KR20160134067A - Electrolyte membrane, preparing the same and fuel cell including the same - Google Patents

Electrolyte membrane, preparing the same and fuel cell including the same Download PDF

Info

Publication number
KR20160134067A
KR20160134067A KR1020150067486A KR20150067486A KR20160134067A KR 20160134067 A KR20160134067 A KR 20160134067A KR 1020150067486 A KR1020150067486 A KR 1020150067486A KR 20150067486 A KR20150067486 A KR 20150067486A KR 20160134067 A KR20160134067 A KR 20160134067A
Authority
KR
South Korea
Prior art keywords
electrolyte membrane
formula
ion conductor
inorganic ion
metal element
Prior art date
Application number
KR1020150067486A
Other languages
Korean (ko)
Other versions
KR102387430B1 (en
Inventor
허필원
김준영
유대종
김태윤
박찬호
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020150067486A priority Critical patent/KR102387430B1/en
Publication of KR20160134067A publication Critical patent/KR20160134067A/en
Application granted granted Critical
Publication of KR102387430B1 publication Critical patent/KR102387430B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/521
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to an electrolyte membrane, a method for preparing the same, and a fuel cell comprising the same. Provided is the electrolyte membrane, comprising: an inorganic ion conductor represented by chemical formula 1: M^1_(1-a)M^2_aP_xO_y; and a polymer represented by chemical formula 2 or by chemical formula 3. In the chemical formula 1: M^1 is a metal element having an oxidation state of 4; M^2 is a metal element having an oxidation state of 1, a metal element having an oxidation state of 2, or a metal element having an oxidation state of 3; and a, x, and y satisfies 0 <= a < 1, 1.5 <= x <= 3.5, and 5 <= y <= 13. In the chemical formula 2: L^1 to L^4 are independently a single bond, -C(=O)-, -O-, -S-, -S(=O)- or -S(=O)2-; m1 and m2 are independently an integer ranging from 0 to 100; and m1 + m2 is not 0. In the chemical formula 3: L^5 to L^7 are independently a single bond, -C(=O)-, -O-, -S-, -S(=O)- or -S(=O)_2-; and n is an integer ranging from 1 to 100.

Description

전해질막, 이의 제조방법 및 이를 포함하는 연료전지 {ELECTROLYTE MEMBRANE, PREPARING THE SAME AND FUEL CELL INCLUDING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an electrolyte membrane, a method of manufacturing the same, and a fuel cell including the electrolyte membrane.

전해질막, 이의 제조방법 및 이를 포함하는 연료전지에 관한 것이다.
An electrolyte membrane, a method of manufacturing the same, and a fuel cell including the same.

최근, 신재생에너지 관련 연구 중 하나인 무공해 자동차의 연료원으로서 연료전지에 대한 연구가 주목받고 있다. 그 중에서도 고분자 전해질형 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)는 높은 에너지 효율과 출력 특성 및 친환경적인 특성으로 인하여 기존 자동차 엔진을 대체하는 용도로서 큰 관심을 모으고 있다.Recently, research on fuel cells as a fuel source of pollution-free automobiles, one of the researches on renewable energy, has received attention. Among them, PEMFC (Polymer Electrolyte Membrane Fuel Cell) has attracted great interest as a substitute for existing automobile engine due to its high energy efficiency, power characteristics and environmentally friendly characteristics.

특히, 저온에서 작동하는 PEMFC와 비교하여 100℃ 이상의 고온 및 무가습 조건에서 작동하는 PEMFC는 가습장치를 사용하지 않으므로 물 관리 등의 제어가 간단하고 시스템의 신뢰성이 높은 것으로 알려져 있다. 또한, 고온 작동을 통해 연료극에서의 일산화탄소(CO) 피독에 대한 내성이 높아지므로 연료의 불순물 함유 기준이 완화될 수 있어 개질기 또한 단순화될 수 있어 고온 무가습 시스템에 대한 관심이 높아지고 있다.In particular, PEMFCs operating at high temperature and humidification conditions of 100 ° C or higher, compared to PEMFCs operating at low temperatures, do not use a humidification device, so that it is known that the control of water management and the like is simple and the reliability of the system is high. In addition, since the resistance to poisoning of carbon monoxide (CO) at the fuel electrode is increased through the high-temperature operation, the impurity content criterion of the fuel can be relaxed and the reformer can also be simplified, and the concern about the high temperature humidification system is increasing.

현재 일반 PEMFC에서 사용중인 불소계 폴리머 전해질막(예컨대 Nafion 등)은 고온, 저가습에서 사용 시, 탈수에 의한 급격한 저항증가로 인하여 고온 운전이 어려운 문제점이 있는 바, 고온 저가습 조건하에서 고내열성, 고내화학성 및 고이온 전도성을 갖는 연료전지용 전해질막 개발이 요구된다.
The fluorine-based polymer electrolyte membranes (such as Nafion) currently used in general PEMFCs are difficult to operate at a high temperature due to a rapid increase in resistance due to dehydration when used at high temperature and low humidity, It is required to develop an electrolyte membrane for a fuel cell having chemical resistance and high ion conductivity.

일 구현예는 고비표면적 및 고이온 전도성을 갖는 전해질막을 제공하기 위한 것이다.One embodiment is to provide an electrolyte membrane having a high specific surface area and a high ionic conductivity.

다른 일 구현예는 상기 전해질막의 제조방법을 제공하기 위한 것이다.Another embodiment is to provide a method for producing the electrolyte membrane.

또 다른 일 구현예는 상기 전해질막을 포함하는 연료전지를 제공하기 위한 것이다.
Another embodiment is to provide a fuel cell comprising the electrolyte membrane.

일 구현예는 하기 화학식 1로 표시되는 무기 이온 전도체 및 하기 화학식 2 또는 하기 화학식 3으로 표시되는 고분자를 포함하는 전해질막을 제공한다.One embodiment provides an electrolyte membrane comprising an inorganic ion conductor represented by the following formula (1) and a polymer represented by the following formula (2) or (3).

[화학식 1][Chemical Formula 1]

M1 1 - aM2 aPxOy M 1 1 - a M 2 a P x O y

상기 화학식 1에서, In Formula 1,

M1은 산화수 4가의 금속 원소이고,M 1 is a tetravalent metal element,

M2는 산화수 1가의 금속 원소, 산화수 2가의 금속 원소 또는 산화수 3가의 금속 원소이고,M 2 is a monovalent metal element, a divalent metal element or a trivalent metal element,

0 ≤ a < 1, 1.5 ≤ x ≤ 3.5, 5 ≤ y ≤ 13 이고,0? A <1, 1.5? X? 3.5, 5? Y? 13,

[화학식 2](2)

Figure pat00001
Figure pat00001

상기 화학식 2에서,In Formula 2,

L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 1 to L 4 are each independently a single bond, -C (= O) - a, -, -O-, -S-, -S (= O) - or -S (= O) 2

m1 및 m2는 각각 독립적으로 0 내지 100의 정수이고, 단 m1 + m2는 0이 아니고,m1 and m2 are each independently an integer of 0 to 100, provided that m1 + m2 is not 0,

[화학식 3](3)

Figure pat00002
Figure pat00002

상기 화학식 3에서,In Formula 3,

L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 5 to L 7 are each independently a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -, and

n은 1 내지 100의 정수이다.n is an integer of 1 to 100;

상기 M2는 산화수 3가의 금속 원소일 수 있다.M 2 may be a trivalent metal element.

상기 M2는 알루미늄(Al), 철(Fe), 갈륨(Ga), 이트륨(Y), 인듐(In), 안티몬(Sb), 비스무스(Bi), 란탄(La), 네오디뮴(Nd) 또는 사마륨(Sm)일 수 있다.The M 2 may be at least one selected from the group consisting of Al, Fe, Ga, Y, In, Sb, Bi, La, (Sm).

상기 M1은 주석(Sn), 지르코늄(Zr), 티타늄(Ti), 세륨 (Ce) 또는 실리콘(Si)일 수 있다.The M 1 may be Sn, Zr, Ti, Ce or Si.

상기 x는 2의 정수일 수 있고, 상기 y는 7의 정수일 수 있다.X may be an integer of 2, and y may be an integer of 7.

상기 무기 이온 전도체의 비표면적은 4.0 m2/g 내지 90.0 m2/g 일 수 있다.The specific surface area of the inorganic ion conductor may be 4.0 m 2 / g to 90.0 m 2 / g.

상기 전해질막은 상기 전해질막 총량에 대해, 상기 화학식 1로 표시되는 무기 이온 전도체 5 중량% 내지 30 중량% 및 상기 고분자 70 중량% 내지 95 중량%를 포함할 수 있다.The electrolyte membrane may include 5 to 30% by weight of the inorganic ion conductor represented by Formula 1 and 70 to 95% by weight of the polymer, based on the total amount of the electrolyte membrane.

상기 무기 이온 전도체는 다공성 무기 이온 전도체일 수 있다.The inorganic ion conductor may be a porous inorganic ion conductor.

상기 다공성 무기 이온 전도체 내 기공의 평균 직경은 2 nm 내지 100 nm일 수 있다.The average diameter of the pores in the porous inorganic ion conductor may be 2 nm to 100 nm.

상기 다공성 무기 이온 전도체 내 기공의 평균 직경은 2 nm 내지 50 nm일 수 있다.The average diameter of the pores in the porous inorganic ion conductor may be from 2 nm to 50 nm.

상기 고분자는 10,000 g/mol 내지 500,000 g/mol의 중량평균 분자량을 가질 수 있다.The polymer may have a weight average molecular weight of 10,000 g / mol to 500,000 g / mol.

다른 일 구현예는 산화수 4가의 금속 원소(M1) 산화물을 준비하는 단계; 상기 산화수 4가의 금속 원소 산화물과 산화수 3가의 금속 원소(M2) 산화물을 혼합하여 혼합물을 얻는 단계; 상기 혼합물에 인산(H3PO4)을 첨가하는 단계; 상기 인산이 첨가된 혼합물을 열처리하여 하기 화학식 1로 표시되는 무기 이온 전도체를 제조하는 단계; 상기 무기 이온 전도체와 하기 화학식 2 또는 하기 화학식 3으로 표시되는 고분자를 용매에 첨가하여 전해질막 형성용 조성물을 제조하는 단계; 및 상기 전해질막 형성용 조성물을 기판 상에 캐스팅하고 건조하는 단계를 포함하는 전해질막의 제조방법을 제공한다.Another embodiment provides a method of making a semiconductor device , comprising: preparing a tetravalent metal oxide (M 1 ) oxide; Mixing the oxidized tetravalent metal element oxide with a trivalent metal oxide (M 2 ) oxide to obtain a mixture; Adding a phosphoric acid (H 3 PO 4) to the mixture; Heat-treating the phosphoric acid-added mixture to prepare an inorganic ion conductor represented by Formula 1 below; Preparing a composition for forming an electrolyte membrane by adding the inorganic ion conductor and a polymer represented by the following formula 2 or 3 to a solvent; And casting the composition for forming an electrolyte membrane on a substrate and drying the electrolyte membrane.

[화학식 1][Chemical Formula 1]

M1 1 - aM2 aPxOy M 1 1 - a M 2 a P x O y

상기 화학식 1에서, In Formula 1,

M1은 산화수 4가의 금속 원소이고,M 1 is a tetravalent metal element,

M2는 산화수 3가의 금속 원소이고,M 2 is a trivalent metal element,

0 ≤ a < 1, 1.5 ≤ x ≤ 3.5, 5 ≤ y ≤ 13 이고,0? A <1, 1.5? X? 3.5, 5? Y? 13,

[화학식 2](2)

Figure pat00003
Figure pat00003

상기 화학식 2에서,In Formula 2,

L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 1 to L 4 are each independently a single bond, -C (= O) - a, -, -O-, -S-, -S (= O) - or -S (= O) 2

m1 및 m2는 각각 독립적으로 0 내지 100의 정수이고, 단 m1 + m2는 0이 아니고,m1 and m2 are each independently an integer of 0 to 100, provided that m1 + m2 is not 0,

[화학식 3](3)

Figure pat00004
Figure pat00004

상기 화학식 3에서,In Formula 3,

L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 5 to L 7 are each independently a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -, and

n은 1 내지 100의 정수이다.n is an integer of 1 to 100;

상기 열처리는 200℃ 내지 500℃에서 1시간 내지 5시간 동안 실시할 수 있다.The heat treatment may be performed at 200 ° C to 500 ° C for 1 hour to 5 hours.

상기 산화수 4가의 금속 원소 산화물을 준비하는 단계는, 음이온성 계면활성제와 상기 산화수 4가의 금속 원소 산화물의 양이온 염을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물의 pH를 조절하여 서스펜션 용액을 제조하는 단계; 및 상기 서스펜션 용액을 필터링한 후, 상기 음이온성 계면활성제를 제거하는 단계를 포함할 수 있다.The step of preparing the oxidized tetravalent metal element oxide comprises mixing an anionic surfactant and a cation salt of the tetravalent metal oxide element with a cationic salt to prepare a mixture; Adjusting the pH of the mixture to prepare a suspension solution; And filtering the suspension solution, and then removing the anionic surfactant.

상기 무기 이온 전도체는 다공성 무기 이온 전도체일 수 있다.The inorganic ion conductor may be a porous inorganic ion conductor.

상기 다공성 무기 이온 전도체 내 기공의 평균 직경이 2 nm 내지 100 nm일 수 있다.The average diameter of the pores in the porous inorganic ion conductor may be from 2 nm to 100 nm.

상기 고분자는 10,000 g/mol 내지 500,000 g/mol의 중량평균 분자량을 가질 수 있다.The polymer may have a weight average molecular weight of 10,000 g / mol to 500,000 g / mol.

상기 용매는 디메틸아세트아마이드, 디메틸포름아마이드, 테트라하이드로퓨란, N-메틸피롤리돈 또는 이들의 조합을 포함할 수 있다.The solvent may include dimethylacetamide, dimethylformamide, tetrahydrofuran, N-methylpyrrolidone or a combination thereof.

또 다른 일 구현예는 상기 전해질막을 포함하는 연료전지를 제공한다.Another embodiment provides a fuel cell comprising the electrolyte membrane.

상기 연료전지는 고분자 전해질형 연료전지(PEMFC)일 수 있다.The fuel cell may be a polymer electrolyte fuel cell (PEMFC).

기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
Other details of the embodiments of the present invention are included in the following detailed description.

비표면적 및 이온 전도성이 향상된 무기 이온 전도체를 고분자와 함께 적용하여 고이온 전도성을 갖는 연료전지용 전해질막을 제공할 수 있다.
An inorganic ion conductor having improved specific surface area and ion conductivity can be applied together with a polymer to provide an electrolyte membrane for a fuel cell having high ion conductivity.

도 1은 본 발명의 일구현예에 따른 연료전지를 나타내는 분해 사시도이다.
도 2는 연료전지를 구성하는 막 전극 접합체(MEA)의 단면 모식도이다.
도 3은 실시예 1, 실시예 2 및 비교예 1에 따른 전해질막의 수소이온 전도도를 나타낸 그래프이다.
도 4는 실시예 1에 따른 다공성 전해질막의 질소 흡탈착 등온선 그래프이다.
도 5는 열처리 온도에 따른 다공성의 전해질막(실시예 1) 및 비다공성의 전해질막(실시예 3)에 대한 비표면적의 측정 결과를 나타낸 그래프이다.
1 is an exploded perspective view showing a fuel cell according to an embodiment of the present invention.
2 is a schematic cross-sectional view of a membrane electrode assembly (MEA) constituting a fuel cell.
3 is a graph showing hydrogen ion conductivity of an electrolyte membrane according to Example 1, Example 2, and Comparative Example 1. FIG.
4 is a nitrogen adsorption / desorption isotherm graph of the porous electrolyte membrane according to Example 1. Fig.
5 is a graph showing the results of measurement of the specific surface area of the porous electrolyte membrane (Example 1) and the non-porous electrolyte membrane (Example 3) according to the heat treatment temperature.

이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, it should be understood that the present invention is not limited thereto, and the present invention is only defined by the scope of the following claims.

본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.It is to be understood that where a layer, film, region, plate, or the like is referred to as being "on" another portion, unless stated otherwise in this specification, .

일 구현예에 따른 전해질막은 하기 화학식 1로 표시되는 무기 이온 전도체 및 하기 화학식 2 또는 하기 화학식 3으로 표시되는 고분자를 포함한다.The electrolyte membrane according to one embodiment includes an inorganic ion conductor represented by the following Chemical Formula 1 and a polymer represented by Chemical Formula 2 or Chemical Formula 3 below.

[화학식 1][Chemical Formula 1]

M1 1 - aM2 aPxOy M 1 1 - a M 2 a P x O y

상기 화학식 1에서, In Formula 1,

M1은 산화수 4가의 금속 원소이고,M 1 is a tetravalent metal element,

M2는 산화수 1가의 금속 원소, 산화수 2가의 금속 원소 또는 산화수 3가의 금속 원소이고,M 2 is a monovalent metal element, a divalent metal element or a trivalent metal element,

0 ≤ a < 1, 1.5 ≤ x ≤ 3.5, 5 ≤ y ≤ 13 이고,0? A <1, 1.5? X? 3.5, 5? Y? 13,

[화학식 2](2)

Figure pat00005
Figure pat00005

상기 화학식 2에서,In Formula 2,

L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 1 to L 4 are each independently a single bond, -C (= O) - a, -, -O-, -S-, -S (= O) - or -S (= O) 2

m1 및 m2는 각각 독립적으로 0 내지 100의 정수이고, 단 m1 + m2는 0이 아니고,m1 and m2 are each independently an integer of 0 to 100, provided that m1 + m2 is not 0,

[화학식 3](3)

Figure pat00006
Figure pat00006

상기 화학식 3에서,In Formula 3,

L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 5 to L 7 are each independently a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -, and

n은 1 내지 100의 정수이다.n is an integer of 1 to 100;

예컨대, 상기 화학식 2에서, 상기 L1 내지 L4는 각각 독립적으로 단일 결합, -O- 또는 -S(=O)2- 일 수 있다.For example, in Formula 2, each of L 1 to L 4 may independently be a single bond, -O- or -S (= O) 2 -.

예컨대, 상기 화학식 3에서, 상기 L5 내지 L7은 각각 독립적으로 -C(=O)- 또는 -O- 일 수 있다.For example, in Formula 3, each of L 5 to L 7 may independently be -C (= O) - or -O-.

상기 무기 이온 전도체는 입방체(cubic) 또는 유사입방체(pseudo-cubic) 결정 구조를 가질 수 있다. 여기에서 "유사입방체"는 입방체 구조와 거의 유사한 사방 육면체(rhombohedral) 구조를 말한다. 이와 같은 결정 구조는 X선 회절 실험을 통하여 얻은 격자 면간 거리를 분석하여 확인할 수 있다.The inorganic ion conductor may have a cubic or pseudo-cubic crystal structure. Here, "pseudocubic" refers to a rhombohedral structure similar to a cubic structure. This crystal structure can be confirmed by analyzing the interplanar spacing obtained from the X-ray diffraction experiment.

구체적으로, 상기 무기 이온 전도체는 산화수 4가의 금속 산화물이 면심 입방 구조를 형성하여 코너와 면심 부분에 위치하며 포스페이트 그룹 (P2O7)이 모서리(edge) 영역에 위치하여 금속 산화물과 결합하는 구조를 갖는다.Specifically, the inorganic ion conductor is a structure in which a tetravalent metal oxide forms a face-centered cubic structure and is located at a corner and an innermost portion, and a phosphate group (P 2 O 7 ) is located at an edge region and bonds with a metal oxide .

또한, 상기 무기 이온 전도체는 다양한 크기의 기공이 다수 포함된 다공성일 수 있다. 즉, 상기 무기 이온 전도체는 다공성 무기 이온 전도체일 수 있고, 이 경우 상기 다공성 무기 이온 전도체 내 기공의 평균 직경은 2 nm 내지 100 nm, 예컨대 2 nm 내지 50 nm일 수 있다. 상기 무기 이온 전도체가 다공성 구조로 형성됨으로써, 무가습 또는 저가습(<50% RH, 예컨대 <30% RH) 조건 하에서 함수 특성이 부가되어 무기 이온 전도체의 이온 전도도가 향상될 수 있다.In addition, the inorganic ion conductor may be porous including many pores of various sizes. That is, the inorganic ion conductor may be a porous inorganic ion conductor, and in this case, the average diameter of the pores in the porous inorganic ion conductor may be 2 nm to 100 nm, for example, 2 nm to 50 nm. By forming the inorganic ion conductor into a porous structure, the ionic conductivity of the inorganic ion conductor can be improved by adding a water-soluble property under conditions of no humidification or low humidification (<50% RH, for example, <30% RH).

상기 무기 이온 전도체의 비표면적은 4.0 m2/g 내지 90.0 m2/g, 예컨대 8.4 m2/g 내지 85.5 m2/g일 수 있다.The specific surface area of the inorganic ion conductor may be 4.0 m 2 / g to 90.0 m 2 / g, for example 8.4 m 2 / g to 85.5 m 2 / g.

무기 이온 전도체의 비표면적이 상기 범위 내인 경우, 75℃ 내지 200℃, <30% RH 조건에서 0.01 S/cm 내지 0.1 S/cm의 수소 이온 전도도를 달성할 수 있게 되어, 연료전지용 전해질막의 성능 향상을 기대할 수 있다.When the specific surface area of the inorganic ion conductor is within the above range, it is possible to achieve hydrogen ion conductivity of 0.01 S / cm to 0.1 S / cm at 75 to 200 ° C and <30% RH, Can be expected.

상기 M2는 산화수 3가의 금속 원소, 예컨대 알루미늄(Al), 철(Fe), 갈륨(Ga), 이트륨(Y), 인듐(In), 안티몬(Sb), 비스무스(Bi), 란탄(La), 네오디뮴(Nd) 및 사마륨(Sm)으로 이루어진 군에서 선택된 어느 하나일 수 있다.The M 2 may be a trivalent metal oxide such as aluminum (Al), iron (Fe), gallium (Ga), yttrium (Y), indium (In), antimony (Sb), bismuth (Bi) , Neodymium (Nd), and samarium (Sm).

상기 M1은 예컨대, 주석(Sn), 지르코늄(Zr), 티타늄(Ti), 세륨 (Ce) 및 실리콘(Si)로 이루어진 군에서 선택된 어느 하나일 수 있다.The M 1 may be any one selected from the group consisting of tin (Sn), zirconium (Zr), titanium (Ti), cerium (Ce), and silicon (Si).

예컨대, 상기 x는 2의 정수일 수 있고, 상기 y는 7의 정수일 수 있다.For example, x may be an integer of 2, and y may be an integer of 7.

예컨대, 상기 무기 이온 전도체의 가장 구체적인 예로서, 상기 무기 이온 전도체는 SnP2O7, Sn0 .85Al0 .15P2O7, Sn0 .90Al0 .10P2O7, Sn0 .93Al0 .07P2O7 또는 Sn0 .95Al0 .05P2O7 를 들 수 있으나, 이에 한정되는 것은 아니다.For example, as the most specific example of the inorganic ion conductor, the inorganic ion conductor may be SnP 2 O 7 , Sn 0 .85 Al 0 .15 P 2 O 7 , Sn 0 .90 Al 0 .10 P 2 O 7 , Sn 0 .93 Al 0 .07 P 2 O 7 or Sn 0 .95 Al 0 .05 P 2 O 7 , but are not limited thereto.

상기 전해질막은 상기 전해질막 총량에 대해, 상기 화학식 1로 표시되는 무기 이온 전도체 5 중량% 내지 30 중량% 및 상기 고분자 70 중량% 내지 95 중량%를 포함할 수 있다. 예컨대, 상기 전해질막은 상기 전해질막 총량에 대해, 상기 화학식 1로 표시되는 무기 이온 전도체 5 중량% 내지 20 중량% 및 상기 고분자 80 중량% 내지 95 중량%를 포함할 수 있다.The electrolyte membrane may include 5 to 30% by weight of the inorganic ion conductor represented by Formula 1 and 70 to 95% by weight of the polymer, based on the total amount of the electrolyte membrane. For example, the electrolyte membrane may include 5 to 20% by weight of the inorganic ion conductor represented by Formula 1 and 80 to 95% by weight of the polymer, based on the total amount of the electrolyte membrane.

상기 화학식 1로 표시되는 무기 이온 전도체의 함량이 5 중량% 미만인 경우에는 저가습 조건에서의 이온 전도 패스 및 함습 효과의 저하로 전도도 향상 효과가 달성될 수 없고, 30 중량%를 초과하는 경우에는 무기 입자의 분산성 저감과 전해질막의 기계적 강도가 저감되는 단점이 있다.When the content of the inorganic ion conductor represented by the above formula (1) is less than 5% by weight, the conductivity improving effect can not be obtained due to the decrease of the ion conduction path and humidifying effect under low humidification conditions. There is a drawback that the dispersibility of the particles is reduced and the mechanical strength of the electrolyte membrane is reduced.

상기 화학식 2 또는 화학식 3으로 표시되는 고분자는 10,000 g/mol 내지 500,000 g/mol의 중량평균 분자량을 가질 수 있다.The polymer represented by Formula 2 or Formula 3 may have a weight average molecular weight of 10,000 g / mol to 500,000 g / mol.

예컨대, 상기 화학식 2로 표시되는 고분자는 하기 화학식 2-a로 표시되는 반복단위 및 화학식 2-b로 표시되는 반복단위를 포함하는 공중합체일 수 있다.For example, the polymer represented by Formula 2 may be a copolymer comprising a repeating unit represented by Formula 2-a and a repeating unit represented by Formula 2-b.

[화학식 2-a][Chemical Formula 2-a]

Figure pat00007
Figure pat00007

[화학식 2-b][Formula 2-b]

Figure pat00008
Figure pat00008

상기 화학식 2-a 및 화학식 2-b에서,In the above general formulas (2-a) and (2-b)

L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이다.L 1 to L 4 each independently represents a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -.

예컨대, 상기 화학식 3으로 표시되는 고분자는 하기 화학식 3-a로 표시되는 반복단위를 포함하는 화합물일 수 있다.For example, the polymer represented by Formula 3 may be a compound containing a repeating unit represented by the following Formula 3-a.

[화학식 3-a][Formula 3-a]

Figure pat00009
Figure pat00009

상기 화학식 3-a에서,In the above formula (3-a)

L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이다.L 5 to L 7 each independently represents a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -.

예컨대, 상기 고분자는 촉매층의 접착력 향상 및 수소 이온의 전달을 위한 이오노머일 수 있다. For example, the polymer may be an ionomer for improving adhesion of the catalyst layer and transferring hydrogen ions.

상기 이오노머는 수소 이온 전도성을 가지는 고분자 수지를 사용할 수 있고, 구체적으로는 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로부터 선택되는 적어도 하나의 양이온 교환기를 가지는 고분자 수지를 모두 사용할 수 있다. 더 구체적으로는 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자로부터 선택되는 적어도 하나의 고분자 수지를 사용할 수 있다. 더욱 구체적으로는, 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 황화 폴리에테르케톤, 아릴 케톤, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5'-bibenzimidazole] 및 폴리(2,5-벤즈이미다졸)로부터 선택되는 적어도 하나의 고분자 수지를 사용할 수 있다.The ionomer may be a polymer resin having hydrogen ion conductivity, specifically, a polymer resin having at least one cation-exchange group selected from a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, Can be used. More specifically, examples of the polymer include fluorine polymer, benzimidazole polymer, polyimide polymer, polyetherimide polymer, polyphenylene sulfide polymer, polysulfone polymer, polyether sulfone polymer, polyether ketone polymer, poly Ether-ether ketone-based polymer, and polyphenylquinoxaline-based polymer may be used. More specifically, poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymer of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid group, sulfated polyether ketone, aryl ketone, poly 2,2'-m-phenylene) -5,5'-bibenzimidazole] and poly (2,5-benzimidazole [ ) May be used.

상기 이오노머는 단일물 또는 혼합물 형태로 사용가능하며, 또한 선택적으로 고분자 전해질 막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 상기 비전도성 화합물의 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다. The ionomer may be used singly or in the form of a mixture, and may optionally be used together with a nonconductive compound for the purpose of further improving the adhesion with the polymer electrolyte membrane. The amount of the nonconductive compound to be used is preferably adjusted to suit the intended use.

상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라 플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌- 퍼플루오로 알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌(ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌 공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(sorbitol)로부터 선택되는 적어도 하나를 사용할 수 있다.Examples of the nonconductive compound include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoro (PVdF-HFP), dodecyltrimethoxysilane (DMSO), ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene copolymer (ECTFE), polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer At least one selected from silbenzenesulfonic acid and sorbitol can be used.

예컨대, 상기 화학식 2로 표시되는 고분자는 sPAES(sulfonated poly(arylene ether sulfone))일 수 있고, 상기 화학식 3으로 표시되는 고분자는 PEEK(polyether ether letone)일 수 있다.For example, the polymer represented by Formula 2 may be sPAES (sulfonated poly (arylene ether sulfone)), and the polymer represented by Formula 3 may be PEEK (polyether ether letone).

일 구현예에 따른 전해질막 중에는, 수소 이온 전도를 보조하기 위해 상술한 성분 이외의 다른 성분이 포함될 수 있다. 이러한 다른 성분으로서는, 예를 들면 가소제, 폴리에테르 등이 있다. 이들의 구체예로서는 수소 이온 전도성을 갖는 것으로, 일반적으로 공지의 것이면 특별히 한정은 되지 않지만, 예를 들면 가소제로서는 프탈산 디옥틸 등이 있고, 폴리에테르로서는 폴리에틸렌글리콜 등을 들 수 있다.The electrolyte membrane according to one embodiment may contain components other than the above-mentioned components in order to assist the hydrogen ion conduction. These other components include, for example, plasticizers, polyethers, and the like. Specific examples thereof include those having hydrogen ion conductivity and are not particularly limited as long as they are generally known. Examples of the plasticizer include dioctyl phthalate and the like, and examples of the polyether include polyethylene glycol and the like.

다른 일 구현예에 따른 전해질막의 제조 방법은, 산화수 4가의 금속 원소(M1) 산화물을 준비하는 단계; 상기 산화수 4가의 금속 원소 산화물과 산화수 3가의 금속 원소(M2) 산화물을 혼합하여 혼합물을 얻는 단계; 상기 혼합물에 인산(H3PO4)을 첨가하는 단계; 상기 인산이 첨가된 혼합물을 열처리하여 하기 화학식 1로 표시되는 무기 이온 전도체를 제조하는 단계; 상기 무기 이온 전도체와 하기 화학식 2 또는 하기 화학식 3으로 표시되는 고분자를 용매에 첨가하여 전해질막 형성용 조성물을 제조하는 단계; 및 상기 전해질막 형성용 조성물을 기판 상에 캐스팅하고 건조하는 단계를 포함를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing an electrolyte membrane, comprising: preparing a tetravalent metal oxide (M 1 ) oxide; Mixing the oxidized tetravalent metal element oxide with a trivalent metal oxide (M 2 ) oxide to obtain a mixture; Adding a phosphoric acid (H 3 PO 4) to the mixture; Heat-treating the phosphoric acid-added mixture to prepare an inorganic ion conductor represented by Formula 1 below; Preparing a composition for forming an electrolyte membrane by adding the inorganic ion conductor and a polymer represented by the following formula 2 or 3 to a solvent; And casting and drying the composition for forming an electrolyte film on a substrate.

[화학식 1][Chemical Formula 1]

M1 1 - aM2 aPxOy M 1 1 - a M 2 a P x O y

상기 화학식 1에서, In Formula 1,

M1은 산화수 4가의 금속 원소이고,M 1 is a tetravalent metal element,

M2는 산화수 3가의 금속 원소이고,M 2 is a trivalent metal element,

0 ≤ a < 1, 1.5 ≤ x ≤ 3.5, 5 ≤ y ≤ 13 이고,0? A <1, 1.5? X? 3.5, 5? Y? 13,

[화학식 2](2)

Figure pat00010
Figure pat00010

상기 화학식 2에서,In Formula 2,

L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 1 to L 4 are each independently a single bond, -C (= O) - a, -, -O-, -S-, -S (= O) - or -S (= O) 2

m1 및 m2는 각각 독립적으로 0 내지 100의 정수이고, 단 m1 + m2는 0이 아니고,m1 and m2 are each independently an integer of 0 to 100, provided that m1 + m2 is not 0,

[화학식 3](3)

Figure pat00011
Figure pat00011

상기 화학식 3에서,In Formula 3,

L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,L 5 to L 7 are each independently a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -, and

n은 1 내지 100의 정수이다.n is an integer of 1 to 100;

예컨대, 상기 화학식 2에서, 상기 L1 내지 L4는 각각 독립적으로 단일 결합, -O- 또는 -S(=O)2- 일 수 있다.For example, in Formula 2, each of L 1 to L 4 may independently be a single bond, -O- or -S (= O) 2 -.

예컨대, 상기 화학식 3에서, 상기 L5 내지 L7은 각각 독립적으로 -C(=O)- 또는 -O- 일 수 있다.For example, in Formula 3, each of L 5 to L 7 may independently be -C (= O) - or -O-.

상기 산화수가 4가의 금속 원소 산화물에 상기 산화수가 3가인 금속 원소 산화물을 첨가함으로써, 산화수 4가의 금속 원소 자리가 산화수가 낮은 금속 원소 자리로 치환되는 도핑이 일어날 수 있다.Doping in which the site of the tetravalent metal element is substituted with the site of the metal element having a lower oxidation number can be caused by adding the metal element oxide having the trivalent oxidation number to the tetravalent metal element oxide having the oxidation number.

산화수가 낮은 금속 원소로 도핑됨으로써, 고체 내에 결함 (defect)이 생성되고, 이 결합은 수증기와의 반응으로 고체 내로 수소 이온을 도입함으로써, 결과적으로 고체 내 수소 이온 농도를 증가시킨다. 이온 전도도는 이온의 이동도 (mobility)와 농도 (concentration)에 의해 결정되므로 상기와 같이 산화수가 낮은 금속원소로 도핑함으로써, 무기 이온 전도체의 이온 전도도는 더욱 향상될 수 있다.By doping with a metal element with a low oxidation potential, defects are created in the solid, which in turn reacts with water vapor to introduce hydrogen ions into the solid, resulting in an increase in solid hydrogen ion concentration. Since the ionic conductivity is determined by the mobility and concentration of the ions, the ionic conductivity of the inorganic ionic conductor can be further improved by doping with a metal element having a low oxidation number as described above.

상기 열처리는 200℃ 내지 500℃에서 1시간 내지 5시간 동안 실시할 수 있다.The heat treatment may be performed at 200 ° C to 500 ° C for 1 hour to 5 hours.

산화수 4가의 금속 원소 산화물, 산화수 3가의 금속 원소 산화물 및 인산의 혼합물을 200℃ 내지 300℃에서 열처리함으로써, 상기 산화수 4가의 금속 원소 산화물에 본래 존재하던 기공이 다양한 크기로, 그리고 다수로 성장되어 수소 이온의 전도 패스(path)가 되는 기공이 더욱 많이 형성될 수 있다.By heat-treating the mixture of the oxidized tetravalent metal element oxide, the trivalent metal element oxide and the phosphoric acid at 200 ° C to 300 ° C, pores originally present in the tetravalent metal element oxide are grown in various sizes, More pores can be formed, which are conduction paths of ions.

상기 열처리 온도가 200℃ 미만인 경우, 상기 무기이온 전도체의 조성으로 합성이 되지 않아 (고상반응), 목적하는 이온 전도도를 달성할 수 없게 되고, 상기 열처리 온도가 500℃를 초과하는 경우, 기공의 붕괴가 일어나 다공성의 무기 이온 전도체가 제조될 수 없다. If the heat treatment temperature is less than 200 ° C, the desired ion conductivity can not be achieved because the composition of the inorganic ion conductor is not synthesized (solid phase reaction), and if the heat treatment temperature exceeds 500 ° C, A porous inorganic ion conductor can not be produced.

예컨대, 상기 열처리 온도는 구체적으로 250℃ 내지 300℃일 수 있고, 상기 열처리 시간은 2시간 내지 3시간일 수 있으나, 이에 한정되는 것은 아니다.For example, the heat treatment temperature may be specifically 250 ° C. to 300 ° C., and the heat treatment time may be 2 hours to 3 hours, but is not limited thereto.

예컨대, 상기 산화수 4가의 금속 원소 산화물은 다공성일 수 있고, 이 경우 상기 무기 이온 전도체는 다공성 무기 이온 전도체일 수 있다. 이 때, 상기 다공성 무기 이온 전도체 내 기공의 평균 직경이 2 nm 내지 100 nm, 예컨대 2 nm 내지 50 nm일 수 있다.For example, the oxidized metal element oxide may be porous, and in this case, the inorganic ion conductor may be a porous inorganic ion conductor. In this case, the average diameter of the pores in the porous inorganic ion conductor may be 2 nm to 100 nm, for example, 2 nm to 50 nm.

상기 산화수 4가의 금속 원소 산화물을 준비하는 단계는, 음이온성 계면활성제와 상기 산화수 4가의 금속 원소 산화물의 양이온 염을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물의 pH를 조절하여 서스펜션 용액을 제조하는 단계; 및 상기 서스펜션 용액을 필터링한 후, 상기 음이온성 계면활성제를 제거하는 단계를 포함할 수 있다.The step of preparing the oxidized tetravalent metal element oxide comprises mixing an anionic surfactant and a cation salt of the tetravalent metal oxide element with a cationic salt to prepare a mixture; Adjusting the pH of the mixture to prepare a suspension solution; And filtering the suspension solution, and then removing the anionic surfactant.

이렇게 형성된 상기 다공성 구조인 산화수 4가의 금속 원소 산화물은 기공의 평균 직경은 3 nm 내지 30 nm 일 수 있다.The oxidized tetravalent metal element oxide, which is the porous structure thus formed, may have an average diameter of pores of 3 nm to 30 nm.

상기 다공성 구조인 산화수 4가의 금속 원소 산화물에 형성된 다수의 기공은 산화수 3가의 금속 원소 산화물 및 인산과의 혼합 후 수행되는 열처리 단계를 거침으로써, 더 다양한 크기로, 그리고 다수로 형성되어, 기공의 평균 직경이 2 nm 내지 100 nm, 예컨대 2 nm 내지 50 nm인 다공성으로 형성됨으로써, 본 발명의 일 구현예에 따른 다공성의 무기 이온 전도체로 제조될 수 있다.A plurality of pores formed in the tetravalent metal oxide of oxide having the porous structure are formed in a plurality of sizes and in a plurality of sizes by performing the heat treatment step performed after mixing with the trivalent metal oxide oxide and phosphoric acid, Can be formed into a porous inorganic ion conductor according to an embodiment of the present invention, by being formed into a porous body having a diameter of 2 nm to 100 nm, for example, 2 nm to 50 nm.

상기 고분자에 대해서는 전술한 바와 같다.The above polymer is as described above.

상기 용매는 디메틸아세트아마이드, 디메틸포름아마이드, 테트라하이드로퓨란, N-메틸피롤리돈 또는 이들의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.The solvent may include, but is not limited to, dimethylacetamide, dimethylformamide, tetrahydrofuran, N-methylpyrrolidone, or combinations thereof.

상기 전해질막 형성용 조성물을 기판 상에 캐스팅하고 건조하는 단계에서, 상기 기판은 유리 기판일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 건조는 진공 분위기 하에서 50℃ 내지 150℃, 예컨대 60℃ 내지 100℃에서 9시간 내지 15시간, 예컨대 10시간 내지 14시간 동안 실시할 수 있으나, 이에 한정되는 것은 아니다.In the step of casting and drying the composition for forming an electrolyte film on a substrate, the substrate may be a glass substrate, but is not limited thereto. The drying may be carried out in a vacuum atmosphere at 50 ° C to 150 ° C, for example, 60 ° C to 100 ° C for 9 hours to 15 hours, for example, 10 hours to 14 hours, but is not limited thereto.

또 다른 일 구현예는 상기 전해질막을 포함하는 연료전지를 제공한다.Another embodiment provides a fuel cell comprising the electrolyte membrane.

예컨대, 상기 연료전지는 고분자 전해질형 연료전지(PEMFC)일 수 있다.For example, the fuel cell may be a polymer electrolyte fuel cell (PEMFC).

이하, 또 다른 일 구현예에 따른 막 전극 접합체 및 상기 막 전극 접합체를 채용한 연료전지에 대해 상세하게 설명한다.Hereinafter, a membrane electrode assembly according to another embodiment and a fuel cell employing the membrane electrode assembly will be described in detail.

우선, 상기 연료전지는 막 전극 접합체가 세퍼레이터에 의해 협지된 구조를 가지고 있고, 150℃ 이상의 고온, 무가습 조건에서도 작동 가능한 전지이다. 상기 막 전극 접합체는 연료극; 산소극; 연료극과 산소극의 사이에 개재된 전해질막을 구비한다. First, the fuel cell has a structure in which a membrane electrode assembly is sandwiched by a separator, and is a cell that can operate even under high temperature and humidified conditions of 150 ° C or higher. Wherein the membrane electrode assembly includes a fuel electrode; Oxygen pole; And an electrolyte membrane sandwiched between the fuel electrode and the oxygen electrode.

상기 전해질막은 전술한 바와 같다.The electrolyte membrane is as described above.

이하, 막 전극 접합체의 각 구성요소에 대해 상세하게 설명한다.Hereinafter, each component of the membrane electrode assembly will be described in detail.

먼저 도 1을 참고하여 일 구현예에 따른 연료전지를 설명하고, 도 2를 참고하여 상기 막 전극 접합체를 설명한다.First, a fuel cell according to one embodiment will be described with reference to FIG. 1, and the membrane electrode assembly will be described with reference to FIG.

도 1은 본 발명의 일 구현예에 따른 연료전지를 나타내는 분해 사시도이고, 1 is an exploded perspective view showing a fuel cell according to an embodiment of the present invention,

도 2는 도 1의 연료전지를 구성하는 막 전극 접합체(MEA)의 단면 모식도이다.2 is a schematic cross-sectional view of a membrane electrode assembly (MEA) constituting the fuel cell of FIG.

도 1에 나타내는 연료 전지(100)는 1개의 단위셀(10)이 한 쌍의 홀더(30,30)에 협지되어 구성되어 있다. 단위셀(10)은 막 전극 접합체(20)와, 막 전극 접합체(20)의 두께 방향의 양측에 배치된 바이폴라 플레이트(13,15)로 구성되어 있다. 바이폴라 플레이트(13,15)는 도전성을 가진 금속 또는 카본 등으로 구성되어 있고, 막 전극 접합체(20)에 각각 접합함으로써, 집전체로서 기능함과 동시에, 막 전극 접합체(20)의 촉매층에 대해 산소 및 연료를 공급한다.The fuel cell 100 shown in Fig. 1 has one unit cell 10 sandwiched between a pair of holders 30 and 30. The unit cell 10 is composed of a membrane electrode assembly 20 and bipolar plates 13 and 15 arranged on both sides in the thickness direction of the membrane electrode assembly 20. The bipolar plates 13 and 15 are made of a conductive metal or carbon and are bonded to the membrane electrode assembly 20 to function as a current collector and to form a membrane electrode assembly And fuel.

또한 도 1에 나타내는 연료 전지(100)는 단위셀(10)의 수가 1개인데, 단위셀의 수는 1개에 한정되지 않고, 연료전지에 요구되는 특성에 따라 수십 내지 수백 정도까지 늘릴 수도 있다.1, the number of unit cells 10 is one, but the number of unit cells is not limited to one, and may be increased to several tens to several hundreds depending on characteristics required for a fuel cell .

막 전극 접합체(20)는 도 2에 나타내는 바와 같이, 전해질막(21), 상기 전해질막(21)의 일면에 위치하고 애노드 가스 확산층(28)을 포함하는 애노드 전극(26), 그리고 상기 전해질막의 다른 일면에 위치하는 캐소드 가스 확산층(25)을 포함하는 캐소드 전극(27)을 구비하는 구조로 이루어져 있다.2, the membrane electrode assembly 20 includes an electrolyte membrane 21, an anode electrode 26 disposed on one surface of the electrolyte membrane 21 and including an anode gas diffusion layer 28, And a cathode electrode 27 including a cathode gas diffusion layer 25 located on one surface.

상기 애노드 전극("연료극"이라고도 함)은 보다 상세하게는, 연료극에서는 외부로부터 연료극의 확산층을 거쳐 수소 가스가 공급되어 하기 반응식 1의 전극 반응이 진행된다. More specifically, the anode electrode (also referred to as "anode") is supplied with hydrogen gas from the outside through the diffusion layer of the anode in the fuel electrode,

연료극에서의 전극 촉매로서는 통상 백금 또는 백금 루테늄 촉매가 사용되고, 이 촉매가 카본 블랙 등의 탄소계 담체에 담지되어 있다.As the electrode catalyst in the anode, platinum or platinum ruthenium catalyst is usually used, and the catalyst is supported on a carbon-based carrier such as carbon black.

[반응식 1][Reaction Scheme 1]

H2→ 2H+ + 2eH 2 ? 2H + + 2e

상기 전극 반응에 의해 발생한 수소 이온은 전해질막을 통과하여 산소극으로 이동한다. 한편, 전자는 외부 회로를 통과하여 산소극에 도달한다. 이 전류가 외부에 전력으로서 취출된다.The hydrogen ions generated by the electrode reaction pass through the electrolyte membrane and move to the oxygen electrode. On the other hand, the electrons reach the oxygen electrode through the external circuit. And this current is taken out as electric power.

상기 캐소드 전극("공기극"이라고도 함)은 전극 촉매를 포함하는 촉매층과 가스 확산층으로 이루어진다. 보다 상세하게는, 산소극에서는 하기 반응식 2의 전극 반응이 진행된다. The cathode electrode (also referred to as "air electrode") is composed of a catalyst layer including an electrode catalyst and a gas diffusion layer. More specifically, at the oxygen electrode, the electrode reaction of the following reaction formula 2 proceeds.

산소극에서의 전극 촉매로서는 통상 백금 촉매가 사용되고, 이 촉매가 카본 블랙 등의 탄소계 담체에 담지되어 있다.As the electrode catalyst in the oxygen electrode, a platinum catalyst is usually used, and this catalyst is supported on a carbon-based carrier such as carbon black.

[반응식 2][Reaction Scheme 2]

1/2 O2+ 2H+ + 2e → H2O1/2 O 2 + 2H + + 2e H 2 O

산소극에서는, 상기 반응에 의해 외부 회로를 거쳐 도달한 전자와 전해질막 중을 이동하여 온 수소 이온과 외부로부터 산소극의 확산층을 거쳐 도입된 분자가 촉매 상에서 반응하여 물이 생성된다.
In the oxygen electrode, water molecules are generated on the catalyst by reacting hydrogen ions that have moved through the electrolyte and the electrons that have reached through the external circuit through the above reaction, and molecules introduced through the diffusion layer of the oxygen electrode from the outside.

이어서 전술한 구성을 갖는 일 구현예에 따른 연료전지의 제조 방법에 대해 하기에 상세하게 설명한다.Next, a method of manufacturing a fuel cell according to an embodiment having the above-described configuration will be described in detail below.

상기 연료전지는 우선 연료극, 산소극 및 전해질막을 제작하고, 이들을 이용하여 막 전극 접합체를 제작한 후 이 막 전극 접합체를 이용하여 제조할 수 있다. 이하, 각 공정에 대해 차례대로 설명한다.The fuel cell may be manufactured by first manufacturing a fuel electrode, an oxygen electrode, and an electrolyte membrane, fabricating a membrane electrode assembly using the membrane electrode assembly, and then using the membrane electrode assembly. Hereinafter, each step will be described in order.

연료극(애노드) 및 산소극(캐소드)은 연료전지가 작동할 때에 공급되는 가스에 접하는 전극층으로서, 공지의 기술에 의해 제조된 것을 사용할 수 있다.The fuel electrode (anode) and the oxygen electrode (cathode) may be electrode layers that are in contact with the gas supplied when the fuel cell operates, and those produced by known techniques can be used.

다음에, 이상과 같이 하여 제작된 각 전극 및 전해질막을 이용하여 막 전극 접합체를 제작한다. 막 전극 접합체를 제작하는 방법으로서는 전해질막을 연료극과 산소극에 협지시키면 된다. 구체적으로, 예를 들면 고체 고분자형 연료전지(PEFC)의 경우에는, 상술한 바와 같이 하여 얻은 전해질막의 양측을 전극으로서의 촉매층으로 개재하고, 가스 확산층을 더 설치하여 이들을 일체화하여 막 전극 접합체를 제작한다. 또한, 전극과 전해질막의 밀착성을 높이는 목적으로 막 전극 접합체의 막 면 방향으로 압력이 걸리는 상태로 프레스할 수 있다.Next, a membrane electrode assembly is manufactured using each of the electrodes and the electrolyte membrane fabricated as described above. As a method of producing a membrane electrode assembly, an electrolyte membrane may be sandwiched between a fuel electrode and an oxygen electrode. Specifically, for example, in the case of a solid polymer type fuel cell (PEFC), both sides of the electrolyte membrane obtained as described above are sandwiched by a catalyst layer as an electrode, and further a gas diffusion layer is provided and these are integrated to produce a membrane electrode assembly . Further, for the purpose of enhancing the adhesion between the electrode and the electrolyte membrane, the membrane electrode assembly can be pressed under pressure in the direction of the membrane surface.

또, 일 구현예에 따른 연료전지는 상술한 바와 같이 하여 얻은 막 전극 접합체를 이용하여 공지의 방법에 의해 제조할 수 있다. 즉, 상술한 바와 같이 하여 얻어진 막 전극 접합체의 양측을 금속 세퍼레이터 등의 세퍼레이터로 개재하여 단위 셀을 구성하고, 이 단위 셀을 복수 나열함으로써 연료전지 스택을 제조할 수 있다.
In addition, the fuel cell according to one embodiment can be manufactured by a known method using the membrane electrode assembly obtained as described above. That is, the fuel cell stack can be manufactured by forming unit cells by interposing the both sides of the membrane electrode assembly obtained as described above with a separator such as a metal separator and arranging a plurality of unit cells.

이하에서 본 발명을 실시예 및 비교예를 통하여 보다 상세하게 설명하고자 하나, 하기의 실시예 및 비교예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the following examples and comparative examples are for illustrative purposes only and are not intended to limit the present invention.

(( 실시예Example ))

실시예Example 1: 다공성 무기 전도체  1: Porous inorganic conductor 전해질막Electrolyte membrane

(다공성의 Sn0 .95Al0 .05O1 .975 분말의 제조)(Preparation of Porous Sn 0 .95 Al 0 .05 O 1 .975 Powder)

SDS(sodium dodecyl sulfate)를 약 2.5 중량% 농도가 되도록 탈이온수에 용해하고, 상기 SDS 와 금속염 (Na2SnO3·3H2O, NaAlO2) (Waco Chemicals)의 몰비가 1:3이 되도록 Na2SnO3·3H2O과 NaAlO2을 첨가한 후, 실온에서 교반하였다. 이때 Na2SnO3·3H2O과 NaAlO2 는 몰비가 0.95:0.05 되도록 첨가한다. SDS (sodium dodecyl sulfate) was dissolved in deionized water such that about 2.5 wt%, and the molar ratio of the SDS and the metal salt (Na 2 SnO 3 · 3H 2 O, NaAlO 2) (Waco Chemicals) 1: Na so that the three 2 SnO 3 .3H 2 O and NaAlO 2 were added, followed by stirring at room temperature. The Na 2 SnO 3 · 3H 2 O and NaAlO 2 Is added such that the molar ratio is 0.95: 0.05.

상기 용액에 36% 염산 용액을 첨가하여, 각 pH당 60분의 유지 시간을 두면서 용액의 pH를 10, 8, 6, 4, 2로 단계적으로 낮추면서 백색의 서스펜션 용액을 얻었다.To this solution was added a 36% hydrochloric acid solution and the pH of the solution was gradually lowered to 10, 8, 6, 4, and 2 while maintaining a holding time of 60 minutes per each pH to obtain a white suspension solution.

이를 실온에서 2시간 동안 교반하고, 형성된 고체 생성물을 필터한 후, 에탄올로 워싱 및 건조하여 고체 분말을 얻었다.This was stirred at room temperature for 2 hours, and the formed solid product was filtered, washed with ethanol and dried to obtain a solid powder.

상기 고체 분말을 암모니아수 및 에탄올 혼합 용액에 첨가하고 실온에서 1~2일 동안 교반하고, 형성된 고체 생성물을 필터한 후, 에탄올로 워싱 및 건조하여 SDS가 제거된 다공성의 Sn0 .95Al0 .05O1 .975 분말을 얻었다.The solid powder was added to a mixed solution of ammonia water and ethanol and stirred at room temperature for 1 to 2 days. The formed solid product was filtered, washed with ethanol, and dried to obtain a porous Sn 0 .95 Al 0 .05 O 1 .975 to obtain a powder.

(다공성의 무기 이온 전도체 분말의 제조)(Preparation of porous inorganic ion conductor powder)

Sn 및 P의 몰비가 1:2 가 되도록 상기에서 얻어진 Sn0 .95Al0 .05O1 .975 와 H3PO4 를 혼합하고 여기에 증류수를 부가하여 혼합물을 얻고, 상기 혼합물을 약 200℃에서 교반 및 열처리하여 고점도의 혼합 페이스트를 얻었다.Sn 0 .95 Al 0 .05 O 1 .975 and H 3 PO 4 obtained above were mixed so that the molar ratio of Sn and P was 1: 2, distilled water was added thereto to obtain a mixture, Followed by stirring and heat treatment to obtain a high-viscosity mixed paste.

상기 페이스트를 세라믹 도가니에 옮겨 250℃에서 2.5시간 동안 열처리하였다.The paste was transferred to a ceramic crucible and heat-treated at 250 ° C for 2.5 hours.

이어서, 상술한 열처리후 얻어진 덩어리를 유발로 분쇄하여 Sn0 .95Al0 .05P2O7를 분말상태로 얻었다.Then, the ground to cause a mass obtained after the above-described heat treatment to obtain a Sn 0 .95 Al 0 .05 P 2 O 7 in a powder state.

(전해질막의 제조)(Preparation of electrolyte membrane)

상기 Sn0 .95Al0 .05P2O7 15 중량% 및 하기 화학식 2-1로 표시되는 고분자 85 중량%의 함량이 되도록 혼합한 후, 이를 디메틸아세트 아마이드(DMAc)에 첨가해 용해시켜, 전해질막 형성용 조성물을 제조하였다.15% by weight of Sn 0 .95 Al 0 .05 P 2 O 7 and 85% by weight of a polymer represented by the following formula (2-1) were dissolved in dimethylacetamide (DMAc) Thereby preparing a composition for forming an electrolyte membrane.

상기 전해질막 형성용 조성물을 볼밀에서 분쇄 및 혼합하고 이를 유리 기판 상에 캐스팅하고 이를 70℃, 진공분위기에서 12시간 동안 건조하고 상기 유리 기판으로부터 막을 분리하여 전해질막을 제조하였다.The electrolyte membrane forming composition was ground and mixed in a ball mill, cast on a glass substrate, dried at 70 캜 for 12 hours in a vacuum atmosphere, and the membrane was separated from the glass substrate to prepare an electrolyte membrane.

[화학식 2-1][Formula 2-1]

Figure pat00012
Figure pat00012

(상기 화학식 2-1에서,(In the above formula (2-1)

a = 50, b = 50, 중량평균 분자량 = 130,000 g/mol 이다.)
a = 50, b = 50, weight average molecular weight = 130,000 g / mol).

실시예Example 2: 다공성 무기 산화물  2: Porous inorganic oxide 전해질막Electrolyte membrane

인산 (H3PO4) 혼합 및 열처리 과정을 실시하지 않은 것 외에는 상기 실시예 1과 동일한 방법으로 하여, 전해질막을 제조하였다.
An electrolyte membrane was prepared in the same manner as in Example 1 except that the phosphoric acid (H 3 PO 4 ) mixing and the heat treatment were not performed.

실시예Example 3:  3: 비다공성Non-porous 무기 전도체  Inorganic conductor 전해질막Electrolyte membrane

시판되는 비다공성의 SnO2(Nanotek社)를 준비하고,Commercially available non-porous SnO 2 (Nanotek) was prepared,

상기 SnO2를 사용하는 것과 인산 혼합물을 500℃로 열처리하여 준비한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 하여, 전해질막을 제조하였다.
An electrolyte membrane was prepared in the same manner as in Example 1 except that SnO 2 was used and the phosphoric acid mixture was heat-treated at 500 ° C.

비교예Comparative Example 1 One

상기 화학식 2-1로 표시되는 고분자를 전해질막으로 사용하였다.
The polymer represented by Formula 2-1 was used as an electrolyte membrane.

(평가)(evaluation)

평가예Evaluation example 1: 이온 전도도의 측정 1: Measurement of ionic conductivity

실시예 1, 실시예 2 및 비교예 1에 따라 제조된 전해질막의 이온 전도도를 측정하여 도 3에 나타내었다.The ionic conductivity of the electrolyte membrane prepared according to Example 1, Example 2, and Comparative Example 1 was measured and shown in FIG.

상기 실시예 1, 실시예 2 및 비교예 1에 따라 제조된 전해질막의 전도도는 벡텍(Bekktec) 장비를 사용하여 90℃에서 수소(H2) (유량: 500 SCCM) 조건에서 4 프루브-인 플레인(Probe-In Plane)법을 사용하여 평가한다.The conductivities of the electrolyte membranes prepared according to Examples 1 and 2 and Comparative Example 1 were measured using a Bekktec apparatus at 4 ° C under a hydrogen (H 2 ) (flow rate: 500 SCCM) Probe-In Plane) method.

상기 이온 전도도 평가 결과는 도 3에 나타낸 바와 같다.The results of the ionic conductivity evaluation are shown in Fig.

도 3은 가습 조건에서 측정된 이온 전도도를 나타낸 그래프이다.3 is a graph showing ion conductivity measured under humidifying conditions.

도 3을 참고하면, 가습 조건에서 실시예 1 및 실시예 2에 따른 전해질 막은 비교예 1에 따른 전해질막의 이온 전도도와 비교하여, 이온 전도도가 우수함을 알 수 있다. 다공성 무기재를 포함하는 복합전해질 막이 고분자만으로 이루어진 전해질 막 보다 더욱 우수한 이온 전도도를 나타내는 것이다. Referring to FIG. 3, it can be seen that the ionic conductivity of the electrolyte membrane according to Example 1 and Example 2 is superior to the ionic conductivity of the electrolyte membrane according to Comparative Example 1 under humidifying conditions. The composite electrolyte membrane including the porous inorganic material exhibits better ionic conductivity than the electrolyte membrane composed only of the polymer.

또한, 실시예 1 에 따른 전해질 막은 실시예 2에 따른 전해질 막의 이온 전도도와 비교하여, 이온 전도도가 우수함을 알 수 있다. 이는 다공성 무기 수소이온 전도체를 포함하는 복합전해질 막이 다공성 무기 산화물을 포함하는 복합전해질 막 보다 우수한 이온 전도도를 나타내는 것이다. It is also understood that the electrolyte membrane according to Example 1 is superior in ion conductivity as compared with the ion conductivity of the electrolyte membrane according to Example 2. This indicates that the composite electrolyte membrane including the porous inorganic hydrogen ion conductor exhibits better ion conductivity than the composite electrolyte membrane containing the porous inorganic oxide.

이는, 다공성 무기재 함유에 따른 막내 함습효과와 무기 수소이온 전도체의 분산에 따른 전도특성 향상 효과에 의한 것이라 할 수 있다.
It can be said that this is due to the effect of humidifying the membrane according to the content of the porous inorganic material and the effect of improving the conductivity by the dispersion of the inorganic hydrogen ion conductor.

평가예Evaluation example 2: 질소의 흡/탈착 평가 2: Evaluation of adsorption / desorption of nitrogen

질소의 흡/탈착 평가 (N2 adsorption-desorption isotherms)에 의해 기공의 직경 분포 (Pore size distribution)를 측정하고, 비표면적 (Specific Brunauer-Emmett-Teller (BET))을 계산하였다. The pore size distribution of the pores was measured by N 2 adsorption-desorption isotherms and the Specific Brunauer-Emmett-Teller (BET) was calculated.

액체질소 온도 77.3K에서 질소 (N2)의 상대압력(P/P0)에 따른 흡/탈착 양의 변화를 측정하는 방법으로 질소의 흡/탈착 등온선(N2 adsorption-desorption isotherms)을 도 4에 나타내었다. N 2 adsorption-desorption isotherms were measured as a method of measuring the change in the amount of adsorption / desorption according to the relative pressure (P / P 0 ) of nitrogen (N 2 ) at a liquid nitrogen temperature of 77.3 K Respectively.

도 4는 실시예 1에 따른 다공성 전해질막의 질소 흡탈착 등온선 그래프이다.4 is a nitrogen adsorption / desorption isotherm graph of the porous electrolyte membrane according to Example 1. Fig.

도 4를 참고하면, 기공의 직경이 2 nm 내지 100 nm 범위에 분포하고 있음을 알 수 있다. Referring to FIG. 4, it can be seen that the pore diameter ranges from 2 nm to 100 nm.

BET 표면적은 상대압력 (P/P0) 0.05 내지 0.20의 흡착영역에서 계산하였다. 기공의 직경 분포는 흡착영역 곡선 (전범위)으로부터 Barrett-Joyner-Halenda (BJH) method 에 의해 계산하여 그 결과를 도 5에 나타내었다.The BET surface area was calculated in the adsorption region with a relative pressure (P / P 0 ) of 0.05 to 0.20. The pore diameter distribution was calculated from the adsorption area curve (full range) by the Barrett-Joyner-Halenda (BJH) method and the results are shown in FIG.

도 5는 열처리 온도에 따른 다공성의 무기전도체 전해질막(실시예 1) 및 비다공성의 무기전도체 전해질막(실시예 3)에 대한 비표면적의 측정 결과를 나타낸 그래프이다.5 is a graph showing the results of measurement of the specific surface area with respect to the porous inorganic electroconductive film (Example 1) and the non-porous inorganic electroconductive film (Example 3) according to the heat treatment temperature.

도 5를 참고하면, 상기 열처리 온도 250℃ 내지 500℃의 범위 내에서, 300℃ 이하, 더욱 구체적으로는 250℃ 부근에서 다공성의 SnO2가 사용된 경우에 가장 높은 비표면적을 나타냄을 알 수 있다.Referring to FIG. 5, it can be seen that when the porous SnO 2 is used at a temperature within the range of 250 ° C. to 500 ° C. and below 300 ° C., more specifically around 250 ° C., the highest specific surface area is exhibited .

이로부터, 다공성의 SnO2가 인산과 혼합된 후 300℃ 이하에서 열처리되는 경우에 우수한 다공도를 나타냄을 알 수 있다.
From this, it can be seen that when porous SnO 2 is mixed with phosphoric acid and then heat-treated at 300 ° C or lower, it exhibits excellent porosity.

이상을 통해 본 발명의 바람직한 실시 예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, And it goes without saying that the invention belongs to the scope of the invention.

100: 연료 전지
10: 단위셀
20: 막 전극 접합체
13, 15: 바이폴라 플레이트
30: 홀더
21: 전해질 막
23: 캐소드 촉매층
24: 애노드 촉매층
25: 캐소드 가스 확산층
26: 애노드 전극
27: 캐소드 전극
28: 애노드 가스 확산층
100: Fuel cell
10: Unit cell
20: membrane electrode assembly
13, 15: bipolar plate
30: Holder
21: electrolyte membrane
23: cathode catalyst layer
24: anode catalyst layer
25: cathode gas diffusion layer
26: anode electrode
27: cathode electrode
28: anode gas diffusion layer

Claims (20)

하기 화학식 1로 표시되는 무기 이온 전도체 및
하기 화학식 2 또는 하기 화학식 3으로 표시되는 고분자
를 포함하는 전해질막:
[화학식 1]
M1 1 - aM2 aPxOy
상기 화학식 1에서,
M1은 산화수 4가의 금속 원소이고,
M2는 산화수 1가의 금속 원소, 산화수 2가의 금속 원소 또는 산화수 3가의 금속 원소이고,
0 ≤ a < 1, 1.5 ≤ x ≤ 3.5, 5 ≤ y ≤ 13 이고,
[화학식 2]
Figure pat00013

상기 화학식 2에서,
L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,
m1 및 m2는 각각 독립적으로 0 내지 100의 정수이고, 단 m1 + m2는 0이 아니고,
[화학식 3]
Figure pat00014

상기 화학식 3에서,
L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,
n은 1 내지 100의 정수이다.
An inorganic ion conductor represented by the following formula (1)
A polymer represented by the following formula (2) or (3)
An electrolyte membrane comprising:
[Chemical Formula 1]
M 1 1 - a M 2 a P x O y
In Formula 1,
M 1 is a tetravalent metal element,
M 2 is a monovalent metal element, a divalent metal element or a trivalent metal element,
0? A <1, 1.5? X? 3.5, 5? Y? 13,
(2)
Figure pat00013

In Formula 2,
L 1 to L 4 are each independently a single bond, -C (= O) - a, -, -O-, -S-, -S (= O) - or -S (= O) 2
m1 and m2 are each independently an integer of 0 to 100, provided that m1 + m2 is not 0,
(3)
Figure pat00014

In Formula 3,
L 5 to L 7 are each independently a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -, and
n is an integer of 1 to 100;
제1항에 있어서,
상기 M2는 산화수 3가의 금속 원소인 전해질막.
The method according to claim 1,
Wherein M &lt; 2 &gt; is a trivalent metal element.
제1항에 있어서,
상기 M2는 Al, Fe, Ga, Y, In, Sb, Bi, La, Nd 또는 Sm인 전해질막.
The method according to claim 1,
Wherein M 2 is Al, Fe, Ga, Y, In, Sb, Bi, La, Nd or Sm.
제1항에 있어서,
상기 M1은 Sn, Zr, Ti, Ce 또는 Si인 전해질막.
The method according to claim 1,
Wherein M 1 is Sn, Zr, Ti, Ce or Si.
제1항에 있어서,
상기 x는 2의 정수이고,
상기 y는 7의 정수인 전해질막.
The method according to claim 1,
X is an integer of 2,
And y is an integer of 7.
제1항에 있어서,
상기 무기 이온 전도체의 비표면적은 4.0 m2/g 내지 90.0 m2/g 인 전해질막.
The method according to claim 1,
Wherein the inorganic ion conductor has a specific surface area of 4.0 m 2 / g to 90.0 m 2 / g.
제1항에 있어서,
상기 전해질막은 상기 전해질막 총량에 대해,
상기 화학식 1로 표시되는 무기 이온 전도체 5 중량% 내지 30 중량% 및
상기 고분자 70 중량% 내지 95 중량%
를 포함하는 전해질막.
The method according to claim 1,
Wherein the electrolyte membrane has a ratio of the total amount of the electrolyte membrane to the total amount of the electrolyte membrane,
5% to 30% by weight of the inorganic ion conductor represented by the formula (1)
70% by weight to 95% by weight of the polymer,
&Lt; / RTI &gt;
제1항에 있어서,
상기 무기 이온 전도체는 다공성 무기 이온 전도체인 전해질막.
The method according to claim 1,
Wherein the inorganic ion conductor is a porous inorganic ion conductor.
제8항에 있어서,
상기 다공성 무기 이온 전도체 내 기공의 평균 직경은 2 nm 내지 100 nm인 전해질막.
9. The method of claim 8,
Wherein an average diameter of the pores in the porous inorganic ion conductor is 2 nm to 100 nm.
제8항에 있어서,
상기 다공성 무기 이온 전도체 내 기공의 평균 직경은 2 nm 내지 50 nm인 전해질막.
9. The method of claim 8,
Wherein an average diameter of the pores in the porous inorganic ion conductor is 2 nm to 50 nm.
제1항에 있어서,
상기 고분자는 10,000 g/mol 내지 500,000 g/mol의 중량평균 분자량을 가지는 전해질막.
The method according to claim 1,
Wherein the polymer has a weight average molecular weight of 10,000 g / mol to 500,000 g / mol.
산화수 4가의 금속 원소(M1) 산화물을 준비하는 단계;
상기 산화수 4가의 금속 원소 산화물과 산화수 3가의 금속 원소(M2) 산화물을 혼합하여 혼합물을 얻는 단계;
상기 혼합물에 인산(H3PO4)을 첨가하는 단계;
상기 인산이 첨가된 혼합물을 열처리하여 하기 화학식 1로 표시되는 무기 이온 전도체를 제조하는 단계;
상기 무기 이온 전도체와 하기 화학식 2 또는 하기 화학식 3으로 표시되는 고분자를 용매에 첨가하여 전해질막 형성용 조성물을 제조하는 단계; 및
상기 전해질막 형성용 조성물을 기판 상에 캐스팅하고 건조하는 단계
를 포함하는 전해질막의 제조방법:
[화학식 1]
M1 1 - aM2 aPxOy
상기 화학식 1에서,
M1은 산화수 4가의 금속 원소이고,
M2는 산화수 3가의 금속 원소이고,
0 ≤ a < 1, 1.5 ≤ x ≤ 3.5, 5 ≤ y ≤ 13 이고,
[화학식 2]
Figure pat00015

상기 화학식 2에서,
L1 내지 L4는 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,
m1 및 m2는 각각 독립적으로 0 내지 100의 정수이고, 단 m1 + m2는 0이 아니고,
[화학식 3]
Figure pat00016

상기 화학식 3에서,
L5 내지 L7은 각각 독립적으로 단일 결합, -C(=O)-, -O-, -S-, -S(=O)- 또는 -S(=O)2- 이고,
n은 1 내지 100의 정수이다.
Preparing a tetravalent metal oxide (M 1 ) oxide;
Mixing the oxidized tetravalent metal element oxide with a trivalent metal oxide (M 2 ) oxide to obtain a mixture;
Adding a phosphoric acid (H 3 PO 4) to the mixture;
Heat-treating the phosphoric acid-added mixture to produce an inorganic ion conductor represented by Formula 1 below;
Preparing a composition for forming an electrolyte membrane by adding the inorganic ion conductor and a polymer represented by Formula 2 or 3 below to a solvent; And
Casting the composition for forming an electrolyte membrane on a substrate and drying
A method for producing an electrolyte membrane comprising:
[Chemical Formula 1]
M 1 1 - a M 2 a P x O y
In Formula 1,
M 1 is a tetravalent metal element,
M 2 is a trivalent metal element,
0? A <1, 1.5? X? 3.5, 5? Y? 13,
(2)
Figure pat00015

In Formula 2,
L 1 to L 4 are each independently a single bond, -C (= O) - a, -, -O-, -S-, -S (= O) - or -S (= O) 2
m1 and m2 are each independently an integer of 0 to 100, provided that m1 + m2 is not 0,
(3)
Figure pat00016

In Formula 3,
L 5 to L 7 are each independently a single bond, -C (= O) -, -O-, -S-, -S (= O) - or -S (= O) 2 -, and
n is an integer of 1 to 100;
제12항에 있어서,
상기 열처리는 200℃ 내지 500℃에서 1시간 내지 5시간 동안 실시하는 전해질막의 제조방법.
13. The method of claim 12,
Wherein the heat treatment is performed at 200 ° C to 500 ° C for 1 hour to 5 hours.
제12항에 있어서,
상기 산화수 4가의 금속 원소 산화물을 준비하는 단계는,
음이온성 계면활성제와 상기 산화수 4가의 금속 원소 산화물의 양이온 염을 혼합하여 혼합물을 제조하는 단계;
상기 혼합물의 pH를 조절하여 서스펜션 용액을 제조하는 단계; 및
상기 서스펜션 용액을 필터링한 후, 상기 음이온성 계면활성제를 제거하는 단계
를 포함하는 전해질막의 제조방법.
13. The method of claim 12,
Wherein the step of preparing the tetravalent metal oxide oxide comprises:
Preparing an admixture by mixing an anionic surfactant and a cationic salt of the above-described tetravalent metal element oxide;
Adjusting the pH of the mixture to prepare a suspension solution; And
Filtering the suspension solution, and then removing the anionic surfactant
Wherein the electrolyte membrane is made of a metal.
제12항에 있어서,
상기 무기 이온 전도체는 다공성 무기 이온 전도체인 전해질막의 제조방법.
13. The method of claim 12,
Wherein the inorganic ion conductor is a porous inorganic ion conductor.
제15항에 있어서,
상기 다공성 무기 이온 전도체 내 기공의 평균 직경이 2 nm 내지 100 nm인 전해질막의 제조방법.
16. The method of claim 15,
Wherein an average diameter of pores in the porous inorganic ion conductor is 2 nm to 100 nm.
제12항에 있어서,
상기 고분자는 10,000 g/mol 내지 500,000 g/mol의 중량평균 분자량을 가지는 전해질막의 제조방법.
13. The method of claim 12,
Wherein the polymer has a weight average molecular weight of 10,000 g / mol to 500,000 g / mol.
제12항에 있어서,
상기 용매는 디메틸아세트아마이드, 디메틸포름아마이드, 테트라하이드로퓨란, N-메틸피롤리돈 또는 이들의 조합을 포함하는 전해질막의 제조방법.
13. The method of claim 12,
Wherein the solvent comprises dimethylacetamide, dimethylformamide, tetrahydrofuran, N-methylpyrrolidone or a combination thereof.
제1항 내지 제11항 중 어느 한 항에 따른 전해질막을 포함하는 연료전지.
12. A fuel cell comprising an electrolyte membrane according to any one of claims 1 to 11.
제19항에 있어서,
상기 연료전지는 고분자 전해질형 연료전지(PEMFC)인 연료전지.
20. The method of claim 19,
Wherein the fuel cell is a polymer electrolyte fuel cell (PEMFC).
KR1020150067486A 2015-05-14 2015-05-14 Electrolyte membrane, preparing the same and fuel cell including the same KR102387430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150067486A KR102387430B1 (en) 2015-05-14 2015-05-14 Electrolyte membrane, preparing the same and fuel cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150067486A KR102387430B1 (en) 2015-05-14 2015-05-14 Electrolyte membrane, preparing the same and fuel cell including the same

Publications (2)

Publication Number Publication Date
KR20160134067A true KR20160134067A (en) 2016-11-23
KR102387430B1 KR102387430B1 (en) 2022-04-14

Family

ID=57541401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150067486A KR102387430B1 (en) 2015-05-14 2015-05-14 Electrolyte membrane, preparing the same and fuel cell including the same

Country Status (1)

Country Link
KR (1) KR102387430B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236094A1 (en) * 2017-06-20 2018-12-27 주식회사 엘지화학 Polymer electrolyte membrane, electrochemical cell and flow cell each comprising same, composition for polymer electrolyte membrane, and method for preparing polymer electrolyte membrane
KR102368696B1 (en) 2021-08-09 2022-02-28 주식회사 파인디앤씨 A cap-plate with one-piece vent for secondary battery and secondary battery used it
KR20230007699A (en) 2021-07-06 2023-01-13 주식회사 파인디앤씨 A case of electrolyte cell and electrolyte cell used it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768960B1 (en) * 2000-07-31 2007-10-23 누반트 시스템즈, 인코포레이티드 Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment
KR20100076857A (en) * 2008-12-26 2010-07-06 삼성전자주식회사 Solid proton conductor for fuel cell and fuel cell using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768960B1 (en) * 2000-07-31 2007-10-23 누반트 시스템즈, 인코포레이티드 Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment
KR20100076857A (en) * 2008-12-26 2010-07-06 삼성전자주식회사 Solid proton conductor for fuel cell and fuel cell using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Membrane Science, vol 197., pp. 231-242. (2001.08.06.)* *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236094A1 (en) * 2017-06-20 2018-12-27 주식회사 엘지화학 Polymer electrolyte membrane, electrochemical cell and flow cell each comprising same, composition for polymer electrolyte membrane, and method for preparing polymer electrolyte membrane
KR20230007699A (en) 2021-07-06 2023-01-13 주식회사 파인디앤씨 A case of electrolyte cell and electrolyte cell used it
KR102368696B1 (en) 2021-08-09 2022-02-28 주식회사 파인디앤씨 A cap-plate with one-piece vent for secondary battery and secondary battery used it

Also Published As

Publication number Publication date
KR102387430B1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US8034509B2 (en) Polymer electrolyte membrane with an inorganic backbone
Gu et al. A soluble and highly conductive ionomer for high‐performance hydroxide exchange membrane fuel cells
KR101719293B1 (en) Porous Nafion membrane and method for preparing the same
KR101550595B1 (en) - Polysufone based polymer polymer electrolyte membrane comprising polymer membranes-electrode assembly comprising membrane and fuel cell comprising membrane method for preparing polymer
US20170200954A1 (en) Fuel cells constructed from self-supporting catalyst layers and/or self-supporting microporous layers
Hossain et al. Fabrication of SPAEK–cerium zirconium oxide nanotube composite membrane with outstanding performance and durability for vanadium redox flow batteries
WO2007029346A1 (en) Proton conductive hybrid material, and catalyst layer for fuel cell using the same
KR20140082448A (en) Catalyst slurry for fuel cell, electrode prepared by using the same, membrane electrode assembly including the electrode, fuel cell comprising the membrane electrode assembly, and method of preparing the electrode
Muthumeenal et al. Recent research trends in polymer nanocomposite proton exchange membranes for electrochemical energy conversion and storage devices
KR102387430B1 (en) Electrolyte membrane, preparing the same and fuel cell including the same
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
WO2010005267A2 (en) Fluorinated polymer electrolyte membrane comprising fully or partially fluorinated surfactant and fuel cell comprising the same
KR101352564B1 (en) Nano composite Membranes of proton conducting polymer electrolytes by using polyhedral oligomeric silsesquioxane having Sufonic acid group
KR101093703B1 (en) Polymer electrolyte membrane for fuel cell system and manufacturing method thereof
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
EP2169751A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
KR100953616B1 (en) Polymer, membrane-electrode assembly for fuel cell, and fuel cell system comprising the same
KR100975357B1 (en) Tailored catalyst binder of non-perfluorinated type, membrane-electrode assembly comprising thereof, and fuel cell comprising the same
JP2010129397A (en) Electrode for fuel cell
KR101353078B1 (en) Nano composite membranes of proton conducting polymer electrolytes by using polyhedral oligomeric silsesquioxane having phosphonic acid group
KR20160019746A (en) Inorganic ion conductor, preparing the same, and electrolyte membrane for fuel cell
Pandey Recent progresses in membranes for proton exchange membrane fuel cell (PEMFC) for clean and environmentally friendly applications
KR20090032564A (en) Polymer membrane and membrane-electrode assembly for fuel cell and fuel cell system including same
KR102463011B1 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell including same, and fuel cell including same
JP2002105129A (en) Solid polymer electrolyte, solid polymer electrolytic membrane using the same, solution for coating electrode catalyst, membrane/electrode joined product and fuel battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant