KR20170013428A - A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics - Google Patents

A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics Download PDF

Info

Publication number
KR20170013428A
KR20170013428A KR1020150105596A KR20150105596A KR20170013428A KR 20170013428 A KR20170013428 A KR 20170013428A KR 1020150105596 A KR1020150105596 A KR 1020150105596A KR 20150105596 A KR20150105596 A KR 20150105596A KR 20170013428 A KR20170013428 A KR 20170013428A
Authority
KR
South Korea
Prior art keywords
concentration
sample
inosine
group
hypoxanthine
Prior art date
Application number
KR1020150105596A
Other languages
Korean (ko)
Other versions
KR101730923B1 (en
Inventor
황금숙
정영애
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to KR1020150105596A priority Critical patent/KR101730923B1/en
Publication of KR20170013428A publication Critical patent/KR20170013428A/en
Application granted granted Critical
Publication of KR101730923B1 publication Critical patent/KR101730923B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/088Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/324Coronary artery diseases, e.g. angina pectoris, myocardial infarction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/326Arrhythmias, e.g. ventricular fibrillation, tachycardia, atrioventricular block, torsade de pointes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method for diagnosing and predicting the prognosis of a cardiovascular disease by using a purine metabolome. It has been confirmed that employment as a diagnosis marker is possible based on an increase in hypoxanthine and inosine concentrations in angina and myocardial infarction patients and the prognosis of a cardiovascular disease patient can be predicted by the use of the concentration of the purine metabolome through an increase in event likelihood in a case where the concentration of the hypoxanthine increases and the inosine concentration does not differ from those of normal people in the angina and myocardial infarction patients. In addition, it has been confirmed that an early and accurate diagnosis is possible for atrial fibrillation patients based on the measurement of the concentrations of the metabolomes because the concentrations of the purine metabolomes such as hypoxanthine and inosine rapidly decline in the atrial fibrillation patients.

Description

퓨린 대사체를 이용한 심혈관질환 진단 및 예후 예측 방법{A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics}[0001] The present invention relates to a method for diagnosing cardiovascular diseases and prognosis of cardiovascular diseases using purine metabolites,

본 발명은 심방세동, 협심증 또는 심근경색 질환 진단에 관한 것으로, 퓨린 대사체를 이용한 심방세동, 협심증 또는 심근경색 진단 또는 예후 예측의 정보를 제공하기 위한 퓨린 대사체 분석 방법에 관한 것이다.
The present invention relates to the diagnosis of atrial fibrillation, angina pectoris or myocardial infarction, and relates to a purine metabolite analysis method for providing information on atrial fibrillation, angina pectoris or myocardial infarction diagnosis or prognosis prediction using purine metabolism.

심혈관질환(cardiovascular disease)은 전 세계적으로 산업화된 국가들에서 주요 사망 원인이고, 우리나라에서도 1970년대부터 주요 사망 원인이 되고 있으며 한국인의 10대 사망 원인 가운데 가장 빠른 속도로 증가하고 있는 질환 중 하나이다. 대표적인 심혈관질환인 관상동맥질환의 경우에 1983년 인구 10만 명당 2.2명에서 2001년 21.9명으로 20년이 채 안 되는 사이에 무려 10배나 증가했다. 오늘날 동맥경화 관련 질환자들의 발병률은 암에 걸리는 환자와 거의 맞먹는다. 관련 시장의 규모로서는 거의 수천억 원의 규모를 가지고 있는 실정이다.Cardiovascular disease is a major cause of death in industrialized countries around the world and has been a leading cause of death in Korea since the 1970s and is one of the fastest growing diseases among the 10 leading causes of death in Koreans. In the case of coronary artery disease, a typical cardiovascular disease, the number increased from 2.2 per 100,000 population in 1983 to 21.9 in 2001, a 10-fold increase in less than 20 years. Today, the incidence of patients with atherosclerosis is almost the same as the number of patients with cancer. The size of the related market is almost several hundred billion won.

이러한 심혈관 질환은 심근경색증, 협심증, 죽상경화증, 고혈압, 심부전, 동맥류, 뇌졸중, 부정맥 등을 포함한다. 심혈관질환 중에 중요한 부분을 차지하는 관상동맥질환은 대개 동맥경화에 의해서 심장에 혈액을 공급하는 관상동맥이 막히거나 좁아져서 발생한다. 동맥경화에 의해 관상동맥이 완전히 막혀 심장 근육조직이 죽게 되는 질병이 심근경색증이고, 관상동맥이 좁아져서 흉부압박감 또는 흉통을 느끼는 것은 협심증이라고 한다.Such cardiovascular diseases include myocardial infarction, angina pectoris, atherosclerosis, hypertension, heart failure, aneurysm, stroke, arrhythmia, and the like. Coronary artery disease, which is an important part of cardiovascular disease, is usually caused by clogging or narrowing of the coronary arteries supplying blood to the heart by atherosclerosis. Myocardial infarction is the disease in which the coronary artery is completely blocked by arteriosclerosis and the cardiac muscle tissue is killed, and the coronary artery is narrowed to feel chest tightness or chest pain.

종래 심혈관질환은 어느 정도 진행되어야 물리적인 방법을 사용하여 진단할 수 있어 조기에 진단 혹은 예측하는데 한계가 있었다. 통상 심혈관질환의 경우 조영 장비를 이용하여 심장 내부 및 관상동맥을 X-선 및 초음파 촬영하여 진단을 하고 있으나, 이는 발병 후에나 진단이 가능하다.Conventional cardiovascular disease can be diagnosed using a physical method to some extent, and there is a limit to early diagnosis or prediction. In general, cardiovascular disease is diagnosed by X-ray and ultrasound imaging of the inside of the heart and coronary arteries using a contrasting device, which can be diagnosed after the onset.

심혈관질환을 예측하기 위하여 기본적인 지질관련 검사(총콜레스테롤, 저밀도지단백콜레스테롤, 고밀도지단백콜레스테롤, 중성지방) 및 hsCRP라는 염증에 대한 검사를 시행하게 된다. 이러한 피검사 자체가 그 사람의 동맥경화상태를 직접 반영하지는 못하고 동반된 감염질환이나 염증성 혈관 질환을 가지고 있을 경우에는 혼란인자로 작용하기도 한다. 이러한 까닭으로 초음파, 컴퓨터 단층촬영, 자기공명영상 등을 포함한 방사선학적 검사를 추가하거나 침습적인 검사를 통해서 그에 대한 예측을 확인하는데 있어서 기존의 혈액 내 마커가 담당하고 있는 부분은 매우 제한적이라고 할 수 있다.In order to predict cardiovascular disease, tests for basic lipid-related tests (total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, triglycerides) and hsCRP are performed. Such a blood test itself does not directly reflect the atherosclerotic condition of the person, but may also act as a confounding factor if the infected disease or inflammatory vascular disease is accompanied. For this reason, the existing blood markers are very limited in adding radiologic tests including ultrasound, computed tomography, and magnetic resonance imaging, or confirming predictions through invasive examinations .

심혈관 관련 질병은 증상 없이 갑자기 나타나기 때문에, 사람의 생명 및 일생생활의 기능제한과 아주 밀접한 연관성이 있다. 이에 따라 이러한 진행된 심혈관질환을 사전에 예측, 진단하여 환자의 생명을 구하고 삶의 질을 높여야 할 필요가 있다. 하지만, 여러 가지 검사로 인해 의료비가 증가하고, 스크리닝 목적으로 이루어지는 검사가 모든 사람들을 대상으로 시행되기에는 한계점을 가지고 있으므로 간편하게 한번 채혈로 진단할 수 있는 바이오마커에 대한 필요성이 커지고 있다.Because cardiovascular-related illnesses appear suddenly without symptoms, they are closely related to functional limitations in human life and lifestyle. Therefore, it is necessary to predict and diagnose these advanced cardiovascular diseases to save the life of the patient and to improve the quality of life. However, there is a growing need for a biomarker that can be easily diagnosed as a blood sample because the cost of medical examination increases due to various tests, and the screening test is limited to all people.

지금까지 알려진 심혈관계 질병의 바이오마커로서는 CRP, IL-6, IL-8, MCP-1, IP-10 등이 있다. 그 외에도, MCP-1, MCP-2, MCP-3, MCP-4, eotaxin, M-CSF, IL-3, IP-10, TNFa, Ang-2, IL-5, IL-7, 그리고 IGF-1 등의 조합을 이용한 심혈관계 바이오마커 관련 특허가 출원되어 있다(US 2007/0099239). 그 외에도 TNF-a, LAMP1, IL-5 전구체(IL-5 precursor), IL-6 전구체(IL-6 precursor), CCL2 (MCP-1), CCL5 (RANTES), 카텝신 LI 전구체(cathepsin LI precursor), 아데닐레이트 키나아제 1(adenylate kinase 1), 류코트리엔 B4 수용체1(leukotriene B4 receptor 1), 보체 요소 D(complement factor D), 오스테오폰틴(osteopontin), 작은 유도성사이토카인 AI 7 전구체(small inducible cytokine AI 7 precursor), CXCL10, RANKL/TRANCE, CCL18 전구체(CCL18 precursor), 타입 IV 콜라겐분해효소 전구체(Type IV collagenase precursor), 호중구 콜라겐분해효소전구체(neutrophil collagenase precursor), 지방산 결합 프로테인 4(fatty acid binding protein 4), 카텝신S 전구체(cathepsin S precursor), IL-13 전구체(IL-13 precursor), sICAM-1 등이 심혈관계 질환 발생 위험인자 마커로 특허출원되어 있다.Biomarkers of known cardiovascular diseases include CRP, IL-6, IL-8, MCP-1 and IP-10. In addition, MCP-1, MCP-2, MCP-3, MCP-4, eotaxin, M-CSF, IL-3, IP-10, TNFa, Ang- (US 2007/0099239) have been filed. IL-5 precursor, IL-6 precursor, CCL2 (MCP-1), CCL5 (RANTES), cathepsin LI precursor (IL-6 precursor) ), Adenylate kinase 1, leukotriene B4 receptor 1, complement factor D, osteopontin, small inducible cytokine AI 7 precursor inducible cytokine AI7 precursor, CXCL10, RANKL / TRANCE, CCL18 precursor, type IV collagenase precursor, neutrophil collagenase precursor, fatty acid binding protein 4 (fatty acid binding protein 4, cathepsin S precursor, IL-13 precursor and sICAM-1 have been patented as markers for cardiovascular disease risk factors.

상기와 같이 동맥경화성 혈관질환 등을 예측할 수 있는 혈액 내 마커는 다양하게 제시되고 있으나 아직도 의료비 부담을 최소화하여 모든 사람을 대상으로 일괄적으로 적용시킬 수 있는 마커는 제한되어 있는 상태이다. 또한, 사용하는 약제에 따라 혈액 내 마커의 변화가 다양하게 나타날 수 있어 이에 대한 모니터링을 적절하게 할 수 있는 기술이 필요한 상태이다.
As described above, there are various blood markers that can predict atherosclerotic vascular disease and the like. However, since the burden of medical expenses is minimized, the markers that can be applied to all persons are limited. In addition, depending on the drugs used, various changes in the markers in the blood may occur, and techniques for appropriately monitoring them are necessary.

심방세동 또한 임상에서 가장 많이 발생하는 부정맥으로써 발생 기전으로는 구조적 재형성, 손상된 심방 수축력 등과 연관되어 있는 것으로 알려져 있다. 심방세동은 뇌졸중의 높은 위험성, 오랜 입원기간, 삶의 질 저하, 높은 사망률을 가지고 있는 질환으로 조기 진단 및 효과적인 치료 방법 개발을 위한 정확한 발생 기전의 이해가 필수적이다. 심방세동은 증상이 없는 경우도 있어 정확한 진단은 심방세동의 적절한 치료를 통해 뇌졸중과 같은 합병증의 위험도를 낮출 수 있을 것으로 기대된다.
Atrial fibrillation is also the most common arrhythmia in the clinic, and it is known that the mechanism of the arrhythmia is associated with structural remodeling and damaged atrial contractility. Atrial fibrillation is a disease with a high risk of stroke, a long hospital stay, poor quality of life, and high mortality, and it is essential to understand the exact mechanism of development for early diagnosis and effective treatment. Atrial fibrillation may be uncomplicated and accurate diagnosis is expected to reduce the risk of complications such as stroke through appropriate treatment of atrial fibrillation.

퓨린 대사체는 심장 질환의 마커로 잘 알려진 요산(uric acid)의 전구체 역할을 한다고 알려져 있다(1). 또한, 저산소증 상태의 조직에서 ATP가 분해되어 혈액 내에 농도가 급증하는 것으로 알려져 있어 심혈관계 질환에서 주요한 물질로 작용한다(2, 3). 하지만, 이와 같은 퓨린 대사체를 이용한 심혈관계질환의 진단 및 예후 예측에 관련된 연구가 부족한 상황이다. Purine metabolites are known to act as precursors of uric acid, a well-known marker of heart disease (1). In addition, it is known that ATP is degraded in tissues with hypoxic state, and concentration in blood increases rapidly, and it acts as a main material in cardiovascular diseases (2, 3). However, there is a lack of research on the diagnosis and prognosis of cardiovascular disease using such purine metabolites.

본 발명자들은 퓨린 대사체들의 정량 분석을 통해 협심증/심근경색/심방세동 환자의 진단 및 예후 예측을 수행하고자 하였으며 이에 본 발명을 완성하였다.
The present inventors performed diagnostic and prognostic prediction of patients suffering from angina / myocardial infarction / atrial fibrillation through quantitative analysis of purine metabolites, and completed the present invention.

(1) Hare JM, Johnson RJ (2003) Uric acid predicts clinical outcomes in heart failure, Insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 107: 1951-1953.(1) Hare JM, Johnson RJ (2003) Uric acid predicted clinical outcomes in heart failure, Insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 107: 1951-1953. (2) Grum CM, Simon RH, Dantzker DR, Fox IH (1985) Evidence for adenosine triphosphate degradation in critically-ill patients. CHEST Journal 88: 763-767.(2) Grum CM, Simon RH, Dantzker DR, Fox IH (1985) Evidence for adenosine triphosphate degradation in critically-ill patients. CHEST Journal 88: 763-767. (3) Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, Farrell L, Asnani A, Cyrille M, Ramanathan A, Shaham O, Berriz G, Lowry PA, Palacios IF, Tasan M, Roth FP, Min J, Baumgartner C, Keshishian H, Addona T, Mootha VK, Rosenzweig A, Carr SA, Fifer MA, Sabatine MS, Gerszten RE (2008) Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Invest. 118: 3503-3512.(3) Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, Farrell L, Asnania, Cyrille M, Ramanathan A, Shaham O, Berriz G, Lowry PA, Palacios IF, Tasan M, Roth FP , Min J, Baumgartner C, Keshishian H, Addona T, Mootha VK, Rosenzweig A, Carr SA Fifer MA, Sabatine MS, Gerszten RE (2008) Metabolite profiling of individuals with myocardial infarction reveals early signs of myocardial injury. J. Clin. Invest. 118: 3503-3512.

본 발명의 목적은 퓨린 대사체를 이용한 심방세동, 협심증 또는 심근경색 질환 진단 또는 예후 예측의 정보를 제공하기 위한 대사체의 분석 방법을 제공하는 것이다. It is an object of the present invention to provide a method for analyzing a metabolite for providing information on the diagnosis of atrial fibrillation, angina pectoris or myocardial infarction disease or prediction of prognosis using a purine metabolite.

본 발명의 또다른 목적은 퓨린 대사체를 이용한 심방세동, 협심증 또는 심근경색 질환 진단 또는 예후 예측이 가능한 키트를 제공하는 것이다.
It is still another object of the present invention to provide a kit capable of diagnosing atrial fibrillation, angina pectoris or myocardial infarction disease or predicting prognosis using a purine metabolite.

상기 목적을 달성하기 위하여, 본 발명은 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체에 대한 정량장치를 포함하는 심방세동 질환 진단 또는 예후 예측용 키트를 제공한다.In order to accomplish the above object, the present invention provides a pharmaceutical composition comprising hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, There is provided a kit for the diagnosis or prognosis prediction of atrial fibrillation disease comprising a quantification device for any one or more metabolites selected from the group consisting of guanosine and guanine.

또한, 본 발명은 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)에 대한 정량장치를 포함하는 협심증 또는 심근경색 진단 또는 예후 예측용 키트를 제공한다.The present invention also provides a kit for diagnosing angina pectoris or myocardial infarction or for predicting prognosis, comprising a quantitative device for hypoxanthine and inosine.

또한, 본 발명은In addition,

i) 피검체로부터 분리된 시료에서 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 대사체 군으로부터 선택되는 어느 하나 이상의 농도를 측정하는 단계;i) In a sample isolated from a test sample, a sample containing hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, guanosine, Measuring the concentration of one or more selected from the group consisting of a metabolite consisting of guanosine and guanine;

ii) 상기 단계 i)에서 시료에서 측정된 대사체의 농도를 정상 대조군 유래 동일한 유형의 시료에서 측정된 대사체의 농도와 각각 비교하는 단계; 및ii) comparing the concentration of the metabolite measured in the sample in step i) with the concentration of the metabolite measured in the same type of sample from the normal control, respectively; And

iii) 상기 단계 ii)에서 시료에서 측정된 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 군으로부터 선택된 어느 하나 이상의 농도가 정상대조군에 비해 증가하는 경우, 상기 피검체를 심방세동에 걸렸거나 심방세동 위험도가 높은 것으로 판정하는 단계를 포함하는, 심방세동 질환 진단 또는 예후 예측의 정보를 제공하기 위한 대사체의 분석 방법을 제공한다.(iii) the amount of hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, and the like measured in the sample in step ii) , Guanosine and guanine is increased as compared to a normal control group, it is determined that the subject is at risk for atrial fibrillation or atrial fibrillation , A method for analyzing metabolites to provide information on the diagnosis of atrial fibrillation disease or prediction of prognosis.

아울러, 본 발명은 In addition,

a) 피검체로부터 분리된 시료에서 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)의 농도를 측정하는 단계;a) measuring the concentration of hypoxanthine and inosine in a sample separated from a subject;

b) 상기 단계 a)에서 시료에서 측정된 대사체의 농도를 정상 대조군 유래 동일한 유형의 시료에서 측정된 대사체의 농도와 각각 비교하는 단계; 및b) comparing the concentration of the metabolite measured in the sample in step a) with the concentration of the metabolite measured in the same type of sample from the normal control, respectively; And

c) 상기 단계 b)에서 시료에서 측정된 하이포크산틴(Hypoxanthine)의 농도가 정상대조군에 비해 증가하고, 이노신(Inosine)의 농도가 정상인과 차이가 없는 경우, 상기 피검체를 심혈관계질환 위험도가 높은 것으로 판정하는 단계를 포함하는, 협심증 또는 심근경색 진단의 정보를 제공하기 위한 대사체의 분석 방법을 제공한다.
c) when the concentration of hypoxanthine measured in the sample in the step b) is higher than that of a normal control and the concentration of inosine is not different from that of a normal person, The method comprising the steps of: (a) determining whether the patient is suffering from angina pectoris or myocardial infarction.

본 발명은 퓨린 대사체를 이용한 심혈관질환의 진단 및 예후 예측 방법에 관한 것으로, 협심증 및 심근경색 환자에서 하이포크산틴(hypoxanthine) 및 이노신(inosine) 농도가 증가하였으므로 진단 마커로 이용이 가능하며, 협심증 및 심근경색 환자에서 하이포크산틴의 농도가 높아지고 이노신의 농도가 정상인 사람들과 차이가 없을 경우, event 발생 비율이 높아짐을 통해 퓨린 대사체 농도를 이용하여 심혈관계질환 환자의 예후 예측이 가능함을 확인하였다. 또한, 심방세동 환자에서 하이포크산틴, 이노신 등의 퓨린 대사체들의 농도가 급격히 감소하였으므로, 상기 대사체들의 농도의 측정을 통해 심방세동 환자들을 조기에 정확히 진단할 수 있음을 확인하였다.
The present invention relates to a method for diagnosing and prognosing cardiovascular diseases using purine metabolism, which can be used as a diagnostic marker because of increased hypoxanthine and inosine concentrations in patients with angina and myocardial infarction. In patients with myocardial infarction, the prognosis of patients with cardiovascular disease could be predicted using the concentration of purine metabolites by increasing the incidence of events when the concentration of hypoxanthine is higher than that of normal inosine. In addition, since concentrations of purine metabolites such as hypoxanthine and inosine were rapidly decreased in atrial fibrillation patients, it was confirmed that early diagnosis of atrial fibrillation patients was possible by measuring the concentrations of the metabolites.

도 1은, 협심증(angina) 및 심근경색(myocardial infarction; MI) 환자에서의 퓨린 대사체 농도 변화를 Box-Whisker 도표로 나타낸 그림이다;
여기서, Box 내부의 선은 로그를 이용하여 표준화된 중앙값을 나타내었고 각 경계선은 1사분위수(25th) 및 3사분위수(75th)를 나타내었으며, Whisker의 각 경계선은 5% 백분위수와 95% 백분위수를 나타낸 것이다.
도 2는, 협심증(angina) 및 심근경색(myocardial infarction; MI) 환자에서의 퓨린 대사체의 농도와 event 발생 시간과의 Kaplan-Meier curve를 나타낸 도이다;
여기서, Hypo : 하이포크산틴(Hypoxanthine);
Ino : 이노신(inosine);
Group Ⅰ : 그룹 1(hypoxanthine(상위 25%)-inosine(하위 75%)); 및
Group Ⅱ : 그룹 2(hypoxanthine(하위 75%)-inosine(상위 25%)).
Figure 1 is a Box-Whisker plot of change in purine metabolite concentration in patients with angina and myocardial infarction (MI);
In this case, the line inside the box represents the standardized median using log, each boundary represents 1 quartile (25 th ) and 3 quartiles (75 th ), and each boundary of the whisker is 5% % Percentile.
Figure 2 is a Kaplan-Meier curve of the concentration of purine metabolites and the time of event in patients with angina and myocardial infarction (MI);
Here, Hypo: Hypoxanthine;
Ino: inosine;
Group I: Group 1 (hypoxanthine (upper 25%) - inosine (lower 75%)); And
Group II: Group 2 (hypoxanthine (lower 75%) - inosine (upper 25%)).

이하, 본 발명을 구체적으로 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체에 대한 정량장치를 포함하는 심방세동 질환 진단 또는 예후 예측용 키트를 제공한다.The present invention relates to a pharmaceutical composition comprising hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, guanosine, guanine, (Guanine). The present invention also provides a kit for the diagnosis or prognosis prediction of atrial fibrillation disease comprising at least one metabolite selected from the group consisting of guanine and guanine.

상기 정량장치는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나인 것이 바람직하나 이에 한정되지 않는다.
The quantification device is preferably any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography and mass spectrometry, but is not limited thereto.

본 발명의 구체적인 실시예에서, 본 발명자들은 심방세동 환자에서 퓨린 대사체를 분석하였으며 UPLC-Triple Quad-MS를 통하여 정량 분석하였다. 그 결과, 심방세동 환자들의 플라즈마 시료에서 측정된 퓨린 대사체들은 대부분 정상인에 비해 유의적으로 감소하는 것을 확인하였고, 특히 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)의 경우 정상인에 비해 심방세동 환자군에서 농도가 수십 배까지 감소하는 것을 확인하였다(표 5 참조).In a specific embodiment of the present invention, the purine metabolites were analyzed in patients with atrial fibrillation and analyzed quantitatively using UPLC-Triple Quad-MS. As a result, it was confirmed that the purine metabolites measured in the plasma samples of atrial fibrillation patients were significantly reduced compared with the normal ones. Especially, in the case of hypoxanthine and inosine, in the case of atrial fibrillation, (Table 5). ≪ tb > < TABLE >

따라서, 본 발명에 따른 결과를 통해 상기 검증된 대사체를 사용하여 심방세동 진단 및 예후 예측을 할 수 있음을 확인하였다.
Therefore, the results of the present invention confirmed that the above-described verified metabolites can be used to diagnose atrial fibrillation and predict a prognosis.

또한, 본 발명은 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)에 대한 정량장치를 포함하는 협심증 또는 심근경색 진단 또는 예후 예측용 키트를 제공한다.The present invention also provides a kit for diagnosing angina pectoris or myocardial infarction or for predicting prognosis, comprising a quantitative device for hypoxanthine and inosine.

상기 정량장치는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나인 것이 바람직하나 이에 한정되지 않는다.
The quantification device is preferably any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography and mass spectrometry, but is not limited thereto.

본 발명의 구체적인 실시예에서, 본 발명자들은 심근경색, 협심증 환자 및 정상인으로부터 얻은 혈청 시료에서 퓨린 대사체들을 추출하여 UPLC-Triple Quad-MS를 통하여 정량 분석하였다. 그 결과, 하이포크산틴(Hypoxanthine)은 정상인에 비해 유의한 차이를 보이지 않았지만 증가하는 경향을 확인하였으며, 협심증 환자보다 심근경색 환자에서 유의하게 증가하는 것을 확인하였다(도 1a 및 표 3 참조). 또한, 이노신(Inosine)은 협심증과 심근경색 환자 모두에게서 정상인에 비해 유의하게 증가하는 것을 확인하였다(도 1b 및 표 3 참조).In a specific example of the present invention, the present inventors extracted purine metabolites from serum samples obtained from myocardial infarction, angina pectoris, and normal persons and quantitatively analyzed by UPLC-Triple Quad-MS. As a result, hypoxanthine did not show any significant difference compared to normal subjects, but it was found to increase and was significantly increased in myocardial infarction patients than angina patients (see FIGS. 1A and 3). In addition, inosine was significantly increased in both angina and myocardial infarction patients compared to normal subjects (see FIG. 1B and Table 3).

또한, 본 발명자들은 하이포크산틴(hypoxanthine) 및 이노신(inosine)을 이용하여 협심증 및 심근경색 예후에 대한 예측이 가능한지 확인하기 위하여 Kaplan-Meier 생존분석과 로그순위법 분석을 수행하였다. 그 결과, 총 81명의 협심증(58명) 및 심근경색(23명) 환자군의 혈청시료에서 그룹 1의 총 빈도는 17명이며 event 발생 빈도는 5명인 것을 확인하였으며, 그룹 2의 총 빈도는 64명이며 event 발생 빈도는 3명인 것을 확인하였다(표 4 참조). 또한, 도 2에 나타낸 바와 같이 하이포크산틴(Hypoxanthine) 및 이노신(inosine) 농도와 event 발생 시간과의 Kaplan-Meier curve을 통해 그룹 1 환자들의 event 발생 비율이 그룹 2의 event 발생 비율보다 높았으며 생존율 또한 유의하게(p=0.001, 로그순위법 분석) 감소하는 것을 확인하였다(도 2 참조).In addition, the present inventors performed Kaplan-Meier survival analysis and log rank method analysis to confirm whether prediction of angina pectoris and myocardial infarction can be made using hypoxanthine and inosine. As a result, we found that the total frequency of group 1 was 17 and the frequency of events was 5 in the serum samples of 81 patients with angina pectoris (58 patients) and myocardial infarction (23 patients), and the total frequency of group 2 was 64 And the frequency of events was 3 (see Table 4). 2, the Kaplan-Meier curve of Hypoxanthine and inosine concentrations and event time showed that the event rate of group 1 patients was higher than that of group 2, and the survival rate And significantly decreased (p = 0.001, log rank method analysis) (see FIG. 2).

따라서, 본 발명에 따른 결과를 통해 상기 검증된 대사체를 사용하여 심근경색 또는 협심증 진단 및 예후 예측을 할 수 있음을 확인하였다.
Thus, the results of the present invention have confirmed that the above-described metabolite can be used to diagnose myocardial infarction or angina and to predict a prognosis.

또한, 본 발명은In addition,

i) 피검체로부터 분리된 시료에서 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 대사체 군으로부터 선택되는 어느 하나 이상의 농도를 측정하는 단계;i) In a sample isolated from a test sample, a sample containing hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, guanosine, Measuring the concentration of one or more selected from the group consisting of a metabolite consisting of guanosine and guanine;

ii) 상기 단계 i)에서 시료에서 측정된 대사체의 농도를 정상 대조군 유래 동일한 유형의 시료에서 측정된 대사체의 농도와 각각 비교하는 단계; 및ii) comparing the concentration of the metabolite measured in the sample in step i) with the concentration of the metabolite measured in the same type of sample from the normal control, respectively; And

iii) 상기 단계 ii)에서 시료에서 측정된 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 군으로부터 선택된 어느 하나 이상의 농도가 정상대조군에 비해 증가하는 경우, 상기 피검체를 심방세동에 걸렸거나 심방세동 위험도가 높은 것으로 판정하는 단계를 포함하는, 심방세동 질환 진단 또는 예후 예측의 정보를 제공하기 위한 대사체의 분석 방법을 제공한다.(iii) the amount of hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, and the like measured in the sample in step ii) , Guanosine and guanine is increased as compared to a normal control group, it is determined that the subject is at risk for atrial fibrillation or atrial fibrillation , A method for analyzing metabolites to provide information on the diagnosis of atrial fibrillation disease or prediction of prognosis.

상기 분리된 시료는 소변, 혈액 및 혈장으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것이 바람직하나 이에 한정되지 않는다.The separated sample preferably includes at least one selected from the group consisting of urine, blood and plasma, but is not limited thereto.

상기 단계 i)의 농도는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나로 측정하는 것이 바람직하나 이에 한정되지 않는다.
The concentration of the step i) is preferably measured by any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography and mass spectrometry, but is not limited thereto.

아울러, 본 발명은In addition,

a) 피검체로부터 분리된 시료에서 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)의 농도를 측정하는 단계;a) measuring the concentration of hypoxanthine and inosine in a sample separated from a subject;

b) 상기 단계 a)에서 시료에서 측정된 대사체의 농도를 정상 대조군 유래 동일한 유형의 시료에서 측정된 대사체의 농도와 각각 비교하는 단계; 및b) comparing the concentration of the metabolite measured in the sample in step a) with the concentration of the metabolite measured in the same type of sample from the normal control, respectively; And

c) 상기 단계 b)에서 시료에서 측정된 하이포크산틴(Hypoxanthine)의 농도가 정상대조군에 비해 증가하고, 이노신(Inosine)의 농도가 정상인과 차이가 없는 경우, 상기 피검체를 심혈관계질환 위험도가 높은 것으로 판정하는 단계를 포함하는, 협심증 또는 심근경색 진단의 정보를 제공하기 위한 대사체의 분석 방법을 제공한다.c) when the concentration of hypoxanthine measured in the sample in the step b) is higher than that of a normal control and the concentration of inosine is not different from that of a normal person, The method comprising the steps of: (a) determining whether the patient is suffering from angina pectoris or myocardial infarction.

상기 분리된 시료는 소변, 혈액 및 혈장으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것이 바람직하나 이에 한정되지 않는다. The separated sample preferably includes at least one selected from the group consisting of urine, blood and plasma, but is not limited thereto.

상기 단계 a)의 농도는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나로 측정하는 것이 바람직하나 이에 한정되지 않는다.
The concentration of the step a) is preferably measured by any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography and mass spectrometry, but is not limited thereto.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

<< 실시예Example 1> 심근경색 및 협심증  1> myocardial infarction and angina 환자에서In patients 퓨린  Purine 대사체의Metabolite 분석 analysis

<1-1> 하이포크산틴(<1-1> Hypoxanthine ( hypoxnathinehypoxnathine ) 및 ) And 이노신(inosine)의Inosine 농도 변화 확인 Confirm concentration change

본 발명자들은 심근경색 환자 32명 및 협심증 환자 32명과 나이, 성별 및 신체질량지수(body mass index; BMI)가 매칭되는 정상인 32명으로부터 얻은 혈청 시료에서 퓨린 대사체들을 추출하여 UPLC-Triple Quad-MS를 통하여 정량 분석하였다.The present inventors extracted purine metabolites from 32 blood samples from 32 patients with myocardial infarction and 32 patients with angina pectoris and 32 healthy controls whose age, sex and body mass index (BMI) matched. The UPLC-Triple Quad-MS .

구체적으로, 본 발명자들은 질량분석기를 기반으로 한 퓨린 대사체 분석을 위해, 하기와 같이 시료 전처리를 수행하였다.Specifically, the present inventors performed sample pretreatment as described below for analyzing purine metabolites based on a mass spectrometer.

우선, 혈청 또는 플라즈마 시료(50 ㎕)에 500 ㎕ 클로로포름-메탄올(chloroform-methanol, 50:50, v/v, 4℃)를 첨가하고 30초 동안 섞어주었다. 여기에 100 ㎕ 증류수를 첨가하고 30초 동안 섞어준 뒤 10분 동안 4 ℃에서 방치하였다. 이후, 10분 동안 13,000 rpm, 4℃에서 원심분리한 뒤 상층액(150 ㎕)을 분리해 내어 동결 건조하고 측정 전까지 -80℃에서 보관하였다. 질량분석기 분석을 위해 시료를 250 ㎕ Acetonitile-H2O(75:25, v/v)에 재용해하고, 내부 표준 물질로써 동위원소로 치환된 크산틴(xanthine), 하이포크산틴(hypoxanthine), 이노신(inosine), 요산(uric acid)을 첨가한 뒤 분석을 수행하였다. First, 500 μl of chloroform-methanol (50:50, v / v, 4 ° C) was added to a serum or plasma sample (50 μl) and mixed for 30 seconds. To this, 100 占 퐇 of distilled water was added, and the mixture was stirred for 30 seconds and left at 4 占 폚 for 10 minutes. After centrifugation at 13,000 rpm at 4 ° C for 10 minutes, the supernatant (150 μl) was separated, freeze-dried and stored at -80 ° C until measurement. For mass spectrometer analysis, the sample was redissolved in 250 μl Acetonitile-H 2 O (75:25, v / v) and xanthine, hypoxanthine, inosine (inosine), and uric acid (uric acid).

혈청 및 플라즈마 내 극성 대사체로 존재하고 있는 퓨린 대사체의 정량분석을 위해 친수성 상호작용 크로마토그래피-텐덤 질량분석기(HILIC-MS/MS)를 이용하여 분석을 진행하였다. 사용된 장비는 Agilent 1290 UHPLC 와 Agilent 6490 Triple quadrupole MS를 이용하였다. 친수성 상호작용 크로마토그래피 조건으로는 BEH HILIC(2.1 x 100 mm, 1.8 ㎛, Waters) 컬럼을 이용하여 35℃에서 기울기 용리를 이용하여 퓨린 대사체들을 분리하였다. 이동상으로는 (A) Acetonitile-H2O (95:5, v/v, ammonium acetate 10 mM, 0.1% formic acid) 및 (B) Acetonitile-H2O (50:50, v/v, ammonium acetate 10 mM, 0.1% formic acid)를 이용하였으며, 기울기 용리는 총 분석 시간을 15분으로 하여 하기 표 1과 같이 수행하였다. 시료는 1 ㎕를 주입하였으며, 텐덤 질량분석기 조건(다중 반응 검지법; Multiple Reaction Monitoring, MRM)은 하기 표 2와 같이 수행하였다. Analysis was performed using a hydrophilic interaction chromatography-tandem mass spectrometer (HILIC-MS / MS) for the quantitative analysis of purine metabolites present in serum and plasma polar metabolites. The equipment used was Agilent 1290 UHPLC and Agilent 6490 Triple quadrupole MS. For hydrophilic interaction chromatographic conditions, purine metabolites were separated using gradient elution at 35 ° C using BEH HILIC (2.1 x 100 mm, 1.8 μm, Waters) column. (A) Acetonitile-H 2 O (95: 5, v / v, ammonium acetate 10 mM, 0.1% formic acid) and Acetonitile-H 2 O (50:50, v / mM, 0.1% formic acid), and the gradient elution was performed as shown in Table 1 below, with the total analysis time being 15 minutes. 1 μl of the sample was injected, and the tandem mass spectrometer condition (multiple reaction monitoring, MRM) was performed as shown in Table 2 below.

시간(분)Time (minutes) 이동상 A(%)Mobile A (%) 이동상 B(%)Mobile phase B (%) 유속(mL/min)Flow rate (mL / min) 0.00.0 9999 1One 0.40.4 2.02.0 9999 1One 0.40.4 8.08.0 4545 5555 0.40.4 9.09.0 1One 9999 0.40.4 11.011.0 1One 9999 0.40.4 11.111.1 9999 1One 0.40.4 15.015.0 9999 1One 0.40.4

화합물(Compounds)Compounds m/zm / z Product ionProduct ion CE a CE a Ionized mode b Ionized mode b 하이포크산틴(Hypoxanthine)Hypoxanthine 137137 9494 2020 ++ 크산틴(Xanthine)Xanthine 153153 9494 18/1418/14 ++ 이노신(Inosine)Inosine 269269 137137 88 ++ 요산(Uric acid)Uric acid 167167 124/96124/96 12/1612/16 ++ 구아닌(Guanine)Guanine 152152 135/110135/110 18/2018/20 ++ 구아노신(Guanosine)Guanosine 284.1284.1 152.1152.1 2020 ++ 아데닌(Adenine)Adenine 136.1136.1 119.1/94.1119.1 / 94.1 20/2020/20 ++ 아데노신(Adenosine)Adenosine 268268 136.1136.1 1818 ++ 크산토신(Xantosine)Xantosine 283283 150.8150.8 2020 -- IS-크산틴(IS-Xanthine)IS-Xanthine &lt; / RTI &gt; 155.1155.1 114.1/137.1114.1 / 137.1 4/144/14 ++ IS-하이포크산틴(IS-Hypoxanthine)IS-Hypoxanthine 142.1142.1 124.1/114.1124.1 / 114.1 24/2024/20 ++ IS-이노신(IS-Inosine)IS-Inosine (IS-Inosine) 273.1273.1 141/255141/255 14/1814/18 ++ IS-요산(IS-Uric acid)IS-Uric acid 168.9168.9 125/96.9125 / 96.9 14/1614/16 -- IS-타우린(IS-taurine)IS-taurine (IS-taurine) 125.9125.9 8080 2222 --

a 는 collision energy를 의미한다. a means collision energy.

b (+)는 positive ion mode를 (-)는 negative ion mode를 의미한다. b (+) means positive ion mode and (-) means negative ion mode.

상기 MRM 분석을 통해 얻어진 결과는 3회 반복 측정된 standard curve를 이용하여 Agilent의 Qauntitative Analysis Software를 통하여 정량하였다. 이때 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid)의 농도는 각각의 동위원소로 치환된 IS를 사용하여 보정하였다.The results obtained from the MRM analysis were quantified using Agilent's Qauntitative Analysis Software using a standard curve that was repeated three times. At this time, the concentrations of hypoxanthine, inosine, xanthine and uric acid were corrected using ISs substituted with respective isotopes.

대사체 농도를 비교하기 위하여 협심증 및 심근경색 질환 환자들은 로그를 이용하여 표준화된 농도를 사용하였으며 통계검사는 ANOVA와 post test로 Tukey's multiple comparison test를 이용하였다.To compare the concentrations of metabolites, standardized concentrations were used for the patients with angina and myocardial infarction. Statistical tests were performed with ANOVA and posttest using Tukey's multiple comparison test.

그 결과, 도 1 및 표 3에 나타낸 바와 같이 하이포크산틴(Hypoxanthine)은 정상인에 비해 유의한 차이를 보이지 않았지만 증가하는 경향을 확인하였으며, 협심증 환자보다 심근경색 환자에서 유의하게 증가하는 것을 확인하였다(도 1a, 표 3). 또한, 이노신(Inosine)은 협심증과 심근경색 환자 모두에게서 정상인에 비해 유의하게 증가하는 것을 확인하였다(도 1b, 표 3). 나이, 성별 및 BMI를 매칭하지 않은 혈청시료에서도 상기와 동일한 결과를 확인하였다.As a result, as shown in FIG. 1 and Table 3, hypoxanthine did not show a significant difference compared to normal subjects, but it was found to increase, and it was found that it was significantly increased in myocardial infarction patients than in angina patients ( 1a, Table 3). In addition, inosine was significantly increased in both angina pectoris and myocardial infarction patients compared to normal subjects (Fig. 1B, Table 3). The same results were confirmed in serum samples that did not match the age, sex and BMI.

대사체 종류Metabolism type 정상인Normal 협심증 환자Angina patient 심근경색 환자Myocardial infarction patient 하이포크산틴(Hypoxanthine)Hypoxanthine 1.14 [0.91, 1.5]a 1.14 [0.91, 1.5] a 1.07 [0.88, 1.22]1.07 [0.88, 1.22] 1.33 [1.02, 1.89]1.33 [1.02, 1.89] 이노신(Inosine)Inosine -2.43 [-2.54, -2.24]-2.43 [-2.54, 2.24] -1.11 [-1.88, -0.72]-1.11 [-1.88, -0.72] -1.38 [-2.14, -0.29]-1.38 [-2.14, -0.29]

a로그를 이용하여 표준화된 중앙값, 1사분위수(25th), 3사분위수(75th)를 나타낸다.
a log of the standardized median, the first quartile (25 th ), and the third quartile (75 th ).

<1-2> 하이포크산틴(<1-2> Hypoxanthin ( hypoxanthinehypoxanthine ) 및 ) And 이노신inosineInosine )을 이용하여 협심증 및 심근경색 환자의 예후 예측) For prediction of prognosis in patients with angina and myocardial infarction

본 발명자들은 하이포크산틴(hypoxanthine) 및 이노신(inosine)을 이용하여 협심증 및 심근경색 예후에 대한 예측이 가능한지 확인하기 위하여 Kaplan-Meier 생존분석과 로그순위법 분석을 수행하였다.The present inventors performed Kaplan-Meier survival analysis and log rank method analysis to determine whether prediction of angina pectoris and myocardial infarction can be made using hypoxanthine and inosine.

구체적으로, 추적조사(Follow-up study)를 수행하여 협심증 및 심근경색에 대한 event 발생 여부를 추적하였다. event 발생은 추적조사에서 수술을 받거나 죽은 환자로 판단되었다. 모든 질환군 혈청시료에 대하여 상기 실시예 <1-1>과 동일한 방식으로 하이포크산틴(hypoxanthine) 및 이노신(inosine)의 농도를 측정하였으며, 대사체 농도에 따른 event 발생 비율 추정 값과 비교를 위하여 질환군을 두 그룹으로 나누었다. Specifically, a follow-up study was performed to track the occurrence of angina and myocardial infarction events. Event occurrence was judged to be the patient who underwent surgery or died in the follow-up study. The concentrations of hypoxanthine and inosine were measured in the same manner as in Example <1-1> for serum samples of all disease groups. For comparison with the estimation value of event rate according to the metabolite concentration, The army was divided into two groups.

그룹 1: hypoxanthine(상위 25%)-inosine(하위 75%), Group 1: hypoxanthine (upper 25%) - inosine (lower 75%),

그룹 2: hypoxanthine(하위 75%)-inosine(상위 25%)Group 2: hypoxanthine (lower 75%) - inosine (upper 25%)

Kaplan-Meier 생존분석과 로그순위법 분석을 이용하여 생존분석을 수행하였다. 유의수준은 p < 0.05를 기준으로 하였다. Survival analysis was performed using Kaplan-Meier survival analysis and log-rank method analysis. The significance level was based on p <0.05.

그 결과, 표 4에 나타낸 바와 같이 총 81명의 협심증(58명) 및 심근경색(23명) 환자군의 혈청시료에서 그룹 1의 총 빈도는 17명이며 event 발생 빈도는 5명인 것을 확인하였다. 그룹 2의 총 빈도는 64명이며 event 발생 빈도는 3명인 것을 확인하였다(표 4).As a result, as shown in Table 4, the total frequency of the group 1 was 17 in the serum samples of 81 angina pectoris (58 patients) and myocardial infarction (23 patients) group, and the event occurrence frequency was 5. The total frequency of group 2 was 64 and the event frequency was 3 (Table 4).

그룹group 합계(N)Total (N) event(N)event (N) 생존율(%)Survival rate (%) 1One 1717 55 69.769.7 22 6464 33 94.994.9 전체all 8181 88 --

또한, 도 2에 나타낸 바와 같이 하이포크산틴(Hypoxanthine) 및 이노신(inosine) 농도와 event 발생 시간과의 Kaplan-Meier curve을 통해 그룹 1 환자들의 event 발생 비율이 그룹 2의 event 발생 비율보다 높았으며 생존율 또한 유의하게(p=0.001, 로그순위법 분석) 감소하는 것을 확인하였다(도 2).
2, the Kaplan-Meier curve of Hypoxanthine and inosine concentrations and event time showed that the event rate of group 1 patients was higher than that of group 2, and the survival rate And significantly decreased (p = 0.001, log rank method analysis) (Fig. 2).

<< 실시예Example 2> 심방세동  2> atrial fibrillation 환자에서In patients 퓨린  Purine 대사체의Metabolite 분석 analysis

본 발명자들은 심방세동 환자에서 퓨린 대사체를 분석하기 위해 심방세동의 환자 35명과 나이, 성별 및 BMI가 매칭되는 정상인 35명에서 얻어진 혈액(플라스마) 시료에서 퓨린 대사체들을 추출하여 상기 <실시예 1>과 동일한 방법으로 UPLC-Triple Quad-MS를 통하여 정량 분석하였다.To analyze purine metabolites in patients with atrial fibrillation, the present inventors extracted purine metabolites from blood (plasma) samples obtained from 35 patients with atrial fibrillation and 35 patients with normal matched age, sex, and BMI, >, Quantitative analysis was carried out by UPLC-Triple Quad-MS.

대사체 농도는 중앙값 [1사분위수(25th), 3사분위수(75th)]로 나타내었으며, 정상인과 심방세동 환자 사이에서의 퓨린 대사체들을 비교하기 위하여 비모수 검정(Mann-Whitney U test)이 이용되었다.Metabolic concentrations were expressed as the median [25th, 3th quartile (75th)] and the Mann-Whitney U test was used to compare the purine metabolites between normal and atrial fibrillation patients .

그 결과, 표 5에 나타낸 바와 같이 심방세동 환자들의 플라즈마 시료에서 측정된 퓨린 대사체들은 대부분 정상인에 비해 유의적으로 감소하는 것을 확인하였다. 특히 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)의 경우 정상인에 비해 심방세동 환자군에서 농도가 수십 배까지 감소하는 것을 확인하였다(표 5).As a result, as shown in Table 5, it was confirmed that the purine metabolites measured in the plasma samples of the atrial fibrillation patients were significantly decreased as compared with the normal ones. In particular, hypoxanthine and inosine were found to decrease in concentration by a factor of ten in patients with atrial fibrillation compared with normal subjects (Table 5).

대사체 종류Metabolism type 정상인 (35명, uM)Normal subjects (35 subjects, uM) 심방세동 환자 (35명, uM)Atrial fibrillation (35 patients, uM) 유의성 (P value)Significance (P value) 하이포크산틴(Hypoxanthine)Hypoxanthine 35.68 [24.16-72.09]35.68 [24.16-72.09] 3.83 [2.60-12.03]3.83 [2.60-12.03] <0.0001<0.0001 이노신(Inosine)Inosine 21.36 [3.54-38.31]21.36 [3.54-38.31] 0.11 [0.05-1.02]0.11 [0.05-1.02] <0.0001<0.0001 크산틴(Xanthine)Xanthine 1.72 [0.86-2.29]1.72 [0.86-2.29] 0.47 [0.40-0.79]0.47 [0.40-0.79] <0.0001<0.0001 요산(Uric acid)Uric acid 359.98 [157.39-535.46]359.98 [157.39-535.46] 179.52 [106.27-537.12]179.52 [106.27-537.12] 0.1730.173 아데노신(Adenosine)Adenosine 0.03 [0.02-0.05]0.03 [0.02-0.05] 0.01 [0.01-0.02]0.01 [0.01-0.02] <0.0001<0.0001 아데닌(Adenine)Adenine 0.03 [0.02-0.04]0.03 [0.02-0.04] 0.01 [0.01-0.02]0.01 [0.01-0.02] <0.0001<0.0001 크산토신(Xanthosine)Xanthosine 0.14 [0.10-0.26]0.14 [0.10-0.26] 0.09 [0.06-0.14]0.09 [0.06-0.14] 0.00360.0036 구아노신(Guanosine)Guanosine 0.56 [0.24-1.43]0.56 [0.24 - 1.43] 0.00 [0.00-0.04]0.00 [0.00-0.04] <0.0001<0.0001 구아닌(Guanine)Guanine 0.76 [0.53-0.17]0.76 [0.53-0.17] 0.28 [0.21-0.43]0.28 [0.21-0.43] <0.0001<0.0001

Claims (10)

하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체에 대한 정량장치를 포함하는 심방세동 질환 진단 또는 예후 예측용 키트.
Inosine, Xanthine, Uric acid, Adenosine, Adenine, Xanthosine, Guanosine and Guanine have been found to be useful in the treatment of cancer, And a quantification device for at least one metabolite selected from the group consisting of: &lt; RTI ID = 0.0 &gt; (a) &lt; / RTI &gt;
제 1항에 있어서, 상기 정량장치는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 키트.
The kit according to claim 1, wherein the quantification device is any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography, and mass spectrometry.
하이포크산틴(Hypoxanthine) 및 이노신(Inosine)에 대한 정량장치를 포함하는 협심증 또는 심근경색 진단 또는 예후 예측용 키트.
A kit for diagnosing or prognosing myocardial infarction or myocardial infarction, comprising a quantification device for hypoxanthine and inosine.
제 3항에 있어서, 상기 정량장치는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 키트.
4. The kit according to claim 3, wherein the quantification device is any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography, and mass spectrometry.
i) 피검체로부터 분리된 시료에서 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 대사체 군으로부터 선택되는 어느 하나 이상의 농도를 측정하는 단계;
ii) 상기 단계 i)에서 시료에서 측정된 대사체의 농도를 정상 대조군 유래 동일한 유형의 시료에서 측정된 대사체의 농도와 각각 비교하는 단계; 및
iii) 상기 단계 ii)에서 시료에서 측정된 하이포크산틴(Hypoxanthine), 이노신(Inosine), 크산틴(Xanthine), 요산(Uric acid), 아데노신(Adenosine), 아데닌(Adenine), 크산토신(Xanthosine), 구아노신(Guanosine) 및 구아닌(Guanine)으로 구성된 군으로부터 선택된 어느 하나 이상의 농도가 정상대조군에 비해 증가하는 경우, 상기 피검체를 심방세동에 걸렸거나 심방세동 위험도가 높은 것으로 판정하는 단계를 포함하는, 심방세동 질환 진단 또는 예후 예측의 정보를 제공하기 위한 대사체의 분석 방법.
i) In a sample isolated from a test sample, a sample containing hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, guanosine, Measuring the concentration of one or more selected from the group consisting of a metabolite consisting of guanosine and guanine;
ii) comparing the concentration of the metabolite measured in the sample in step i) with the concentration of the metabolite measured in the same type of sample from the normal control, respectively; And
(iii) the amount of hypoxanthine, inosine, xanthine, uric acid, adenosine, adenine, xanthosine, and the like measured in the sample in step ii) , Guanosine and guanine is increased as compared to a normal control group, it is determined that the subject is at risk for atrial fibrillation or atrial fibrillation , Atrial fibrillation disease, or prognosis prediction.
제 5항에 있어서, 상기 분리된 시료는 소변, 혈액 및 혈장으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 심방세동 질환 진단 또는 예후 예측의 정보를 제공하기 위한 대사체의 분석 방법.
[6] The method of claim 5, wherein the separated sample is at least one selected from the group consisting of urine, blood, and plasma.
제 5항에 있어서, 상기 단계 i)의 농도는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나로 측정하는 것을 특징으로 하는 심방세동 질환 진단 또는 예후 예측의 정보를 제공하기 위한 대사체의 분석 방법.
6. The method according to claim 5, wherein the concentration of step i) is measured by any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography and mass spectrometry. Method of analysis of metabolites for.
a) 피검체로부터 분리된 시료에서 하이포크산틴(Hypoxanthine) 및 이노신(Inosine)의 농도를 측정하는 단계;
b) 상기 단계 a)에서 시료에서 측정된 대사체의 농도를 정상 대조군 유래 동일한 유형의 시료에서 측정된 대사체의 농도와 각각 비교하는 단계; 및
c) 상기 단계 b)에서 시료에서 측정된 하이포크산틴(Hypoxanthine)의 농도가 정상대조군에 비해 증가하고, 이노신(Inosine)의 농도가 정상인과 차이가 없는 경우, 상기 피검체를 심혈관계질환 위험도가 높은 것으로 판정하는 단계를 포함하는, 협심증 또는 심근경색 진단의 정보를 제공하기 위한 대사체의 분석 방법.
a) measuring the concentration of hypoxanthine and inosine in a sample separated from a subject;
b) comparing the concentration of the metabolite measured in the sample in step a) with the concentration of the metabolite measured in the same type of sample from the normal control, respectively; And
c) when the concentration of hypoxanthine measured in the sample in the step b) is higher than that of a normal control and the concentration of inosine is not different from that of a normal person, Wherein the method comprises the steps of: determining whether the subject is suffering from angina pectoris or myocardial infarction.
제 8항에 있어서, 상기 분리된 시료는 소변, 혈액 및 혈장으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 협심증 또는 심근경색 진단의 정보를 제공하기 위한 대사체의 분석 방법.
9. The method of claim 8, wherein the isolated sample comprises at least one selected from the group consisting of urine, blood, and plasma.
제 8항에 있어서, 상기 단계 a)의 농도는 핵자기공명(NMR), 크로마토그래피 및 질량분석기로 구성된 군으로부터 선택된 어느 하나로 측정하는 것을 특징으로 하는 협심증 또는 심근경색 진단의 정보를 제공하기 위한 대사체의 분석 방법.


9. The method according to claim 8, wherein the concentration of step a) is measured by any one selected from the group consisting of nuclear magnetic resonance (NMR), chromatography and mass spectrometry. Sieve analysis method.


KR1020150105596A 2015-07-27 2015-07-27 A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics KR101730923B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150105596A KR101730923B1 (en) 2015-07-27 2015-07-27 A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150105596A KR101730923B1 (en) 2015-07-27 2015-07-27 A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics

Publications (2)

Publication Number Publication Date
KR20170013428A true KR20170013428A (en) 2017-02-07
KR101730923B1 KR101730923B1 (en) 2017-05-02

Family

ID=58107961

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150105596A KR101730923B1 (en) 2015-07-27 2015-07-27 A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics

Country Status (1)

Country Link
KR (1) KR101730923B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236188A1 (en) * 2017-06-23 2018-12-27 한국기초과학지원연구원 Method for diagnosing myocardial infarction or predicting prognosis of same
KR102006906B1 (en) * 2018-02-19 2019-08-02 연세대학교 산학협력단 Vascular tissue-based biomarkers for cardiovascular disease and method for diagnosis of cardiovascular disease using the same
CN110308232A (en) * 2019-07-22 2019-10-08 武汉海谱生物医药科技有限公司 A kind of method of uricase in HPLC method analyzing rat blood plasma
CN111599476A (en) * 2020-05-15 2020-08-28 中南大学湘雅医院 Hypertension prediction model and establishment method thereof and biomarker for predicting hypertension
CN114839278A (en) * 2021-02-01 2022-08-02 中国科学院上海营养与健康研究所 Myocardial infarction diagnosis biomarker and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099239A1 (en) * 2005-06-24 2007-05-03 Raymond Tabibiazar Methods and compositions for diagnosis and monitoring of atherosclerotic cardiovascular disease
KR101589285B1 (en) 2014-09-23 2016-01-27 한국생명공학연구원 Paralemmin as a marker of cardiovascular disorders and cardiovascular disorders diagnostic kit using thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
(1) Hare JM, Johnson RJ (2003) Uric acid predicts clinical outcomes in heart failure, Insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 107: 1951-1953.
(2) Grum CM, Simon RH, Dantzker DR, Fox IH (1985) Evidence for adenosine triphosphate degradation in critically-ill patients. CHEST Journal 88: 763-767.
(3) Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, Farrell L, Asnani A, Cyrille M, Ramanathan A, Shaham O, Berriz G, Lowry PA, Palacios IF, Tasan M, Roth FP, Min J, Baumgartner C, Keshishian H, Addona T, Mootha VK, Rosenzweig A, Carr SA, Fifer MA, Sabatine MS, Gerszten RE (2008) Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Invest. 118: 3503-3512.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236188A1 (en) * 2017-06-23 2018-12-27 한국기초과학지원연구원 Method for diagnosing myocardial infarction or predicting prognosis of same
KR102006906B1 (en) * 2018-02-19 2019-08-02 연세대학교 산학협력단 Vascular tissue-based biomarkers for cardiovascular disease and method for diagnosis of cardiovascular disease using the same
CN110308232A (en) * 2019-07-22 2019-10-08 武汉海谱生物医药科技有限公司 A kind of method of uricase in HPLC method analyzing rat blood plasma
CN111599476A (en) * 2020-05-15 2020-08-28 中南大学湘雅医院 Hypertension prediction model and establishment method thereof and biomarker for predicting hypertension
CN111599476B (en) * 2020-05-15 2023-08-11 中南大学湘雅医院 Prediction model of hypertension, establishment method thereof and biomarker for predicting hypertension
CN114839278A (en) * 2021-02-01 2022-08-02 中国科学院上海营养与健康研究所 Myocardial infarction diagnosis biomarker and application thereof

Also Published As

Publication number Publication date
KR101730923B1 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
Ferreira de Souza et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease
US20200173979A1 (en) Trimethylamine compounds as risk predictors of cardiovascular disease
KR101730923B1 (en) A Method for diagnosis and progrosis prediction of cardivascular disease using purine metabolomics
Joppa et al. Sarcopenic obesity, functional outcomes, and systemic inflammation in patients with chronic obstructive pulmonary disease
Selvaraj et al. Metabolomic profiling of the effects of dapagliflozin in heart failure with reduced ejection fraction: DEFINE-HF
Oba et al. Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease
Kalábová et al. Intima-media thickness, myocardial perfusion and laboratory risk factors of atherosclerosis in patients with breast cancer treated with anthracycline-based chemotherapy
Maurovich‐Horvat et al. Relationship of thoracic fat depots with coronary atherosclerosis and circulating inflammatory biomarkers
Winzap et al. Diabetes and baseline glucose are associated with inflammation, left ventricular function and short-and long-term outcome in acute coronary syndromes: role of the novel biomarker Cyr 61
Gui et al. Plasma levels of ceramides relate to ischemic stroke risk and clinical severity
Schaub et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes
Cosentino et al. Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention
Burkhart et al. Effect of n‐3 fatty acids on markers of brain injury and incidence of sepsis‐associated delirium in septic patients
Nierenberg et al. Serum metabolites associate with physical performance among middle-aged adults: Evidence from the Bogalusa Heart Study
Aoki et al. Relationship between carotid artery intima-media thickness and small dense low-density lipoprotein cholesterol concentrations measured by homogenous assay in Japanese subjects
Liu et al. Mitochondrial Dysfunction Contributes to Aging‐Related Atrial Fibrillation
Kim et al. Loss of association between plasma irisin levels and cognition in Alzheimer’s disease
Erdöl et al. Sarcopenia and its prognostic role on hospitalization and in-hospital mortality in coronavirus disease 2019 patients with at least one cardiovascular risk factor
Guruprasad et al. High sensitivity C-reactive protein levels across spectrum and severity of coronary artery disease
Shui et al. Elevated serum lipoprotein (a) is significantly associated with angiographic progression of coronary artery disease
Kocatürk et al. Evaluation of serum and ascitic fluid proteomes in dogs with dilated cardiomyopathy.
Kącka et al. Comparison of novel markers of metabolic complications and cardiovascular risk factors between obese non-diabetic and obese type 1 diabetic children and young adults
Gu et al. Risk of Alzheimer's disease is associated with longitudinal changes in plasma biomarkers in the multi‐ethnic Washington Heights–Hamilton Heights–Inwood Columbia Aging Project (WHICAP) cohort
Sless et al. Characterization of troponin I levels post synchronized direct current cardioversion of atrial arrhythmias in patients with and without cardiomyopathy
Charalambous et al. Declining Levels and Bioavailability of IGF-I in Cardiovascular Aging Associate With QT Prolongation–Results From the 1946 British Birth Cohort

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant