KR20160119288A - Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof - Google Patents

Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof Download PDF

Info

Publication number
KR20160119288A
KR20160119288A KR1020150038820A KR20150038820A KR20160119288A KR 20160119288 A KR20160119288 A KR 20160119288A KR 1020150038820 A KR1020150038820 A KR 1020150038820A KR 20150038820 A KR20150038820 A KR 20150038820A KR 20160119288 A KR20160119288 A KR 20160119288A
Authority
KR
South Korea
Prior art keywords
antimicrobial
functional
coating
polymer
silane
Prior art date
Application number
KR1020150038820A
Other languages
Korean (ko)
Other versions
KR101677024B1 (en
Inventor
김현중
김홍철
김정래
신미애
이한나
이수연
Original Assignee
주식회사 쎄코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄코 filed Critical 주식회사 쎄코
Priority to KR1020150038820A priority Critical patent/KR101677024B1/en
Priority to PCT/KR2016/002765 priority patent/WO2016153230A1/en
Priority to CN201680016858.4A priority patent/CN107406968B/en
Priority to JP2018500258A priority patent/JP6691206B2/en
Priority to DE112016001303.5T priority patent/DE112016001303T5/en
Publication of KR20160119288A publication Critical patent/KR20160119288A/en
Application granted granted Critical
Publication of KR101677024B1 publication Critical patent/KR101677024B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/63Adding a layer before coating ceramic layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a functional coating agent having antimicrobial activity and water-repellency / oil-repellency at the same time, a method for preparing the same, and a coating method using the same. Specifically, the present invention relates to a method for preparing a coating agent which provides antimicrobial activity to a water-repellent / oil-repellent nano-coating in order for smart devices, etc., such as touch-type displays, to be hygienically used, and a coating method using vacuum deposition equipment.

Description

항균력을 갖는 진공증착용 발수형 나노 코팅제 및 이를 이용한 코팅 방법{Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof}Technical Field [0001] The present invention relates to a nanoporous coating composition having an antibacterial activity and a coating method using the nanoporous coating composition.

본 발명은 항균성과 발수/발유성을 동시에 구현하는 기능성 코팅제, 이의 제조방법 및 이를 이용한 코팅방법에 관한 것으로, 터치형 디스플레이와 같은 스마트 기기 등의 위생적인 사용을 위하여 발수/발유성 나노 코팅에 항균성을 부여하는 코팅제의 제조 및 진공증착 장비를 이용한 코팅 방법에 관한 것이다.The present invention relates to a functional coating agent that simultaneously implements antibacterial and water repellency and oil repellency, a method for producing the functional coating agent, and a coating method using the same. In order to hygienic use of a smart device such as a touch-type display, And a coating method using a vacuum deposition apparatus.

종래에는 터치형 디스플레이(Smart phone, Tablet PC, Smart watch 등) 스마트 기기 사용율의 급격한 증가와 함께 위생 문제의 심각성이 대두되면서 항균에 대한 관심이 높아지고 있다. 그러나 현재 적용되고 있는 지문방지코팅에는 항균 기능이 없어 사용자들이 자주 만지는 부분인 터치스크린 윈도우에 항균 기능을 부여할 수 있는 기술 개발이 시급한 상황이다. Conventionally, as the usage rate of smart devices such as Smart phone, Tablet PC, Smart watch, etc. is rapidly increased, the seriousness of hygiene problem is emerging and interest in antibacterial is increasing. However, there is an urgent need to develop a technology that can impart antimicrobial function to the touch screen window, which is a part frequently touched by users, because the anti-fingerprint coating currently applied has no antibacterial function.

현재 출시되고 있는 스마트폰 윈도우(터치스크린)에는 얇은 막 (수십 nm)의 지문방지 코팅 (또는 오염방지 코팅)이 되어 있다. 지문방지 코팅은 불소계 화합물을 이용해 발수/발유의 특성을 표면에 부여하게 되는데, 이는 표면에너지를 낮추어 지문 및 외부 오염물질과 코팅된 표면과의 접촉 면적을 줄여 오염물의 묻음성을 최소화하고 묻더라도 잘 닦이는 특성을 가지고 있다. The smartphone window (touch screen) that is being launched now has a thin film (tens of nanometers) anti-fingerprint coating (or anti-fouling coating). The anti-fingerprint coating uses a fluorine-based compound to impart water-repellent / water-repellent properties to the surface, which reduces the contact area between the fingerprint and external contaminants and the coated surface by lowering the surface energy, It has a polishing characteristic.

이러한 얇은 막을 형성하기 위해서는 대부분 “진공증착”이라는 코팅 방법을 사용하게 되는데 진공증착을 이용한 코팅(표면 개질)은 매우 짧은 시간에 타겟(코팅제)에 고온의 열원을 가하여 코팅이 진행되기 때문에 코팅막의 질이 매우 우수하고 약품 손실량이 적으며, 광학 특성을 저해하지 않는 나노사이즈의 박막 코팅이 가능하다. In order to form such a thin film, a coating method called " vacuum deposition " is usually used. In the case of coating (surface modification) using vacuum deposition, a coating material is coated with a high temperature heat source in a very short time, Nano-sized thin film coatings that are very excellent, have a small amount of chemical loss, and do not interfere with optical properties.

시중에는 무기물(Ti 계열)을 이용한 항균 코팅이 많이 알려지긴 하였으나, 대부분 습식방식을 이용하고 있어 국내/외 진공증착용 기능성 코팅제 생산 업체 중 항균성을 갖는 약품 생산 업체가 전무한 상황이다. 진공증착을 이용한 무기물 코팅의 경우, 발화온도가 높아 코팅 가능한 모재에 제한(코팅 소재가 온도에 민감함 - 강화유리, 플라스틱 등)이 있을뿐더러, 무기물 또는 금속 코팅으로 인해 소재 자체의 표면이 변색되어 광학적 특성이 저해되는 문제가 발생한다. Although antimicrobial coatings using inorganic (Ti-based) agents are widely known in the market, most of them are using the wet type, so there are no producers of antimicrobial drugs among the producers of functional coatings for domestic / foreign certification. Inorganic coatings using vacuum deposition have a high ignition temperature and are limited to the coating base material (coating material is temperature-sensitive - tempered glass, plastic, etc.), and the surface of the material itself is discolored due to the inorganic or metal coating There arises a problem that the optical properties are impaired.

국내출원번호 10-2002-0066286호(출원인:주식회사 와이드 엔텍, 항균 작용하는 나노기술 이용 진공증착 시스템)은 항균작용을 하는 나노기술을 응용한 진공증착 시스템을 개발 및 활용하는 기술에 관한 것으로, 여기에서는 목초재(엄나무, 누릅나무, 매실 등)를 사용하여 항균 작용을 구현하려 하였으나 그 항균 기능이 부족하고 지속력이 유지되기 어려운 문제가 있으며, 또한 발수/발유성 및 슬립성과 같은 기능성이 구현되지 않는 문제점이 있다.Korean Patent Application No. 10-2002-0066286 (Applicant: WIDE ENTECH Co., Ltd., a vacuum deposition system using nanotechnology using antibacterial action) The present invention relates to a technique for developing and utilizing a vacuum deposition system employing nanotechnology that has an antibacterial action. In this case, an attempt was made to achieve antibacterial action by using grass herb (oak, elm, plum, etc.) There is a problem that sustainability is difficult to maintain, and functionalities such as water repellency and slip properties are not realized.

미국공개특허번호 US 2011-0025933호(출원인: VIZIO INC., TELEVISION WITH ANTIMICROBIAL COATING)에는 텔레비전 외부 표면에 항균성 에이전트를 포함하는 코팅제를 도포, 피막하여 미생물의 성장을 억제하는 기술이 개시되어 있으나 이 역시 발수/발유성 및 슬립성과 같은 기능성이 구현되지 않는 문제점이 있다.US Patent Application No. US 2011-0025933 (Applicant: VIZIO INC., TELEVISION WITH ANTIMICROBIAL COATING) discloses a technique for coating the outer surface of a television with a coating agent containing an antibacterial agent to inhibit growth of microorganisms, Water repellency and slipperformability are not realized.

일본특허출원번호 2007-322624호(출원인: ZNO LAB, 항균성 재료 및 그 제조방법, Antibacterial material and method for producing the same)는 터치 패널이나 휴대 전화의 표면에 이용 가능한 유리 기판, 플라스틱 등 위에 진공증착, 스퍼터링 등의 수법으로 산화아연 박막을 형성시키는 것을 특징으로 하는 항균성 재료 및 그 제조방법을 개시하고 있으나, 이 역시 발수/발유성 및 슬립성과 같은 기능성이 구현되지 않는 문제점이 있으며, 또한 금속 박막으로 인하여 광학특성이 저하되는 문제점이 있다.Japanese Patent Application No. 2007-322624 (Applicant: ZNO LAB, an antibacterial material and method for producing the same) is used for vacuum deposition on a glass substrate, plastic or the like usable on the surface of a touch panel or a mobile phone, Sputtering or the like to form a zinc oxide thin film, and a method for producing the zinc oxide thin film. However, the zinc oxide thin film also has a problem in that the functionalities such as water repellency / oil repellency and slip property are not realized, There is a problem that the optical characteristics are deteriorated.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 터치형 디스플레이 코팅 방법인 진공증착 방식을 적용하면서 발수/발유 및 항균성을 동시 구현 가능하고 내구성 및 광학특성을 모두 만족할 수 있는 코팅 조성물을 제공하여, 스마트 전자기기 및 생활가전 사용시 부드러운 터치감을 가지며 지문 등의 오염을 쉽게 제거할 수 있는 동시에 균에 대한 오염으로부터 안심하고 사용할 수 있도록 하고자 한다.DISCLOSURE Technical Problem In order to solve the above problems, the present invention provides a coating composition capable of simultaneously achieving water-repellent / oil-repellent and antimicrobial properties while satisfying both durability and optical characteristics while applying a vacuum evaporation method which is a touch- It has a soft touch feeling when using electronic appliances and household appliances, and can easily remove contamination of fingerprints and the like and at the same time, it can be used safely from contamination against bacteria.

상기 목적을 달성하고자 본 발명의 제1측면은, 불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물, 및 항균 물질을 포함하는, 진공 증착용 건식 항균 코팅제를 제공한다.In order to achieve the above object, the first aspect of the present invention provides a dry-type antimicrobial coating agent for vacuum deposition, which comprises a polycondensation reaction product of a fluorinated polymer and a functional or non-functional silane compound, and an antibacterial substance.

본 발명의 제1측면의 일 구체예에 따르면, 상기 불소계 중합체와 기능성 유무기실란 화합물은 상기 항균 물질의 존재하에 중축합된다.According to one embodiment of the first aspect of the present invention, the fluoropolymer and the functional or non-functional silane compound are polycondensed in the presence of the antimicrobial substance.

본 발명의 제1측면의 다른 구체예에 따르면, 상기 불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물에 상기 항균 물질이 투입되고 분산되어 서로 혼합된다.According to another embodiment of the first aspect of the present invention, the antibacterial substance is introduced into the resultant polycondensation reaction product of the fluoropolymer and the functional or non-functional silane compound, dispersed and mixed with each other.

본 발명의 제2측면에 따르면, a) 불소계 중합체, 기능성 유무기실란 화합물 및 항균 물질을 포함하는 혼합물을 제조하는 단계; 및 b) 상기 혼합물을 중축합 반응시키는 단계;를 포함하는, 진공 증착용 건식 항균 코팅제의 제조방법이 제공된다.According to a second aspect of the present invention there is provided a process for preparing a mixture comprising: a) preparing a mixture comprising a fluoropolymer, a functional organic silane compound and an antimicrobial material; And b) subjecting the mixture to a polycondensation reaction. A method for producing a dry vacuum-coated antimicrobial coating is provided.

본 발명의 제3측면에 따르면, i) 불소계 중합체 및 기능성 유무기실란 화합물을 포함하는 혼합물을 제조하는 단계; ii) 상기 혼합물을 중축합 반응시키는 단계; 및 iii) 상기 중축합 반응의 결과물에 항균 물질을 투입하고 분산시켜 혼합하는 단계;를 포함하는, 진공 증착용 건식 항균 코팅제의 제조방법이 제공된다.According to a third aspect of the present invention, there is provided a process for preparing a fluorinated polymer comprising the steps of: i) preparing a mixture comprising a fluorinated polymer and a functional or non-functional silane compound; ii) subjecting the mixture to a polycondensation reaction; And iii) adding an antimicrobial substance to the resultant product of the polycondensation reaction and dispersing and mixing the resultant product.

본 발명의 제4측면에 따르면, 1) 코팅될 기재를 제공하는 단계; 및 2) 상기 기재 표면에 본 발명의 건식 항균 코팅제를 진공증착시키는 단계;를 포함하는, 기재의 코팅방법이 제공된다. According to a fourth aspect of the present invention, there is provided a method of manufacturing a substrate, comprising: 1) providing a substrate to be coated; And 2) vacuum depositing the dry antimicrobial coating agent of the present invention on the surface of the substrate.

본 발명의 제5측면에 따르면, 본 발명의 건식 항균 코팅제의 진공증착 코팅층을 표면에 갖는 것을 특징으로 하는, 코팅된 물품이 제공된다.According to a fifth aspect of the present invention, there is provided a coated article characterized by having on its surface a vacuum-deposited coating layer of the dry-type antimicrobial coating agent of the present invention.

본 발명의 진공 증착용 건식 항균 코팅제는, 표면 물 접촉각이 115°이상으로 우수한 발수 및 발유성을 나타내고, 내지문성(anti-fingerprint, AF), 내구성 및 광학특성(투과율)이 우수한 동시에, 탁월한 항균 기능을 나타낸다. 특히, 우수한 내마모성(지우개 내마모시험에서, 초기 접촉각 대비 테스트 후 접촉각 변화 정도가 15° 이내)을 나타내고, 초기 항균력이 99.9%인 우수한 항균 효과를 나타내며, 유리, 플라스틱 및 금속 등 다양한 소재에도 적용할 수 있어, 핸드폰, 태블릿 PC 등 터치형 디스플레이를 갖는 스마트 기기, 생활가전 및 기타 전자제품 또는 이들의 부품 등의 표면 코팅 용도로 특히 적합하게 사용될 수 있다.The dry-type antimicrobial coating agent of the present invention exhibits excellent water repellency and oil repellency with a surface water contact angle of 115 ° or more and is excellent in anti-fingerprint (AF), durability and optical characteristics (transmittance) Function. Especially, it exhibits excellent abrasion resistance (in the eraser abrasion test, the degree of change of contact angle after testing after initial contact angle is within 15 °), exhibits excellent antibacterial effect with initial antibacterial power of 99.9%, and also applicable to various materials such as glass, plastic and metal And can be suitably used for surface coating applications such as smart devices having a touch-type display such as a mobile phone and a tablet PC, household appliances and other electronic products or parts thereof.

도 1은 본 발명의 항균 코팅제로 코팅된 기재의 단면들을 개략적으로 나타낸 것으로, 좌측도는 기재(substrate) 상에 직접 항균 AF 코팅층이 형성된 것이고, 우측도는 기재와 항균 AF 코팅층 사이에 무기물 또는 산화물 층이 개재된 것이다.
도 2는 (a) 미코팅 시료, (b) 항균제를 포함하지 않은 AF 코팅 시료 및 (c) 본 발명의 항균 코팅제로 코팅된 항균 AF 코팅 시료 각각에 대한 항균 시험 결과를 나타낸 사진들이다.
FIG. 1 schematically shows cross sections of a substrate coated with the antimicrobial coating agent of the present invention, wherein the left side shows an antimicrobial AF coating layer formed directly on a substrate, and the right side shows an inorganic substance or oxide Layer.
2 is a photograph showing antibacterial test results for each of (a) uncoated sample, (b) AF coated sample containing no antibacterial agent, and (c) antibacterial AF coated sample coated with the antibacterial coating agent of the present invention.

이하에서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 제1측면은, 불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물, 및 항균 물질을 포함하는, 진공 증착용 건식 항균 코팅제를 제공한다.The first aspect of the present invention provides a dry vacuum-coated antimicrobial coating agent comprising a polycondensation reaction product of a fluorinated polymer and a functional or non-halogenated silane compound, and an antibacterial substance.

본 발명의 제1측면의 일 구체예에 따르면, 상기 불소계 중합체와 기능성 유무기실란 화합물은 상기 항균 물질의 존재하에 중축합된다.According to one embodiment of the first aspect of the present invention, the fluoropolymer and the functional or non-functional silane compound are polycondensed in the presence of the antimicrobial substance.

본 발명의 제1측면의 다른 구체예에 따르면, 상기 불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물에 상기 항균 물질이 투입되고 분산되어 서로 혼합된다.According to another embodiment of the first aspect of the present invention, the antibacterial substance is introduced into the resultant polycondensation reaction product of the fluoropolymer and the functional or non-functional silane compound, dispersed and mixed with each other.

본 발명에서 사용가능한 불소계 중합체는 과불소화 중합체일 수 있다. 구체적으로, 상기 불소계 중합체는 과불소화 폴리에테르(perfluoropolyether), 플루오르화비닐리덴(Vinylidene fluoride) 중합체, 테트라플루오로에틸렌(tetrafluoroethylene) 중합체, 헥사플루오르프로필렌(hexafluoropropylene) 중합체, 염화삼불화에틸렌(chlorotrifluoroethylene) 중합체 및 이들의 조합으로부터 선택될 수 있고, 바람직하게는 과불소화 폴리에테르일 수 있다.The fluorine-based polymer usable in the present invention may be a perfluorinated polymer. Specifically, the fluoropolymer may be selected from the group consisting of perfluoropolyether, vinylidene fluoride polymer, tetrafluoroethylene polymer, hexafluoropropylene polymer, chlorotrifluoroethylene polymer, A combination thereof, and preferably a perfluoropolyether.

본 발명에서 사용가능한 기능성 유무기실란 화합물은 상기 불소계 중합체와의 중축합 반응을 수행하는 기능성기(예컨대, 아미노기, 비닐기, 에폭시기, 알콕시기, 할로겐기, 메르캡토기, 설파이드기 등)를 하나 이상 갖는 유무기실란 화합물일 수 있다. 구체적으로, 상기 기능성 유무기실란 화합물은 아미노프로필트리에톡시실란, 아미노프로필트리메톡시실란, 아미노-메톡시실란, 페닐아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(β-아미노에틸)-γ-아미노프로필메틸디메톡시실란, γ-아미노프로필트리디메톡시실란, γ-아미노프로필디메톡시실란, γ-아미노프로필트리에톡시실란, γ-아미노프로필디에톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리(메톡시에톡시)실란, 디-, 트리- 또는 테트라알콕시실란, 비닐메톡시실란, 비닐트리메톡시실란, 비닐에폭시실란, 비닐트리에폭시실란, 3-글리시독시프로필트리메톡시실란, 3-메타크릴옥시프로필트리메톡시실란, γ-글리시독시프로필트리에톡시실란, γ-메타크릴옥시프로필트리메톡시실란, 클로로트리메틸실란, 트리클로로에틸실란, 트리클로로메틸실란, 트리클로로페닐실란, 트리클로로비닐실란, 메르캡토프로필트리에톡시실란, 트리플루오로프로필트리메톡시실란, 비스(트리메톡시실릴프로필)아민, 비스(3-트리에톡시실릴프로필)테트라설파이드, 비스(트리에톡시실릴프로필)디설파이드, (메타크릴옥시)프로필트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 3-글리시독시프로필메틸디에톡시실란, 3-글리시독시프로필디에톡시실란, 3-글리시독시프로필트리에톡시실란, p-스티릴트리메톡시실란 및 이들의 조합으로부터 선택될 수 있고, 바람직하게는 아미노프로필트리에톡시실란 또는 이를 포함하는 조합일 수 있다.The functional or non-functional group silane compound usable in the present invention may contain at least one functional group (for example, an amino group, a vinyl group, an epoxy group, an alkoxy group, a halogen group, a mercaptan group, a sulfide group, etc.) for performing a polycondensation reaction with the fluorine- Or an imidazolyl group. Specifically, the functional or non-functional silane compound is selected from the group consisting of aminopropyltriethoxysilane, aminopropyltrimethoxysilane, amino-methoxysilane, phenylaminopropyltrimethoxysilane, N- (2-aminoethyl) Aminopropyltrimethoxysilane, gamma -aminopropyltriethoxysilane, gamma -aminopropyltriethoxysilane, gamma -aminopropyltrimethoxysilane, gamma -aminopropyltrimethoxysilane, gamma -aminopropyltrimethoxysilane, gamma -aminopropyltriethoxysilane, gamma- Vinyltriethoxysilane, vinyltrimethoxysilane, vinyltri (methoxyethoxy) silane, di-, tri- or tetraalkoxysilane, vinylmethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane, But are not limited to, vinyl epoxy silane, vinyltriethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, gamma -glycidoxypropyltriethoxysilane, Ethoxy silane, chlorotrimethane Silane, trichloroethylsilane, trichloromethylsilane, trichlorophenylsilane, trichlorovinylsilane, mercaptopropyltriethoxysilane, trifluoropropyltrimethoxysilane, bis (trimethoxysilylpropyl) amine, bis (Triethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) disulfide, (methacryloxy) propyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, and combinations thereof, Preferably aminopropyltriethoxysilane or a combination comprising it.

본 발명에서 사용 가능한 항균 물질은 천연 소재 또는 그 추출물, 항균성 고분자 화합물 및 이들의 조합으로부터 선택될 수 있다.The antimicrobial substance usable in the present invention may be selected from a natural material or an extract thereof, an antimicrobial polymer compound and a combination thereof.

상기 천연 소재 또는 그 추출물의 예로는 게, 새우의 껍질 또는 그 추출물(예: 키토산(chitosan)), 녹차 또는 그 추출물(예:카테킨(catechin)), 목단피 또는 그 추출물(예: Paeonol, Paeoniflorin, Paeonolide, sitosterol, Gallic acid, Methyl gallate, Tannic acid, Quercetin 등), 자몽 또는 그 추출물(예: 나린진(naringin)), 시트랄(citral), 감초 또는 그 추출물(예: 플라보노이드(flavonoids)), 편백나무 또는 그 추출물(예: 피톤치드(phytoncide)), 대나무 또는 그 추출물(예: 폴리페놀), 발아콩 또는 그 추출물(예: glyceollins), 황금 또는 그 추출물(예: tyrosinase), 와사비 또는 그 추출물(예: Isothiocyanate), 머스타드 또는 그 추출물, 히노키톨 및 이들의 조합으로부터 선택되는 것을 들 수 있다. 상기 추출물들은 공지의 추출 방법으로 제조될 수 있다.Examples of the natural materials or extracts thereof include crabs, shrimp shells or their extracts (for example chitosan), green tea or its extracts (for example catechin), orchards or extracts thereof (for example, Paeonol, Paeoniflorin, Grapefruit or its extracts (e.g. naringin), citral, licorice or its extracts (e.g. flavonoids), white flour Or extracts such as bamboo or its extracts (eg polyphenols), sprouts or extracts thereof (eg glyceolins), gold or extracts thereof (eg tyrosinase), wasabi or extracts thereof For example, isothiocyanate), mustard or its extract, hinokitol And combinations thereof. The extracts may be prepared by a known extraction method.

상기 항균성 고분자 화합물의 예로는 방향족 또는 헤테로고리 고분자, 아크릴 또는 메타크릴 고분자, 양이온성 공액 고분자 전해질, 폴리실록산 고분자, 천연고분자 모방 고분자, 및 페놀 또는 벤조산 유도체 고분자로부터 선택된 1종 이상의 고분자 화합물로서, 그 직쇄 또는 분지쇄 중합체 사슬에 부착된 암모늄염기, 포스포늄염기, 술포늄염기 또는 기타 오늄염기, 페닐아미드기 및 디구아나미드기로부터 선택된 1종 이상의 작용기를 갖는 것을 들 수 있다. Examples of the antimicrobial polymer include at least one polymer compound selected from aromatic or heterocyclic polymers, acrylic or methacrylic polymers, cationic conjugated polyelectrolytes, polysiloxane polymers, natural polymer mimetic polymers, and phenol or benzoic acid derivative polymers, Or a group having at least one functional group selected from an ammonium salt group, a phosphonium salt, a sulfonium salt or other onium salt base, a phenylamide group and a diquaternide group attached to a branched polymer chain.

본 발명의 바람직한 구체예에 따르면, 항균 물질로서 인체에 무해하면서도 안정성과 지속성을 갖는 상기 천연 소재 또는 그 추출물, 또는 항균성 고분자 화합물을 사용하여 제조된 항균 코팅제를 유리 표면에 코팅하여 초기항균력이 99.9%인 우수한 항균 효과를 얻을 수 있다.According to a preferred embodiment of the present invention, an antimicrobial coating material prepared by using the above-mentioned natural material or its extract or an antimicrobial polymer compound which is harmless to the human body and has stability and continuity is coated on a glass surface, And an excellent antimicrobial effect can be obtained.

본 발명의 보다 바람직한 구체예에 따르면, 상기 항균 물질로서 키토산(chitosan), 페오놀(paeonol: 1-(2-hydroxy-4-methoxyphenyl)ethanone) 또는 이들의 조합을 사용할 수 있다.According to a more preferred embodiment of the present invention, chitosan, 1- (2-hydroxy-4-methoxyphenyl) ethanone, or a combination thereof may be used as the antibacterial substance.

본 발명의 항균 코팅제에 있어서, 불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물의 함량은, 코팅제 건조중량 총 100중량%를 기준으로 50 내지 99.9 중량%인 것이 바람직하며, 80 내지 95 중량%인 것이 보다 바람직하다.In the antimicrobial coating agent of the present invention, the content of the polycondensation reaction product of the fluorine-containing polymer and the functional or non-functional silane compound is preferably 50 to 99.9% by weight, more preferably 80 to 95% by weight, Is more preferable.

본 발명의 항균 코팅제에 있어서, 항균 물질의 함량은, 코팅제 건조중량 총 100중량%를 기준으로 0.1 내지 50 중량%인 것이 바람직하며, 5 내지 20 중량%인 것이 보다 바람직하다.In the antimicrobial coating agent of the present invention, the content of the antimicrobial agent is preferably 0.1 to 50% by weight, more preferably 5 to 20% by weight, based on 100% by weight of the total weight of the coating agent.

본 발명의 제2측면에 따르면, a) 불소계 중합체, 기능성 유무기실란 화합물 및 항균 물질을 포함하는 혼합물을 제조하는 단계; 및 b) 상기 혼합물을 중축합 반응시키는 단계;를 포함하는, 진공 증착용 건식 항균 코팅제의 제조방법이 제공된다.According to a second aspect of the present invention there is provided a process for preparing a mixture comprising: a) preparing a mixture comprising a fluoropolymer, a functional organic silane compound and an antimicrobial material; And b) subjecting the mixture to a polycondensation reaction. A method for producing a dry vacuum-coated antimicrobial coating is provided.

본 발명의 제3측면에 따르면, i) 불소계 중합체 및 기능성 유무기실란 화합물을 포함하는 혼합물을 제조하는 단계; ii) 상기 혼합물을 중축합 반응시키는 단계; 및 iii) 상기 중축합 반응의 결과물에 항균 물질을 투입하고 분산시켜 혼합하는 단계;를 포함하는, 진공 증착용 건식 항균 코팅제의 제조방법이 제공된다.According to a third aspect of the present invention, there is provided a process for preparing a fluorinated polymer comprising the steps of: i) preparing a mixture comprising a fluorinated polymer and a functional or non-functional silane compound; ii) subjecting the mixture to a polycondensation reaction; And iii) adding an antimicrobial substance to the resultant product of the polycondensation reaction and dispersing and mixing the resultant product.

상기 혼합물 제조에 사용되는 방법 및 장비에는 특별한 제한이 없으며, 통상의 반응용기 또는 혼합 장비를 사용할 수 있다. 또한 상기, 중축합 반응 단계에서 중축합 반응의 조건에는 특별한 제한이 없으며, 예컨대, 불활성 가스(예를 들어, 아르곤, 질소) 하의 100~200℃ 온도에서 환류 반응으로 수행될 수 있다. 또한, 중축합 라디컬 반응이 보다 용이하게 진행되도록 하기 위하여, 반응이 수행되는 동안 반응 혼합물에 초음파 및/또는 UV를 조사할 수도 있다.There are no particular restrictions on the method and equipment used for preparing the mixture, and conventional reaction vessels or mixing equipment can be used. The conditions of the polycondensation reaction in the polycondensation reaction step are not particularly limited. For example, the polycondensation reaction may be carried out in a refluxing reaction at 100 to 200 ° C under an inert gas (for example, argon, nitrogen). Further, in order to facilitate the polycondensation radical reaction, the reaction mixture may be irradiated with ultrasound and / or UV during the reaction.

상기 중축합 반응의 결과물은 임의로 안정화 단계를 거칠 수 있다. 안정화 조건에는 특별한 제한이 없으며, 예컨대, 중축합 반응 결과물을 상온에서 24시간 두어 안정화시킬 수 있다.The result of the polycondensation reaction may optionally undergo a stabilization step. There are no particular restrictions on the stabilization condition, and for example, the result of the polycondensation reaction can be stabilized by keeping it at room temperature for 24 hours.

본 발명의 제4측면에 따르면, 1) 코팅될 기재를 제공하는 단계; 및 2) 상기 기재 표면에 본 발명의 건식 항균 코팅제를 진공증착시키는 단계;를 포함하는, 기재의 코팅방법이 제공된다. According to a fourth aspect of the present invention, there is provided a method of manufacturing a substrate, comprising: 1) providing a substrate to be coated; And 2) vacuum depositing the dry antimicrobial coating agent of the present invention on the surface of the substrate.

상기 코팅될 기재는, 진공증착 방식으로 코팅될 수 있는 것이라면 특별한 제한이 없으며, 유리, 플라스틱 및 금속 등 다양한 소재의 기재가 본 발명의 방법에 의하여 코팅될 수 있다.The substrate to be coated is not particularly limited as long as it can be coated by a vacuum deposition method, and substrates of various materials such as glass, plastic and metal can be coated by the method of the present invention.

상기 건식 항균 코팅제는 기재 표면상에 직접 진공증착될 수도 있고, 다르게는 기재 표면에 미리 형성된 무기물 또는 산화물(예컨대, SiO2) 층 위에 진공증착될 수도 있다. The dry antimicrobial coating may be deposited directly onto the substrate surface in a vacuum, alternatively may be vacuum deposited onto the layer mineral or oxide (e.g., SiO 2) previously formed on the substrate surface.

상기 진공증착의 방법에는 특별한 제한이 없으며, 통상의 진공증착 방법 및 장비를 사용하여 수행될 수 있다. 본 발명의 일 구체예에 따르면, PVD(Physical Vapor Deposition) 방식으로 2050 Ø 진공증착용 장비(Electron-beam evaporation, Thermal evaporation, Thermal sputter 등)를 사용하여 진공증착 코팅을 수행할 수 있다. 진공증착의 장점은 다양한 물질을 코팅에 쉽게 적용할 수 있으며, 코팅 약품 손실량이 거의 없고, 깨끗하고 균일한 박막을 형성할 수 있다는 점이다. 또한 장치 전체의 구성이 비교적 간단하며, 박막을 만들 때, 열적, 전기적 복잡함이 적기 때문에 박막 형성시의 막의 물성 연구에 적합하다.The vacuum deposition method is not particularly limited, and can be performed using a conventional vacuum deposition method and equipment. According to one embodiment of the present invention, a vacuum deposition coating can be performed using a 2050 Ø vacuum evaporation apparatus (thermal evaporation, thermal sputter, etc.) in a PVD (Physical Vapor Deposition) method. The advantage of vacuum deposition is that a variety of materials can be easily applied to the coating, and there is little loss of coating material, and a clean, uniform thin film can be formed. In addition, the overall structure of the device is relatively simple, and the thermal and electrical complexity is small when the thin film is formed. Therefore, it is suitable for studying the physical properties of the film at the time of forming the thin film.

본 발명의 제5측면에 따르면, 본 발명의 건식 항균 코팅제의 진공증착 코팅층을 표면에 갖는 것을 특징으로 하는, 코팅된 물품이 제공된다. According to a fifth aspect of the present invention, there is provided a coated article characterized by having on its surface a vacuum-deposited coating layer of the dry-type antimicrobial coating agent of the present invention.

상기 물품은 유리, 플라스틱 및 금속 등 다양한 소재의 핸드폰, 태블릿 PC 등 터치형 디스플레이를 갖는 스마트 기기, 생활가전, 자판기, 공용 쌍방향 정보기기, 손으로 터치할 수 있는 외장 전자제품, 또는 그 부품일 수 있으며, 바람직하게는 터치형 디스플레이를 갖는 스마트 기기 또는 그 부품일 수 있다.The article may be a smart device having a touch display such as a cell phone or a tablet PC of various materials such as glass, plastic and metal, a household appliance, a vending machine, a public interactive information device, an external electronic product which can be hand- And preferably a smart device having a touch-type display or a component thereof.

본 발명의 코팅제를 진공증착하여 형성된 코팅층 내에서는 항균 물질이 코팅층 기저부에 배열되어 코팅의 수명이 유지되는 동안 내오염성, 발수발유성, 표면윤활성, 내지문성 등을 나타내는 동시에 항균력을 발휘하게 된다. In the coating layer formed by vacuum evaporation of the coating agent of the present invention, the antimicrobial substance is arranged at the base of the coating layer to exhibit stain resistance, water and oil repellency, surface lubricity, and glossiness while maintaining the coating life, and exhibit antibacterial activity.

이하, 실시예들을 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 이들 실시예에 의하여 본 발명이 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by these examples.

[[ 실시예Example ]]

실시예Example 1 One

불소계 중합체인 과불소화 폴리에테르(perfluoropolyether) 50g에 항균 물질로서 키토산 15g을 첨가하였다. 여기에 기능성 유무기실란 화합물인 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 50g을 투입하고, 불활성 아르곤 가스 분위기 하에 약 150℃ 온도에서 중축합 반응을 수행한 후, 반응 결과물을 상온에서 24시간 안정화시켜 건식 항균 코팅제를 제조하였다.15 g of chitosan as an antibacterial substance was added to 50 g of perfluoropolyether which is a fluoropolymer. 50 g of aminopropyltriethoxysilane, which is a functional or non-functional silane compound, was added and the resultant was subjected to a polycondensation reaction at a temperature of about 150 ° C. in an inert argon gas atmosphere. The reaction product was stabilized at room temperature for 24 hours, Coating agent was prepared.

실시예Example 2  2

항균 물질로서 페오놀(paeonol) 8g을 추가로 첨가한 점을 제외하고는, 실시예 1과 동일한 방법으로 건식 항균 코팅제를 제조하였다.A dry antimicrobial coating agent was prepared in the same manner as in Example 1, except that 8 g of paeonol was further added as an antibacterial substance.

실시예Example 3 3

과불소화 폴리에테르(perfluoropolyether) 50g에 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 50g을 첨가하고 불활성 아르곤 가스 분위기 하에 약 150℃ 온도에서 중축합 반응을 수행한 후, 여기에 항균 물질로서 페오놀(paeonol) 8g을 투입하고, 균일하게 분산 혼합하여 건식 항균 코팅제를 제조하였다.50 g of aminopropyltriethoxysilane was added to 50 g of perfluoropolyether and the mixture was subjected to a polycondensation reaction at about 150 ° C in an inert argon gas atmosphere. Then, paeonol was added thereto as an antibacterial substance, And the mixture was uniformly dispersed and mixed to prepare a dry antimicrobial coating agent.

시험예Test Example 1: 제조된 건식 항균 코팅제의 코팅 물성 평가 1: Evaluation of Coating Property of Dry Antibacterial Coating Agent

상기 실시예 1~3에서 제조된 건식 항균 코팅제를 사용하여 2050 Ø 진공증착용 장비에서 E/B(Electron-beam) evaporation 방식으로 강화유리를 코팅하였다. 코팅을 원활하게 하기 위하여, 코팅 전에 강화유리를 10조 세척기에서 5 wt%의 알칼리 세척제(강화유리용 세척제)로 습식 세정하였다. 진공증착 조건은, 초기 에칭: 300초, SiO2 두께: 120Å 온도: 80℃이었다.The dry antimicrobial coatings prepared in Examples 1 to 3 were coated with tempered glass by E / B (Electron-beam) evaporation method in a 2050 진 vacuum evaporation equipment. To facilitate coating, tempered glass was wet cleaned with a 5 wt% alkaline detergent (a cleaning agent for tempered glass) in a 10-bath washer before coating. The conditions for the vacuum deposition were as follows: initial etching: 300 seconds; SiO 2 thickness: 120 ANGSTROM: 80 DEG C.

코팅된 시편에 대하여, 다음과 같이 물성들을 평가하였다. For the coated specimens, properties were evaluated as follows.

(1) (One) 접촉각Contact angle 측정 방법 How to measure

코팅 후 접촉각 측정 장비를 이용하여 코팅한 면의 접촉각을 측정하였다. 접촉각 측정시 물방울 하나의 크기는 3㎕로 하고 코팅의 균일성을 확인하기 위하여 코팅한 시료 하나당 5 포인트의 접촉각을 측정한 후 평균을 내었다.After the coating, the contact angle of the coated surface was measured using a contact angle measuring apparatus. To measure the contact angle, the size of one droplet was adjusted to 3 μl, and the contact angle of 5 points per coated sample was measured to check the uniformity of the coating.

(2) 내마모성 테스트(2) Abrasion resistance test

코팅 후 내구성을 확인하기 위해서 내마모 테스트를 진행하였다. 내마모 지우개를 사용하여 1500회 마모 테스트를 진행하였다. 테스트 결과, 코팅한 샘플의 초기 접촉각 대비 테스트 후 접촉각의 변화 정도가 15°내에 들어오면 PASS 인 것으로 진행하였다.The wear resistance test was carried out to confirm the durability after coating. The abrasion test of 1500 times was carried out using an abrasion eraser. As a result of the test, when the degree of change of the contact angle after the test was within 15 ° as compared with the initial contact angle of the coated sample, it was proceeded to be PASS.

(3) 항균력 확인 테스트(3) Test of antibacterial activity

초기 항균력을 확인하기 위해 실시예 1, 2는 한국건설생활환경시험연구원(KCL)에 의뢰하여 대장균(ATCC 8739) 및 황색포도상구균(ATCC 6538P), 녹농균(ATCC 15442)을 사용하여 JIS Z 2801 규격으로 항균 시험을 진행하였고, 실시예 3은 KOLAS 인정시험기관에서 대장균(ATCC 8739)을 사용하여 동일한 규격으로 진행하였다. 코팅한 시료의 표면에 희석된 균액을 400 ㎕ 접종하고 항온 항습 환경에서 24시간 배양한 후, 탈착을 진행하여 항균결과를 확인하였다.In order to confirm the initial antimicrobial activity, Examples 1 and 2 were tested in accordance with JIS Z 2801 standard using E. coli (ATCC 8739), Staphylococcus aureus (ATCC 6538P), and P. aeruginosa (ATCC 15442) , And Example 3 was carried out in the same standard using E. coli (ATCC 8739) in a KOLAS accredited testing laboratory. 400 μl of the diluted bacterial solution was inoculated on the surface of the coated sample and incubated in a constant temperature and humidity environment for 24 hours, followed by desorption to confirm the antibacterial result.

상기 물성 평가의 결과를 아래의 표 1~3에 나타내었다.The results of the above physical property evaluation are shown in Tables 1 to 3 below.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

시험예Test Example 2 :  2 : 미코팅Uncoated 시료 및 항균제를 포함하지 않은 코팅 시료와의 항균력 비교 Comparison of antibacterial activity with coating samples not containing samples and antimicrobial agents

(a) 미코팅 시료(즉, 강화유리 자체), (b) 항균제를 포함하지 않은 AF 코팅 시료(즉, 항균제를 사용하지 않고 실시예 1과 동일하게 제조된 코팅제로 코팅된 강화유리 샘플) 및 (c) 항균 AF (anti finger printing) 코팅 시료(즉, 실시예 1에서 제조된 코팅제로 코팅된 강화유리 샘플)에 대하여 상기한 바와 같이 접촉각을 측정하고 항균력 확인 테스트를 실시하였다. 그 결과를 하기 표 4 및 도 2에 나타내었다.(a) an uncoated sample (i.e., tempered glass itself), (b) an AF coating sample without an antimicrobial agent (i.e., a tempered glass sample coated with a coating prepared in the same manner as in Example 1 without using an antimicrobial agent) (c) Contact angle was measured and an antibacterial activity test was carried out on an antibacterial AF (anti-fingerprint) coating sample (i.e., a tempered glass sample coated with the coating prepared in Example 1) as described above. The results are shown in Table 4 and FIG.

Figure pat00004
Figure pat00004

Claims (16)

불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물; 및 항균 물질;을 포함하는, 진공 증착용 건식 항균 코팅제.Polycondensation reaction products of fluorinated polymers and functional or non-functionalized silane compounds; And an antimicrobial material. 제1항에 있어서. 불소계 중합체와 기능성 유무기실란 화합물이 항균 물질의 존재하에 중축합되는 것을 특징으로 하는 진공 증착용 건식 항균 코팅제.The method of claim 1, Wherein the fluoropolymer and the functional or non-functional silane compound are polycondensed in the presence of an antibacterial substance. 제1항에 있어서. 불소계 중합체와 기능성 유무기실란 화합물의 중축합 반응 결과물에 항균 물질이 투입되고 분산되어 서로 혼합되는 것을 특징으로 하는 진공 증착용 건식 항균 코팅제.The method of claim 1, Wherein the antimicrobial substance is added to and dispersed in the resultant polycondensation reaction product of the fluorine-based polymer and the functionalized or non-bonded silica-based compound, and they are mixed with each other. 제1항에 있어서, 불소계 중합체가 과불소화 폴리에테르, 플루오르화비닐리덴 중합체, 테트라플루오로에틸렌 중합체, 헥사플루오르프로필렌 중합체, 염화삼불화에틸렌 중합체 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 진공 증착용 건식 항균 코팅제.The method of claim 1, wherein the fluoropolymer is selected from perfluoropolyether, fluorinated vinylidene polymer, tetrafluoroethylene polymer, hexafluoropropylene polymer, chlorinated ethylene fluoride polymer, and combinations thereof. Antibacterial coatings. 제1항에 있어서, 기능성 유무기실란 화합물이 아미노프로필트리에톡시실란, 아미노프로필트리메톡시실란, 아미노-메톡시실란, 페닐아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(β-아미노에틸)-γ-아미노프로필메틸디메톡시실란, γ-아미노프로필트리디메톡시실란, γ-아미노프로필디메톡시실란, γ-아미노프로필트리에톡시실란, γ-아미노프로필디에톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리(메톡시에톡시)실란, 디-, 트리- 또는 테트라알콕시실란, 비닐메톡시실란, 비닐트리메톡시실란, 비닐에폭시실란, 비닐트리에폭시실란, 3-글리시독시프로필트리메톡시실란, 3-메타크릴옥시프로필트리메톡시실란, γ-글리시독시프로필트리에톡시실란, γ-메타크릴옥시프로필트리메톡시실란, 클로로트리메틸실란, 트리클로로에틸실란, 트리클로로메틸실란, 트리클로로페닐실란, 트리클로로비닐실란, 메르캡토프로필트리에톡시실란, 트리플루오로프로필트리메톡시실란, 비스(트리메톡시실릴프로필)아민, 비스(3-트리에톡시실릴프로필)테트라설파이드, 비스(트리에톡시실릴프로필)디설파이드, (메타크릴옥시)프로필트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 3-글리시독시프로필메틸디에톡시실란, 3-글리시독시프로필디에톡시실란, 3-글리시독시프로필트리에톡시실란, p-스티릴트리메톡시실란 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 진공 증착용 건식 항균 코팅제.The method of claim 1, wherein the functional or non-functional silane compound is selected from the group consisting of aminopropyltriethoxysilane, aminopropyltrimethoxysilane, amino-methoxysilane, phenylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3- Aminopropyltrimethoxysilane, N- (? -Aminoethyl) -? - aminopropylmethyldimethoxysilane,? -Aminopropyltrimethoxysilane,? -Aminopropyldimethoxysilane,? -Aminopropyltriethoxysilane , vinyltriethoxysilane, vinyltrimethoxysilane, vinyltri (methoxyethoxy) silane, di-, tri- or tetraalkoxysilane, vinylmethoxysilane, vinyltrimethoxy Silane, vinyl epoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, y-glycidoxypropyltriethoxysilane, y-methacryloxypropyl Trimethoxysilane, chlorotrimethyl (Trimethoxysilylpropyl) amine, bis (trimethoxysilylpropyl) silane, bis (trimethoxysilylpropyl) amine, bis (trimethoxysilylpropyl) silane, trichloroethylsilane, trichlorophenylsilane, trichlorovinylsilane, mercaptopropyltriethoxysilane, (Triethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) disulfide, (methacryloxy) propyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, and combinations thereof. Dry vacuum coating with antimicrobial agent. 제1항에 있어서, 항균 물질이 천연 소재 또는 그 추출물, 항균성 고분자 화합물 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 진공 증착용 건식 항균 코팅제.The dry antimicrobial coating composition according to claim 1, wherein the antimicrobial substance is selected from a natural material or an extract thereof, an antimicrobial polymer compound and a combination thereof. 제1항에 있어서, 항균 물질이 키토산, 페오놀 또는 이들의 조합인 것을 특징으로 하는 진공 증착용 건식 항균 코팅제.The dry antimicrobial coating composition according to claim 1, wherein the antibacterial substance is chitosan, phenol, or a combination thereof. a) 불소계 중합체, 기능성 유무기실란 화합물 및 항균 물질을 포함하는 혼합물을 제조하는 단계; 및 b) 상기 혼합물을 중축합 반응시키는 단계;를 포함하는, 진공 증착용 건식 항균 코팅제의 제조방법.a) preparing a mixture comprising a fluoropolymer, a functional organic silane compound and an antimicrobial material; And b) subjecting the mixture to a polycondensation reaction. i) 불소계 중합체 및 기능성 유무기실란 화합물을 포함하는 혼합물을 제조하는 단계; ii) 상기 혼합물을 중축합 반응시키는 단계; 및 iii) 상기 중축합 반응의 결과물에 항균 물질을 투입하고 분산시켜 혼합하는 단계;를 포함하는, 진공 증착용 건식 항균 코팅제의 제조방법.i) preparing a mixture comprising a fluoropolymer and a functional or non-functional silane compound; ii) subjecting the mixture to a polycondensation reaction; And iii) adding an antimicrobial substance to the resultant product of the polycondensation reaction and dispersing and mixing the resultant product. 제8항 또는 제9항에 있어서,
불소계 중합체가 과불소화 폴리에테르, 플루오르화비닐리덴 중합체, 테트라플루오로에틸렌 중합체, 헥사플루오르프로필렌 중합체, 염화삼불화에틸렌 중합체 및 이들의 조합으로부터 선택되고;
기능성 유무기실란 화합물이 아미노프로필트리에톡시실란, 아미노프로필트리메톡시실란, 아미노-메톡시실란, 페닐아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(β-아미노에틸)-γ-아미노프로필메틸디메톡시실란, γ-아미노프로필트리디메톡시실란, γ-아미노프로필디메톡시실란, γ-아미노프로필트리에톡시실란, γ-아미노프로필디에톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리(메톡시에톡시)실란, 디-, 트리- 또는 테트라알콕시실란, 비닐메톡시실란, 비닐트리메톡시실란, 비닐에폭시실란, 비닐트리에폭시실란, 3-글리시독시프로필트리메톡시실란, 3-메타크릴옥시프로필트리메톡시실란, γ-글리시독시프로필트리에톡시실란, γ-메타크릴옥시프로필트리메톡시실란, 클로로트리메틸실란, 트리클로로에틸실란, 트리클로로메틸실란, 트리클로로페닐실란, 트리클로로비닐실란, 메르캡토프로필트리에톡시실란, 트리플루오로프로필트리메톡시실란, 비스(트리메톡시실릴프로필)아민, 비스(3-트리에톡시실릴프로필)테트라설파이드, 비스(트리에톡시실릴프로필)디설파이드, (메타크릴옥시)프로필트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 3-글리시독시프로필메틸디에톡시실란, 3-글리시독시프로필디에톡시실란, 3-글리시독시프로필트리에톡시실란, p-스티릴트리메톡시실란 및 이들의 조합으로부터 선택되며;
항균 물질이 천연 소재 또는 그 추출물, 항균성 고분자 화합물 및 이들의 조합으로부터 선택되는 것을 특징으로 하는,
진공 증착용 건식 항균 코팅제의 제조방법.
10. The method according to claim 8 or 9,
Wherein the fluoropolymer is selected from perfluoropolyether, fluorinated vinylidene polymer, tetrafluoroethylene polymer, hexafluoropropylene polymer, chlorinated ethylene fluoride polymer and combinations thereof;
The functionalized or non-functional compound may be selected from the group consisting of aminopropyltriethoxysilane, aminopropyltrimethoxysilane, amino-methoxysilane, phenylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane , N- (? -Aminoethyl) -? - aminopropylmethyldimethoxysilane,? -Aminopropyltrimethoxysilane,? -Aminopropyldimethoxysilane,? -Aminopropyltriethoxysilane,? -Aminopropyldi Vinyltriethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) silane, di-, tri- or tetraalkoxysilane, vinylmethoxysilane, vinyltrimethoxysilane, vinyl epoxysilane, Vinyltriethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane,? -Glycidoxypropyltriethoxysilane,? -Methacryloxypropyltrimethoxysilane, chloro Trimethylsilane, trichloro (Trimethoxysilylpropyl) amine, bis (trimethoxysilylpropyl) amine, bis (trimethylsilyl) silane, trichloromethylsilane, trichlorophenylsilane, trichlorovinylsilane, mercaptopropyltriethoxysilane, Ethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) disulfide, (methacryloxy) propyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3- 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, and combinations thereof;
Characterized in that the antimicrobial substance is selected from a natural material or an extract thereof, an antimicrobial polymer compound and a combination thereof.
A method for manufacturing a dry antimicrobial coating agent by vacuum evaporation.
제8항 또는 제9항에 있어서, 중축합 반응이 불활성 가스 하의 100~200℃ 온도에서 환류 반응으로 수행되는 것을 특징으로 하는 진공 증착용 건식 항균 코팅제의 제조방법.10. The method of claim 8 or 9, wherein the polycondensation reaction is carried out in a reflux reaction at a temperature of 100 to 200 DEG C under an inert gas. 1) 코팅될 기재를 제공하는 단계; 및 2) 상기 기재 표면에 제1항 내지 제7항 중 어느 한 항의 건식 항균 코팅제를 진공증착시키는 단계;를 포함하는, 기재의 코팅방법.1) providing a substrate to be coated; And 2) vacuum-depositing the dry antimicrobial coating agent of any one of claims 1 to 7 on the surface of the substrate. 제12항에 있어서, 기재가 유리, 플라스틱 또는 금속 소재인 것을 특징으로 하는 기재의 코팅방법.13. The method of claim 12, wherein the substrate is glass, plastic or metal. 제12항에 있어서, 건식 항균 코팅제가 기재 표면상에 직접 진공증착되거나, 기재 표면에 미리 형성된 무기물 또는 산화물 층 위에 진공증착되는 것을 특징으로 하는 기재의 코팅방법.13. The method of claim 12, wherein the dry antimicrobial coating is vacuum deposited directly onto the substrate surface, or vacuum deposited over a previously formed inorganic or oxide layer on the substrate surface. 제1항 내지 제7항 중 어느 한 항의 건식 항균 코팅제의 진공증착 코팅층을 표면에 갖는 것을 특징으로 하는, 코팅된 물품.A coated article characterized by having on its surface a vacuum-deposited coating layer of the dry-type antimicrobial coating composition of any one of claims 1 to 7. 제15항에 있어서, 물품이 터치형 디스플레이를 갖는 스마트 기기, 생활가전, 자판기, 공용 쌍방향 정보기기, 손으로 터치할 수 있는 외장 전자제품, 또는 그 부품인 것을 특징으로 하는, 코팅된 물품.16. The coated article of claim 15, wherein the article is a smart device having a touch-sensitive display, a household appliance, a vending machine, a public interactive information device, a hand-held external electronic product, or a component thereof.
KR1020150038820A 2015-03-20 2015-03-20 Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof KR101677024B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150038820A KR101677024B1 (en) 2015-03-20 2015-03-20 Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof
PCT/KR2016/002765 WO2016153230A1 (en) 2015-03-20 2016-03-18 Water-repellent nanocoating agent having antimicrobial activity for vacuum deposition, and coating method using same
CN201680016858.4A CN107406968B (en) 2015-03-20 2016-03-18 Vacuum deposition water proof type nano coating agent with antibacterial ability and the coating method using it
JP2018500258A JP6691206B2 (en) 2015-03-20 2016-03-18 Water-repellent nanocoating agent having antibacterial activity for vacuum deposition and coating method using the same
DE112016001303.5T DE112016001303T5 (en) 2015-03-20 2016-03-18 Hydrophobic nanopattern with antimicrobial effect for vacuum deposition and coating method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150038820A KR101677024B1 (en) 2015-03-20 2015-03-20 Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof

Publications (2)

Publication Number Publication Date
KR20160119288A true KR20160119288A (en) 2016-10-13
KR101677024B1 KR101677024B1 (en) 2016-11-17

Family

ID=56978202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150038820A KR101677024B1 (en) 2015-03-20 2015-03-20 Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof

Country Status (5)

Country Link
JP (1) JP6691206B2 (en)
KR (1) KR101677024B1 (en)
CN (1) CN107406968B (en)
DE (1) DE112016001303T5 (en)
WO (1) WO2016153230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159886A1 (en) * 2017-03-03 2018-09-07 한양대학교 에리카산학협력단 Method for modifying surface of polymer substrate and polymer substrate having surface modified thereby

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690091B1 (en) * 2015-04-16 2016-12-27 주식회사 쎄코 Antibacterial primer coating agent for vacuum deposition and method of multi-layered coating by using the same
KR102363262B1 (en) 2017-03-23 2022-02-16 삼성디스플레이 주식회사 Manufacturing method of organic light emitting display device
CN109295415B (en) * 2017-07-24 2022-04-08 立得光电科技股份有限公司 Method for forming functional film layer, and antibacterial/anti-fingerprint element
AU2018410240A1 (en) * 2017-08-14 2020-04-02 Interphase Materials Inc. Surface treatment
CN108545958A (en) * 2018-04-24 2018-09-18 新疆大学 A kind of preparation method of polymer coating
CN116348531A (en) 2020-10-14 2023-06-27 索尔维特殊聚合物意大利有限公司 Novel (per) fluoropolyether polymers and their use
WO2022078766A1 (en) 2020-10-14 2022-04-21 Solvay Specialty Polymers Italy S.P.A. Novel (per)fluoropolyether polymers and use thereof
WO2023013505A1 (en) * 2021-08-02 2023-02-09 日本板硝子株式会社 Glass member and production method therefor
KR20230171632A (en) 2022-06-14 2023-12-21 주식회사 에스제이씨앤티 Antibacterial coating composition containing phytoncide and nano inorganic carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109906A (en) * 1996-10-03 1998-04-28 Taishiyoo Technos:Kk Antibacterial and fungicidal agent for industrial purposes
JPH11293154A (en) * 1998-04-10 1999-10-26 Toray Ind Inc Mildew-proof coating film
JP2013529173A (en) * 2010-05-25 2013-07-18 スリーエム イノベイティブ プロパティズ カンパニー Antimicrobial coating
JP2015030874A (en) * 2013-08-01 2015-02-16 株式会社エツミ光学 Antifouling processing method of antibacterial product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040338A (en) * 1999-07-28 2001-02-13 Jsr Corp Coating composition for preventing deposition of snow and ice and formation of coating film for preventing deposition of snow and ice
JP2001049181A (en) * 1999-08-10 2001-02-20 Jsr Corp Coating composition for sanitary pottery, and sanitary pottery
JP4460361B2 (en) * 2003-06-02 2010-05-12 日本メナード化粧品株式会社 Melanin production promoter
KR100773919B1 (en) * 2005-08-01 2007-11-08 김영백 Method for formation and/or immobilization of metal nanoparticle using silane compound
JP2009191101A (en) * 2008-02-12 2009-08-27 Fujifilm Corp Surface treatment agent composition containing fluorine-containing polyfunctional silicon compound
US20100233361A1 (en) * 2009-03-12 2010-09-16 Xerox Corporation Metal nanoparticle composition with improved adhesion
JP5857942B2 (en) * 2011-11-30 2016-02-10 信越化学工業株式会社 Fluorine surface treatment agent for vapor deposition and article vapor-deposited with the surface treatment agent
CN103909699A (en) * 2013-01-08 2014-07-09 鸿富锦精密工业(深圳)有限公司 Coated member and making method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109906A (en) * 1996-10-03 1998-04-28 Taishiyoo Technos:Kk Antibacterial and fungicidal agent for industrial purposes
JPH11293154A (en) * 1998-04-10 1999-10-26 Toray Ind Inc Mildew-proof coating film
JP2013529173A (en) * 2010-05-25 2013-07-18 スリーエム イノベイティブ プロパティズ カンパニー Antimicrobial coating
JP2015030874A (en) * 2013-08-01 2015-02-16 株式会社エツミ光学 Antifouling processing method of antibacterial product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159886A1 (en) * 2017-03-03 2018-09-07 한양대학교 에리카산학협력단 Method for modifying surface of polymer substrate and polymer substrate having surface modified thereby
US11697131B2 (en) 2017-03-03 2023-07-11 Industry-University Cooperation Foundation Hanyang University Erica Campus Method for modifying surface of polymer substrate and polymer substrate having surface modified thereby

Also Published As

Publication number Publication date
DE112016001303T5 (en) 2018-01-18
CN107406968A (en) 2017-11-28
CN107406968B (en) 2019-06-04
JP6691206B2 (en) 2020-04-28
KR101677024B1 (en) 2016-11-17
CN107406968A8 (en) 2018-01-12
JP2018513920A (en) 2018-05-31
WO2016153230A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
KR101677024B1 (en) Antibacterial Hydrophobic Nano-coating Agent for Vacuum Deposition and Method of Coating Using thereof
KR101690091B1 (en) Antibacterial primer coating agent for vacuum deposition and method of multi-layered coating by using the same
TWI515276B (en) Antimicrobial coatings
CN103254671B (en) Antimicrobial coatings
EP1155352B1 (en) Anti-microbial touch panel and method of making same using homeotropic liquid crystal silanes
KR20140023328A (en) Antimicrobial action of cu, cuo and cu2o nanoparticles on glass surfaces and durable coatings
KR102070449B1 (en) Anti-bacterial and Anti-fingerprint coating composition, film using the same, the method of the same, and the coated product
CN108751744A (en) Antimicrobial glass product and its preparation and application
US20140322547A1 (en) Antimicrobial Glass Articles and Methods for Making and Using Same
KR101784709B1 (en) Mutifunctional coating structure and forming method for the same
JP2014237227A (en) Fingerprint-resistant transparent substrate having antibacterial property
CN109295415A (en) The film build method of functional film layer, functional film layer and antibacterial anti-fingerprint element
TWI817012B (en) Method of preparing anti-bacteria fluid, anti-bacteria substrate, and anti-bacteria substrate thereof
JP2015160892A (en) Antifouling composite coat with biofilm forming ability suppressed
JP3932671B2 (en) High-functional surface treatment film and manufacturing method thereof
CN117925099A (en) Antibacterial liquid and antibacterial substrate using same
TWI519594B (en) Antimicrobial coatings
JP2014162832A (en) Ink composition, transparent conductive film and electronic component

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191010

Year of fee payment: 4