KR20170011416A - Passive Safety System of Nuclear Power generation system - Google Patents

Passive Safety System of Nuclear Power generation system Download PDF

Info

Publication number
KR20170011416A
KR20170011416A KR1020150104025A KR20150104025A KR20170011416A KR 20170011416 A KR20170011416 A KR 20170011416A KR 1020150104025 A KR1020150104025 A KR 1020150104025A KR 20150104025 A KR20150104025 A KR 20150104025A KR 20170011416 A KR20170011416 A KR 20170011416A
Authority
KR
South Korea
Prior art keywords
tank
cooling water
passive
condensation
steam
Prior art date
Application number
KR1020150104025A
Other languages
Korean (ko)
Inventor
김영선
Original Assignee
김영선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영선 filed Critical 김영선
Priority to KR1020150104025A priority Critical patent/KR20170011416A/en
Publication of KR20170011416A publication Critical patent/KR20170011416A/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • Y02E30/40

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

The present invention relates to a passive safety facility which can stably eliminate remaining heat generated in a nuclear reactor even in a natural disaster like an earthquake, a tsunami or the like, a man-made disaster, or an emergent situation which is a problem occurring in a nuclear plant power system by intended terror.

Description

원자력발전시스템의 피동안전계통 {Passive Safety System of Nuclear Power generation system}{Passive Safety System of Nuclear Power Generation System}

본 발명은 자연재해나 인재에 의해 원자력발전시스템 격납부 내부 주증기관 파단사고나, 전력계통에 문제가 발생하여, 원자력발전시스템이 정지 되면서,원자로에서 발생되는 잔열을 제거하지 못해 발생하는 사고를 예방하기 위한 피동안전계통에 관한 것이다.
The present invention prevents accidents caused by failure of nuclear power generation system failure due to natural disasters or personnel and failure of internal combustion engine failure or power system failure to remove the residual heat generated in the reactor due to the suspension of the nuclear power generation system To a passive safety system.

일반적으로 원자력발전소는 전력을 생산하는 과정에서 방사성 물질이 비정상적으로 누출되는 사고가 발생하면 그 피해가 엄청나기 때문에 안정성 설계가 매우 중요하다.
In general, safety design is very important because nuclear power plants suffer from damage caused by abnormal leakage of radioactive materials during power generation.

상기와 같은 사고는 해일이나 지진 등의 자연재해나 운전자의 실수, 펌프의 오작동, 전력선 계통에 문제 등에 의해 악화된다.
Such accidents are exacerbated by natural disasters such as tsunamis or earthquakes, mistakes by drivers, malfunctions of pumps, problems with power line systems, and the like.

위와 같은 사고 발생시, 안정성 설계를 위해서는 외부 동력의 공급수단에 의존하지 않고 중력과 자연순환 응축, 비등 등의 자연현상을 활용하여 원자로의 안정성을 담보하려는 것이 일반적이다.
In case of such an accident, it is general to secure stability of reactor by utilizing natural phenomenon such as gravity, natural circulation condensation, boiling, etc., without depending on external power supply means for stability design.

이러한 문제점을 해결하기 위해 원자로 사고시에 증기발생기의 이차측에서 발생하는 증기를 응축하여 원자로 잔열을 피동적으로 냉각하여 원자력발전소의 안정성과 경제성을 높일 수 있는 피동형 이차 응축계통의 개념이 제안되고 있다.
To solve these problems, a concept of a passive secondary condensation system has been proposed in which steam generated from a secondary side of a steam generator during a reactor accident is condensed to passively cool the residual heat of the nuclear reactor, thereby enhancing the stability and economy of the nuclear power plant.

공개된 기술로는 “주증기를 이용한 증기발생기 피동급수 계통의 열중격방지 열교환장치” (국내공개특허 2014-0032139호)와, “피동보조 급수계통을 이용한 경수로의 응급잔열제거 및 격납용기 냉각계통”(국내특허 10-1224023), “원자력 발전소의 피동형 냉각시스템”(국내특허 10-1229954), “안전보호용기를 구비한 피동형 비상노심냉각설비 및 이를 이용한 열전달 증가방법”(국내공개특허 2013-0000572), “원자로의 다목적 냉각장치”(국내특허 10-1302749), “가압경수로의 피동형 원자로 및 격납용기 응축시스템”(국내공개특허 2013-0129606) 등이 개시되어 있다.
The disclosed technologies are disclosed in Korean Patent Laid-Open Publication No. 2014-0032139, entitled " Preheating Heat Prevention Device for Steam Generator Driven Feeding System Using Main Steam " (Korean Patent Publication No. 2014-0032139) (Domestic Patent 10-1224023), "Passive Cooling System of Nuclear Power Plant" (Korean Patent No. 10-1229954), "Passive Emergency Core Cooling System Having Safety Protection Container and Method of Increasing Heat Transfer Using It" No. 10-1302749), "Passive Reactor and Storage Container Condensation System of Pressurized Light Water Reactor" (Korean Patent Laid-Open Publication No. 2013-0129606), etc. are disclosed.

그러나, 상기 피동형 응축계통 기술들의 공통된 근본적인 문제점은 피동응축냉각탱크의 냉각수량에 의해 원자로 잔열제거 가능시간이 제한된다는 점과, 중력낙차에 의해 냉각수를 순환하기 위해 피동응축냉각탱크가 원자로나 증기발생기보다 높은 곳에 위치해야 하기 때문에 건설비용이 많이 들어 경제성에 문제가 발생한다.
However, a common fundamental problem of the above-mentioned passive condensation system technologies is that the time for removing the residual heat of the nuclear reactor is limited by the amount of cooling water in the passive condensation cooling tank and that the passive condensation cooling tank is a reactor or steam generator Because it is required to be located at a higher level, construction cost is high and economic problems arise.

피동형 응축계통을 갖춘 원자로 중 설계검증을 마치고 상용화(2015년 현재)에 들어간 원자로는 웨스팅하우스사의 가압경수로(AP1000)형 원자력발전소가 유일하나, 강철 격납 용기를 사용함으로써, 이 역시 경제성이 문제성이 있다.Among the reactors with passive condensation system, after the design verification and commercialization (as of 2015), Westinghouse's pressurized light-water reactor (AP1000) type nuclear power plant is the only one but using steel containment is also problematic in economy .

(특허 1020147031692, 원전피동격납체공기냉각, 웨스팅하우스)
(Patent 1020147031692, Nuclear Passive Storage Air Cooling, Westinghouse)

본 발명은 상기 기술한 바와 같이 중력낙차에 의해 자연순환 방식으로 주증기를 순환하는 방법은 피동응축냉각탱크를 증기발생기 보다 높은 위치에 설치해야 하기 때문에, 원자력발전소를 건설하는데 막대한 비용이 발생하고, 피동응축냉각탱크 내부의 냉각수 수량을 무제한 늘리기 어렵기 때문에 원자력발전소 사고 발생시, 원자로에서 발생하는 응급 잔열을 제거하는데 냉각수량에 의해 응급잔열 제거시간이 제한될 수 있다.
As described above, the method of circulating the main steam in a natural circulation manner due to the gravitational drop is required to install the passive condensation cooling tank at a higher position than the steam generator, so that a great cost is incurred in constructing the nuclear power plant, It is difficult to increase the amount of cooling water inside the cooling tank in the passive condensation cooling tank. Therefore, in case of nuclear power plant accident, the emergency residual heat removal time may be limited by the amount of cooling water to remove the emergency residual heat generated in the reactor.

본 발명의 피동안전계통은 자연재해나 인재에 의하여 원자력발전시스템 전원상실 사고 발생시, 혹은 주증기관 파단 사고로 격납부 내부 압력이 상승하는 사고 등에서 증기발생기 혹은 원자로에서 발생하는 주증기로 각종 펌프를 구동하여 주증기를 계속 순환 시키면서 원자로에서 발생되는 응급 잔열을 제거할 수 있다.
The passive safety system of the present invention drives various pumps by a main steam generated from a steam generator or a reactor in case of a power loss accident of a nuclear power generation system due to a natural disaster or a human resource, So that the main steam generated in the reactor can be removed while continuously circulating the main steam.

펌프를 구동한 주증기는 격납부 내부로 배출하여 방사능이 외부로 유출되지 않게 할 수 있다.
The main steam that drives the pump can be discharged to the inside of the compartment so that the radiation can not be leaked to the outside.

펌프를 구동한 주증기에 의해 격납부 내부의 압력이 설계치 이상 상승하면, 압력밸브를 활용하여 격납부 내부 증기를 다시 응축시켜 순환시키고, 격납부 내부 압력이 설계치 이하를 내려가면, 피동응축사이클에 의해 주증기가 순환되게 설계한다.
If the pressure inside the compartment rises above the designed value by the main steam driven by the pump, the internal vapor of the compartment is recycled and circulated by using the pressure valve. If the pressure inside the compartment falls below the designed value, The main steam is designed to circulate.

상기 본 발명의 피동안전계통은 중력낙차와 같은 자연순환 방식이 아닌, 주증기의 동력으로 주증기를 순환시키는 방법으로 원자로에서 발생되는 응급잔열을 제거할 수 있다.
The passive safety system of the present invention is not a natural circulation system such as a gravitational drop, but it can remove the emergency residues generated in the reactor by circulating the main steam with the power of the main steam.

중력낙차를 사용하지 않기 때문에, 피동응축탱크는 지하는 지상에 설치가 가능하기 때문에 기존 원자력발전시스템도 크게 설계 변경 없이 본 발명의 피동안전계통을 설치하여 안정성을 높일 수 있다.
Since the gravity deflection is not used, the passive condensation tank can be installed on the ground, so that the existing nuclear power generation system can be installed with the passive safety system of the present invention without greatly changing the design, thereby improving the stability.

따라서, 기존 원자력발전시스템이나 신규 원자력발전시스템의 안전성을 높이는 데, 종래의 피동안전계통 보다, 상대적으로 아주 적은 비용을 소요되어 원자력발전시스템의 경제성을 높일 수 있다.
Therefore, it is possible to increase the safety of the existing nuclear power generation system or the new nuclear power generation system, and it is possible to increase the economical efficiency of the nuclear power generation system by requiring a relatively small cost compared to the conventional passive safety system.

종래기술에 본 발명의 일부 기술을 적용하는 것으로도 피동응축냉각 탱크의 냉각수 용량 제한 및 응축수를 증기발생기에 공급하기 위한 중력낙차를 고려한 높은 위치에 탱크를 설치하는 문제 등을 해결하여 원자력발전시스템의 전원상실 사고 등It is possible to solve the problem of installing the tank at a high position in consideration of the limitation of the cooling water capacity of the driven condensing cooling tank and the gravity drop for supplying the condensed water to the steam generator by applying some techniques of the present invention to the conventional art, Power loss accident etc.

의 비상 사태에 대응할 수 있을 뿐 아니라,
Not only can we cope with the emergency of

신규 원자력발전시스템 뿐아니라, 기 가동하고 있는 원자력발전시스템에도 쉽게 적용가능하여 안전성을 확보할 수 있고, 높은 비용이 소요되는 피동응축냉각계통을 적용한 원자력발전시스템 보다 훨씬 경제적인 원자력발전시스템을 건설할 수 있다.
In addition to the new nuclear power generation system, it is possible to construct a nuclear power generation system that is more economical than the nuclear power generation system which can be easily applied to the operating nuclear power generation system and secure safety and which requires a high cost of the passive condensation cooling system .

도1. 본 발명의 원자력발전시스템의 피동안전설비 구성 예
도2. 본 발명의 원자력발전시스템의 피동안전설비 다른 구성 예
도3. 본 발명의 원자력발전시스템의 피동안전설비 다른 구성 예
도4. 본 발명의 원자력발전시스템의 1차 계통 파단 사고 시 피동안전설비 작동 예
도5. 본 발명의 원자력발전시스템의 Black Out시 피동안전설비 작동 예
도6. 본 발명의 원자력발전시스템의 Black Out시 격납부 내부압력 임계치 도달시 피동안전설비 작동 예
도7. 본 발명의 원자력발전시스템의 피동안전설비 피동응축탱크 냉각수 보충 예시도
Fig. Examples of the passive safety equipment of the nuclear power generation system of the present invention
Fig. Another example of the passive safety equipment of the nuclear power generation system of the present invention
3. Another example of the passive safety equipment of the nuclear power generation system of the present invention
FIG. Example of operation of the passive safety equipment in the first system breakage accident of the nuclear power generation system of the present invention
Figure 5. Operation example of the passive safety equipment at the time of black out of the nuclear power generation system of the present invention
6. Example of operating the passive safety equipment when the internal pressure threshold of the compartment of the black out of the nuclear power generation system of the present invention is reached
7. Fig. 6 is a drawing of a cooling water replenishment example of a passive safety equipment passive condensation tank of the nuclear power generation system of the present invention

본 발명은 원자력발전시스템 전력계통 문제 발생시, 원자로에서 발생되는 잔열을 제거하여 후쿠시마와 같이 원자로가 녹아 내리는 재앙을 방지하기 위한 피동안전계통에 관한 것이다.
The present invention relates to a passive safety system for preventing disasters such as Fukushima from being melted down by removing residual heat generated in a nuclear reactor when a power system problem occurs in a nuclear power generation system.

도1은 본 발명의 원자력발전시스템의 피동안전설비 구성 예이다.
1 is a configuration example of a passive safety equipment of the nuclear power generation system of the present invention.

본 발명에서는 증기발생기(203)에서 발생하는 주증기를 응축시키기 위한 피동응축탱크(120)를 구비하고, 증기발생기(203), 제1응축열교환기(107), 증기발생기(203)에서 발생한 주증기에 의해 구동되는 제1순환펌프(109)로 피동응축사이클을 구성하여,
In the present invention, there is provided a passive condensation tank 120 for condensing main steam generated in the steam generator 203, and a main steam generated from the steam generator 203, the first condensing heat exchanger 107 and the steam generator 203, The first circulation pump 109 driven by the first circulation pump 109 constitutes a driven condensation cycle,

피동응축탱크(120) 내부의 냉각수로 제1응축열교환기(107)에서 주증기를 응축시켜 피동응축사이클에 의해 순환시키고, 제1순환펌프(109)를 구동한 주증기를 격납부(100) 내부로 배출함을 특징으로 한다.
The main steam is condensed in the first condensing heat exchanger 107 by the cooling water in the passive condensation tank 120 and circulated by the driven condensing cycle and the main steam for driving the first circulation pump 109 is discharged to the inside of the chamber 100 As shown in FIG.

증기발생기(203)에서 발생하는 주증기에 일부만 사용하기 때문에, 격납부(100) 내부로 배출하여, 격납부(100) 내부의 압력이 설계치에 도달하는데 에는 상당시간이 소요되고, 설계치 이상 압력이 상승하면, 격납부(100) 내부 증기를 다시 회수하여 순환시키는 방법을 사용한다.
It takes a considerable time for the pressure inside the storage compartment 100 to reach the design value because it is used only partially in the main steam generated in the steam generator 203, When the temperature rises, the internal vapor in the compartment 100 is recovered and circulated.

이를 위해 본 발명에서는 증기발생기(203)과 제1응축열교환기(107) 사이의 주증기관(105)에 제1압력밸브(103)를 설치하고 제1압력밸브(103)가 설치된 주증기관에서 격납부(100) 내부로 분기된 배관상에 제2압력밸브(104)를 설치하여, 상기 피동응축사이클 순환시에는 제1압력밸브(103)은 주증기 압력에 의해 항상 열려있다가, 순환펌프(109)를 구동하고 격납부(100) 내부로 배출된 증기에 의해 격납부(100) 내부 압력이 설계치 이상으로 상승하면, 이때 주증기 압력에 의해 제1압력밸브(103)는 닫히고, 제2압력밸브(104)가 열려, 격납부(100) 내부의 증기가 제1응축열교환기(107)로 유입되어 증기발생기(203)로 순환된다.
The first pressure valve 103 is installed in the main engine 105 between the steam generator 203 and the first condensing heat exchanger 107 and the first pressure valve 103 is installed in the main engine, The first pressure valve 103 is always opened by the main steam pressure in the passive condensation cycle circulation and the circulation pump 109 The first pressure valve 103 is closed by the main steam pressure at this time and the second pressure valve 103 is closed by the main steam pressure when the pressure inside the chamber 100 rises above the designed value by the steam discharged into the compartment 100. [ The steam inside the compartment 100 flows into the first condensing heat exchanger 107 and circulates to the steam generator 203.

격납부(100) 내부 압력이 다시 설계치 이하로 내려오는 시점에 제2압력밸브(104)는 닫히고, 제1압력밸브(103)가 열려 다시 피동응축사이클에 의해 주증기는 순환되면서 원자로(200)에서 발생되는 잔열을 제거하게 된다.
The second pressure valve 104 is closed and the first pressure valve 103 is opened and the main steam is circulated again by the passive condensation cycle so that the pressure in the reactor 200 is reduced. Thereby eliminating the residual heat generated in the heat exchanger.

피동응축탱크(120)의 냉각수는 상기 피동응축사이클 순환과정에서 증발하게 되는데, 본 발명의 도1에서는 피동응축탱크(120)를 밀폐식으로 설계하고, 격납부(100) 외부에 냉각수탱크(130)을 더 구비하여,
1 of the present invention, the passive condensation tank 120 is designed to be hermetically sealed, and the cooling water in the cooling water tank 130 (FIG. 1 ),

피동응축탱크(120), 제3압력밸브(1330)가 설치된 증기유입관(131)과 연결된 제2순환펌프용 증기터빈(134), 제2응축열교환기(135), 제2순환펌프(136)로 피동응축탱크 응축사이클을 구성하여,
The second condensing heat exchanger 135 and the second circulation pump 136 connected to the steam inlet pipe 131 in which the passive condensation tank 120, the third pressure valve 1330 are installed, the second circulation pump steam turbine 134, Thereby constituting the condensation cycle of the driven condensation tank,

피동응축탱크(120) 내부 압력이 상승하면, 제3압력밸브(133)가 열려 유입된 증기에 의해 제2순환펌프(136)가 구동되어 응축사이클에 의해 피동응축탱크(120)로 냉각수탱크(130) 내부의 냉각수에 의해 응축된 응축수가 순환 공급됨을 특징으로 하는 피동안전설비 이다.
When the internal pressure of the passive condensation tank 120 rises, the second circulation pump 136 is driven by the steam flowing into the third pressure valve 133, and the condensed water is supplied to the passive condensation tank 120 through the cooling water tank The condensed water condensed by the cooling water is circulated and supplied.

도2는 본 발명의 원자력발전시스템의 피동안전설비의 또 다른 구성 예이다.
Fig. 2 is another structural example of the passive safety equipment of the nuclear power generation system of the present invention.

본 발명에서는 격납부(100) 외부에 냉각수탱크(130)가 구비되고,
In the present invention, a cooling water tank 130 is provided outside the compartment 100,

주증기 분기관에 피동응축탱크(120’) 내부 냉각수 수위에 의해 개폐되는 밸브(121)를 설치하여, 냉각수 수위가 내려가 밸브(121)가 열리면 주증기가 유입되어 급수펌프(123)를 구동하여 냉각수탱크(130)의 냉각수를 피동응축탱크(100)로 급수함을 특징으로 하는 피동안전설비이다.
The main steam is introduced into the main steam distribution pipe 120 and the valve 121 is opened and closed by the water level inside the passive condensation tank 120 '. When the water level of the cooling water is lowered and the valve 121 is opened, And the cooling water in the cooling water tank (130) is supplied to the passive condensation tank (100).

도3은 본 발명의 원자력발전시스템의 피동안전설비의 또 다른 구성 예이다.
Fig. 3 is another structural example of the passive safety equipment of the nuclear power generation system of the present invention.

본 발명에서는 격납부(100) 외부에 피동응축탱크(120’) 보다 높은 위치에 냉각수탱크(130)를 위치시키고, 냉각수탱크(130)와 피동응축탱크(120’)를 연결하는 배관(122)에 피동응축탱크(120’) 내부 냉각수 수위에 따라 개폐되는 밸브(121)를 설치하여, 냉각수탱크(130) 냉각수를 피동응축탱크(120’)로 급수함을 특징으로 하는 피동안전설비 이다.
In the present invention, the cooling water tank 130 is positioned outside the passive condensation tank 120 'outside the compartment 100, the pipe 122 for connecting the cooling water tank 130 and the driven condensation tank 120' Is provided with a valve (121) which is opened or closed in accordance with the level of the cooling water in the passive condensation tank (120 '), and the cooling water of the cooling water tank (130) is supplied to the passive condensation tank (120').

도4는 도3의 원자력발전시스템의 1차 계통 파단사고 시 피동안전설비가 작동하는 흐름을 나타낸다.
Fig. 4 shows the flow of operation of the passive safety equipment in the first system breakage of the nuclear power generation system of Fig.

본 발명에서는 1차 계통 파단사고시나 전력계통 중대사고 발생시도 동일한 방법으로 원자로(200)의 잔열을 제거함을 볼 수 있다.
In the present invention, it can be seen that the residual heat of the reactor 200 is removed in the same way when the primary system breakage accident or the power system serious accident occurs.

도5는 격납부(100) 피동응축사이클에 의한 주증기 순환으로 원자로(200)의 잔열을 제거하는 흐름을 보여주고,
5 shows the flow of removing the residual heat of the reactor 200 by the main steam circulation by the passive condensation cycle of the compartment 100,

도6의 경우는 내부 압력이 설계치 이상이 되었을 때, 격납부(100) 내부 증기를 회수하여 순환시키는 흐름을 보여준다.
In the case of FIG. 6, the internal steam is recovered and circulated when the internal pressure becomes equal to or higher than the designed value.

도7은 피동응축탱크(120,120’) 내부의 냉각수 수위가 낮아진 경우, 격납부(100) 외부 냉각수탱크(130)로 부터 냉각수를 급수하는 흐름도를 보여준다.
7 shows a flow chart for supplying cooling water from the cooling water tank 130 outside the compartment 100 when the water level of the cooling water in the passive condensation tanks 120 and 120 'is lowered.

100 : 격납부
101 : 터빈계통
102 : 급수계통
103 : 제1압력밸브
104 : 제2압력밸브
105 : 주증기관
106 : 응축수관
107 : 제1응축열교환기
108 : 제1순환펌프용 증기터빈
109 : 제1순환펌프
120,120’ : 피동응축탱크
121 : 급수밸브
122 : 급수펌프용 증기터빈
123 : 급수펌프
130 : 냉각수탱크
133 : 제3압력밸브
134 : 제2순환펌프용 증기터빈
135 : 제2응축열교환기
136 : 제2순환펌프
200 : 원자로
201 : 노심
203 : 증기발생기
204 : 가압기
205 : 냉각재펌프
206 : 비상노심냉각탱크
100:
101: Turbine system
102: Water system
103: first pressure valve
104: second pressure valve
105: Supporting organization
106: Condensate tube
107: First condensation heat exchanger
108: Steam turbine for first circulation pump
109: first circulation pump
120,120 ': Passive condensation tank
121: Water supply valve
122: Steam turbine for feed pump
123: Feed water pump
130: cooling water tank
133: Third pressure valve
134: Steam turbine for second circulation pump
135: Second Condensation Heat Exchanger
136: Second circulation pump
200: reactor
201: Core
203: Steam generator
204:
205: coolant pump
206: Emergency core cooling tank

Claims (5)

증기발생기에서 발생하는 주증기를 응축시키기 위한 피동응축탱크를 구비하고,
증기발생기, 제1응축열교환기, 증기발생기에서 발생한 주증기에 의해 구동되는 제1순환펌프로 피동응축사이클을 구성하여,

피동응축탱크 내부의 냉각수로 제1응축열교환기에서 주증기를 응축시켜 피동응축사이클에 의해 순환시키고, 제1순환펌프를 구동한 주증기를 격납부 내부로 배출함을 특징으로 하는 피동안전설비.
And a driven condensing tank for condensing the main steam generated in the steam generator,
A first condensing heat exchanger and a first circulation pump driven by the main steam generated in the steam generator constitute a driven condensation cycle,

Wherein the main steam is condensed in the first condensing heat exchanger by the cooling water in the passive condensation tank and circulated by the driven condensation cycle and the main steam driving the first circulation pump is discharged to the inside of the compartment.
청구항 1항에 있어서,

주증기관에 제1압력밸브를 설치하고, 제1압력밸브와 제1응축열교환기 사이에 격납부 내부로 분기되는 증기관에 제2압력밸브를 설치하여,

격납부 내부 압력이 설계치 이상으로 상승하면 제2압력밸브가 열리고, 제1압력밸브가 닫혀, 격납부 내부 증기가 제1응축열교환기에서 응축된 후, 제1순환펌프에 의해 증기발생기로 순환되고, 격납부 내부 압력이 설계치 이하로 하강하면, 제1압력밸브가 열려 피동응축사이클에 의해 주증기가 순환됨을 특징으로 하는 피동안전설비.
The method according to claim 1,

A first pressure valve is installed in the main engine and a second pressure valve is provided in a steam pipe branched into the compartment between the first pressure valve and the first condensing heat exchanger,

When the pressure inside the compartment rises above the designed value, the second pressure valve is opened, the first pressure valve is closed, the compartment internal steam is condensed in the first condensing heat exchanger, then circulated to the steam generator by the first circulation pump, When the internal pressure of the compartment is lowered below the designed value, the first pressure valve is opened and the main steam is circulated by the driven condensation cycle.
청구항 1항에 있어서,

격납부 외부에 냉각수탱크를 구비하고,
피동응축탱크, 제3압력밸브가 설치된 증기유입관과 연결된 제2순환펌프용 증기터빈, 제2응축열교환기, 제2순환펌프로 피동응축탱크 응축사이클을 구성하여,

피동응축탱크 내부 압력이 상승하면, 제3압력밸브가 열려 유입된 증기에 의해 제2순환펌프가 구동되어 응축사이클에 의해 피동응축탱크로 냉각수탱크 내부의 냉각수에 의해 응축된 응축수가 순환 공급됨을 특징으로 하는 피동안전설비.
The method according to claim 1,

A cooling water tank is provided outside the compartment,
A condensation cycle of the passive condensation tank is constituted by the passive condensation tank, the steam turbine for the second circulation pump connected to the steam inlet pipe provided with the third pressure valve, the second condensation heat exchanger and the second circulation pump,

When the internal pressure of the passive condensation tank rises, the second circulation pump is driven by the steam flowing into the third pressure valve, and the condensed water condensed by the cooling water in the cooling water tank is circulated and supplied to the passive condensation tank by the condensation cycle. Passive safety equipment.
청구항 1항에 있어서,

격납부 외부에 냉각수탱크가 구비되고,
주증기 분기관에 피동응축탱크 내부 냉각수 수위에 의해 개폐되는 밸브를 설치하여, 냉각수 수위가 내려가 밸브가 열리면 주증기가 유입되어 급수펌프를 구동하여 냉각수탱크의 냉각수를 피동응축탱크로 급수함을 특징으로 하는 피동안전설비.
The method according to claim 1,

A cooling water tank is provided outside the compartment,
The main steam distributor is equipped with a valve that is opened and closed by the water level inside the passive condensation tank. When the water level of the cooling water is lowered and the valve is opened, the main steam flows to drive the water supply pump to supply the cooling water of the cooling water tank to the driven condensation tank. Passive safety equipment.
청구항 1항에 있어서,

격납부 외부에 피동응축탱크 보다 높은 위치에 냉각수탱크를 위치시키고, 냉각수탱크와 피동응축탱크를 연결하는 배관에 피동응축탱크 내부 냉각수 수위에 따라 개폐되는 밸브를 설치하여, 냉각수탱크 냉각수를 피동응축탱크로 급수함을 특징으로 하는 피동안전설비.
The method according to claim 1,

A cooling water tank is located at a position higher than the passive condensation tank on the outside of the compartment and a valve that connects the cooling water tank and the driven condensation tank is installed in the piping which is opened or closed according to the cooling water level in the passive condensation tank, Wherein said water supply system comprises:
KR1020150104025A 2015-07-23 2015-07-23 Passive Safety System of Nuclear Power generation system KR20170011416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150104025A KR20170011416A (en) 2015-07-23 2015-07-23 Passive Safety System of Nuclear Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150104025A KR20170011416A (en) 2015-07-23 2015-07-23 Passive Safety System of Nuclear Power generation system

Publications (1)

Publication Number Publication Date
KR20170011416A true KR20170011416A (en) 2017-02-02

Family

ID=58151998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150104025A KR20170011416A (en) 2015-07-23 2015-07-23 Passive Safety System of Nuclear Power generation system

Country Status (1)

Country Link
KR (1) KR20170011416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115376395A (en) * 2022-08-05 2022-11-22 国家电投集团科学技术研究院有限公司 Full-process simulation test system for loss of coolant accident
KR20230161212A (en) * 2022-05-18 2023-11-27 한국전력기술 주식회사 Passive Emergency Core Cooling System of Nuclear power Plant and Cooling Method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230161212A (en) * 2022-05-18 2023-11-27 한국전력기술 주식회사 Passive Emergency Core Cooling System of Nuclear power Plant and Cooling Method using the same
CN115376395A (en) * 2022-08-05 2022-11-22 国家电投集团科学技术研究院有限公司 Full-process simulation test system for loss of coolant accident
CN115376395B (en) * 2022-08-05 2023-11-10 国家电投集团科学技术研究院有限公司 Full-process simulation test system for water loss accident

Similar Documents

Publication Publication Date Title
US20240312651A1 (en) Passive emergency feedwater system
US8731130B2 (en) Passive emergency feedwater system
US20180350472A1 (en) Passive safe cooling system
KR101242746B1 (en) Integrated passive safety system outside containment for nuclear power plants
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
CA2870859C (en) Defense in depth safety paradigm for nuclear reactor
US11830631B2 (en) Nuclear reactor cooling system that can discharge steam into refueling water
GB2535848A (en) Secondary side passive waste heat removal system
US9194629B2 (en) Condensation chamber cooling system
CN107093473B (en) A kind of used by nuclear reactor residual heat removal system
KR20130000572A (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and method for heat transfer-function improvement using thereof
KR101742644B1 (en) Passive Auxiliary Feedwater Cooling System having Air-Cooled Double Containments
KR20170000601A (en) Passive Safety System of Nuclear Power generation system
KR20170011416A (en) Passive Safety System of Nuclear Power generation system
KR20140047452A (en) Coolant replenishment apparatus for passive auxiliary feedwater system of nuclear power plant
JP7199634B2 (en) Nuclear power plant
KR101278906B1 (en) Apparatus for preventing thermal shock having a condensate mixing storage tank on condensate return line
KR20170098222A (en) Method for managing stoppage of a pressurised-water nuclear reactor
KR101224023B1 (en) Residual heat removal and containment cooling system using passive auxiliary feed-water system for pressurized water reactor
US11915836B2 (en) Cooling system in a nuclear plant
KR20170001326A (en) Passive Safety System of Nuclear Power generation system
KR102267104B1 (en) Cooling system for external wall of reactor vessel and cooling method of external wall of reactor vessel using the same
KR20160118537A (en) Passive Safety System of Nuclear Power generation system
JP6774737B2 (en) Reactor safety system
JP2011185741A (en) Emergency core cooling system