KR20170001598A - Pharmaceutical composition for treating cancer or metabolic syndrome - Google Patents

Pharmaceutical composition for treating cancer or metabolic syndrome Download PDF

Info

Publication number
KR20170001598A
KR20170001598A KR1020160074863A KR20160074863A KR20170001598A KR 20170001598 A KR20170001598 A KR 20170001598A KR 1020160074863 A KR1020160074863 A KR 1020160074863A KR 20160074863 A KR20160074863 A KR 20160074863A KR 20170001598 A KR20170001598 A KR 20170001598A
Authority
KR
South Korea
Prior art keywords
cancer
lung cancer
gracillin
pharmaceutical composition
lung
Prior art date
Application number
KR1020160074863A
Other languages
Korean (ko)
Inventor
이호영
강삼식
박관희
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of KR20170001598A publication Critical patent/KR20170001598A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/314Foods, ingredients or supplements having a functional effect on health having an effect on lung or respiratory system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a pharmaceutical composition comprising gracillin or a pharmaceutically acceptable salt thereof as an active component for preventing or treating cancer or a metabolic disease. The gracillin-containing composition of the present invention has almost no side effects, and has excellent effects of treating lung cancer, thereby being useful for a pharmaceutical composition and/or health food for preventing, alleviating, and treating a lung disease such as non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, squamous cell carcinoma of lung, or large cell carcinoma of lung. According to the present invention, provided are a novel medicine surpassing a conventional lung cancer medicine, and a therapeutic method thereof.

Description

암 또는 대사질환 치료용 약학조성물{Pharmaceutical composition for treating cancer or metabolic syndrome}[0001] The present invention relates to a pharmaceutical composition for treating cancer or metabolic syndrome,

본 발명은, 그라실린(gracillin) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는, 암 또는 대사질환의 예방 또는 치료용 약학조성물에 관한 것이다. The present invention relates to a pharmaceutical composition for preventing or treating cancer or metabolic diseases, which comprises gracillin or a pharmaceutically acceptable salt thereof as an active ingredient.

폐암은, 흡연인구의 증가와 산업화에 따른 대기오염 등의 이유로 우리나라에서도 급속히 증가하고 있는 암종으로, 그 발생 빈도는 남자에서 위암 다음으로 2위, 여자에서 자궁암, 위암, 폐암, 대장암 다음으로 5위를 차지하고 있고, 사망률은 남녀 모두에서 암 사망율 1위를 차지하고 있다.Lung cancer is rapidly growing in Korea due to the increase of smoking population and industrial pollution. The incidence of lung cancer is second only to gastric cancer in men, followed by uterine cancer, gastric cancer, lung cancer and colon cancer in women. And the mortality rate is the number one cancer death rate in both men and women.

이러한 폐암의 발생 빈도 및 폐암으로 인한 사망률의 증가는 현재의 흡연 실태로 보아 앞으로도 상당 기간 지속될 것으로 예상된다. 폐암은 암세포의 성장으로 인한 주변 조직 침범 또는 기도폐쇄, 림프절 전이 등의 증상을 초래하는 것이 보통이다. 또한, 대부분의 폐암이 진단 당시에 이미 제 III(3) 병기 이상으로 진행된 상태로 진단되므로 완치가 어려운 경우들이 대부분이기 때문에, 폐암을 조기에 치료하여 사망률을 줄이는 것이 시급한 문제이다.The incidence of lung cancer and mortality due to lung cancer is expected to continue for a considerable period of time based on current smoking status. Lung cancer usually causes symptoms such as invasion of surrounding tissues or airway obstruction due to the growth of cancer cells, and lymph node metastasis. In addition, most of the lung cancer is diagnosed as advanced stage III (3) stage at the time of diagnosis, so it is urgent to reduce the mortality by early treatment of lung cancer because it is difficult to cure.

현재, 항암물질 투여에 의한 화학요법은 약 40여종의 강한 세포독성을 보이는 항암물질 투여에 의존하고 있으며, 많은 부작용을 유발하는 문제점이 있다. 따라서 부작용을 줄이면서 제암율을 높일 수 있는 새로운 항암제의 개발이 요구되고 있다. 이와 같은 문제점을 해결하기 위하여 최근에는 종래 천연물, 특히 자생식물, 식물생약으로부터 항암제를 개발하려는 연구가 이루어지고 있다. 이러한 천연물 유래 항암제에는 주목나무에서 분리한 탁솔(Taxol; 파클리탁셀)이 알려져 있으나, 암세포 사멸뿐만 아니라 신체 내 다른 정상세포에도 작용하기 때문에 다른 질환을 유발할 수 있는 문제점을 안고 있으며, 물에 대한 용해도가 낮아서 독성 및 부작용이 심각한 실정이다.Currently, the chemotherapy by the administration of the anticancer drug is dependent on the administration of about 40 kinds of strong cytotoxic anticancer drugs, which causes many side effects. Therefore, it is required to develop new anticancer drugs that can reduce the adverse effects and increase the rate of amelioration. In order to solve such a problem, research has been conducted to develop an anticancer agent from natural products, especially native plants and plant herbal medicines. Taxol (paclitaxel), which is isolated from a tree of interest, is known to be a natural cancer-derived anticancer agent. However, since it acts not only on cancer cell death but also on other normal cells in the body, it has a problem that it can induce other diseases. Toxicity and side effects are serious.

mTOR(mammalian Target of Rapamycin)는 ser/thr kinase로서 세포의 성장, 증식, 운동성, 생존 등에 관여한다고 알려져 있고, 주로 성장인자, 영양분, 에너지, 스트레스에 의해 그 활성이 조절되며, 노화, 비만, 대사 질환, 암, 면역반응, 뇌질환 등과의 관련성이 보고된 바 있다. 특히, 암에서의 mTOR 활성화는 upstream에 위치한 여러 oncogenes, tumor suppressor genes의 변이와 관련되는데, 대표적으로 PI3KCA amplification, PTEN loss는 PI3K signaling을, RAS, NF1 mutation은 MAPK를 각각 활성화하며, LKB1, TP53 truncation은 AMPK를 억제하여 mTOR를 활성화하는 것으로 알려져 있기 때문에, mTOR 억제를 통해 multi-target 항암제의 개발이 가능할 것이다.mTOR (mammalian Target of Rapamycin) is a ser / thr kinase that is known to be involved in cell growth, proliferation, mobility and survival. Its activity is mainly regulated by growth factors, nutrients, energy and stress, Disease, cancer, immune response, brain disease, and the like. In particular, the activation of mTOR in cancer is associated with the mutation of several oncogenes and tumor suppressor genes located upstream. PI3KCA amplification, PTEN loss, PI3K signaling, RAS and NF1 mutation activate MAPK, respectively, and LKB1 and TP53 truncation Because it is known to inhibit AMPK and activate mTOR, it will be possible to develop multi-target anticancer drugs through mTOR inhibition.

mTOR를 직접적으로 억제하는 약물로서 rapalogs(rapamycin and its analogs)를 포함하여 이들의 기능을 향상시킨 ATP-competitive mTOR kinase inhibitors(KI), mTOR/PI3K dual inhibitors 등이 알려져 있으나, 대사 질환 유발이라는 부작용이 문제되고 있다. 또한, mTOR를 간접적으로 억제하는 약물로서 AMPK agonists 또는 AMPK 활성화에 기여하는 대사저해제 등이 보고된 바 있으나, 낮은 약효와 autophagy에 의한 cell survival 유도로 인하여 항암제 개발에는 한계가 있다.ATP-competitive mTOR kinase inhibitors (KI) and mTOR / PI3K dual inhibitors, including rapalogs (rapamycin and its analogs), are known to directly inhibit mTOR. However, It is a problem. In addition, AMPK agonists or metabolic inhibitors which contribute to the activation of AMPK have been reported as indirect inhibitors of mTOR. However, development of anticancer drugs is limited due to low efficacy and induction of cell survival by autophagy.

또한, 대사저해제로서 미토콘드리아를 타겟으로 하는 약물은 세포사멸 효과가 뛰어나지만 동시에 강한 독성이 문제시되는데, 대표적으로 rotenoid 계열 약물은 BBB(blood brain barrier)를 통과하여 Parkinson's disease와 같은 뇌질환 유발 위험성이 보고된 바 있다.In addition, drugs targeted to mitochondria as metabolic inhibitors have excellent cell killing effect but at the same time have a strong toxicity problem. Typically, rotenoid-based drugs pass the blood brain barrier (BBB) and cause a brain disease such as Parkinson's disease .

한편, 그라실린(gracillin)은, 스테로이드 사포닌(steroid saponin) 화합물로서, 산약(Dioscorea Rhizoma) 등의 성분으로 보고된 바 있다. 산약은, 마(Dioscorea batatas Decaisne) 또는 참마(Dioscorea japonica Thunberg)와 같은 마과(Dioscoreaceae) 식물 근경의 주피를 제거한 후 그대로 또는 쪄서 말린 것으로, 마의 주성분은 15~20%의 전분과 1~1.5%의 점질성 당단백질인 뮤신(mucin)으로 이루어져 있으며, 이외 구성성분으로 스테로이드성 사포닌인 디오신(dioscin), 그라실린(gracillin) 등이 함유되어 있다.On the other hand, gracillin has been reported as a component of steroid saponin compound such as Dioscorea Rhizoma . Dioscorea batatas Decaisne or yams (Dioscorea japonica Thunberg) are removed from the root of Dioscoreaceae rootstock and dried or steamed. The main ingredient of starch is 15 ~ 20% starch and 1 ~ 1.5% (Mucin), which is a viscous glycoprotein. Other components include steroidal saponins such as dioscin and gracillin.

이와 같이, 그라실린 등을 함유하는 산약 추출물을 이용하여 장기능 장애를 치료할 수 있음은 보고된 바 있으나(한국특허등록 제10-0811683호), 그라실린 단일화합물에 대한 치료용도, 특히 그라실린 단일화합물의 폐암 또는 대사질환 치료용도에 대하여는 전혀 알려진 바 없다.As described above, it has been reported that it is possible to treat intestinal dysfunction by using an extract of Ganoderma lucidum containing Gracilin (Korean Patent Registration No. 10-0811683), a therapeutic use for a single compound of Gracylin, There is no known application for the treatment of lung cancer or metabolic diseases of compounds.

이에, 본 발명자들은 종래 알려진 항암제들 보다 항암효과가 우수하면서 부작용이 거의 없는 생약 성분을 찾고자 연구를 거듭한 결과, 천연물 유래의 그라실린(gracillin) 화합물이 폐암을 포함하는 다양한 암종에서 우수한 항암효과를 나타냄을 확인함으로써 본 발명을 완성하게 되었다.The inventors of the present invention have conducted intensive studies to find a herbal medicine ingredient having excellent anticancer effect and little side effect than known anticancer drugs. As a result, it has been found that the gracillin compound derived from natural products has excellent anticancer effect in various carcinomas including lung cancer The present invention has been completed.

따라서, 본 발명의 목적은, 그라실린(gracillin) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는, 암의 예방 또는 치료용 약학조성물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer, which comprises gracillin or a pharmaceutically acceptable salt thereof as an active ingredient.

또한, 본 발명의 목적은, 그라실린(gracillin) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는, 대사질환의 예방 또는 치료용 약학조성물을 제공하는 데 있다.It is also an object of the present invention to provide a pharmaceutical composition for preventing or treating metabolic diseases, which comprises gracillin or a pharmaceutically acceptable salt thereof as an active ingredient.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 그라실린(gracillin) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는, 암 또는 대사질환의 예방 또는 치료용 약학적 조성물을 제공한다.In order to solve the above-mentioned problems, the present invention provides a pharmaceutical composition for preventing or treating cancer or metabolic diseases, which comprises, as an active ingredient, gracillin or a pharmaceutically acceptable salt thereof represented by the following formula .

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

또한, 본 발명은, 그라실린(gracillin) 또는 이의 약학적으로 허용가능한 염을 개체에 투여하는 단계를 포함하는, 암 또는 대사질환의 예방 또는 치료방법을 제공한다.The present invention also provides a method of preventing or treating cancer or metabolic diseases, comprising administering to a subject gracillin or a pharmaceutically acceptable salt thereof.

또한, 본 발명은, 그라실린 또는 이의 약학적으로 허용가능한 염의 암 또는 대사질환 예방 또는 치료 용도를 제공한다.The present invention also provides a method of preventing or treating cancer or metabolic diseases of gracillin or a pharmaceutically acceptable salt thereof.

본 발명의 일 구현예로, 상기 그라실린은 암세포의 아폽토시스(apoptosis)를 유도하는 것을 특징으로 한다.In one embodiment of the present invention, the glycylin is characterized by inducing apoptosis of cancer cells.

본 발명의 다른 구현예로, 상기 그라실린은 미토콘드리아 complex II의 기능을 저해함으로써 아폽토시스(apoptosis)를 유도하는 것을 특징으로 한다.In another embodiment of the present invention, the glycine is characterized by inducing apoptosis by inhibiting the function of the mitochondrial complex II.

본 발명의 또 다른 구현예로, 상기 그라실린은 미토콘드리아 complex II의 구성단백질인 숙신산 탈수소효소(Succinate_dehydrogenase; SDHA)에 결합함으로써 아폽토시스(apoptosis)를 유도하는 것을 특징으로 한다. In another embodiment of the present invention, the above-mentioned gracillin induces apoptosis by binding to succinate dehydrogenase (SDHA), which is a constitutive protein of mitochondrial complex II.

본 발명의 또 다른 구현예로, 상기 암은 폐암인 것을 특징으로 한다.In another embodiment of the present invention, the cancer is lung cancer.

본 발명의 또 다른 구현예로, 상기 암은 유방암, 전립선암 또는 대장암인 것을 특징으로 한다.In another embodiment of the present invention, the cancer is characterized by breast cancer, prostate cancer or colon cancer.

본 발명의 또 다른 구현예로, 상기 폐암은 비소세포 폐암, 소세포 폐암, 폐선암, 폐편평상피암 또는 폐대세포암인 것을 특징으로 한다.In another embodiment of the present invention, the lung cancer is characterized by non-small cell lung cancer, small cell lung cancer, lung cancer, lung squamous cell cancer or hyaline cell cancer.

본 발명의 또 다른 구현예로, 상기 대사질환은 고혈당증, 고지혈증, 비만, 당뇨병, 또는 동맥경화증인 것을 특징으로 한다.In another embodiment of the present invention, the metabolic disease is hyperglycemia, hyperlipidemia, obesity, diabetes, or arteriosclerosis.

본 발명의 그라실린 함유 조성물은 부작용이 거의 없고 특히 폐암 치료 효과가 뛰어나기 때문에, 비소세포 폐암, 소세포 폐암, 폐선암, 폐편평상피암 또는 폐대세포암과 같은 폐암 질환의 예방, 개선 및 치료용 약학조성물 및/또는 건강식품으로 유용하게 이용될 수 있는 바, 본 발명에 의하면 기존의 폐암 치료제를 뛰어넘는 새로운 치료제 및 치료법을 제공할 수 있다.The composition containing the glycylin of the present invention has little side effects and is particularly effective for treating lung cancer. Therefore, the composition for preventing, ameliorating and treating lung cancer diseases such as non-small cell lung cancer, small cell lung cancer, lung cancer, lung squamous cell carcinoma, The present invention can provide a novel therapeutic agent and a therapeutic method that goes beyond conventional lung cancer therapeutic agents.

또한, 본 발명에 의하면, 고혈당증, 고지혈증, 비만, 당뇨병, 또는 동맥경화증과 같은 대사질환의 치료에 유용하게 이용될 수 있다.Further, according to the present invention, it can be usefully used for the treatment of metabolic diseases such as hyperglycemia, hyperlipidemia, obesity, diabetes, or arteriosclerosis.

또한, 본 발명에 의하면, 활성화된 AMPK에 의해 mTOR 및 downstream signaling을 효과적으로 억제함으로써 광범위한 항암효과를 기대할 수 있기 때문에, 단일 표적 항암제의 한계를 극복할 수 있다. 더욱이, 미토콘드리아 complex II의 구성단백질인 숙신산 탈수소효소에 결합하여 상기 complex II의 기능을 억제함으로써 세포내 ROS 증가에 의한 apoptosis를 유도하여, μM 수준의 낮은 농도에서도 세포사멸 효과를 보이기 때문에, 종래 AMPK agonists와 대사저해제의 낮은 약효문제를 해결할 수 있다.In addition, according to the present invention, it is possible to anticipate a wide range of anticancer effects by effectively inhibiting mTOR and downstream signaling by activated AMPK, thereby overcoming the limit of a single target anticancer drug. Furthermore, since it binds to the succinate dehydrogenase, a constituent protein of the mitochondrial complex II, and inhibits the function of the complex II, it induces apoptosis by increasing the intracellular ROS, and exhibits apoptosis even at a low concentration of μM. And the low drug efficacy of the metabolic inhibitor can be solved.

뿐만 아니라, 본 발명에 의하면, AMPK를 활성화시킴으로써 기존의 mTOR 저해제가 갖는 대사질환 부작용을 경감시킬 수 있고, 낮은 친유성으로 인하여 BBB(blood brain barrier) 통과가 어려워 기존 미토콘드리아 저해제가 갖는 뇌질환 발병에 대한 위험성을 낮출 수 있다.In addition, according to the present invention, by activating AMPK, it is possible to alleviate side effects of the existing mTOR inhibitor and to prevent passage of BBB (blood brain barrier) due to low lipophilicity, Can reduce the risk.

도 1은, 천연물 유래 물질 라이브러리에서 암세포 증식 억제활성이 우수한 13종의 화합물을 대상으로 웨스턴 블랏을 통해 AMPK/mTOR 조절활성을 평가한 결과이다.
도 2는, 상기 도 1의 13종 화합물에 대하여 암세포에서의 ATP 생성 억제활성을 평가한 결과이다.
도 3은, 천연물 유래 물질 라이브러리에서 그라실린(GRA) 화합물을 연구대상 물질로 최종 선정하는 과정을 나타낸 것이다.
도 4는, 그라실린(GRA)에 의해 mTOR downstream S6의 활성화(p-S6)가 억제됨을 나타낸 것이다.
도 5는, 그라실린(GRA)에 의해 폐암세포주에서 AMPK 활성화(p-AMPK)가 유도되고, mTOR 및 downstream signaling이 억제됨을 나타내는 웨스턴 블랏 결과이다.
도 6은, 그라실린(GRA)이 약 1-1.5 μM 농도범위에서 폐암 세포의 비부착성 콜로니 형성을 억제함을 나타내는 결과이다.
도 7은, 그라실린(GRA)이 약 1-1.5 μM 농도범위에서 폐암 세포의 부착성 콜로니 형성을 억제함을 나타내는 결과이다.
도 8은, 그라실린(GRA)이 약 1-1.5 μM 농도범위에서 폐암 세포의 sphere 형성을 억제함을 나타내는 결과이다.
도 9는, 그라실린이 종래의 항암제와 교차반응을 보이는지 확인하기 위하여, 종래 항암제 내성 세포주에 대하여 세포 생존성 실험을 수행한 결과이다.
도 10은, 폐암세포주 또는 환자 폐암조직이 이식된 xenograft 마우스모델(H1299 xenograft/PDX)에서 그라실린(GRA) 처리에 의해 폐종양 부피가 유의하게 감소됨을 나타내는 그래프이다.
도 11은, KrasG12D/+ 마우스모델에서 그라실린(GRA) 처리에 의해 폐종양 형성이 유의하게 감소됨을 나타내는 CT 이미지이다.
도 12는, 유방암 세포주(MDA-MB-231), 전립선암 세포주(DU145), 또는 대장암 세포주(HCT116)가 이식된 xenograft 마우스모델에서 그라실린(GRA) 처리에 의해 종양 T성장이 유의하게 저해되는 것을 나타내는 그래프이다.
도 13은, 그라실린(GRA)에 의한 폐암세포 사멸 효과를 확인하기 위하여 유세포분석을 실시한 결과이다.
도 14는, 아폽토시스의 표지인자인 cleaved caspase-3와 cleaved PARP의 발현에 미치는 그라실린(GRA)의 효과를 나타내는 웨스턴 블랏 결과이다.
도 15는, 세포질 ROS(DCF-DA), 미토콘드리아 ROS(MitoSOX), 미토콘드리아 막전위(TMRM)에 미치는 그라실린(GRA)의 효과를 나타내는 DCFDA/MitoSOX/TMRM/NBDG 염색 결과이다.
도 16(A)는 아폽토시스 매개인자인 p38 및 JNK의 활성화(p-p38, p-JNK)에 미치는 그라실린(GRA)의 효과를 나타내는 웨스턴 블랏 결과이고, 도 16(B)는 p38 억제제(P38i) 또는 항산화제(NAC)의 존재하에 그라실린을 처리한 경우 cleaved caspase-3와 cleaved PARP의 발현이 감소됨을 나타내는 웨스턴 블랏 결과이다.
도 17은, p38 억제제(P38i) 또는 항산화제(NAC)의 존재하에 그라실린을 처리한 경우, 그라실린에 의한 아폽토시스가 감소됨을 나타내는 FACS 분석 결과이다.
도 18은, 미토콘드리아 complex II의 기질인 숙시네이트(succinate)와 그라실린을 함께 처리한 경우, 특이적으로 미토콘드리아 ROS(MitoSOX)가 증가함을 나타내는 MitoSOX 염색 결과이다.
도 19는, 미토콘드리아 complex II의 기질인 숙시네이트(succinate)와 그라실린을 함께 처리한 경우(GRA+SUC), 그라실린에 의한 subG1 phase 증가가 가장 높음을 나타내는 유세포 분석결과이다.
도 20은, 그라실린이 미토콘드리아 complex II의 구성 단백질인 SDHA(Succinate_dehydrogenase)에 안정하게 결합함을 나타내는 in silico computational modeling 분석결과이다.
도 21은, DARTS 어세이를 통해 그라실린이 미토콘드리아 complex II의 구성 단백질인 SDHA(Succinate_dehydrogenase)에 결합함을 나타내는 결과이다.
도 22는, 돌연변이된 Kras(KrasG12D/+)를 과발현하는 마우스의 폐 조직에서 SDHA(Succinate_dehydrogenase)의 발현수준을 나타내는 IHC 및 웨스턴 블랏 결과이다.
도 23은, 돌연변이 Kras(KrasG12V)를 과발현하는 마우스, 또는 발암원인인 담배연기 농축액(cigarette smoking condensates; CSC), NNK/benzo[a]pyrene(B[a]P) 또는 우레탄(urethane)을 처리한 마우스의 폐 조직에서 SDHA(Succinate_dehydrogenase)의 발현수준을 나타내는 IHC 결과이다.
도 24는, 돌연변이된 KRAS(KRASG12V)를 과발현하는 사람의 폐암세포, 또는 EGF, IGF-1 등의 성장인자에 의해 KRAS가 활성화된 사람 유래 폐암세포에서 SDHA(Succinate_dehydrogenase)의 발현수준을 나타내는 IHC 결과이다.
도 25는, 돌연변이된 KRAS(KRASG12V)를 과발현하는 사람의 폐암세포, 또는 EGF, IGF-1 등의 성장인자에 의해 KRAS가 활성화된 사람 유래 폐암세포에서 SDHA(Succinate_dehydrogenase)의 안정성 증가를 나타내는 웨스턴 블랏 결과이다.
도 26은, 그라실린이 KRAS/LKB1 변이암에 대한 선택성이 높음을 나타내는 MTT 어세이 결과이다.
도 27은, 그라실린이 젖산혈증(lactic acidosis)과 같은 부작용의 가능성이 적음을 나타내는 glucose uptake/ lactate production 어세이 결과이다.
도 28은, 전립선암 세포주(DU145), 유방암 세포주(MDA-MB-231), 대장암 세포주(HCT116)를 각각 이식하여 제작한 xenograft 마우스모델, 및 환자 유래 폐암조직이 이식된 xenograft 마우스모델(PDX; patient-derived xenograft)에 대하여 그라실린(GRA) 투여에 따른 체중 변화를 측정한 그래프이다.
도 29는, 마우스에 그라실린(GRA) 투여에 따른 장기독성을 평가하기 위해, 간(Liver) 및 신장(Kidney)의 기능, 담즙 분비 작용(Bile duct), 및 전신 염증반응(Inflammation)을 평가한 그래프이다.
도 30은, 마우스에 그라실린(GRA) 투여에 따른 혈중 포도당 농도변화, 폐, 간, 비장, 신장, 및 뇌의 과산화정도를 평가한 그래프이다.
FIG. 1 shows the result of evaluating the AMPK / mTOR modulating activity of thirteen kinds of compounds having excellent cancer cell growth inhibitory activity in the natural substance-derived substance library through Western blotting.
Fig. 2 shows the result of evaluating the activity of inhibiting ATP formation in cancer cells against the 13 kinds of compounds shown in Fig. 1 above.
FIG. 3 shows a process for finally selecting a gracillin (GRA) compound as a study target in a natural material-derived material library.
Figure 4 shows that the activation of mTOR downstream S6 (p-S6) is inhibited by GRacillin (GRA).
FIG. 5 is a Western blot result indicating that AMPK activation (p-AMPK) is induced in lung cancer cell lines by GRACIN and that mTOR and downstream signaling are inhibited.
Figure 6 shows that GRACA inhibits the formation of nonadherent colonies of lung cancer cells at a concentration range of about 1-1.5 [mu] M.
Figure 7 shows that GRacillus (GRA) inhibits the formation of adherent colonies of lung cancer cells at a concentration range of about 1-1.5 [mu] M.
Figure 8 shows that GRacillus (GRA) inhibits sphere formation of lung cancer cells at a concentration range of about 1-1.5 [mu] M.
FIG. 9 shows the result of performing cell viability tests on conventional anticancer drug resistant cell lines to confirm whether the glycylin exhibits cross-reactivity with conventional anticancer drugs.
FIG. 10 is a graph showing that the lung tumor volume is significantly reduced by treatment with gracillin (GRA) in a xenograft mouse model (H1299 xenograft / PDX) implanted with a lung cancer cell line or a patient lung cancer tissue.
Fig. 11 is a CT image showing that pulmonary tumor formation is significantly reduced by the treatment with gracillin (GRA) in the Kras G12D / + mouse model.
Figure 12 shows that tumor growth (T) growth is significantly inhibited by gracillin (GRA) treatment in a xenograft mouse model transplanted with a breast cancer cell line (MDA-MB-231), a prostate cancer cell line (DU145), or a colon cancer cell line (HCT116) Fig.
FIG. 13 shows the result of flow cytometry analysis to confirm the effect of gracillin (GRA) on lung cancer cell killing.
14 is a Western blot showing the effect of gracillin (GRA) on the expression of cleaved caspase-3 and cleaved PARP, which are markers of apoptosis.
FIG. 15 shows the results of DCFDA / MitoSOX / TMRM / NBDG staining showing the effect of gracillin (GRA) on cytoplasmic ROS (DCF-DA), mitochondrial ROS (MitoSOX) and mitochondrial membrane potential (TMRM).
16 (A) shows Western blotting results showing the effect of gracillin (GRA) on the activation of apoptosis mediators p38 and JNK (p-p38, p-JNK) ) Or antacid (NAC), the expression of cleaved caspase-3 and cleaved PARP was reduced.
FIG. 17 is a FACS analysis result showing that apoptosis caused by gracillin is reduced when the polysaccharide is treated in the presence of a p38 inhibitor (P38i) or an antioxidant (NAC).
FIG. 18 shows the result of MitoSOX staining showing that mitochondrial ROS (MitoSOX) increases specifically when succinate and gracaine, which are substrates of mitochondrial complex II, are treated together.
FIG. 19 shows flow cytometry results showing that the increase of subG1 phase by gracillin is the highest when the succinate and the gracillin (GRA + SUC) of the mitochondrial complex II substrate are treated together.
Fig. 20 shows in silico computational modeling analysis results indicating that gracillin stably binds to the constitutive protein SDHA (succinate dehydrogenase) of the mitochondrial complex II.
Figure 21 shows the results of a DARTS assay showing that the glycylline binds to the constitutive protein SDHA (Succinate dehydrogenase) of the mitochondrial complex II.
Figure 22 shows IHC and Western blot results indicating SDHA (Succinate dehydrogenase) expression levels in lung tissue of mice overexpressing mutated Kras (Kras G12D / + ).
23 is a graph showing the results of a comparison between mice that overexpress mutant Kras (Kras G12V ) or cigarette smoking condensates (CSC), NNK / benzo [a] pyrene (B [a] P) or urethane IHC results indicating the expression level of SDHA (succinate dehydrogenase) in the lung tissue of treated mice.
24 is a graph showing the expression level of SDHA ( succinate dehydrogenase ) in human lung cancer cells overexpressing mutated KRAS (KRAS G12V ) or in human-derived lung cancer cells in which KRAS is activated by growth factors such as EGF and IGF-1. Results.
FIG. 25 is a graph showing the increase in the stability of SDHA ( succinate dehydrogenase ) in human lung cancer cells overexpressing mutated KRAS (KRAS G12V ) or in human-derived lung cancer cells in which KRAS is activated by growth factors such as EGF and IGF- Blot results.
Fig. 26 shows the result of MTT assay showing that the selectivity for the KRAS / LKB1 mutant cancer is high.
Figure 27 shows the glucose uptake / lactate production assay results indicating that the potential for side effects such as glycyl lactic acidosis is low.
28 shows the results of a xenograft mouse model and a xenograft mouse model (PDX) transplanted with prostate cancer cell line (DU145), a breast cancer cell line (MDA-MB-231), a colon cancer cell line (HCT116) ; patient-derived xenografts) were measured for changes in body weight due to administration of glycine (GRA).
Figure 29 shows the evaluation of liver and kidney function, biliary duct, and systemic inflammation to evaluate long-term toxicity following administration of GRACA in mice It is a graph.
FIG. 30 is a graph showing changes in blood glucose concentration, lung, liver, spleen, kidney, and cerebral peroxidation level of mice administered with GRA (GRA).

본 발명은 그라실린 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암 또는 대사질환의 예방, 개선 또는 치료용 약학적 조성물 및/또는 건강기능식품 조성물을 제공한다. 이때, 그라실린 화합물은 하기 화학식 1의 구조를 갖는다.The present invention provides a pharmaceutical composition and / or a health functional food composition for preventing, ameliorating or treating a cancer or metabolic disease containing as an active ingredient gracillin or a pharmaceutically acceptable salt thereof. In this case, the gracyline compound has a structure represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00002
Figure pat00002

또한, 본 발명에 따른 상기 그라실린 화합물은 약학적으로 허용 가능한 염의 형태로 사용될 수 있다. 상기 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염이 바람직하며, 상기 유리산으로는 유기산과 무기산을 사용할 수 있다. 상기 유기산은 이에 제한되는 것은 아니나, 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산을 포함한다. 또한 상기 무기산은 이에 제한되는 것은 아니나, 염산, 브롬산, 황산 및 인산을 포함한다.In addition, the gracillin compound according to the present invention can be used in the form of a pharmaceutically acceptable salt. The salt is preferably an acid addition salt formed by a pharmaceutically acceptable free acid, and the free acid may be an organic acid or an inorganic acid. The organic acids include, but are not limited to, citric, acetic, lactic, tartaric, maleic, fumaric, formic, propionic, oxalic, trifluroacetic, benzoic, gluconic, methosulfonic, glycolic, succinic, Glutamic acid and aspartic acid. The inorganic acid includes, but is not limited to, hydrochloric acid, bromic acid, sulfuric acid, and phosphoric acid.

또한, 본 발명에 따른 조성물에 의해 예방, 개선 또는 치료될 수 있는 암종에는 제한이 없으나, 폐암, 유방암, 전립선암, 대장암 등을 포함하며, 바람직하게는 폐암이다. 이때, 폐암질환의 종류에는 제한이 없으나, 비소세포 폐암, 소세포 폐암, 폐선암, 폐편평상피암 또는 폐대세포암 등이 포함될 수 있다.The composition of the present invention is not limited to the carcinoma that can be prevented, ameliorated or treated, but includes lung cancer, breast cancer, prostate cancer, colon cancer and the like, preferably lung cancer. At this time, there is no limitation on the kind of lung cancer disease, but it may include non-small cell lung cancer, small cell lung cancer, lung cancer, lung squamous cell cancer or hyaline cell cancer.

또한, 본 발명에 따른 조성물에 의해 예방, 개선 또는 치료될 수 있는 대사질환에는 제한이 없으나, 고혈당증, 고지혈증, 비만, 당뇨병, 동맥경화 등을 포함할 수 있다.The metabolic diseases which can be prevented, ameliorated or treated by the composition according to the present invention are not limited, but may include hyperglycemia, hyperlipidemia, obesity, diabetes, arteriosclerosis and the like.

본 발명의 치료 조성물은 기존 치료 활성 성분, 기타 보조제, 약제학적으로 허용가능한 담체 등의 성분을 추가로 포함할 수 있다. 상기 약제학적으로 허용가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 및 에탄올 등을 포함한다.The therapeutic compositions of the present invention may further comprise components such as conventional therapeutically active ingredients, other adjuvants, pharmaceutically acceptable carriers, and the like. The pharmaceutically acceptable carrier includes saline, sterilized water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol and the like.

본 발명에서 "개체"란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간 또는 비-인간인 영장류, 생쥐(mouse), 쥐(rat), 개, 고양이, 말 및 소 등의 포유류를 의미한다. The term "individual" as used herein refers to a subject in need of treatment for a disease, and more specifically refers to a human or non-human primate, mouse, rat, dog, cat, It means mammals.

또한, 본 발명에서 "약학적 유효량"은 투여되는 질환 종류 및 중증도, 환자의 연령 및 성별, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정되며 상기 요소를 모두 고려하여 부작용 없이 최대 효과를 얻을 수 있는 양으로, 당업자에 의해 용이하게 결정될 수 있다.The term "pharmaceutically effective amount" as used herein refers to the type and severity of the disease to be administered, the age and sex of the patient, sensitivity to the drug, administration time, administration route and rate of release, Can be readily determined by those skilled in the art in an amount that is determined by factors well known in the medical arts, and can be maximized without adverse effects, taking into account all of the above factors.

본 발명의 조성물은 목적 조직에 도달할 수 있는 한 투여방법에는 제한이 없다. 예를 들면, 경구 투여, 동맥 주사, 정맥 주사, 경피 주사, 비강 내 투여, 경기관지 투여 또는 근육 내 투여 등이 포함된다. 일일 투여량은 약 0.0001 내지 100 mg/kg이고, 바람직하게는 0.001 내지 10 mg/kg이며, 하루 일회 내지 수회 나누어 투여하는 것이 바람직하다.The composition of the present invention is not limited as long as it can reach the target tissues. For example, oral administration, arterial injection, intravenous injection, percutaneous injection, intranasal administration, transbronchial administration, or intramuscular administration. The daily dose is about 0.0001 to 100 mg / kg, preferably 0.001 to 10 mg / kg, and is preferably administered once a day or divided into several times a day.

본 발명의 조성물은 암 또는 대사질환의 예방 및 개선을 위한 약제, 식품 및 음료 등에 다양하게 이용될 수 있으며, 분말, 과립, 정제, 캡슐 또는 음료 형태로 사용할 수 있다.The composition of the present invention can be used variously for medicines, foods and beverages for prevention and improvement of cancer or metabolic diseases, and can be used in powder, granule, tablet, capsule or beverage form.

본 발명에서는, 우선 약 500여개의 천연물 라이브러리에서 세포 증식 억제 효과가 가장 뛰어난 13개의 화합물을 1차 선정하고, 이 중에서 암억제와 관련된 AMPK/mTOR 신호전달 조절 활성 및 ATP 생성 억제활성이 뛰어난 그라실린(GRA)을 연구대상 물질로 최종 선정하였다(실시예 2 참고).In the present invention, first, thirteen compounds having the best cell proliferation inhibitory effect were firstly selected from about 500 natural product libraries, and among them, Gracylin, which is superior in AMPK / mTOR signal transduction regulatory activity and ATP production inhibitory activity, (GRA) was finally selected as a study substance (see Example 2).

AMPK(AMP-activated protein kinase)는 암과 밀접한 단백질 효소이고, mTOR는 종양의 세포분열과 혈관성장, 암세포의 신진대사에서 중요한 역할을 하는 것으로, 암 억제에 있어서 AMPK-mTOR 신호전달 경로가 중요하다는 것이 알려져 있다. 즉, 암세포에서 활성화된 AMPK는 암세포의 신진대사를 컨트롤하는 mTOR 효소의 활성을 낮춰 암세포의 성장과 증식을 억제한다고 보고되었기 때문에, AMPK/mTOR 신호전달 조절활성을 검증함으로써 그라실린(GRA)을 선정하였다.AMP-activated protein kinase (AMPK) is a cancer-like protein enzyme. MTOR plays an important role in tumor cell division, vascular growth, and cancer cell metabolism. Is known. In other words, since AMPK activated by cancer cells has been reported to inhibit the growth and proliferation of cancer cells by lowering the activity of mTOR enzyme that controls cancer cell metabolism, GRA (GRA) was selected by verifying the activity of regulating AMPK / mTOR signaling Respectively.

이후, 그라실린의 구체적인 종양 억제효과를 확인하기 위하여 in vitro상에서 다양한 암세포주에 대한 억제효과를 확인하였을 뿐만 아니라, Xenograft 모델을 이용하여 in vivo상에서도 우수한 폐암 치료효과를 확인하였으며, 유방암, 전립선암, 및 대장암에 대해서도 우수한 치료효과를 확인하였다(실시예 3 및 4 참고).Then, not only determine the inhibitory effect on various cancer cell lines on the in vitro to identify specific tumor inhibitory effect of the graphene cylinder, using a Xenograft model was confirmed that an excellent cancer treatment effect even on in vivo, breast cancer, prostate cancer, And colorectal cancer (see Examples 3 and 4).

또한, 본 발명에서는, 그라실린이 cleaved caspase-3와 cleaved PARP의 발현을 유도함을 확인함으로써 폐암 치료효과가 아폽토시스(apoptosis)에 의한 것임을 밝혔다. PARP는 손상된 DNA의 복구를 돕는 효소로서, 아폽토시스가 일어날 때 cleaved caspase-3에 의해 절단된다고 알려져 있기 때문에, cleaved caspase-3와 cleaved PARP의 발현은 아폽토시스가 일어났음을 의미하는 것이다(실시예 5 참고).In addition, in the present invention, it was confirmed that the effect of treatment with lung cancer was caused by apoptosis by confirming that the expression of cleaced caspase-3 and cleaved PARP was induced by the glycyrin. The expression of cleaved caspase-3 and cleaved PARP indicates that apoptosis occurs because PARP is an enzyme that helps repair damaged DNA and is known to be cleaved by cleaved caspase-3 when apoptosis occurs (see Example 5 ).

또한, 본 발명에서는, 그라실린이 미토콘드리아 ROS(reactive oxygen species)를 증가시키고, 이것이 p38경로를 활성화시켜 최종적으로 아폽토시스를 유발함을 확인하였다. 활성산소(ROS)는 에너지를 생성하는 미토콘드리아 호흡의 부산물로 주로 생성되며, 생성된 양과 생성 기간에 따라 세포사멸 등을 유도할 수 있고, 미토콘드리아 ROS에 의해 유도되는 아폽토시스는 일반적으로 p38 또는 JNK가 매개한다고 알려져 있다(실시예 6 참고).Also, in the present invention, it was confirmed that the glycylin increases mitochondrial reactive oxygen species (ROS), which activates the p38 pathway and eventually induces apoptosis. Active oxygen (ROS) is a byproduct of mitochondrial respiration that produces energy, and can induce cell death depending on the amount and duration of production. Apoptosis induced by mitochondrial ROS is generally mediated by p38 or JNK (See Example 6).

또한, 본 발명에서는, in silico computational modeling 분석 및 DARTS 어세이 결과, 그라실린이 미토콘드리아 complex II의 구성 단백질인 SDHA(Succinate_dehydrogenase)와 매우 안정된 형태로 결합하여 complex II의 기능을 저해하고, 이에 의해 생성된 ROS가 아폽토시스를 유도할 수 있음을 밝혔다(실시예 7 참고).Also, in the present invention, as a result of in silico computational modeling analysis and DARTS assay, it was found that gracillin binds to succinate dehydrogenase (SDHA), which is a constituent protein of mitochondrial complex II, in a very stable form to inhibit the function of complex II, RTI ID = 0.0 > ROS < / RTI > can induce apoptosis (see Example 7).

또한, 본 발명에서는, 마우스 및 사람에서 다양한 원인에 의한 폐암 조직에서 SDHA(Succinate_dehydrogenase)가 높은 수준으로 발현되는 것을 확인함으로써 폐암과 SDHA 사이에 상관관계가 있음을 규명하였다(실시예 8 참고). In addition, in the present invention, SDHA (Succinate dehydrogenase) was expressed at high levels in lung cancer tissues due to various causes in mice and humans, thereby confirming that there is a correlation between lung cancer and SDHA (see Example 8).

또한, 본 발명에서는, 그라실린의 물성분석을 통하여 혈뇌장벽(blood brain barrier; BBB) 통과에 의한 신경독성 가능성이 낮다는 점과, glucose uptake/ lactate production 어세이를 통하여 젖산혈증과 같은 부작용의 위험이 낮다는 점을 확인하였다. 일반적으로 펜포르민(phenformin)과 같이 비구아나이드계(biguanides) 약물들은 미토콘드리아 기능을 저하시켜 세포질 해당작용(cytosol glycolysis)을 유발하므로, 젖산혈증(lactic acidosis)과 같은 부작용이 문제가 되고 있으나, 그라실린의 경우 글루코스 흡수는 증가시키는 반면 젖산 생성은 감소시킴을 밝혔다.In the present invention, the possibility of neurotoxicity due to passage of the blood brain barrier (BBB) is low through analysis of physical properties of the glycine, and the risk of side effects such as lactic acidemia through glucose uptake / lactate production assays Of the total population. Generally, biguanides drugs such as phenformin lower mitochondrial function and cause cytosol glycolysis. Thus, side effects such as lactic acidosis are problematic. However, Cylinders increased glucose uptake while decreased lactate production.

이에 더하여 in vivo에서 그라실린 투여에 의한 체중변화, 장기 독성, 전신 염증반응을 평가함으로써 그라실린이 독성을 유발하지 않음을 확인하였으며, 혈중 포도당 농도변화 및 다양한 장기의 과산화를 유발하지 않음을 확인하였다(실시예 9 참고). In addition, it was confirmed that gracillin did not induce toxicity by evaluating weight change, long-term toxicity, and systemic inflammatory response by administration of gracillin in vivo , and it was confirmed that it did not induce changes in blood glucose concentration and peroxidation of various organs (See Example 9).

따라서, 본 발명에 따른 그라실린 함유 조성물은, 암 질환 특히 폐암 질환에 대한 유효한 치료제로 이용될 수 있을 것이다.Therefore, the composition containing the glycine according to the present invention can be used as an effective therapeutic agent for cancer diseases, particularly lung cancer diseases.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[실시예][Example]

실시예 1: 실험방법Example 1: Experimental method

1-1. MTT assay1-1. MTT assay

세포를 well당 1500 cells의 개수로 96 well plate에 부착시킨 후, 다음날 그라실린(gracillin)을 각 농도별로 처리하고 3일 동안 배양하였다. 배양 후 최종 농도가 200-500 μg/ml이 되도록 MTT 용액을 처리하여 2-4시간 동안 배양한 후, 배지를 제거하고, 생성된 formazan을 DMSO에 녹인 뒤, 570 nm에서 흡광도를 측정하였다.Cells were attached to a 96-well plate at a number of 1500 cells per well, and the next day, gracillin was treated at each concentration and cultured for 3 days. After incubation, the MTT solution was treated to a final concentration of 200-500 μg / ml. After culturing for 2-4 hours, the medium was removed, and the resulting formazan was dissolved in DMSO and absorbance was measured at 570 nm.

1-2. Anchorage independent colony formation assay1-2. Anchorage independent colony formation assay

배지에 희석시킨 1% 한천 배지를 24 well에 코팅한 후(bottom agar), 0.4 % 한천 배지에 well당 1000 cells의 개수로 세포를 희석하여, 각 well의 bottom agar위에 도포한 뒤(top agar), 그라실린을 각 농도별로 약 2주간 처리하였다. 약물 처리 완료 후 형성된 colony는 200-500 μg/ml MTT 용액을 통해 염색하였고, 현미경을 통해 colony 개수를 확인하였다.Cells were diluted to a number of 1000 cells per well in 0.4% agar medium, coated on top of bottom agar (bottom agar), coated on 24% , And gracylin was treated at each concentration for about 2 weeks. The colony formed after the drug treatment was stained with 200-500 μg / ml MTT solution and the number of colonies was confirmed by microscope.

1-3. Anchorage dependent colony formation assay1-3. Anchorage dependent colony formation assay

세포를 well당 150 cells의 개수로 12 well에 부착시키고 다음날부터 약 2주 동안 해당 농도 조건으로 그라실린을 처리하였다. 약물 처리 완료 후 크리스탈 바이올렛(crystal violet)으로 염색하여 콜로니 생성을 관찰하였다.Cells were plated in 12 wells at a density of 150 cells per well and treated with gracillin at the corresponding concentration for about 2 weeks from the next day. After completion of drug treatment, colony formation was observed by staining with crystal violet.

1-4. Sphere formation assay1-4. Sphere formation assay

세포를 2×105 cells/ml의 농도로 배지 100 μl에 희석한 후, 각 농도에 해당하는 그라실린을 처리하고, 이를 20 μl씩 취하여 60 mm dish의 뚜껑에 dropping 하였다. 약 3일 뒤 형성되는 sphere form을 현미경을 통해 관찰하였다.Cells were diluted in 100 μl of the medium at a concentration of 2 × 10 5 cells / ml, treated with each concentration of gracillin, and 20 μl of each was treated with dropping into the lid of a 60-mm dish. A sphere form formed about 3 days later was observed under a microscope.

1-5. Tumor xenograft model 1-5. Tumor xenograft model

NOD/SCID 마우스에 H1299 세포를 spot당 약 5×106 개의 세포를 마트리겔(matrigel)에 희석하거나 잘게 절단된 환자 유래 폐암 조직을 양다리 위쪽 피하에 이식하였다. 약 10일 후 종양 크기가 150-200 mm3에 이르면 각 농도에 해당하는 그라실린을 약 2주 동안 복강투여하였다. 종양의 부피는 다음의 공식으로 계산하였고, 일정 간격으로 마우스 무게를 측정하여 독성 여부를 확인하였다. H1299 cells were transplanted into NOD / SCID mice at about 5 × 10 6 cells per spot in matrigel or transplanted subcutaneously with chopped patient-derived lung cancer tissue. Approximately 10 days after tumor size reached 150-200 mm 3 , each concentration of gracillin was administered intraperitoneally for about 2 weeks. Tumor volume was calculated by the following formula, and mouse weight was measured at regular intervals to confirm toxicity.

Tumor volume (mm3) = 장축×단축×단축 / 2Tumor volume (mm 3 ) = Long axis × Short axis × Short axis / 2

1-6. MMP fluorescence combining CT imaging1-6. MMP fluorescence-combining CT imaging

8주령의 KrasG12D/+ transgenic 마우스에 10 mg/kg의 그라실린을 약 2달 동안 복강투여하였다. 약물 처리 완료 후 MMPsence680 (PerkinElmer) 150 μl를 꼬리 정맥에 투여하고 약 24시간 뒤, IVIS SpectrumCT In Vivo Imaging System의 FLIT (Fluorescent Imaging topography) 모듈을 이용하여 florescence combining CT image를 확보하였다.8-week-old Kras G12D / + transgenic mice were intraperitoneally administered 10 mg / kg of gracillin for about 2 months. After completion of the drug treatment, 150 μl of MMPsence 680 (PerkinElmer) was intravenously administered to the tail vein. After about 24 hours, fluorescence-combining CT images were obtained using the FLIT (Fluorescent Imaging topography) module of the IVIS SpectrumCT In Vivo Imaging System.

1-7. Flow cytometry1-7. Flow cytometry

5×105 개의 세포를 60 mm dish에 부착시킨 후, 다음날 그라실린을 각 농도별, 시간별로 처리하고, trypsin으로 세포를 뗀 후 80% ethanol로 하루 동안 고정하였다. 약 3,000 rpm으로 5분 동안 원심분리하여 에탄올을 제거하여 주고, PBS로 세정한 뒤, 10 μg/ml의 RNase와 함께 25 μM의 PI(Propidium Iodide)로 30분 정도 세포를 염색시킨 뒤, FACScalibur (BD science)로 분석하였다.After 5 × 10 5 cells were attached to a 60 mm dish, the next day, gracillin was treated with each concentration and time, and cells were removed with trypsin and fixed with 80% ethanol for one day. Cells were stained with 25 μM of PI (Propidium Iodide) for 30 min with 10 μg / ml of RNase, and the cells were stained with FACScalibur BD science).

1-8. DCF-DA/MitoSOX/TMRM staining1-8. DCF-DA / MitoSOX / TMRM staining

6 well plate에 cover slip을 깐 뒤, 약 105개의 세포를 부착시켰다. 24시간 뒤, 각 fluorescent 시약을 30분 동안 처리한 뒤, DCF-DA(ex 485nm, em 535nm), MitoSOX, TMRM(ex 510nm, em 580nm)을 해당 파장별로 형광 현미경을 통해 관찰하였다.6, the cover slip on the well plate was attached to the peeled back, about 10 5 cells. After 24 hours, each fluorescent reagent was treated for 30 minutes, and DCF-DA (ex 485 nm, em 535 nm), MitoSOX, TMRM (ex 510 nm, em 580 nm) were observed by fluorescence microscope for each wavelength.

1-9. in silico computational modeling1-9. in silico computational modeling

Online docking web server인 Swissdock을 이용하여, 미토콘드리아 complex II subunit인 SDHA와 그라실린의 예상 분자 상호작용을 분석하였다. SDHA는 공지의 단백질 구조(PDB; 1NEK)를 이용하였으며, binding model은 fullfitness가 -2,500 kcal/mol 이하인 cluster들을 선택하였다. 분석 결과는 'UCSF Chimera'를 이용하여 도식화하였다.Using Swissdock, an online docking web server, the expected molecular interactions of mitochondrial complex II subunit SDHA and gracillin were analyzed. SDHA used a known protein structure (PDB; 1NEK), and binding models selected clusters with full fitness less than -2,500 kcal / mol. The analysis result was schematized using 'UCSF Chimera'.

1-10. Glucose uptake assay1-10. Glucose uptake assay

2-NBDG는 세포 생존율 표지자로서 살아있는 세포의 글루코스 섭취를 모니터링하는데 사용하는 형광 글루코스 유사체이다. 세포 내 글루코오스 유입을 측정하기 위해서, 6 well plate에 cover slip을 깐 뒤, 약 105개의 세포를 부착시켰다. 24시간 뒤, 그라실린을 처리하고, 각 fluorescent 시약을 30분 동안 처리한 뒤, NBDG을 ex 485nm, em 535nm 파장 조건에서 형광 현미경을 통해 관찰하였다.2-NBDG is a fluorescent glucose analog used to monitor glucose uptake of living cells as a cell survival marker. To measure the intracellular glucose influx, 6 well plate to the peeled back cover slip, it was attached to about 10 5 cells. After 24 hours, the glycine was treated and each fluorescent reagent was treated for 30 minutes. NBDG was observed under fluorescence microscope at ex 485 nm and em 535 nm wavelength.

1-11. Lactate production assay1-11. Lactate production assay

96 well plate에 104개의 세포를 부착시킨 뒤, 다음 날 그라실린을 처리하고 각 media를 획득한 후, (주)Biovision사의 lactate production kit를 이용하여 450nm 흡광도에서 세포에서 분비된 lactate를 분석하였다. 각 샘플의 정량값은 lactate standard curve를 통해 산출하였다. After attaching 10 4 cells to a 96 well plate, the medium was treated with gracillin the next day, and the lactate secreted from the cells was analyzed at 450 nm absorbance using Biovision 's lactate production kit. Quantitative values of each sample were calculated by lactate standard curve.

1-12. DARTS assay1-12. DARTS assay

소분자 화합물이 타겟 단백질에 결합하면 타겟 단백질이 단백분해 효소에 의하여 인식되어 분해되는 것을 방해한다는 원리를 이용하여, 그라실린이 SDHA에 직접 결합함을 확인한 것이다. 세포 lysate 15 μg 20 μl에 그라실린(최종 1 μM) 또는 DMSO(vehicle control)를 넣어주고, 얼음에서 30분간 배양하였다. 0.05% Trypsin-EDTA 1 μl를 넣고 얼음에서 일정 시간 동안 배양하여 단백질 분해를 유도한 후, 5x sample buffer 5 μl를 넣어주고 95℃에서 5분간 끓여 주었다. Western blotting을 이용하여 SDHA의 분해 여부를 검색하였다. Using the principle that when a small molecule compound binds to a target protein, the target protein is prevented from being recognized and decomposed by proteolytic enzymes, it is confirmed that the glycerin binds directly to SDHA. Gracilin (final 1 μM) or DMSO (vehicle control) was added to 20 μl of 15 μg cell lysate and incubated on ice for 30 min. After adding 1 μl of 0.05% trypsin-EDTA and incubating on ice for a certain period of time, proteolysis was induced. 5 μl of 5x sample buffer was added and the mixture was boiled at 95 ° C for 5 minutes. SDHA degradation was detected using Western blotting.

실시예 2: 그라실린 화합물 선별Example 2: Selection of a Graciline Compound

2-1. 화합물 1차 선정2-1. Primary selection of compounds

우선, 약 500여개의 천연물 유래 물질 라이브러리에서 암세포 증식 억제 활성이 가장 뛰어난 13개의 화합물을 1차 선정하였고, 이들 화합물들을 대상으로 AMPK/mTOR 조절 활성을 웨스턴 블랏을 통해 평가하였다. First, thirteen compounds with the highest inhibitory activity against cancer cell proliferation were firstly selected from about 500 natural substance-derived substance libraries, and the AMPK / mTOR modulating activity of these compounds was evaluated by Western blotting.

그 결과, 도 1에 나타낸 바와 같이, 13번 화합물인 그라실린(Gracillin; GRA)의 경우 AMPK의 인산화 형태(pAMPK)의 발현이 현저히 증가하고, mTOR의 인산화 형태(pmTOR)가 현저히 감소한 것을 통해 mTOR의 활성화를 가장 효과적으로 저해하는 것을 확인하였다. As a result, as shown in Fig. 1, the expression of the phosphorylation form (pAMPK) of AMPK markedly increased and the phosphorylation form (pmTOR) of mTOR was remarkably decreased in the case of the compound No. 13, Gracillin (GRA) The most effective inhibition of < RTI ID = 0.0 >

나아가, 암세포 증식 억제 활성이 가장 뛰어났던 상기 13종류 후보 화합물들을 대상으로 ATP 생성 억제활성을 평가하였다. 그 결과, 도 2에 나타낸 바와 같이 13번 화합물인 그라실린의 경우 ATP 생성이 가장 현저하게 감소된 것을 확인하였다. Furthermore, ATP production inhibitory activities of the above 13 candidate compounds having the best cancer cell proliferation inhibitory activity were evaluated. As a result, as shown in Fig. 2, it was confirmed that the generation of ATP was most remarkably reduced in the case of the compound No. 13, i.e., glycylin.

2-2. 최종 화합물 선정2-2. Final compound selection

상기 실시예 2-1의 결과를 바탕으로 AMPK/mTOR 조절 활성 및 ATP 생성 억제 활성이 뛰어난 그라실린(GRA)을 연구대상 물질로 최종 선정하였다(도 3 참조).Based on the results of Example 2-1, gracillin (GRA) having excellent AMPK / mTOR regulatory activity and ATP production inhibitory activity was finally selected as a study substance (see FIG. 3).

구체적으로, RTK(Receptor Tyrosine Kinase) array kit에서 mTOR downstream인 S6의 활성화(p-S6)가 대조군(CT)에 비하여 그라실린(GRA) 처리에 의해 억제됨을 확인하였다(도 4 참조). Specifically, it was confirmed that the activation (p-S6) of S6 downstream of mTOR in the RTK (Receptor Tyrosine Kinase) array kit was inhibited by GRA treatment compared to the control (CT) (see FIG. 4).

또한, 웨스턴 블랏 결과, 폐암세포주(H460, A549)에 그라실린(GRA) 처리 후 1-6시간 사이에서 AMPK 활성화(p-AMPK)를 유도하였고, mTOR 및 downstream signaling의 순차적 억제가 관찰되었다(도 5 참조).Western blot analysis revealed that AMPK activation (p-AMPK) was induced in lung cancer cell line (H460, A549) within 1-6 hours after treatment with GRA, and sequential inhibition of mTOR and downstream signaling was observed 5).

실시예 3: Example 3: in vitroin vitro 상에서 그라실린의 종양 형성 억제효과 확인Of tumor growth inhibition

상기 실시예 2에서, 그라실린을 항암제 후보로 최종 선정하였기 때문에, 실제 폐암세포주의 증식을 억제하는지 in vitro상에서 먼저 확인하였다.Since gracillin was finally selected as an anticancer agent candidate in Example 2, it was first confirmed in vitro to inhibit the proliferation of an actual lung cancer cell line.

3-1. MTT 어세이3-1. MTT assay

우선, 상기 실시예 1-1의 방법에 따라 MTT 어세이를 수행한 결과, 하기 표 1에 나타낸 바와 같이, 그라실린은 폐암 세포의 증식을 IC50 약 5 μM 수준에서 억제하였음을 알 수 있었다. 특히 KRAS 또는 LKB1 변이 암세포주(H460)에서는 그라실린의 세포증식억제 활성이 유의적으로 증가하였다.First, MTT assay was performed according to the method of Example 1-1. As shown in the following Table 1, it was found that the growth of lung cancer cells was suppressed at an IC 50 of about 5 μM. In particular, the inhibitory activity of glycine on cell proliferation of KRAS or LKB1 mutant cell line (H460) was significantly increased.

[표 1][Table 1]

Figure pat00003
Figure pat00003

3-2. 콜로니 형성 어세이3-2. Colony formation assays

상기 실시예 1-2 및 1-3의 방법에 따라 비부착성 콜로니 형성 어세이(anchorage independent colony formation assay)와 부착성 콜로니 형성 어세이(anchorage dependent colony formation assay)를 수행한 결과, 도 6 및 7에 각각 나타낸 바와 같이, 그라실린은 약 1-1.5 μM 수준에서 폐암 세포의 비부착성/부착성 콜로니 형성을 억제함을 알 수 있었다.As a result of performing anchorage independent colony formation assay and anchorage dependent colony formation assay according to the methods of Examples 1-2 and 1-3, 7, respectively, it was found that the gracillin inhibits the formation of nonadherent / adherent colonies of lung cancer cells at a level of about 1-1.5 [mu] M.

또한, 상기 실시예 1-4의 방법에 따라 sphere 형성 어세이(sphere formation assay)를 수행한 결과, 도 8에 나타낸 바와 같이, 그라실린은 약 1-1.5 μM 수준에서 폐암 세포의 sphere 형성을 억제함을 알 수 있었다.In addition, sphere formation assay was performed according to the method of Example 1-4, and as shown in FIG. 8, the glycine inhibited sphere formation of lung cancer cells at about 1-1.5 [mu] M level .

3-3. 교차반응(cross-reactivity) 분석3-3. Cross-reactivity analysis

그라실린이 종래의 항암제와 교차반응을 보이는지 확인하기 위하여, 항암제 내성 세포주에 대하여 세포 생존성 실험을 수행하였다. 그 결과, 도 9에 나타낸 바와 같이, 파크리탁셀(paclitaxel) 내성 폐암 세포주인 H226B/R, SK-MES/R와, 제프티닙/엘로티닙(geftinib/erlotinib) 내성 폐암 세포주인 PC9/GR, PC9/ER에서, 비내성 세포주보다 그라실린의 세포증식 억제능이 더 뛰어남을 확인하였다.Cell survival experiments were performed on anticancer drug resistant cell lines in order to confirm whether the glycerin cross - reacts with conventional anticancer drugs. As a result, as shown in Fig. 9, paclitaxel-resistant lung cancer cell lines H226B / R, SK-MES / R, and geftinib / erlotinib resistant lung cancer cell lines PC9 / / ER showed better ability to inhibit cell proliferation than non-resistant cell lines.

따라서, 이들 항암제 약물과 그라실린은 교차반응을 거의 보이지 않음을 알 수 있다.Thus, it can be seen that these anticancer drug and gracillin show little cross-reactivity.

3-4. 다양한 암종 분석3-4. Analysis of various carcinomas

상기 실시예 3-1에서 그라실린이 폐암 세포 증식을 억제함을 확인하였기 때문에, 이에 더하여 다른 암종에 대하여도 추가실험을 실시한 결과, 하기 표 2에 나타난 바와 같이, 폐암뿐만 아니라 전립선암, 대장암 등의 세포주에서도 약 5 μM 수준 이하의 범위로 뛰어난 증식 억제활성을 보였다.In addition, as shown in Table 2 below, it was confirmed that gracillin inhibits the proliferation of lung cancer cells in Example 3-1. In addition, as shown in Table 2, And 5 [mu] M, respectively.

[표 2][Table 2]

Figure pat00004
Figure pat00004

실시예 4: Example 4: in vivoin vivo 상에서 그라실린의 종양 형성 억제효과 확인Of tumor growth inhibition

상기 실시예 3에서, 그라실린이 폐암세포주의 증식을 억제하는지 in vitro상에서만 확인하였기 때문에, 이에 나아가서 하기와 같은 방법으로 in vivo 실험을 수행하였다.Since in Example 3, the inhibition of the proliferation of lung cancer cell lines was confirmed only in vitro , the in vivo experiment was carried out in the following manner.

4-1. Xenograft 모델4-1. Xenograft model

상기 실시예 1-5의 방법에 따라 제작된 H1299 폐암세포주가 이식된 xenograft 마우스모델(H1299 xenograft) 및 환자 유래 폐암조직이 이식된 xenograft 마우스모델(PDX; patient-derived xenograft) 각각에 대하여, 그라실린 20 mg/kg을 하루에 한 번씩 복강 투여하였다. 그 결과, 도 10에 나타낸 바와 같이, 두 모델 모두에서 약 2주-3주 내에 종양 형성이 유의하게 감소됨을 확인하였다.For each of the xenograft mouse model (H1299 xenograft) transplanted with the H1299 lung cancer cell line prepared according to the method of Example 1-5 and the xenograft mouse model (PDX; patient-derived xenograft) transplanted with the patient-derived lung cancer tissue, 20 mg / kg was administered intraperitoneally once a day. As a result, as shown in Fig. 10, tumor formation was significantly reduced within about two to three weeks in both models.

4-2. MMP fluorescence combining CT imaging4-2. MMP fluorescence-combining CT imaging

KrasG12D/+ transgenic mouse 모델에서 그라실린 10 mg/kg을 8주간 복강투여한 결과, 도 11에 나타낸 바와 같이, 폐에 생긴 종양 형성이 효과적으로 감소됨을 확인하였다.In the Kras G12D / + transgenic mouse model, 10 mg / kg of gracine was intraperitoneally administered for 8 weeks. As shown in FIG. 11, it was confirmed that the formation of lung tumors was effectively reduced.

4-3. 다양한 암종 분석4-3. Analysis of various carcinomas

상기 실시예 1-3과 동일한 방법에 따라 유방암 세포주인 MDA-MB-231, 전립선암 세포주인 DU145, 및 대장암 세포주인 HCT116를 이용하여 각각의 xenograft 마우스모델을 제작한 후 상기 각각의 마우스 모델에 대하여 그라실린 20 mg/kg을 하루에 한 번씩 복강 투여하고 21일 내지 25일 동안 종양크기 변화를 측정하였다. 그 결과, 도 12에 나타낸 바와 같이, 상기 각각의 유방암, 전립선암, 및 대장암 종양의 형성이 2 내지 3주 이내에 유의하게 감소하는 것을 확인하였다. MDA-MB-231, a breast cancer cell line, DU145, a prostate cancer cell line, and HCT116, a colon cancer cell line, were prepared in the same manner as in Example 1-3, and then each xenograft mouse model was prepared. 20 mg / kg of gracaine was intraperitoneally administered once a day and tumor size changes were measured for 21 to 25 days. As a result, as shown in Fig. 12, it was confirmed that the formation of each of the above breast cancer, prostate cancer, and colorectal cancer tumors was significantly reduced within 2 to 3 weeks.

실시예 5: 그라실린에 의한 아폽토시스(apoptosis) 유도 확인Example 5: Confirmation of induction of apoptosis by gracillin

5-1. 유세포 분석(flowcytometry)5-1. Flowcytometry

상기 실시예 1-7의 방법에 따라 유세포분석 실험을 실시한 결과, 도 13의 A에 나타낸 바와 같이, 그라실린에 의한 subG1 phase(cell death) 생성이 농도(1-10 μM) 의존적으로 증가함을 알 수 있었으며, 도 13의 B에 나타낸 바와 같이, 그라실린에 의한 세포사멸은 24시간 이내에 매우 급속히 일어남을 알 수 있었다.As a result of flow cytometry analysis according to the method of Example 1-7, as shown in Fig. 13A, the generation of subG1 phase (cell death) due to the gracillin was increased depending on the concentration (1-10 [mu] M) As shown in Fig. 13B, it was found that the cell death due to the gracillin occurred very rapidly within 24 hours.

또한, 도 13의 C에 나타낸 바와 같이, 그라실린과 caspase inhibitor(CASi)를 같이 처리한 결과, 그라실린에 의한 아폽토시스가 감소됨을 알 수 있었다.In addition, as shown in Fig. 13C, when caspase inhibitor (CASi) was treated with both of glycylin and caspase inhibitor, apoptosis by gracillin was decreased.

5-2. 웨스턴 블랏5-2. Western blot

웨스턴 블랏 실험결과, 도 14의 A에 나타낸 바와 같이, 그라실린에 의해 caspase-3와 PARP(poly-(ADP-ribose) polymerase)의 절단형(cleaved form)이 관찰되었으며, 또한, 그라실린과 caspase inhibitor(CASi)를 같이 처리한 결과, 도 14의 B에 나타낸 바와 같이, 상기 절단형이 현저히 감소되었다.Western blot analysis showed that cleaved form of caspase-3 and PARP (poly- (ADP-ribose) polymerase) was observed by gracillin as shown in Fig. 14A, inhibitor (CASi) were treated in the same manner. As a result, as shown in Fig. 14B, the truncated form was remarkably reduced.

따라서 상기 결과들은, 그라실린에 의한 세포사멸이 주로 아폽토시스에 의한 것임을 암시한다.Therefore, the above results suggest that apoptosis is mainly caused by apoptosis.

실시예 6: 그라실린에 의한 미토콘드리아 기능 억제활성 확인Example 6: Confirmation of Mitochondrial Inhibitory Activity by Gracilin

상기 실시예들을 통하여, 그라실린이 1-6시간 내에 AMPK를 활성화시키고, 12-24시간 내에 아폽토시스를 유도한다는 것이 확인되었기 때문에, 그라실린 약물 작용점이 미토콘드리아 내에 존재할 수 있다는 가정하에, 아래와 같은 방법으로 그라실린에 의한 미토콘드리아 저해 활성을 관찰하였다. Through the above examples, it has been confirmed that since the glycine activates AMPK within 1-6 hours and induces apoptosis within 12-24 hours, it is possible to use the following method under the assumption that the gracillin drug action point can be present in the mitochondria The mitochondrial inhibitory activity by gracillin was observed.

6-1. DCF-DA/MitoSOX/TMRM staining6-1. DCF-DA / MitoSOX / TMRM staining

활성산소 ROS(reactive oxygen species)는, 에너지를 생성하는 미토콘드리아 호흡의 부산물로 주로 생성되며, 생성된 양과 생성 기간에 따라 세포사멸 등을 유도할 수 있다고 알려져 있기 때문에, 그라실린에 의해 이러한 활성산소가 증가되었는지 확인하기 위하여, DCF-DA/MitoSOX/TMRM 염색을 실시하였다. 그 결과, 도 15에 나타낸 바와 같이, 그라실린은 세포질 ROS(DCF-DA), 미토콘드리아 ROS(MitoSOX)을 증가시켰으며, 동시에 미토콘드리아 막전위(TMRM)를 낮추었다.Since reactive oxygen species (ROS) is known to be mainly produced as a byproduct of mitochondrial respiration that produces energy and can induce apoptosis according to the amount and duration of production, DCF-DA / MitoSOX / TMRM staining was performed. As a result, as shown in Fig. 15, gracillin increased cytoplasmic ROS (DCF-DA), mitochondrial ROS (MitoSOX) and lowered mitochondrial membrane potential (TMRM) simultaneously.

6-2. 웨스턴 블랏6-2. Western blot

미토콘드리아 ROS에 의해 유도되는 아폽토시스는 일반적으로 p38 또는 JNK가 매개한다고 알려져 있기 때문에, 폐암세포주(H460, A549)에 그라실린 처리 후 이들 단백질의 인산화 여부를 확인하기 위하여 웨스턴 블랏을 실시하였다. 그 결과, 도 16의 A에 나타낸 바와 같이, 인산화된 p38과 JNK(p-p38, p-JNK)의 발현이 관찰되었다.Since apoptosis induced by mitochondrial ROS is generally known to be mediated by p38 or JNK, Western blotting was performed on lung cancer cell lines (H460, A549) to confirm the phosphorylation of these proteins after treatment with glycine. As a result, as shown in Fig. 16A, the expression of phosphorylated p38 and JNK (p-p38, p-JNK) was observed.

또한, 도 16의 B에 나타낸 바와 같이, p38 억제제(P38i) 또는 항산화제(NAC)의 존재 하에 그라실린을 처리한 경우, cleaved caspase-3와 cleaved PARP의 발현이 감소되었기 때문에, 그라실린에 의한 아폽토시스가 감소되었음을 확인하였다.In addition, as shown in Fig. 16B, the expression of cleaved caspase-3 and cleaved PARP was reduced in the presence of p38 inhibitor (P38i) or antacid (NAC) in the presence of NAC, It was confirmed that apoptosis was decreased.

6-3. FACS 분석6-3. FACS analysis

FACS 분석 결과, 도 17에 나타낸 바와 같이, p38 억제제(P38i) 또는 항산화제(NAC)의 존재 하에 그라실린을 처리한 경우, 그라실린에 의한 아폽토시스가 감소되었음을 확인하였는데, 이는 상기 실시예 6-2의 웨스턴 블랏 결과와 일치하는 것이다.As a result of FACS analysis, as shown in Fig. 17, it was confirmed that when glycine was treated in the presence of p38 inhibitor (P38i) or antioxidant (NAC), apoptosis caused by the glycine was reduced, Which is consistent with the Western blot results.

이러한 결과는, 그라실린에 의해 생성된 미토콘드리아 ROS가 p38 경로를 활성화시켜 최종적으로 아폽토시스를 유발한다는 것을 의미하는 것이다.This result implies that the mitochondrial ROS produced by the glycine activates the p38 pathway and ultimately induces apoptosis.

실시예 7: 그라실린에 의한 미토콘드리아 complex II 기능 억제활성 확인Example 7 Confirmation of Mitochondrial Complex II Inhibitory Activity by Gracilin

상기 실시예 6을 통하여 그라실린이 미토콘드리아 ROS(MitoSOX)를 증가시킴으로써 아폽토시스를 유발한다는 것을 확인하였기 때문에, 미토콘드리아 ROS의 생성 기작을 구체적으로 확인하기 위하여 다음과 같은 실험을 더욱 수행하였다.Since it was confirmed through the above Example 6 that the glycylin induces apoptosis by increasing the mitochondrial ROS (MitoSOX), the following experiment was further carried out to specifically confirm the generation mechanism of the mitochondrial ROS.

7-1. MitoSOX staining7-1. MitoSOX staining

상기 실시예 1-8의 방법에 따라 미토콘드리아의 전자 전달계를 구성하는 4개의 전자전달 효소 복합체중 complex II의 기질인 숙시네이트(succinate)와 그라실린을 함께 처리한 후 MitoSOX 염색을 실시한 결과, 도 18에 나타낸 바와 같이, 미토콘드리아 ROS(MitoSOX) 증가가 특이적으로 관찰된 반면, 미토콘드리아 complex I의 기질인 glutamate/malate 처리조건에서는 동일시간에서 미토콘드리아 ROS(MitoSOX)가 관찰되지 않았다.The succinate and gracaine, which are substrates of the complex II among the four electron transporting enzyme complexes constituting the mitochondrial electron transport system, were treated together and then subjected to MitoSOX staining according to the method of Example 1-8. As a result, , Mitochondrial ROS (MitoSOX) was observed specifically, while mitochondrial ROS (MitoSOX) was not observed at the same time in glutamate / malate treatment condition, which is a substrate of mitochondrial complex I.

7-2. 유세포 분석(flowcytometry)7-2. Flowcytometry

유세포 분석 결과 역시, 도 19에 나타낸 바와 같이, 특히 succinate 존재시(GRA+SUC) 그라실린에 의한 subG1 phase 증가가 60 내지 70%로 가장 높게 관찰되었다.As shown in Fig. 19, flow cytometry analysis showed that the increase of subG1 phase by gracillin was highest at 60 to 70%, especially in the presence of succinate (GRA + SUC).

7-3. in silico computational modeling7-3. in silico computational modeling

상기 실시예 1-9의 방법에 따른 in silico computational modeling 분석결과, 도 20에 나타낸 바와 같이, 그라실린은 미토콘드리아 complex II의 구성 단백질인 SDHA(Succinate_dehydrogenase; 숙신산 탈수소효소)와 매우 안정된 형태로 결합하였고, 특히 SDHA의 flavinylation에 관여하는 SDHAF2 결합 자리 부분에서 그라실린의 결합부위가 존재할 가능성이 높다는 사실을 알 수 있었다.As shown in FIG. 20, in-silico computational modeling analysis according to the method of Example 1-9 showed that gracillin bound to SDHA (succinate dehydrogenase (succinate dehydrogenase)), which is a constituent protein of mitochondrial complex II, In particular, it was found that there is a high possibility that the binding site of the glycine is present in the SDHAF2 binding site involved in the flavinylation of SDHA.

이러한 결과들은, 그라실린이 미토콘드리아 complex II의 기능을 저해하고, 이에 의해 생성된 ROS가 아폽토시스를 유도할 수 있음을 암시하는 것이다.These results imply that the glycylin inhibits the function of the mitochondrial complex II and that the ROS produced thereby can induce apoptosis.

7-4. DARTS 어세이7-4. DARTS assay

상기 실시예 7-3의 in silico computational modeling 결과에 더하여 DARTS 어세이를 통해 그라실린이 SDHA에 결합하는지 다시 한 번 검증한 결과, 도 21에 나타낸 바와 같이, DMSO를 처리한 대조군에서는 trypsin의 처리 시간이 증가됨에 따라 SDHA가 분해되어 발현이 감소되었으나 그라실린을 처리한 경우 trypsin에 의한 SDHA의 분해가 억제되어 SDHA의 발현이 유지되는 것을 통하여 그라실린이 SDHA에 결합하는 것을 알 수 있었다. In addition to the in silico computational modeling results of Example 7-3 above, the results of the DARTS assays again confirmed that the glycylin binds to SDHA. As shown in FIG. 21, in the control group treated with DMSO, The expression of SDHA was degraded and the expression of SDHA was inhibited. In the case of treatment with glycine, the degradation of SDHA by trypsin was inhibited, and the expression of SDHA was maintained, indicating that the glycine was bound to SDHA.

실시예 8: SDHA와 폐암과의 관련성 확인Example 8: Confirmation of association between SDHA and lung cancer

상기 실시예 7의 결과를 통해 그라실린이 미토콘드리아 complex II의 구성 단백질인 SDHA에 결합함으로써 상기 complex II의 기능을 저해함으로써 이에 의해 생성된 ROS가 세포의 아폽토시스를 유발하는 것을 확인하였는바, 실제 환자에서 폐암과 SDHA 발현의 상관관계를 알아보고자 하였다. As a result of the above Example 7, it was confirmed that the complex of ROS produced by the binding of GRACIL to the SDHA, which is a constitutive protein of the mitochondrial complex II, inhibited the apoptosis of the cell, And SDHA expression in lung cancer.

8-1. 마우스 폐암 조직에서 SDHA의 발현 분석8-1. Expression of SDHA in mouse lung cancer tissue

먼저, 폐암에서 발생되는 유전적 변이 중 하나인 돌연변이된 Kras(KrasG12D/+)를 과발현하는 마우스의 폐 조직에서 SDHA의 발현을 IHC 및 웨스턴 블랏을 통해 확인하였다. 그 결과, 도 22에 나타낸 바와 같이, IHC를 통해 상기 형질전환 마우스의 폐조직에서 SDHA가 많이 발현되고 있음을 관찰하였으며, 웨스턴 블랏을 통해 정상대조군(WT)에 비하여 상기 마우스의 폐조직 내 SDHA 단백질이 높게 발현되고 있음을 확인하였다. First, the expression of SDHA in lung tissues of mice overexpressing mutated Kras (Kras G12D / + ), one of the genetic mutations occurring in lung cancer, was confirmed by IHC and Western blotting. As a result, as shown in FIG. 22, it was observed that SDHA was expressed in the lung tissue of the transgenic mouse through IHC, and that the expression of SDHA protein in the lung tissue of the mouse compared to the normal control (WT) Was found to be highly expressed.

또한, 또 다른 돌연변이 KRAS(KrasG12V)를 과발현하는 사람 폐암세포를 이식하여 생성한 종양 조직, 또는 발암원인인 담배연기 농축액(cigarette smoking condensates; CSC), NNK/benzo[a]pyrene(B[a]P) 또는 우레탄(urethane)을 처리한 마우스의 폐 조직에서 SDHA 단백질의 발현수준을 평가하였다. IHC 수행 결과, 도 23에 나타낸 바와 같이, 각각의 마우스 폐 조직은 정상 대조군에 비하여 높은 수준으로 SDHA를 발현하고 있음을 알 수 있었다. In addition, a tumor tissue produced by transplanting human lung cancer cells overexpressing another mutant KRAS (Kras G12V ), or a cigarette smoking condensate (CSC), a cause of cancer, NNK / benzo [a] pyrene ] P) or urethane in the lung tissue of the mice. As a result of IHC, as shown in FIG. 23, it was found that each mouse lung tissue expresses SDHA at a higher level than the normal control group.

8-2. 사람 폐암 조직에서 SDHA의 발현 분석 8-2. Expression of SDHA in Human Lung Cancer Tissue

상기 결과에 더하여, 돌연변이된 KRAS(KrasG12V)를 과발현하는 사람의 폐암세포, 또는 EGF, IGF-1 등의 성장인자에 의해 KRAS가 활성화된 사람 유래 폐암세포에서 SDHA의 발현수준을 웨스턴 블랏을 통해 평가하였다. 그 결과, 도 24에 나타낸 바와 같이, 돌연변이된 KRAS를 과발현하는 폐암조직의 경우 정상 대조군(EV)에 비해 SDHA의 발현이 현저히 증가되어 있는 것을 관찰하였으며, EGF 또는 IGF-1이 과발현된 암세포의 경우에도 SDHA의 발현이 증가하는 것을 확인하였다.In addition to the above results, the expression level of SDHA in lung cancer cells overexpressing mutant KRAS (KrasG12V) or lung cancer cells derived from human-induced lung cancer cells by KRAS-activated growth factors such as EGF and IGF-1 was evaluated by Western blot Respectively. As a result, as shown in FIG. 24, the expression of SDHA was significantly increased in lung cancer tissues overexpressing mutated KRAS as compared with the normal control (EV). In the case of cancer cells overexpressing EGF or IGF-1 The expression of SDHA was also increased.

또한, 상기 폐암 조직에서 시간 변화에 따른 SDHA의 발현변화를 관찰한 결과, 도 25의 A에 나타낸 바와 같이, 정상 대조군에 비하여 돌연변이된 KRAS가 과발현된 폐암조직의 경우 SDHA의 발현이 높게 지속적으로 유지되는 반면, 정상적인 KRAS가 과발현되는 경우에는 시간이 지남에 따라 SDHA의 발현이 다시 감소하는 것을 확인하였다. Further, as a result of observing the change of expression of SDHA with time in the above lung cancer tissues, as shown in Fig. 25A, in the lung cancer tissue overexpressing mutated KRAS as compared with the normal control group, the expression of SDHA was maintained Whereas, when normal KRAS was overexpressed, the expression of SDHA again decreased over time.

이에 더하여, 도 25의 B에 나타낸 바와 같이, 정상대조군(EV)의 폐 세포에 EGF를 처리하여 KRAS를 활성화시킨 경우 KRAS 돌연변이와 마찬가지로 SDHA의 발현이 증가하여 지속적으로 발현수준이 유지되는 것을 확인하였다. In addition, as shown in Fig. 25B, when KRAS was activated by treating EGF in lung cells of a normal control (EV), expression of SDHA was increased as in the case of KRAS mutation, and the expression level was continuously maintained .

상기 결과들은 다양한 원인에 의해 유발된 폐암조직 또는 세포에서 SDHA이 높게 발현되며, 안정성이 증가된 것을 의미한다. These results indicate that SDHA is highly expressed in lung cancer tissues or cells induced by various causes and the stability is increased.

실시예 9: 그라실린의 부작용 검증Example 9: Verification of Side Effects of Gracilin

9-1. 그라실린의 물성9-1. Properties of Gracylin

하기 표 1에 나타낸 바와 같이, 그라실린은 약물의 막투과도를 나타내는 clogP가 2 이하이고 분자량이 400 이상이며 polar surface area가 90 이상이기 때문에, rotenoids(미토콘드리아 complex I 저해제)와 같은 약물의 혈뇌장벽(blood brain barrier; BBB) 통과에 의한 신경독성 가능성은 낮을 것으로 예상된다.As shown in the following Table 1, since the content of clogP, which indicates the drug permeability of the drug, is less than 2, the molecular weight is more than 400, and the polar surface area is more than 90, the blood brain barrier of drugs such as rotenoids (mitochondrial complex I inhibitor) The potential for neurotoxicity through the blood brain barrier (BBB) is expected to be low.

[표 3][Table 3]

Figure pat00005
Figure pat00005

9-2. MTT 어세이9-2. MTT assay

도 26에 나타낸 바와 같이, 그라실린은 KRAS/LKB1의 변이암 세포주인 H460에서, 비구아나이드계(biguanides) 약물인 펜포르민(phenformin)보다 증식 억제활성이 훨씬 우수하였는 바, 이는 KRAS/LKB1 변이암에 대한 선택성이 높다는 것을 암시하는 것이다.As shown in Fig. 26, the growth inhibitory activity of glycine was much better than phenformin, which is a biguanide drug, in KR4 / mutant cancer cell line H460 of KRKB / LKB1, Suggesting a high selectivity for cancer.

9-3. glucose uptake/lactate production 어세이9-3. glucose uptake / lactate production assay

일반적으로 비구아나이드계(biguanides) 약물들은 미토콘드리아 기능 저하를 통하여 세포질 해당작용(cytosol glycolysis)을 촉발하므로, 젖산혈증(lactic acidosis)과 같은 부작용이 알려져 있다.In general, biguanides drugs induce cytosol glycolysis through diminished mitochondrial function, and side effects such as lactic acidosis are known.

그러나 도 27에 나타낸 바와 같이, 그라실린의 경우 glucose uptake는 증가시키는 반면(도 27의 A), lactate 생성은 오히려 감소시키므로(도 27의 B), 젖산혈증과 같은 부작용 위험을 낮출 수 있을 것으로 기대된다.However, as shown in FIG. 27, it is expected that the risk of side effects such as lactic acidosis may be lowered because the glycine increases glucose uptake (A in FIG. 27) but rather reduces lactate production (FIG. 27B) do.

9-4. 9-4. in vivoin vivo 에서 그라실린에 의한 독성 검증Of Toxicity by Gracillin

In vivo에서 그라실린 투여에 의한 신체적 독성을 검증하기 위해, 먼저 전립선암 세포주인 DU145, 유방암 세포주인 MDA-MB-231, 대장암 세포주인 HCT116을 각각 이식하여 제작한 xenograft 마우스모델, 및 환자 유래 폐암조직이 이식된 xenograft 마우스모델(PDX; patient-derived xenograft)에 대하여 그라실린을 투여에 따른 체중 변화를 비교하였다. In order to examine the physical toxicity by gracillin administration in vivo , xenograft mouse model, which was prepared by transplanting prostate cancer cell line DU145, breast cancer cell line MDA-MB-231, colon cancer cell line HCT116, and patient- We compared the body weight changes of grafted xenograft mouse models (PDXs) with tissue-derived xenografts.

그 결과, 도 28에 나타낸 바와 같이 그라실린을 투여하지 않은 대조군과 그라실린을 투여한 마우스 모델 사이의 체중 차이가 나타나지 않음을 확인하였다. 이를 통해 그라실린이 독성을 나타내지 않는 범위에서 항암효과를 나타냄을 알 수 있었다. As a result, as shown in Fig. 28, it was confirmed that there was no difference in body weight between the control group in which the glycilin was not administered and the mouse model in which the glycylin was administered. These results indicate that the anticancer effect of glycyrrhizin does not show toxicity.

이에 더하여, 그라실린 투여에 따른 장기독성을 검증하였다. 그 결과, 도 29에 나타낸 바와 같이, 간(Liver) 및 신장(Kidney)의 기능과 담즙 분비 작용(Bile duct)에 변화가 없고, 전신 염증반응이 나타나지 않는 것을 확인함으로써 그라실린 투여에 의해 장기독성이 나타나지 않음을 알 수 있었다. In addition, long-term toxicity by the administration of glycerin was verified. As a result, as shown in FIG. 29, there was no change in liver function and kidney function and biliary duct function, and no systemic inflammatory reaction was observed. As a result, Was not observed.

나아가 그라실린 투여에 따른 혈중 포도당 농도변화를 확인한 결과, 도 30에 나타낸 바와 같이, 그라실린을 투여하지 않은 대조군과 비교하여 그라실린을 투여한 마우스에서 혈중 포도당의 변화가 나타나지 않았으며, 폐, 간, 비장, 신장, 및 뇌의 과산화를 유발하지 않음을 확인하였다. Furthermore, as shown in Fig. 30, the change in blood glucose level was observed in the case of administration of glycine, compared with the control group in which the glycine was not administered. As shown in Fig. 30, , Spleen, kidney, and brain.

상기 결과들을 통해 마우스에서 그라실린 투여에 의한 독성이 나타나지 않음을 알 수 있었다. From the above results, it was found that the toxicity due to the administration of the glycine was not observed in the mouse.

상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. There will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (8)

하기 화학식 1로 표시되는 그라실린(gracillin) 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는, 암 또는 대사질환의 예방 또는 치료용 약학적 조성물.
[화학식 1]
Figure pat00006

A pharmaceutical composition for preventing or treating cancer or metabolic diseases, which comprises, as an active ingredient, gracillin represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
[Chemical Formula 1]
Figure pat00006

제 1 항에 있어서, 상기 그라실린은 암세포의 아폽토시스(apoptosis)를 유도하는 것을 특징으로 하는, 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the glycine induces apoptosis of cancer cells.
제 2 항에 있어서, 상기 그라실린은 미토콘드리아 complex II의 기능을 저해함으로써 아폽토시스(apoptosis)를 유도하는 것을 특징으로 하는, 약학적 조성물.
The pharmaceutical composition according to claim 2, wherein the glycine induces apoptosis by inhibiting the function of mitochondrial complex II.
제 3 항에 있어서, 상기 그라실린은 미토콘드리아 complex II의 구성단백질인 숙신산 탈수소효소(Succinate_dehydrogenase; SDHA)에 결합함으로써 아폽토시스(apoptosis)를 유도하는 것을 특징으로 하는, 약학적 조성물.
[Claim 5] The pharmaceutical composition according to claim 3, wherein the gracillin induces apoptosis by binding to succinate dehydrogenase (SDHA), which is a constitutive protein of mitochondrial complex II.
제 1 항에 있어서, 상기 암은 폐암인 것을 특징으로 하는, 약학적 조성물.
2. The pharmaceutical composition according to claim 1, wherein the cancer is lung cancer.
제 1 항에 있어서, 상기 암은 유방암, 전립선암 또는 대장암인 것을 특징으로 하는, 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the cancer is breast cancer, prostate cancer or colon cancer.
제 5 항에 있어서, 상기 폐암은 비소세포 폐암, 소세포 폐암, 폐선암, 폐편평상피암 또는 폐대세포암인 것을 특징으로 하는, 약학적 조성물.
[Claim 7] The pharmaceutical composition according to claim 5, wherein the lung cancer is non-small cell lung cancer, small cell lung cancer, lung cancer, lung squamous cell cancer or hyaline cell cancer.
제 1 항에 있어서, 상기 대사질환은 고혈당증, 고지혈증, 비만, 당뇨병 또는 동맥경화증인 것을 특징으로 하는, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the metabolic disease is hyperglycemia, hyperlipidemia, obesity, diabetes or arteriosclerosis.
KR1020160074863A 2015-06-25 2016-06-16 Pharmaceutical composition for treating cancer or metabolic syndrome KR20170001598A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150090124 2015-06-25
KR20150090124 2015-06-25

Publications (1)

Publication Number Publication Date
KR20170001598A true KR20170001598A (en) 2017-01-04

Family

ID=57831987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160074863A KR20170001598A (en) 2015-06-25 2016-06-16 Pharmaceutical composition for treating cancer or metabolic syndrome

Country Status (1)

Country Link
KR (1) KR20170001598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240049707A (en) 2022-10-07 2024-04-17 이화여자대학교 산학협력단 Use of ITIH2 inhibitor for preventing or treating cancer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240049707A (en) 2022-10-07 2024-04-17 이화여자대학교 산학협력단 Use of ITIH2 inhibitor for preventing or treating cancer

Similar Documents

Publication Publication Date Title
Saraswati et al. Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo
Wu et al. Genetic and pharmacological inhibition of Rheb1-mTORC1 signaling exerts cardioprotection against adverse cardiac remodeling in mice
CN105873440A (en) Methods for inhibiting tie2 kinase useful in the treatment of cancer
KR101670590B1 (en) A Composition for inhibiting Growth of Cancer Stem Cells, containing Erk signaling activation inhibitor
CN106963769B (en) The pharmaceutical composition and its application of inhibitor containing PI3K and PERK inhibitor
Mu et al. Hinokiflavone induces apoptosis via activating mitochondrial ROS/JNK/caspase pathway and inhibiting NF‐κB activity in hepatocellular carcinoma
CN107106580A (en) The composition for the treatment of cancer stem cell
Genovese et al. Mitochondria as the decision makers for cancer cell fate: from signaling pathways to therapeutic strategies
EP3339285B1 (en) A compound isolated from isodon forrestii var. forrestii and preparation method and applications thereof
Huang et al. Ligustrazine suppresses platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation and inflammation by regulating the PI3K/AKT signaling pathway
Karsch-Bluman et al. High mobility group box 1 antagonist limits metastatic seeding in the lungs via reduction of cell–cell adhesion
Heng et al. Camptothecin Inhibits Neddylation to Activate the Protective Autophagy Through NF-κ B/AMPK/mTOR/ULK1 Axis in Human Esophageal Cancer Cells
Kenan et al. Ectopic localization of mitochondrial ATP synthase: a target for anti-angiogenesis intervention?
KR102261371B1 (en) Anticancer peptide for targeting CP2c
JP2021138739A (en) Composition for inhibiting cancer metastasis and treating cancer
KR20170001598A (en) Pharmaceutical composition for treating cancer or metabolic syndrome
Yang et al. Multiple molecular targets of Antrodia camphorata: a suitable candidate for breast cancer chemoprevention
CN106974908A (en) Pharmaceutical composition and purposes containing hdac inhibitor and IRE1 inhibitor
KR20110114346A (en) Anti-cancer composition containing eriobotrya japonica extract
Qi et al. EGPI-1, a novel eIF4E/eIF4G interaction inhibitor, inhibits lung cancer cell growth and angiogenesis through Ras/MNK/ERK/eIF4E signaling pathway
CN104161765A (en) Application of platycodin D in preparing medicaments for inhibiting angiogenesis
KR20210156245A (en) Composition for inhibiting metastasis and treating of cancer
KR101720610B1 (en) The pharmaceutical composition Inula helenium hexane fractions thereof or compound isolated from the fraction comprising inhibitory activity of STAT for prevention or treatment of breast cancer
KR101579820B1 (en) Pharmaceutical compositions for the treatment of cancer metastasis or inhibition of metastasis containing Quassia undulata extracts as active fractions
JP5946558B2 (en) PSF1 gene expression inhibitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application