KR20170000105A - Antibacterial chitosan-polyurethane nanofiber - Google Patents

Antibacterial chitosan-polyurethane nanofiber Download PDF

Info

Publication number
KR20170000105A
KR20170000105A KR1020150088851A KR20150088851A KR20170000105A KR 20170000105 A KR20170000105 A KR 20170000105A KR 1020150088851 A KR1020150088851 A KR 1020150088851A KR 20150088851 A KR20150088851 A KR 20150088851A KR 20170000105 A KR20170000105 A KR 20170000105A
Authority
KR
South Korea
Prior art keywords
cts
agsd
chitosan
polyurethane
fiber sheet
Prior art date
Application number
KR1020150088851A
Other languages
Korean (ko)
Other versions
KR102312508B1 (en
Inventor
권일근
이상진
이동현
허동녕
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020150088851A priority Critical patent/KR102312508B1/en
Publication of KR20170000105A publication Critical patent/KR20170000105A/en
Application granted granted Critical
Publication of KR102312508B1 publication Critical patent/KR102312508B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/20Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention relates to a chitosan-polyurethane nanofiber comprising silver sulfadiazine. The chitosan-polyurethane nanofiber comprising silver sulfadiazine has a wide range of antibacterial activity and shows excellent mechanical strength, thereby being widely used as an antibacterial wound dressing material.

Description

항균성 키토산-폴리우레탄 나노섬유{Antibacterial chitosan-polyurethane nanofiber}Antibacterial chitosan-polyurethane nanofiber {Antibacterial chitosan-polyurethane nanofiber}

본 발명은 설파디아진은(silver sulfadiazine)을 포함하는 키토산-폴리우레탄 나노섬유에 관한 것이다. The present invention relates to a chitosan-polyurethane nanofiber comprising silver sulfadiazine.

드레싱(dressing)은 화상이나 창상, 욕창 및 외상에 의한 피부결손 부위인 상처면을 피복하여 치유속도를 향상시키기 위해 사용되는 방법이다. 드레싱 방법에 있어서 거즈 등을 이용하여 상처면을 건조시켜 가피(딱지)가 형성되게 하는 건조드레싱(dry dressing) 방법이 일반화되어 있었으나, 1962년 Winter에 의한 돼지 창상의 상피형성 속도가 습윤 환경이 건조 환경에 비해 2배 이상 빠르다는 발표 이후 습윤 드레싱(wet dressing)이 개발, 출시되고 상처의 처치 방법도 다양하게 전개되고 있는 실정이다.Dressing is a method used to improve the speed of healing by covering the wound surface, which is a skin defect area caused by burns, wound, pressure sores, and trauma. In the dressing method, a dry dressing method for drying a wound surface by using gauze or the like has been generalized. However, in 1962 Winter, Wet dressing has been developed and released since the announcement that it is more than twice as fast as the environment, and there are various ways of treating wounds.

습윤 드레싱 재료에 요구되는 조건으로는 상피세포가 원활하게 상처면을 유주 전개할 수 있는 습윤 환경 조성, 습윤 환경시 균의 증식이 빠르기 때문에 외부로부터 세균 침입방지 및 증식을 억제할 수 있는 감염방지, 외부의 물리적 충격에 따른 손상을 방지할 수 있는 보호 작용 등이 있다.The conditions required for the wet dressing material include a wet environment composition in which the epithelial cells can smoothly spread the wound surface, a prevention of infection which can prevent the bacterial invasion from the outside and proliferation because of the rapid growth of the bacteria in the wet environment, And a protective action that can prevent damage due to external physical impact.

한편, 최근 발표에 의하면, 각종 항생제의 오남용에 따른 세균의 내성이 매우 심각한 상태로 문제가 되고 있다. 그 대표적인 예로써 MRSA (Methicillin Resistant Straphylococcus Aureus, 메티실린 내성 황색포도상 구균)나 VRE(Vancomycine-resistant enterococcus) 등은 항생제에 내성이 있는 병원성 세균으로서 대부분 피부감염 형태로 나타나는데, 수술환자나 노약자, 면역시스템이 약한 사람의 경우 혈류감염, 뼈 감염, 폐렴, 뇌막염 등으로 발전하게 되면 치명적인 결과를 초래할 수 있다. 인구의 1/3 이상이 피부나 코 점막 등에 포도상구균 등의 박테리아를 갖고 있으며, 이러한 균은 타인에게 전염성이 있으므로, 화상이나 창상, 외상 등에 의한 상처를 입은 경우, 그러한 균에 감염될 가능성이 높다. 그런데, 이러한 균이 항생제에 내성이 있다면 상처 치료에 상당한 문제점을 야기할 수 있다.On the other hand, according to recent reports, resistance to bacteria caused by abuse of various antibiotics is very serious. As a representative example, MRSA (Methicillin Resistant Staphylococcus Aureus, methicillin resistant Staphylococcus aureus) or VRE (Vancomycin-resistant enterococcus) is an antibiotic-resistant pathogenic bacterium and most of them appear as skin infections. If this weak person develops into bloodstream infections, bone infections, pneumonia, meningitis, etc., it can have fatal consequences. More than one-third of the population has bacteria such as staphylococci in the skin and nasal mucosa. Since these bacteria are contagious to other people, they are more likely to be infected with such bacteria if they are injured by burns, wounds or trauma . However, if these bacteria are resistant to antibiotics, they can cause considerable problems in wound healing.

이와 관련하여, 넓은 범위의 항균, 항진균 효과를 제공하는 은(silver, Ag)을 이용한 드레싱재 제품이 개발되어 왔다. 은(silver)은 특히, 나노크기의 입자일 경우 세균 및 바이러스균에 대한 항균작용이 더욱 뛰어나며, 항알레르기, 환경호르몬 저해에 대한 탁월한 효과를 발휘한다. 뿐만 아니라 은 나노입자는 인체에 특별한 부작용을 나타내지 않는 물질로도 알려져 있다. 콜로이드 형태의 은 나노입자는 세균 및 바이러스균의 세포속 침투가 용이하여, 효소작용을 정지시키거나, 세포벽 파괴, 균의 신진대사를 저해시킴으로써, 각종 세균 및 바이러스, 알레르기성 질환균에 대한 멸균작용을 발휘한다. 수용액 상태의 콜로이드 은은 FDA의 승인을 받은 항생제로서, 실제 임상에서 솜이나 붕대 등에 사용이 되는데, 이는 화상, 감염, 염증, 기타 미생물 감염에 있어서 은의 효능이 이미 과학적으로 입증되었기 때문이다.In this connection, a dressing product using silver (Ag) which provides a wide range of antibacterial and antifungal effects has been developed. Silver is particularly excellent in antibacterial action against bacteria and viruses in the case of nano-sized particles, and exhibits an excellent effect on anti-allergy and environmental hormone inhibition. In addition, silver nanoparticles are also known as substances that do not cause any adverse effects on the human body. The silver nanoparticles in the form of colloids can easily penetrate into the cell of bacterial and viral bacteria, stop the enzyme action, inhibit cell wall breakage and metabolism of the bacteria, and thus can sterilize various bacteria, viruses and allergic diseases . Colloidal silver in aqueous solution is an FDA approved antibiotic and is used in actual clinical applications such as cotton or bandages because of its scientific evidence of its efficacy in burns, infections, inflammation and other microbial infections.

종래 이러한 은 나노입자의 특성을 이용하여 항균성 나노소재 또는 섬유 등을 제조한 기술들이 제공되어 왔다. 예를 들어, 대한민국 공개특허공보 제10-2006-0003233호는, 나노은을 거즈에 접착하기 위하여, 수용성 녹말 또는 에틸렌-초산비닐 공중합체와 점착성 부여수지 및 왁스를 주성분으로 하는 3성분계 핫멜트형을 사용한 공정에 대해 개시하고 있다. 또한, 대한민국 공개특허공보 제10-2005-0075905호는 20~70nm 크기의 은입자를 해도형 복합섬유의 도성분에 분산시켜 화학적으로 용출시킨 후 섬유표면에 은 입자를 존재하게 하여 항균기능성의 복합섬유를 제공하는 방법에 대해 개시하고 있다.Techniques have been provided for producing antimicrobial nanomaterials or fibers using the properties of such silver nanoparticles. For example, Korean Patent Laid-Open Publication No. 10-2006-0003233 discloses a method for bonding nano silver to gauze using a water-soluble starch or a three-component hot melt type main component comprising an ethylene-vinyl acetate copolymer, a tackifier resin and a wax Process. Korean Patent Laid-Open Publication No. 10-2005-0075905 discloses a method of dispersing silver particles having a size of 20 to 70 nm in the island component of a sea-island composite fiber to chemically elute the silver particles, Lt; RTI ID = 0.0 > fiber. ≪ / RTI >

본 발명의 목적은 설파디아진은(silver sulfadiazine)을 포함하는 키토산-폴리우레탄 나노섬유 및 이의 제조방법을 제공하는 것이다. It is an object of the present invention to provide a chitosan-polyurethane nanofiber comprising silver sulfadiazine and a method for producing the same.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 설파디아진은(silver sulfadiazine)을 포함하는 키토산-폴리우레탄 나노섬유를 제공한다. In one aspect of the present invention, the present invention provides a chitosan-polyurethane nanofiber comprising silver sulfadiazine.

본 발명의 설파디아진은(silver sulfadiazine)을 포함하는 키토산-폴리우레탄 나노섬유는 항균성을 나타낸다. The chitosan-polyurethane nanofiber comprising silver sulfadiazine of the present invention exhibits antimicrobial activity.

본 발명에서 상기 설파디아진은(silver sulfadiazine)은 하기 화학식 1로 표시되는 화합물을 의미한다:In the present invention, the term "silver sulfadiazine" means a compound represented by the following formula (1)

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

상기 설파디아진은은 한국 식약처 승인 적응증으로 2-3도 화상, 각종 피부궤양(욕창, 다리궤양, 방사선궤양, 당뇨병성괴저, 피부상처 등)으로 인한 다음 병원균의 감염증 : 녹농균, 엔테로박터속, 클레브시엘라속, 포도구균속, 용혈성연쇄구균, 칸디다속, FDA 승인 적응증으로 화상의 효능, 효과를 가지는 화합물로서, 항균성이 우수한 것으로 알려져 있다. Sulfadiazine is approved for use in Korea by the Korea Food and Drug Administration. Infection of the following pathogens caused by 2-3 degree burns, various skin ulcers (pressure sores, leg ulcers, radiation ulcers, diabetic gangrene, skin wounds, etc.): Pseudomonas aeruginosa, , Clevesiella spp., Staphylococcus spp., Hemolytic streptococci, Candida spp., FDA approved indications. It is known to have excellent antimicrobial activity as a compound having efficacy and efficacy of burn.

본 발명의 설파디아진, 키토산 또는 폴리우레탄은 상업적으로 구매하여 사용하거나, 또한 공지된 방법으로 당업자가 합성하여 사용할 수 있으나, 이에 제한되지 않는다. The sulfadiazine, chitosan or polyurethane of the present invention may be commercially purchased or used by a person skilled in the art by known methods, but is not limited thereto.

본 발명의 상기 나노섬유는 전기방사에 의해 제조된다. 예시적으로 본 발명의 상기 나노섬유는 키토산, 폴리우레탄 및 설파디아진은(silver sulfadiazine)의 혼합물을 제조하는 단계 및 상기 혼합물을 전기방사하는 단계로 제조될 수 있다(도 1).The nanofibers of the present invention are produced by electrospinning. Illustratively, the nanofibers of the present invention can be prepared by preparing a mixture of chitosan, polyurethane and sulfadiazine, and electrospinning the mixture (FIG. 1).

본 발명에서 전기방사는 이 분야에서 공지된 방법으로 실시될 수 있으며, 예를 들면, 방사용액을 공급 장치를 이용하여 전기방사 노즐에 연결하고, 노즐과 집전체 사이에 고전압 발생장치를 이용하여 고전계(高電界, 10kV~100kV)를 형성시켜 실시한다. 전계의 크기는 노즐과 집전체 사이의 거리와 관계가 있으며, 전기방사를 용이하게 하기 위하여 이들 사이의 관계를 조합하여 사용한다. 이 때, 사용되는 전기방사장치로는 당업계에서 통상 사용되는 것을 사용할 수 있으며, 일렉트로-브로운법이나 원심전기방사 방법 등을 사용할 수도 있다. The electrospinning in the present invention can be carried out by a method known in the art, for example, by connecting a spinning solution to an electrospinning nozzle using a feeding device, using a high voltage generating device between the nozzle and the current collector, (High electric field, 10 kV to 100 kV). The size of the electric field is related to the distance between the nozzle and the current collector, and the relationship between them is used in combination to facilitate electrospinning. As the electrospinning device to be used at this time, those generally used in the art can be used, and an electro-bronzing method, a centrifugal electrospinning method, or the like can also be used.

구체적인 일 실시예에서, 키토산을 TFA/DCM의 혼합 용매에 용해시키고, 폴리우레탄을 상기 용액에 가하였다. 이어서, 설파디아진은을 가하여 키토산, 폴리우레탄 및 설파디아진은을 함유하는 혼합물을 제조한 후, 이를 전기방사하여 나노섬유를 제조하였다. In one specific embodiment, the chitosan is dissolved in a mixed solvent of TFA / DCM and the polyurethane is added to the solution. Subsequently, sulfadiazine was added to prepare a mixture containing chitosan, polyurethane and sulfadiazine, and the mixture was electrospun to prepare nanofibers.

상기와 같이 제조된 본 발명의 키토산 및 폴리우레탄 나노섬유는 생체적합성이다. 본 발명에서 생체적합성이란 바람직하게는 완전한 흡수 후 제거될 필요가 없거나, 또는 인체와 특히 잘 양립가능함을 의미하는 것으로, 본 발명의 키토산 및 폴리우레탄 나노섬유는 면역 반응을 유도하지 않거나 적게 유도하거나, 또는 특정 세포 타입 또는 조직과 통합가능하다. The chitosan and polyurethane nanofiber prepared as described above are biocompatible. The biocompatibility in the present invention preferably means that it does not need to be removed after complete absorption or is compatible with the human body in particular. The chitosan and polyurethane nanofibers of the present invention may not induce or less induce an immune response, Or integrate with a particular cell type or tissue.

또한, 본 발명의 키토산 및 폴리우레탄 나노섬유는 기계적 강도가 우수하며, 항균성이 뛰어나다. In addition, the chitosan and polyurethane nanofiber of the present invention have excellent mechanical strength and excellent antimicrobial activity.

본 발명에서 항균(antimicrobial)이란 세균(bacteria), 진균(fungi) 등의 병원성 미생물의 성장을 저해하는 것 뿐만아니라 이의 생존을 저해하여 살균하는 것을 포함한다. 본 발명의 설파디아진은을 포함하는 키토산 및 폴리우레탄 나노섬유는 생활환경 주변의 모든 병원성 미생물을 항균 처리할 수 있으며, 이러한 병원성 미생물로는, 칸디다(Candida), 크립토코쿠스(Cryptococcus), 아스퍼질러스(Aspergillus), 트리코파이톤(Trichophyton), 트리코모나스(Trichomonas), 케토미움(Chaetomium), 글리오클라디움(Gliocladium), 아우레오바시디움(Aureobasidium), 페니실리움(Penicillium), 라이조푸스(Rhizopus), 클라도스포륨(Cladosporium), 뮤코(Mucor), 풀루라리아(Pullularia), 트리코데르마(Trichoderma), 푸사륨(Fusarium), 미로테슘(Myrothecium), 멤노니엘라(Memnoniella) 등의 진균과, 에스체리시아(Escherichia), 바실러스(Bacillus), 슈도모나스(Pseudomonas), 케토니움(Chetonium), 스타필로코커스(Staphylococcus), 클렙시엘라(Klebsiella) 레지오넬라(Legionella), 살모렐라(Salmonella), 비브리오(Vibrio), 리케치아(Rickettsia) 등의 세균을 예시할 수 있으며, 이들 미생물로 제한되지 않는다. In the present invention, the term "antimicrobial" includes not only inhibiting the growth of pathogenic microorganisms such as bacteria and fungi but also sterilizing by inhibiting its survival. The chitosan and polyurethane nanofibers containing sulfadiazine silver of the present invention can be used for antibacterial treatment of all pathogenic microorganisms in the living environment. Candida, Cryptococcus, Such as Aspergillus, Trichophyton, Trichomonas, Chaetomium, Gliocladium, Aureobasidium, Penicillium, Rhizopus, ), Fungi such as Cladosporium, Mucor, Pullularia, Trichoderma, Fusarium, Myrothecium, and Memnoniella And Escherichia, Bacillus, Pseudomonas, Chetonium, Staphylococcus, Klebsiella Legionella, Salmonella, Vibrio, Leake Oh (Rickettsia) may be mentioned bacteria such as, but not limited to, microorganisms.

바람직하게, 본 발명의 설파디아진은을 포함하는 키토산-폴리우레탄 나노섬유는 P. aeruginosa, S. aureus 및 메티실린-저항성 S. aureus에 항균성이다. Preferably, the chitosan-polyurethane nanofibers comprising the sulfadiazine silver of the present invention are antimicrobial to P. aeruginosa, S. aureus and methicillin-resistant S. aureus.

구체적인 일 실시예에서, 키토산 및 폴리우레탄을 포함하는 나노섬유의 형태를 키토산 단독 나노섬유와 SEM으로 비교하였고, 그 결과, 폴리우레탄을 함께 포함하는 나노섬유가 더 평평하고, 균일한 직경을 가지는 좋은 형태를 나타내는 것이 확인되었다. In a specific embodiment, the morphology of nanofibers comprising chitosan and polyurethane was compared with chitosan single nanofibers by SEM, and as a result, it was found that the nanofibers containing polyurethane were more flat and had a uniform diameter It was confirmed that it represents the shape.

또한, 구체적인 일 실시예에서 키토산 및 폴리우레탄을 포함하는 나노섬유는 우수한 탄력성과 신장률을 나타내었고, 기계적 물성이 보다 개선되었다. In addition, in one specific embodiment, the nanofiber comprising chitosan and polyurethane exhibited excellent elasticity and elongation, and improved mechanical properties.

또한, 구체적인 일 실시예에서, 설파디아진은이 없는 키토산 및 폴리우레탄을 포함하는 섬유 시트 자체에는 박테리아 성장 억제 효과가 없었으나, 설파디아진은을 포함하는 키토산 및 폴리우레탄 나노섬유 시트에서는 우수한 박테리아 성장 억제효과가 있음이 확인되었다. In a specific embodiment, the fiber sheet itself containing no sulfadiazine and chitosan and polyurethane has no bactericidal growth inhibitory effect, but chitosan and polyurethane nanofiber sheet containing sulfadiazine have excellent bacteria Growth inhibitory effect was confirmed.

이와 같이 본 발명의 나노섬유는 설파디아진은의 포함으로 광범위한 항균력을 가지면서, 동시에 키토산-폴리우레탄을 함께 포함하여 우수한 기계적 강도를 나타내어 상처 표면에 견고하게 고정될 수 있으므로, 상처 치유를 위한 최적의 항균성 상처 드레싱용 재료로 활용될 수 있다. As described above, the nanofiber of the present invention has a wide range of antibacterial activity due to the inclusion of sulfadiazine, and simultaneously exhibits excellent mechanical strength including chitosan-polyurethane. Therefore, the nanofiber can be firmly fixed on the wound surface, Can be utilized as a material for dressing wound.

따라서, 본 발명은 상기 나노섬유를 포함하는 항균용 상처드레싱용 재료를 제공한다. 바람직하게, 본 발명의 항균용 상처드레싱용 재료는 필름(film), 시트(sheet), 부직포, 폼, 로프, 펠렛(pellet), 분말, 직물 등으로 제조될 수 있다. Accordingly, the present invention provides a material for wound dressing for antimicrobial use comprising the nanofiber. Preferably, the antimicrobial wound dressing material of the present invention may be made of a film, a sheet, a nonwoven fabric, a foam, a rope, a pellet, a powder, a fabric or the like.

본 발명의 설파디아진은을 포함하는 키토산-폴리우레탄 나노섬유는 광범위한 항균력을 가지면서, 동시에 우수한 기계적 강도를 나타내므로, 항균성 상처 드레싱용 재료로 널리 활용될 수 있다. The chitosan-polyurethane nanofiber containing sulfadiazine silver of the present invention has broad antibacterial activity and exhibits excellent mechanical strength at the same time, and thus can be widely used as an antimicrobial wound dressing material.

도 1은 본 발명의 설파디아진은을 포함하는 키토산-폴리우레탄 나노섬유의 제조방법을 도식화한 것이고,
도 2는 (a) 폴리우레탄(PU), (b) 키토산(CTS) 및 (c) 키토산-폴리우레탄(CTS/PU) 섬유시트의 SEM 이미지 촬영 결과를 나타낸 것이고,
도 3은 키토산(CTS) 나노섬유(어두운 회색), 폴리우레탄(PU) 나노섬유(검정색) 및 키토산-폴리우레탄(CTS/PU) 섬유 시트(검정색)의 응력 변형 곡선을 나타낸 것이고,
도 4는 키토산(CTS) 나노섬유(어두운 회색), 폴리우레탄(PU) 나노섬유(검정색) 및 키토산-폴리우레탄(CTS/PU) 섬유 시트(어두운 파랑색)의 FT-IT 스펙트럼을 나타낸 것이고,
도 5는 (a) 키토산-폴리우레탄(CTS/PU) 및 (b) 설파디아진은을 포함하는 키토산-폴리우레탄(CTS/PU/AgSD) (100:1) 섬유 시트의 EDX 스펙트럼을 나타낸 것이고,
도 6은 키토산-폴리우레탄(CTS/PU) 섬유 시트(어두운 파랑색) 및 설파디아진은을 포함하는 키토산-폴리우레탄(CTS/PU/AgSD) 섬유 시트(100:1, 어두운 붉은색)의 TGA 곡선을 나타낸 것이고,
도 7은 전기방사로 성형한 키토산-폴리우레탄(CTS/PU) 섬유 시트(어두운 파랑색) 및 설파디아진은을 포함하는 키토산-폴리우레탄(CTS/PU/AgSD) 섬유 시트의 SEM 및 TEM 이미지를 나타낸 것으로, CTS/PU 섬유시트는 (a), (d), CTS/PU:AgSD = 1000:1 섬유시트는 (b), (e), CTS/PU:AgSD = 100:1 섬유시트는 (c), (f)이며,
도 8은 (a) CTS/PU 섬유 시트, (b) CTS/PU:AgSD = 1000:1 섬유시트, 및 (c) CTS/PU:AgSD = 100:1의 MRSA, S. aureus 및 P aeruginosa에 대한 항균시험 결과를 나타낸 것이다.
1 is a schematic view of a method for producing a chitosan-polyurethane nanofiber comprising sulfadiazine silver of the present invention,
2 shows SEM image pickup results of (a) polyurethane (PU), (b) chitosan (CTS) and (c) chitosan-polyurethane (CTS / PU) fiber sheet,
3 shows the stress-strain curves of chitosan (CTS) nanofibers (dark gray), polyurethane (PU) nanofibers (black) and chitosan-polyurethane (CTS / PU) fiber sheets (black)
4 shows FT-IT spectra of chitosan (CTS) nanofibers (dark gray), polyurethane (PU) nanofibers (black) and chitosan-polyurethane (CTS / PU) fiber sheets (dark blue)
5 shows the EDX spectrum of a chitosan-polyurethane (CTS / PU / AgSD) (100: 1) fiber sheet comprising (a) chitosan-polyurethane (CTS / PU) and (b) sulfadiazine silver ,
FIG. 6 is a photograph of a chitosan-polyurethane (CTS / PU / AgSD) fiber sheet (100: 1, dark red) containing a chitosan-polyurethane (CTS / PU) fiber sheet (dark blue) and sulfadiazine silver TGA curve,
7 shows SEM and TEM images of a chitosan-polyurethane (CTS / PU / AgSD) fiber sheet comprising electrospun chitosan-polyurethane (CTS / PU) fiber sheet (dark blue color) and sulfadiazine silver CTS / PU: AgSD = 1000: 1 The fiber sheet is composed of (a), (d) (c) and (f)
Fig. 8 shows the results of (a) CTS / PU fiber sheet, (b) CTS / PU: AgSD = 1000: 1 fiber sheet, and (c) CTS / PU: AgSD = 100: 1 MRSA, S. aureus and P aeruginosa The results of the antimicrobial test are shown.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의하여 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided to further understand the present invention, and the present invention is not limited by the examples.

<실험방법><Experimental Method>

재료 material

중저분자 키토산, 설파디아진은(silver sulfadiazine)(98%), 및 트리플루오르산(ReagentPlus®, 99%)은 시그마-알드리치(St. Louis, MO)에서 구입하였다. 폴리우레탄(Bionate 75A)은 Resomer® (Ingelheim, Germany)에서 구입하였다. 디클로로메탄(Extra Pure, 99.0%+), N,N-디메틸포름아미드(99.5%), 테트라히드로퓨란(99.5%)는 JUNSEI (JUNSEI CHEMICAL Co. Ltd., Japan)에서 구매하였다. 전기방사 CTS/PU/AgSD (키토산/폴리우레탄/설파디아진은) 섬유 시트를 중화시키기 위한 수산화나트륨은 YPC (Yakuri Pure Chemicals CO., LTD. Japan)에서 구매하였다. 메틸 알코올(MeOH)은 DaeJung (Chemical & Metals Co. LTD. Korea)에서 구입하였다. 탈이온-증류수(DDW)는 ultrapure water system (Puris Ro800; Bio Lab Tech., Korea)로 생산하였다. 투석을 위한 멤브레인 튜브는 Spectrum Spectra (Spectra/Por 4 dialysis tubing, 12-14 K MWCO, 45 mm flat width, 100-foot length)에서 구매하였다. 박테리아주 P. aeruginosa ATCC 27853, S. aureus ATCC 25923 및 메티실린-저항성 S. aureus ATCC 700787은 American Type Culture Collection (Manassas, VA)에서 얻었다. 사용된 모든 화학 용매는 분석 등급이고, 추가 정제 없이 사용하였다. The medium and low molecular weight chitosan, silver sulfadiazine (98%), and trifluoroacid (ReagentPlus ® , 99%) were purchased from Sigma-Aldrich (St. Louis, Mo.). Polyurethane (Bionate 75A) was purchased from Resomer ® (Ingelheim, Germany). Dichloromethane (99.0% +), N, N-dimethylformamide (99.5%) and tetrahydrofuran (99.5%) were purchased from JUNSEI (JUNSEI CHEMICAL Co. Ltd., Japan). Sodium hydroxide for neutralizing the electrospun CTS / PU / AgSD (chitosan / polyurethane / sulfadiazine) fiber sheet was purchased from YPC (Yakuri Pure Chemicals CO., LTD.). Methyl alcohol (MeOH) was purchased from Dae Jung Chemical & Metals Co. Ltd. Korea. Deionized-distilled water (DDW) was produced by ultrapure water system (Puris Ro800; Bio Lab Tech., Korea). Membrane tubes for dialysis were purchased from Spectrum Spectra (Spectra / Por 4 dialysis tubing, 12-14 K MWCO, 45 mm flat width, 100-foot length). Bacterial strains P. aeruginosa ATCC 27853, S. aureus ATCC 25923 and methicillin-resistant S. aureus ATCC 700787 were obtained from the American Type Culture Collection (Manassas, Va.). All chemical solvents used were analytical grade and were used without further purification.

정제 CTS (키토산)의 제조Preparation of purified CTS (chitosan)

순수 CTS를 얻기 위하여, 4℃에서 1.0 g의 CTS (시그마-알드리치 미가공)을 50 mL의 1% 아세트산에 완전히 용해시켜 2 wt.% 용액을 제조하였다. 고체 제거를 위하여 필터 종이를 이용하여 용해된 용액을 진공 여과하였다. 상기 용액을 이어서 25 mL의 1 N NaOH 용액에 부었다. 그 다음, 순수 CTS를 pH가 7에 도달할 때까지 DDW를 이용하여 세척하였다. 결과로 얻어진 물질들을 투석하고 동결건조하였다. To obtain pure CTS, a 2 wt.% Solution was prepared by completely dissolving 1.0 g of CTS (Sigma-Aldrich) in 50 mL of 1% acetic acid at 4 ° C. The solubilized solution was vacuum filtered using filter paper for solids removal. The solution was then poured into 25 mL of 1 N NaOH solution. The pure CTS was then washed with DDW until the pH reached 7. The resulting materials were dialyzed and lyophilized.

ELSP에ELSP 의한 CTS/PU/ CTS / PU / AgSDAgSD 섬유 시트의 성형  Formation of fiber sheet

CTS, PU, CTS/PU 및 CTS/PU/AgSD 섬유 시트의 다양한 블랜드(AgSD = 0, 0.1 및 1 wt.%)를 ELSP (전기방사)로 성형하였다. ELSP 용액을 제조하기 위하여, 순수 CTS를 TFA/DCM (7:3)의 혼합 용매 시스템에 용해시켰다. 이어서, PU를 총 농도 7% (w/v)의 고체와 함께 CTS/PU (80/20)의 비율로 CTS 용액에 가하였다. 이어서, 다양한 농도의 AgSD (0, 0.1 및 1 wt.%)를 CTS/PU 용액에 각각 가하였다. 본 과정은 CTS/PU/AgSD ELSP 용액을 제조하기 위하여 사용되었다. 전기방사 CTS 및 CTS/PU 섬유 시트는 TFA/DCM (7:3)을 용매 시스템으로 사용하여 제조하였고, PU 나노섬유 단독은 DMF/THF (5:5)의 혼합물을 사용하여 성형하였다. ELSP는 다음 조건에 따라 수행하였다. ELSP 용액을 20 게이지 금속 무딘끝(blunt tip) 바늘을 장착한 루어-락(luer-lock) 시린지에 로딩하였다. 수집기는 회전 맨드릴로 덮힌 알루미늄 포일이었다. 기계는 20 kV에서 유속 1 ml/h으로 작동하였다. 바늘 끝에서 수집기 사이의 거리는 15 cm였다. 잔여 용매 제거를 위하여, 얻어진 CTS/PU/AgSD 섬유 시트를 실온에서 진공 하 밤새 건조하였다. 산을 중화하기 위하여, 건조 CTS/PU/AgSD 섬유 시트를 40 ml의 3.2 M NaOH/MeOH (중화 용액)에 담그고 세척액이 pH 7에 도달할 때까지 DDW로 세척하였다. 이후, 젖은 CTS/PU/AgSD 섬유 시트를 동결-건조하였다. Various blends (AgSD = 0, 0.1 and 1 wt.%) Of CTS, PU, CTS / PU and CTS / PU / AgSD fiber sheets were molded with ELSP (electrospinning). To prepare the ELSP solution, pure CTS was dissolved in a mixed solvent system of TFA / DCM (7: 3). PU was then added to the CTS solution at a ratio of CTS / PU (80/20) with a total solids concentration of 7% (w / v). Various concentrations of AgSD (0, 0.1 and 1 wt.%) Were then added to the CTS / PU solution, respectively. This process was used to prepare CTS / PU / AgSD ELSP solutions. Electrospinning CTS and CTS / PU fiber sheets were prepared using TFA / DCM (7: 3) as the solvent system and PU nanofibers alone were molded using a mixture of DMF / THF (5: 5). ELSP was performed according to the following conditions. The ELSP solution was loaded into a luer-lock syringe fitted with a 20 gauge metal blunt tip needle. The collector was an aluminum foil covered with a rotating mandrel. The machine operated at a flow rate of 1 ml / h at 20 kV. The distance between the tip of the needle and the collector was 15 cm. For removal of the residual solvent, the obtained CTS / PU / AgSD fiber sheet was dried overnight at room temperature under vacuum. To neutralize the acid, the dry CTS / PU / AgSD fiber sheet was soaked in 40 ml of 3.2 M NaOH / MeOH (neutralization solution) and washed with DDW until the wash reached pH 7. The wet CTS / PU / AgSD fiber sheets were then freeze-dried.

물리적 및 화학적 분석(응력 변형, Physical and chemical analysis (stress strain, TGATGA ))

CTS, PU 및 CTS/PU 섬유 시트의 기계적 물성을 평가하기 위하여, 인장 강도를 기계적 테스터(Instron 44646, Instron, MA)를 사용하여 측정하였다. 이를 위하여 시험 표본들(20×5 ㎟)을 로드시키고, 부러질 때까지 응력을 가하여 실온에서 10 mm/분의 크로스헤드 속도로 시험하였다. 또한, CTS/PU 및 CTS/PU/AgSD 섬유 시트의 온도 분해 물성을 조사하기 위하여, TGA를 TGA Q5000IR (TA Instruments, USA)를 사용하여 수행하였다. 각 섬유 시트 샘플의 분해 물성을 25℃ 내지 800℃의 온도 범위에서 10℃/분의 가열속도로 질소 분위기에서 측정하였다. Tensile strength was measured using a mechanical tester (Instron 44646, Instron, Mass.) To evaluate the mechanical properties of CTS, PU and CTS / PU fiber sheets. For this purpose, test specimens (20 × 5 mm 2) were loaded, stressed until broken and tested at a crosshead speed of 10 mm / min at room temperature. In addition, TGA was performed using TGA Q5000IR (TA Instruments, USA) to investigate the thermal decomposition properties of CTS / PU and CTS / PU / AgSD fiber sheets. The decomposition property of each fiber sheet sample was measured in a nitrogen atmosphere at a heating rate of 10 ° C / min in a temperature range of 25 ° C to 800 ° C.

EDXEDX (Energy- (Energy- DispersiveDispersive X-Ray Spectroscopy) X-Ray Spectroscopy)

EDX 분석은 Phoenix EDX attachment를 장착한 Stereo-scan 440 (Leica, United Kingdom)으로 수행하였다. 각 피크의 EDX 스펙트라는 금 코팅된 CTS/PU 및 CTS/PU/AgSD 섬유 시트, 각각의 표면 지역에 전자 빔을 맞춤으로써 스폿 프로파일 모드(spot profile mode)에서 기록하였다. EDX analysis was performed on a Stereo-scan 440 (Leica, United Kingdom) equipped with a Phoenix EDX attachment. The EDX spectra of each peak was recorded in a spot profile mode by aligning the electron beam to the gold surface-coated CTS / PU and CTS / PU / AgSD fiber sheets, respectively.

CTS/PU/CTS / PU / AgSDAgSD 섬유 시트의 형태 분석( Morphological Analysis of Fiber Sheet SEMSEM , , TEMTEM ))

전기방사 섬유 시트의 형태는 15 kV에서 SEM (Scanning Electron Microscope, Hitachi S-2300, Japan)으로 수행하였다. 모든 샘플들은 실온에서 건조하였고, 10분 동안 카본 테이프 상에서 금 코팅하였다. 각 샘플은 촬영 전에 구리-격자판(copper-grid) 상에 로드하였다. 또한, 단일 섬유는 각 샘플을 200 볼트에서 JEM-2100F (JEOL, USA)에 의해 TEM (Transmission electron microscopy)을 사용하여 수행함으로써 관찰하였다. The shape of the electrospun fiber sheet was SEM (Scanning Electron Microscope, Hitachi S-2300, Japan) at 15 kV. All samples were dried at room temperature and gold coated on carbon tape for 10 minutes. Each sample was loaded onto a copper-grid before shooting. The single fibers were also observed by performing each sample at 200 volts using JEM-2100F (JEOL, USA) using transmission electron microscopy (TEM).

FT-IR (Fourier Transform-Infrared Spectroscopy)Fourier Transform-Infrared Spectroscopy (FT-IR)

CTS, PU, CTS/PU 섬유 시트의 표면 분자 구조는 FT-IR 분광광도계(SpectrumTM One System, Perkin-Elmer)로 확인하였다. 각 샘플의 투과율은 4000 및 500 cm-1 사이의 4 cm-1의 해상도에서 10 스캔으로 기록하였다. The surface molecular structure of CTS, PU and CTS / PU fiber sheets was confirmed by FT-IR spectrometer (Spectrum TM One System, Perkin-Elmer). The transmittance of each sample was recorded in 10 scans at a resolution of 4 cm -1 between 4000 and 500 cm -1 .

박테리아 억제 시험Bacterial inhibition test

세 종류의 박테리아: P. aeruginosa ATCC 27853, S. aureus ATCC 25923 및 메티실린-저항성 S. aureus ATCC 700787을 18시간 동안 35℃에서 Mueller-Hinton broth (Difco Laboratories, Detroit, MI)에서 호기성으로 성장시켰다. 디스크 확산 시험은 Mueller-Hinton Agar (Difco)를 사용하여, 항미생물 디스크 감수성 시험(9판, 표준 M2-A9 승인)용 CLSI (Clinical and Laboratory Standards Institute) 수행 표준에 따라 수행하였다. 간단하게, Mueller-Hinton 한천(Difco) 표면은 0.5 McFarland 표준 탁도로 조정된 박테리아 세포 현탁액에 담근 면봉(swab)을 사용하여 접종하였고, 약 5분 동안 건조하였다. 한천 상에 CTS/PU/AgSD 섬유 시트 디스크를 두고, 감수성 플레이트들을 16-18시간 동안 35℃에서 인큐베이션하였다. 디스크 주변에 형성된 억제 구역은 밀리미터(mm)로 측정하였다. Three types of bacteria: P. aeruginosa ATCC 27853, S. aureus ATCC 25923 and methicillin-resistant S. aureus ATCC 700787 were aerobically grown in Mueller-Hinton broth (Difco Laboratories, Detroit, Mich.) At 35 ° C for 18 hours . The disk diffusion test was performed according to the CLSI (Clinical and Laboratory Standards Institute) performance standard for the antimicrobial disk susceptibility test (version 9, standard M2-A9 approval) using a Mueller-Hinton Agar (Difco). Briefly, the Mueller-Hinton agar (Difco) surface was inoculated using a swab immersed in a bacterial cell suspension adjusted to 0.5 McFarland standard turbidity and dried for about 5 minutes. The CTS / PU / AgSD fiber sheet disk was placed on the agar and the susceptible plates were incubated at 35 [deg.] C for 16-18 hours. The inhibition zone formed around the disc was measured in millimeters (mm).

<실험결과><Experimental Results>

CTS, PU, 및 CTS/PU 섬유 시트의 정성(The qualities of CTS, PU, and CTS / PU fiber sheets ( SEMSEM , FT-IR, 인장시험), FT-IR, tensile test)

각 시험 CTS, PU, CTS/PU 섬유 시트들은 도 2에서와 같이 ELSP로 성공적으로 성형되었다. 각 나노섬유 표면 형태를 확인하기 위하여, 각 섬유 시트를 SEM으로 확인하였다. 도 2(a) 및 (b)에 나타나듯이, PU 나노섬유는 평평하게 성형되었고 좋은 형태로 매우 균일한 직경을 가졌다. CTS 나노섬유는 무작위 공극 직경과 함께 보다 다분산된 형태를 나타내었다. 도 2(c)에 나타나듯이, CTS/PU 섬유 시트(CTS/PU = 80/20의 비)는 잘 성형되었고 좋은 형태를 나타냈다. 이러한 결과는 CTS 나노섬유에 첨가된 PU가 전기방사 CTS 단독과 비교하여 형태를 개선시켰다는 것을 의미한다. Each test CTS, PU, CTS / PU fiber sheets were successfully molded into ELSP as in FIG. In order to confirm the surface morphology of each nanofiber, each fiber sheet was identified by SEM. As shown in Figs. 2 (a) and 2 (b), the PU nanofibers were flat-formed and had a very uniform diameter in good shape. CTS nanofibers exhibited a more polydispersed morphology with random pore diameters. As shown in Fig. 2 (c), the CTS / PU fiber sheet (ratio of CTS / PU = 80/20) was well formed and showed a good shape. These results indicate that PU added to CTS nanofibers improves morphology compared to electrospun CTS alone.

CTS 단독에 비한 CTS/PU 섬유 시트의 기계적 물성 향상은 인장 강도 시험으로 확인하였다. 도 3에서 확인할 수 있듯이, CTS, PU 및 CTS/PU 섬유 시트 간에 인장 물성에 상당한 차이가 있었다. PU 나노섬유는 파열 전 118% 까지 신장되는 8.2 MPa의 고 영률(Young's modulus)을 가지는 뛰어난 유연성과 좋은 탄성을 나타내었다. CTS 나노섬유는 1.6 MPa의 영률로 나쁜 유연성을 가졌고, 12%의 신장으로 파열되었다. 그런데, PU와 혼합된 CTS 섬유 시트는 5.2 MPa의 영률을 나타내었고, 파열 시점까지 약 51% 신장되었다. 이러한 결과는 인장 강도 및 영률이 PU 고분자를 CTS로 통합시킴으로써 증가되었음을 증명하는 것이다. 이는 CTS/PU 섬유 시트가 CTS 나노섬유 단독보다 개선된 기계적 물성 및 더 깨끗한 형태를 가짐을 의미한다. 이러한 물성은 이들 두 고분자가 잘 혼합되었고, 기계적 형성을 개선하는 분자적 수준의 상호작용이 있음을 의미한다. The improvement of mechanical properties of CTS / PU fiber sheet compared to CTS alone was confirmed by tensile strength test. As can be seen in Figure 3, there was a significant difference in tensile properties between CTS, PU and CTS / PU fiber sheets. PU nanofibers exhibited excellent flexibility and good elasticity with a Young's modulus of 8.2 MPa, which extended to 118% before rupture. CTS nanofibers had poor flexibility with a Young's modulus of 1.6 MPa and ruptured with a 12% elongation. However, the CTS fiber sheet mixed with PU exhibited a Young's modulus of 5.2 MPa and was elongated about 51% until the bursting point. These results demonstrate that tensile strength and Young's modulus were increased by incorporating the PU polymer into the CTS. This means that the CTS / PU fiber sheet has improved mechanical properties and a cleaner form than the CTS nanofibers alone. This property implies that the two polymers are well mixed and have a molecular level of interaction to improve mechanical formation.

CTS/PU 혼합 섬유 시트의 화학적 물성을 확인하기 위하여, 표면을 FT-IR로 조사하였다. 각 샘플(CTS, PU, 및 CTS/PU) 섬유 스펙트럼은 도 4에 나타내었다. CTS의 특징적 피크는 약 905 cm-1 및 1157 cm-1에서 관찰되었고, 이는 사카라이드 구조에 대응한다. 추가 피크들은 1650 cm-1 (C=O stretching), 1540 cm-1 및 1320 cm-1 (N-H, C-N stretching peaks)에서 관찰되었고, 이들은 각각 아미드 결합 Ⅰ, Ⅱ, Ⅲ에 대응한다. PU의 적외선 스펙트럼은 3320 cm-1 (N-H), 2960 cm-1 (C-H), 1710 cm-1 (C=O), 1530 cm-1 (C=C), 1220 cm-1 (C-C), 1110 cm-1 (C-O) 및 777 cm-1 (C-H)를 나타내었다. 이 결과에 기초하여, CTS/PU 혼합물의 적외선 스펙트럼을 분석하였다. CTS/PU 중 3390 cm-1 주변의 흡수 밴드는 3320 cm-1 주변의 순수 PU 보다 더 넓은 밴드를 가졌다. 이는 CTS 중 히드록실 및 아미노 기와 폴리우레탄 기(N-H) 사이의 상호작용을 의미한다. 추가로, 1650 cm-1 (아미드 결합 Ⅰ) 및 1320 cm-1 (아미드 결합 Ⅱ)에서 CTS의 아미드 결합 흡수, 1530 cm-1 (C=C), 1220 cm-1 (C-C)에서의 PU 기가 CTS/PU 스펙트럼에서 관찰되었다. 이들 피크는 CTS/PU에서는 관찰되었으나, 순수 CTS 및 PU 단독에서는 관찰되지 않았다. 상기 결과는 CTS 및 PU가 CTS/PU 섬유 복합제에 잘 혼합되었음을 의미한다. In order to confirm the chemical properties of the CTS / PU mixed fiber sheet, the surface was irradiated with FT-IR. Each sample (CTS, PU, and CTS / PU) fiber spectrum is shown in FIG. Characteristic peaks of CTS were observed at about 905 cm -1 and 1157 cm -1 , corresponding to the saccharide structure. Additional peaks were observed at 1650 cm -1 (C = O stretching), 1540 cm -1 and 1320 cm -1 (NH, CN stretching peaks), which correspond to amide bonds I, II and III, respectively. The infrared spectra of the PUs were 3320 cm -1 (NH), 2960 cm -1 (CH), 1710 cm -1 (C═O), 1530 cm -1 (C═C), 1220 cm -1 (CC) cm &lt; -1 &gt; (CO) and 777 cm &lt; -1 &gt; (CH). Based on these results, the infrared spectrum of the CTS / PU mixture was analyzed. The absorption band around 3390 cm -1 in CTS / PU was wider than the pure PU around 3320 cm -1 . This means the interaction between the hydroxyl and amino groups and the polyurethane group (NH) in CTS. In addition, the amide bond absorption of CTS at 1650 cm -1 (amide bond I) and 1320 cm -1 (amide bond II), the PU group at 1530 cm -1 (C = C), 1220 cm -1 (CC) CTS / PU spectra. These peaks were observed in CTS / PU but not in pure CTS and PU alone. The results indicate that CTS and PU are well mixed in the CTS / PU fiber composite.

CTS/PU/CTS / PU / AgSDAgSD 섬유 시트의 물리화학적 분석( Physicochemical Analysis of Fiber Sheet EDXEDX , , TGATGA ))

다양한 약물을 로드시킨 CTS/PU 섬유 시트로의 AgSD 물리적 혼합물을 선택하였다. 상기 혼합 용액을 ELSP로 성형하여 CTS/PU/AgSD 섬유 시트를 제조하였다. CTS의 일차 아미노 및 카르복실기는 은 이온과 킬레이트 결합하는 능력이 있어서 개선된 분산 및 조절된 방출을 할 수 있도록 한다. 따라서 은 이온을 함유하는 AgSD도 ELSP 용액 중에서 CTS와 화학적으로 결합할 것이 예상되었다. 섬유 시트가 AgSD를 함유하고 결합되었는지를 확인하기 위하여 성형한 CTS/PU 및 CTS/PU/AgSD 섬유 시트를 EDX로 확인하였다. 도 5(a)에서 확인할 수 있는 바와 같이, CTS/PU 섬유 시트의 스펙트럼은 Ag 함량이 전혀 나타나지 않았다. 반면 CTS/PU/AgSD 섬유 시트는 도 5(b)에 나타나듯이 0.59 중량%의 함량으로 은을 포함하는 것이 명확히 확인되었다. 이러한 결과는 Ag가 CTS/PU/AgSD 섬유 시트에 잘 통합되었다는 것을 의미한다. AgSD physical mixtures with various drug loaded CTS / PU fiber sheets were selected. The mixed solution was molded into ELSP to prepare a CTS / PU / AgSD fiber sheet. The primary amino and carboxyl groups of CTS have the ability to chelate with silver ions, allowing for improved dispersion and controlled release. Therefore, AgSD containing silver ions was expected to chemically bond with CTS in the ELSP solution. The molded CTS / PU and CTS / PU / AgSD fiber sheets were identified by EDX to confirm that the fiber sheets contained and bound AgSD. As can be seen from Fig. 5 (a), the spectrum of the CTS / PU fiber sheet showed no Ag content at all. On the other hand, it was clearly confirmed that the CTS / PU / AgSD fiber sheet contains silver in an amount of 0.59 wt% as shown in Fig. 5 (b). These results indicate that Ag is well integrated in the CTS / PU / AgSD fiber sheet.

섬유 시트들의 온도 안정성을 확인하기 위하여, 각 섬유 시트(CTS/PU 및 CTS/PU/AgSD)를 TGA로 시험하였다. 도 6에서 나타나듯이, 50-60℃ 주변에서 첫 중량 변화 곡선은 수분의 손실에 의한 것이고, 230-280℃에서 두 번째 중량 변화 곡선은 고분자의 열화(degradation)에 의한 것이었다. CTS/PU 및 CTS/PU/AgSD 부직포 매트는 이들 온도에서 유사한 열화를 나타내었다. 그러나, 470℃ 이상에서는 CTS/PU 및 CTS/PU/AgSD 간에 지속적인 중량 차이가 있었다. 이는 CTS/PU/AgSD 샘플 중 분해되지 않는 은의 존재를 의미한다. 상기 결과는 또한, 섬유 시트가 열에 안정함을 의미한다. Each fiber sheet (CTS / PU and CTS / PU / AgSD) was tested with TGA to confirm the temperature stability of the fiber sheets. As shown in FIG. 6, the first weight change curve around 50-60 ° C was due to moisture loss, and the second weight change curve at 230-280 ° C was due to the degradation of the polymer. CTS / PU and CTS / PU / AgSD nonwoven mats exhibited similar degradation at these temperatures. However, above 470 ° C there was a constant weight difference between CTS / PU and CTS / PU / AgSD. This means the presence of undissociated silver in the CTS / PU / AgSD sample. The results also indicate that the fiber sheet is thermally stable.

CTS/PU/CTS / PU / AgSDAgSD 섬유 시트의 표면 형태( Surface shape of fiber sheet ( TEMTEM , , SEMSEM ))

섬유 시트 샘플들의 표면 형태를 확인하기 위하여, SEM 분석을 수행하였다. SEM은 다양한 비의 AgSD를 함유한(AgSD 함량 = 0, 0.1 및 1 wt.%) CTS/PU 섬유 시트가 ELSP 기술에 의해 각각 잘 성형되었음을 나타내었다(도 7(a)-(c)). CTS/PU/AgSD 섬유 시트가 다양한 AgSD 함량을 함유하고 있음에도 불구하고 이들은 유사한 형태를 갖는 것이 관찰되었다. To confirm the surface morphology of the fiber sheet samples, SEM analysis was performed. The SEM showed that the CTS / PU fiber sheets containing various ratios of AgSD (AgSD content = 0, 0.1 and 1 wt.%) Were well formed by ELSP technique, respectively (Figs. 7 (a) - (c)). Although the CTS / PU / AgSD fiber sheets contained various AgSD contents, they were observed to have a similar shape.

개별 섬유들의 TEM 분석은 각 섬유가 AgSD를 함유하는지 여부를 확인한 것이다(도 7(d)-(f)). CTS/PU 섬유 시트에서는 AgSD가 관찰되지 않았으나, CTS/PU/AgSD 섬유 시트에서는 섬유 내부에 AgSD가 관찰되었다. 흥미롭게도, 0.1% 내지 1%로 AgSD의 함량이 점차 증가함에 따라 섬유 중에 더 많은 AgSD가 관찰되었다(도 7(e)-(f)). TEM analysis of the individual fibers confirmed whether each fiber contained AgSD (Fig. 7 (d) - (f)). AgSD was not observed in the CTS / PU fiber sheet, but AgSD was observed in the fiber in the CTS / PU / AgSD fiber sheet. Interestingly, as the content of AgSD gradually increased from 0.1% to 1%, more AgSD was observed in the fibers (Fig. 7 (e) - (f)).

CTS/PU/CTS / PU / AgSDAgSD 섬유 시트의 박테리아 억제 시험 Bacteria inhibition test of fiber sheet

CTS/PU/AgSD 섬유 시트가 박테리아의 성장을 방지하는 데 효과적인지 확인하기 위하여, 세 종류의 박테리아에 대하여 항균시험을 수행하였다: P. aeruginosa, S. aureus 및 MRSA. 실험에서 CTS/PU 및 CTS/PU/AgSD 섬유 시트를 대조군 및 비교군으로 각각 사용하였다. 도 8(c)에 나타나듯이, CTS/PU : AgSD (100:1) 섬유 시트는 섬유 디스크 주변에 박테리아 성장 저해 구역을 나타내었다. To determine if CTS / PU / AgSD fiber sheets are effective in preventing bacterial growth, three bacterial antimicrobial tests were performed: P. aeruginosa, S. aureus and MRSA. In the experiment, CTS / PU and CTS / PU / AgSD fiber sheets were used as control and comparison groups, respectively. As shown in FIG. 8 (c), the CTS / PU: AgSD (100: 1) fiber sheet showed a bacterial growth inhibition zone around the fiber disc.

또한, CTS/PU : AgSD (100:1) 섬유 시트는 P.aeruginosa에 비하여 S.aureus 및 MRSA에 대하여 높은 효과를 가지는 것이 발견되었다. 도 8(b)에서 확인될 수 있듯이 CTS/PU : AgSD (1000:1) 섬유 시트가 가장 낮은 AgSD의 양을 가지고 있었지만, 모든 박테리아에 대해 성장 저해 효과를 나타내었으며, 100:1로 AgSD를 로드한 섬유 시트보다는 작은 억제 반경을 나타내었다. 도 8(a)에 나타나듯이, AgSD가 없는 경우, CTS/PU 섬유 시트 자체에는 박테리아 성장 억제 효과가 없었다. 즉 박테리아 억제효과는 AgSD 함량에 용량 의존적이었다. 위 결과로부터 CTS/PU/AgSD 섬유 시트가 항미생물 상처 드레싱제로 유용하게 사용될 수 있음을 확인하였다. It was also found that the CTS / PU: AgSD (100: 1) fiber sheet had a higher effect on S. aureus and MRSA than P. aeruginosa. As can be seen in FIG. 8 (b), the CTS / PU: AgSD (1000: 1) fiber sheet had the lowest amount of AgSD but showed growth inhibition for all bacteria, Showed a smaller suppression radius than one fiber sheet. As shown in FIG. 8 (a), in the absence of AgSD, the CTS / PU fiber sheet itself had no bactericidal growth inhibitory effect. The bactericidal effect was dose dependent on AgSD content. From the above results, it was confirmed that CTS / PU / AgSD fiber sheet can be useful as an antimicrobial wound dressing agent.

Claims (5)

설파디아진은(silver sulfadiazine)을 포함하는 키토산-폴리우레탄 나노섬유.A chitosan-polyurethane nanofiber comprising silver sulfadiazine. 제1항에 있어서, 상기 나노섬유가 항균성인 나노섬유.The nanofibers according to claim 1, wherein the nanofibers are antimicrobial. 제1항의 나노섬유를 포함하는 상처 드레싱 재료. A wound dressing material comprising the nanofiber of claim 1. 키토산, 폴리우레탄 및 설파디아진은(silver sulfadiazine)의 혼합물을 제조하는 단계 및 상기 혼합물을 전기방사하는 단계를 포함하는 제1항의 나노섬유의 제조방법. The method of claim 1, comprising the steps of preparing a mixture of chitosan, polyurethane and sulfadiazine, and electrospinning the mixture. 제4항에 있어서, 상기 나노섬유는 항균성인 제조방법.

5. The method according to claim 4, wherein the nanofibers are antimicrobial.

KR1020150088851A 2015-06-23 2015-06-23 Antibacterial chitosan-polyurethane nanofiber KR102312508B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150088851A KR102312508B1 (en) 2015-06-23 2015-06-23 Antibacterial chitosan-polyurethane nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150088851A KR102312508B1 (en) 2015-06-23 2015-06-23 Antibacterial chitosan-polyurethane nanofiber

Publications (2)

Publication Number Publication Date
KR20170000105A true KR20170000105A (en) 2017-01-02
KR102312508B1 KR102312508B1 (en) 2021-10-14

Family

ID=57810398

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150088851A KR102312508B1 (en) 2015-06-23 2015-06-23 Antibacterial chitosan-polyurethane nanofiber

Country Status (1)

Country Link
KR (1) KR102312508B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760814A (en) * 2020-12-28 2021-05-07 安徽省临泉县万隆塑料包装有限公司 Antibacterial and anti-fouling polyurethane non-woven fabric material
US11865485B2 (en) 2019-10-28 2024-01-09 Lg Electronics Inc. Air cleaner with rollable filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611182A (en) * 2013-12-10 2014-03-05 东华大学 Preparation method of core-shell structure superfine fiber carrier material for medical dressing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611182A (en) * 2013-12-10 2014-03-05 东华大学 Preparation method of core-shell structure superfine fiber carrier material for medical dressing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11865485B2 (en) 2019-10-28 2024-01-09 Lg Electronics Inc. Air cleaner with rollable filter
CN112760814A (en) * 2020-12-28 2021-05-07 安徽省临泉县万隆塑料包装有限公司 Antibacterial and anti-fouling polyurethane non-woven fabric material

Also Published As

Publication number Publication date
KR102312508B1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
Lee et al. Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing
Mehrabani et al. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing
Ali et al. Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract
He et al. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly (ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing
Liao et al. Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications
Mou et al. 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection
Fazli et al. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs
Unnithan et al. Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing
Montaser et al. Designing strategy for coating cotton gauze fabrics and its application in wound healing
Shanmugapriya et al. Fabrication of multifunctional chitosan-based nanocomposite film with rapid healing and antibacterial effect for wound management
Naseri et al. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing
López-Córdoba et al. A simple green route to obtain poly (vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs
RU2468129C2 (en) Biopolymeric fibre, composition of forming solution for its obtaining, method of forming solution preparation, linen of biomedical purpose, biological bandage and method of wound treatment
El-Aassar et al. Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing
Shitole et al. Poly (vinylpyrrolidone)‑iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials
Tonda-Turo et al. Nanostructured scaffold with biomimetic and antibacterial properties for wound healing produced by ‘green electrospinning’
EP3288600B1 (en) Antibacterial nanofibres
JP2010506945A (en) Antibacterial article and manufacturing method
US20210162090A1 (en) Composite fiber
CN110747534A (en) Antibacterial polysaccharide fiber material and preparation method thereof
Habibi et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: Preparation, characterization, and controlled drug release
Khajeh et al. Fabrication of a wound dressing mat based on Polyurethane/Polyacrylic acid containing Poloxamer for skin tissue engineering
CN113788871A (en) Coordination compound and preparation method and application thereof
TWI714373B (en) A composite fiber
KR102312508B1 (en) Antibacterial chitosan-polyurethane nanofiber

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant