜서 제거하는 방법, 고에너지선을 조사하여 제거하는 방법 중 어느 하나에 의해 행해지는, 방법.The method of claim 6 or 7, wherein the removal of the sacrificial material includes a method of decomposing the sacrificial material by heating, a method of removing the sacrificial material by plasma treatment, a method of dissolving the sacrificial material by dissolving the sacrificial material , And a method of irradiating and removing high energy rays. 제6항 내지 제8항 중 어느 한 항에 기재된 방법에 의해 제조된 것을 특징으로 하는, 반도체 장치.A semiconductor device manufactured by the method according to any one of claims 6 to 8.
KR1020167036775A 2014-05-29 2015-05-26 Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition KR20170013939A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-111552 2014-05-29
JP2014111552 2014-05-29
PCT/JP2015/065030 WO2015182581A1 (en) 2014-05-29 2015-05-26 Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition

Publications (1)

Publication Number Publication Date
KR20170013939A true KR20170013939A (en) 2017-02-07

Family

ID=54698906

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167036775A KR20170013939A (en) 2014-05-29 2015-05-26 Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition

Country Status (9)

Country Link
US (1) US10435555B2 (en)
EP (1) EP3150668A4 (en)
JP (1) JP6573876B2 (en)
KR (1) KR20170013939A (en)
CN (1) CN106471057A (en)
IL (1) IL248722A0 (en)
SG (1) SG11201609064XA (en)
TW (1) TW201607986A (en)
WO (1) WO2015182581A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148777A (en) * 2015-02-12 2016-08-18 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Composition for forming underlay film, and formation method of underlay film using same
CN108602939A (en) 2016-02-11 2018-09-28 Az电子材料(卢森堡)有限公司 Polymer, composition, the formation of sacrificial layer and the method for the semiconductor device with it
CN111433549A (en) 2017-07-17 2020-07-17 分形散热器技术有限责任公司 Multi-fractal heat sink system and method
WO2023172892A1 (en) * 2022-03-08 2023-09-14 Tokyo Electron Limited Method of forming a semiconductor device with air gaps for low capacitance interconnects

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883839A (en) 1994-05-27 1996-03-26 Texas Instr Inc <Ti> Semiconductor device provided with void between metal conductors and its manufacture
JPH09172068A (en) 1995-12-18 1997-06-30 Nec Corp Method for manufacturing semiconductor device
JP2001085519A (en) 1999-08-31 2001-03-30 Tobu Denshi Kk Manufacture of wiring structuer of semiconductor element
JP2003342375A (en) 2002-05-27 2003-12-03 Jsr Corp Thermally decomposable organic polymer for forming cavity among multilayer wirings
JP2004063749A (en) 2002-07-29 2004-02-26 Asahi Kasei Corp Semiconductor device having air isolation structure
JP2009275228A (en) 1997-01-21 2009-11-26 Bf Goodrich Co Fabrication of semiconductor device with air gaps for ultra-low capacitance interconnections

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933764A (en) * 1974-07-25 1976-01-20 Union Carbide Corporation Coagulative recovery of polysulfone resins from solutions thereof
US5043112A (en) * 1987-10-09 1991-08-27 The Dow Chemical Company Process for forming articles comprising poly(phenylene sulfide) (PPS)
TWI226103B (en) * 2000-08-31 2005-01-01 Georgia Tech Res Inst Fabrication of semiconductor devices with air gaps for ultra low capacitance interconnections and methods of making same
US6703324B2 (en) * 2000-12-21 2004-03-09 Intel Corporation Mechanically reinforced highly porous low dielectric constant films
US20020145201A1 (en) * 2001-04-04 2002-10-10 Armbrust Douglas Scott Method and apparatus for making air gap insulation for semiconductor devices
US6946382B2 (en) * 2002-04-02 2005-09-20 Dow Global Technologies Inc. Process for making air gap containing semiconducting devices and resulting semiconducting device
US6734094B2 (en) * 2002-04-29 2004-05-11 Intel Corporation Method of forming an air gap within a structure by exposing an ultraviolet sensitive material to ultraviolet radiation
DE10227663A1 (en) * 2002-06-20 2004-01-15 Infineon Technologies Ag Process for sealing porous materials in chip manufacture and connections therefor
CN1168760C (en) 2002-10-09 2004-09-29 武汉大学 Prepn of triphenylamine polymer as hole material
US20040084774A1 (en) * 2002-11-02 2004-05-06 Bo Li Gas layer formation materials
JP4090867B2 (en) * 2002-12-24 2008-05-28 旭化成株式会社 Manufacturing method of semiconductor device
WO2006098187A1 (en) * 2005-03-15 2006-09-21 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
US20090085227A1 (en) * 2005-05-17 2009-04-02 Matsushita Electric Industrial Co., Ltd. Flip-chip mounting body and flip-chip mounting method
WO2007010919A1 (en) 2005-07-20 2007-01-25 Adeka Corporation Fluorine-containing copolymer, alkali-developable resin composition, and alkali-developable photosensitive resin composition
US7176053B1 (en) * 2005-08-16 2007-02-13 Organicid, Inc. Laser ablation method for fabricating high performance organic devices
CN1331914C (en) 2005-10-18 2007-08-15 武汉大学 Method for synthesizing polymer of poly-triphenylamine
US20070215864A1 (en) * 2006-03-17 2007-09-20 Luebben Silvia D Use of pi-conjugated organoboron polymers in thin-film organic polymer electronic devices
US7438636B2 (en) * 2006-12-21 2008-10-21 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
KR100843233B1 (en) * 2007-01-25 2008-07-03 삼성전자주식회사 Semiconductor device having air gap adjoining the sidewall of wiring layer and fabrication method thereof
CN101652401B (en) * 2007-04-10 2012-09-05 住友电木株式会社 Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for manufacturing multilayer printed wiring board
JP4959627B2 (en) 2007-05-25 2012-06-27 住友ベークライト株式会社 Resin composition, resin spacer film and semiconductor device
JP2009242440A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Composition for forming insulating film
JP5137674B2 (en) 2008-04-26 2013-02-06 日本化薬株式会社 Photosensitive resin composition for MEMS and cured product thereof
CN102459409B (en) * 2009-06-08 2014-05-28 巴斯夫欧洲公司 Segmented polyarylene ether block copolymers
JP5552164B2 (en) * 2009-12-11 2014-07-16 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティ コーオペレーション ファウンデーション ハンヤン ユニバーシティ) Polyarylene ether polymer having transparency and high heat resistance and method for producing the same
US8410562B2 (en) * 2010-01-22 2013-04-02 Carnegie Mellon University Methods, apparatuses, and systems for micromechanical gas chemical sensing capacitor
US8314005B2 (en) * 2010-01-27 2012-11-20 International Business Machines Corporation Homogeneous porous low dielectric constant materials
US8310040B2 (en) * 2010-12-08 2012-11-13 General Electric Company Semiconductor device package having high breakdown voltage and low parasitic inductance and method of manufacturing thereof
JP5636277B2 (en) * 2010-12-27 2014-12-03 富士フイルム株式会社 Porous insulating film and method for producing the same
US8541301B2 (en) * 2011-07-12 2013-09-24 International Business Machines Corporation Reduction of pore fill material dewetting
CN110058490A (en) 2011-08-10 2019-07-26 日立化成株式会社 The manufacturing method of photosensitive polymer combination, photosensitive film, permanent resist and permanent resist
US20130171819A1 (en) * 2011-12-28 2013-07-04 Toshiba America Electronic Components, Inc. Methods for integration of metal/dielectric interconnects
EP2838931A1 (en) * 2012-04-17 2015-02-25 Merck Patent GmbH Cross-linkable and cross-linked polymers, methods for the production thereof, and use thereof
JP6157160B2 (en) * 2013-03-15 2017-07-05 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Upper layer film forming composition and resist pattern forming method using the same
JP2014188656A (en) * 2013-03-28 2014-10-06 Tokyo Electron Ltd Manufacturing method of hollow structure
WO2014207106A1 (en) * 2013-06-28 2014-12-31 Basf Se Polyarylether sulfone polymers (p) with a reduced solvent content
CN103396533A (en) 2013-08-14 2013-11-20 黑龙江大学 Methoxytriphenylamine-fluorene-containing copolymer, and preparation method and application thereof
EP3235854B1 (en) * 2013-09-09 2023-06-28 Basf Se Polyarylene ether sulfone polymers for membrane applications
US9371431B2 (en) * 2014-07-02 2016-06-21 International Business Machines Corporation Poly(ether sulfone)s and poly(ether amide sulfone)s and methods of their preparation
CN106575617A (en) * 2014-07-31 2017-04-19 Az电子材料(卢森堡)有限公司 Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition
US20160185984A1 (en) * 2014-12-26 2016-06-30 Dow Global Technologies Llc Pore-fill compositions
JP2016148777A (en) * 2015-02-12 2016-08-18 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Composition for forming underlay film, and formation method of underlay film using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883839A (en) 1994-05-27 1996-03-26 Texas Instr Inc <Ti> Semiconductor device provided with void between metal conductors and its manufacture
JPH09172068A (en) 1995-12-18 1997-06-30 Nec Corp Method for manufacturing semiconductor device
JP2009275228A (en) 1997-01-21 2009-11-26 Bf Goodrich Co Fabrication of semiconductor device with air gaps for ultra-low capacitance interconnections
JP2001085519A (en) 1999-08-31 2001-03-30 Tobu Denshi Kk Manufacture of wiring structuer of semiconductor element
JP2003342375A (en) 2002-05-27 2003-12-03 Jsr Corp Thermally decomposable organic polymer for forming cavity among multilayer wirings
JP2004063749A (en) 2002-07-29 2004-02-26 Asahi Kasei Corp Semiconductor device having air isolation structure

Also Published As

Publication number Publication date
IL248722A0 (en) 2017-01-31
US20170210896A1 (en) 2017-07-27
US10435555B2 (en) 2019-10-08
SG11201609064XA (en) 2016-12-29
CN106471057A (en) 2017-03-01
EP3150668A4 (en) 2018-01-17
WO2015182581A1 (en) 2015-12-03
TW201607986A (en) 2016-03-01
EP3150668A1 (en) 2017-04-05
JP6573876B2 (en) 2019-09-11
JPWO2015182581A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
KR20170013939A (en) Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
JP2010111842A (en) Polysilazane and synthetic method thereof, composition for semiconductor element production and production method of semiconductor element using the composition for semiconductor element production
KR20160000434A (en) Aromatic resins for underlayers
JP7289950B2 (en) gapfill dielectric material
KR101806328B1 (en) Composition for forming silica based layer, silica based layer, and electronic device
WO2016017678A1 (en) Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition
TWI751367B (en) Silicon carbonaceous film forming composition comprising polycarbosilane and method for manufacturing silicon carbonaceous film using the same
KR101848345B1 (en) Polymer, organic layer composition, and method of forming patterns
KR101682021B1 (en) Hardmask composition and method of forming patterns using the hardmask composition
KR101994367B1 (en) Polymer, organic layer composition, organic layer, and method of forming patterns
TWI283254B (en) Film-forming composition containing carbosilane-based polymer and film obtained from the same
KR102149970B1 (en) Polymer, organic layer composition, and method of forming patterns
US20110027466A1 (en) Boron-containing hydrogen silsesquioxane polymer, integrated circuit device formed using the same, and associated methods
KR20160119011A (en) Gap-fill methods
KR102246693B1 (en) Organic layer composition, and method of forming patterns
KR101992951B1 (en) Copolymer, semiconductor device comprising copolymer, composition comprising copolyemr, and preparation method of copolymer
KR101848343B1 (en) Polymer, organic layer composition, organic layer, and method of forming patterns
KR102092798B1 (en) Method of producimg organic layer, and method of forming patterns