KR20160100285A - Method for the recovery of catalytic metal from polyketone - Google Patents

Method for the recovery of catalytic metal from polyketone Download PDF

Info

Publication number
KR20160100285A
KR20160100285A KR1020160102000A KR20160102000A KR20160100285A KR 20160100285 A KR20160100285 A KR 20160100285A KR 1020160102000 A KR1020160102000 A KR 1020160102000A KR 20160102000 A KR20160102000 A KR 20160102000A KR 20160100285 A KR20160100285 A KR 20160100285A
Authority
KR
South Korea
Prior art keywords
palladium
polyketone
polymerization
heavy end
reducing agent
Prior art date
Application number
KR1020160102000A
Other languages
Korean (ko)
Other versions
KR101695713B1 (en
Inventor
심재윤
최지환
송병준
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020160102000A priority Critical patent/KR101695713B1/en
Publication of KR20160100285A publication Critical patent/KR20160100285A/en
Application granted granted Critical
Publication of KR101695713B1 publication Critical patent/KR101695713B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Polyethers (AREA)

Abstract

The present invention relates to a method to recover a palladium catalyst from a polyketone slurry polymerization process. More particularly, the present invention relates to a method to easily recover palladium from heavy end generated in a purification process of fractional distillation of MeOH which is a polymerization solvent by precipitating palladium in a solid state.

Description

폴리케톤 촉매 금속 회수방법 {Method for the recovery of catalytic metal from polyketone}FIELD OF THE INVENTION [0001] The present invention relates to a method for recovering a polyketone catalyst,

본 발명은 폴리케톤 중합공정에 관련된 내용으로서 폴리케톤 중합용매 MeOH의 회수장치에서 발생하는 부산물에서 금속촉매인 팔라듐의 회수량을 늘리기 위한 기술이다.The present invention relates to a polyketone polymerization process, and is a technique for increasing the recovery of palladium, which is a metal catalyst, in a by-product generated in a recovery apparatus for polyketone polymerization solvent MeOH.

일산화탄소 유래의 반복 단위와 에틸렌성 불포화 화합물 유래의 반복 단위가 실질적으로 교대로 연결된 구조를 갖는 폴리케톤은 기계적 성질 및 열적 성질이 우수하고, 내마모성, 내약품성, 가스 배리어성도 높고, 여러 가지 분야로의 전개가 기대된다. 구체적으로 폴리케톤은 고강도, 고내열성의 수지나 섬유, 필름으로서 유용한 재료이다. 특히, 고유점도가 2.5dl/g 이상인 고분자량의 폴리케톤을 원료로서 사용하면 매우 높은 강도, 탄성률을 갖는 섬유나 필름을 얻을 수 있다. 이러한 섬유나 필름은 벨트, 호스나 타이어 코드 등의 고무 보강재나, 콘크리트 보강재 등 건축 재료나 산업 자재 용도로의 광범위한 활용이 기대되고 있다.The polyketone having a structure in which repeating units derived from carbon monoxide and repeating units derived from an ethylenically unsaturated compound are substantially alternately linked has excellent mechanical and thermal properties and has high abrasion resistance, chemical resistance and gas barrier property, Expansion is expected. Specifically, polyketone is a useful material as high strength, high heat resistant resin, fiber, and film. Particularly, when a high molecular weight polyketone having an intrinsic viscosity of 2.5 dl / g or more is used as a raw material, a fiber or a film having a very high strength and an elastic modulus can be obtained. Such fibers and films are expected to be widely used for building materials such as belts, rubber reinforcements such as hoses and tire cords, concrete reinforcing materials, and industrial materials.

에틸렌과 일산화탄소로 이루어지는 반복 단위를 주체로 하는 폴리케톤은 200 이상의 높은 융점을 갖지만 장시간의 가열 하에서는 3차원 가교 등의 열변성이 발생하고, 유동성의 소실에 의한 성형 가공성이 저하하고, 또한 융점의 저하에 의해서 성형체의 기계적, 내열 성능이 열화하는 문제가 있었다.Polyketone mainly comprising a repeating unit composed of ethylene and carbon monoxide has a high melting point of 200 or more, but under long-term heating, thermal denaturation such as three-dimensional crosslinking occurs, molding workability due to disappearance of fluidity is lowered, There is a problem that the mechanical and heat resistance of the molded article deteriorates.

현재 사용되는 폴리케톤의 중합기술은 슬러리 중합기술로서 MeOH 또는 유기용매가 사용된다. 대량생산을 위한 파일롯 또는 상업화공장에서는 용매의 정제를 통한 재사용은 필수적이며, 대부분 분별 증류법을 이용하여 용매를 정제한다. 용매의 분별증류를 통한 정제과정중 불순물 및 정제대상 용매보다 끓는점이 높은 물질은 정제탑의 Heavy End로 위치하며, 이는 Heavy End 저장소에 보관 후 폐기물 처리를 하게 된다.  Current polyketone polymerization techniques use MeOH or organic solvents as slurry polymerization techniques. In a pilot or commercial plant for mass production, re-use of the solvent through purification is essential, and most of the solvents are purified using fractional distillation. During refining through solvent fractionation, impurities and substances with a higher boiling point than the solvent to be refined are located at the heavy end of the refining tower, which is treated as waste after storage in a heavy end storage.

현재까지 알려진 가장 경제적인 폴리케톤의 중합용매는 소량의 물을 포함한 MeOH이며, 물은 폴리케톤 중합물의 케탈화를 방지하는 효과를 발휘한다. 중합에 사용된 MeOH과 물은 사용후 분별증류탑을 거쳐 분리작업이 이루어지며, MeOH는 정제되어 재사용이 가능하나, MeOH 보다 끓는점이 높은 물은 여러 부산물과 함께 Heavy End 저장고로 재사용이 불가한 상태로 저장된다.         The most economical polyketone polymerization solvent known to date is MeOH containing a small amount of water, and water has an effect of preventing the kettle of the polyketone polymer. The MeOH and water used in the polymerization are separated through the use of a fractional distillation column. MeOH is refined and reusable. However, water with a boiling point higher than that of MeOH can not be reused as a Heavy End reservoir together with various byproducts .

폴리케톤 중합촉매는 팔라듐 2가와 바이덴테이트 포스핀리간드, pK 4이하의 산으로 이루어지며, 중합반응이 끝난 후 팔라듐의 약 50%는 폴리케톤 중합물에 잔존하며 나머지 약 50%는 용매로 배출되어 MeOH 정제 증류탑을 거치고 나면 물과 함께 Heavy End로 방출되어 상온으로 냉각시 구조가 정확하지 않은 침전물로 존재하게 된다. The polyketone polymerization catalyst is composed of palladium divalent and bidentate phosphine ligands and acids of pK 4 or less. After the polymerization reaction, about 50% of the palladium remains in the polyketone polymer, and the remaining 50% After passing through the MeOH purification distillation tower, it is discharged as a heavy end along with water, and as a result, the structure becomes inaccurate when cooled to room temperature.

중합 후 폴리케톤 중합물에 존재하는 팔라듐의 잔사량을 줄이는 방법으로는 문헌[Polymer,42(2001) 6283-6287]에 아세톤 용매 중에서 중합한 폴리케톤을 2,4-펜탄디온으로 추출 처리하여, Pd 함유량을 20ppm 이하로 감소시킴으로써 폴리케톤의 내열성을 향상시키는 것이 개시되어 있다. 이 폴리케톤은 중합 용매로 알코올을 사용하지 않기 때문에 이 조건에서는 중합 활성이 매우 낮다. 또한 중합 후 번잡한 Pd 추출 처리가 필요하고, 생산성 및 비용의 관점에서 공업적으로 채용할 수가 없다.        As a method for reducing the amount of palladium remaining in the polyketone polymer after polymerization, polyketone polymerized in an acetone solvent is subjected to extraction treatment with 2,4-pentanedione in Polymer, 42 (2001) 6283-6287 to obtain Pd And the content is reduced to 20 ppm or less to improve the heat resistance of the polyketone. This polyketone does not use alcohol as a polymerization solvent and therefore has very low polymerization activity under these conditions. Further, after complicated polymerization, complicated extraction of Pd is required, which can not be industrially employed from the viewpoints of productivity and cost.

국제공개 WO00/09611호에는 Pd 함유량이 5ppm인 폴리케톤이 개시되어 있다. 그러나 이 폴리케톤은 80℃, 5MPa에서 중합한 후에, 중합체 중의 Pd를 용매추출에 의해 제거한 것으로, 장시간의 열처리를 필요로 하는 등의 문제가 있다. International Publication No. WO00 / 09611 discloses polyketones having a Pd content of 5 ppm. However, this polyketone is obtained by polymerizing Pd at 80 deg. C and 5 MPa and then removing Pd in the polymer by solvent extraction, which requires a long heat treatment.

따라서 폴리케톤 중합물 생산에 대한 경제성 공정안정성을 고려할 시 중합물에 잔존할 것으로 예상되는 약 50%의 팔라듐을 제거하는 방법은 용이하지 않다. 폴리케톤은 열을 받음으로써 Paal-Knorr반응에 의한 푸란환의 생성이나 알돌축합에 의한 분자내, 분자간 가교의 생성 등의 화학 반응을 일으켜, 열에 의한 열화가 진행되며 이러한 화학 반응은 폴리케톤 중에 잔존하는 중합 촉매(팔라듐)에 의해 가속화되나, 중합촉매의 활성향상 기술로써 중합물내 팔라듐의 잔존량은 5~10ppm 수준으로 낮출 시 열화에 대한 팔라듐의 영향은 문제의 소지가 되지 않는다..   Therefore, it is not easy to remove palladium of about 50%, which is expected to remain in the polymerizate when considering economical process stability for production of polyketone polymer. Polyketone receives heat and generates chemical reaction such as formation of furan ring by Paal-Knorr reaction or formation of intramolecular and intermolecular crosslinking by aldol condensation, and deterioration by heat proceeds, and this chemical reaction remains in polyketone Although accelerated by the polymerization catalyst (palladium), when the residual amount of palladium in the polymer is lowered to the level of 5 to 10 ppm as a technique of improving the activity of the polymerization catalyst, the effect of palladium on deterioration is not a problem.

그렇다면 폴리케톤 중합에 사용한 팔라듐을 용이하게 회수 할 수 있는 방법은 중합공정내 MeOH 정제과정의 부산물인 Heavy End 에 존재하는 팔라듐을 추출하는 방법이 최적이라 판단할 수 있다. MeOH 증류탑에서 부산물로 얻어지는 Heavy End 용액에서 팔라듐을 추출하는 기술로는 KR 1200807 B1 에 기재된 이온교환 수지를 이용한 팔라듐의 회수기술을 들 수 있다. 이는 메탄올 증류탑에서 발생하는 Heavy end 용액을 적정 pH로 전처리후 이온교환수지를 통과시켜 팔라듐을 선택적으로 흡착하고 추가로 탈착공정을 통해 팔라듐을 분리한후 이온교환수지를 재사용 하는 방법이다. 이 기술은 선택적인 팔라듐을 분리하는 데 의의가 있으나, Heavy End 용액의 pH조정을 위한 산탱크, 적정조, 탈착용액 등의 부대설비 비용부담 및 고가의 이온교환수지에 대한 부담을 안고 있다.  Therefore, it can be judged that the method of easily recovering the palladium used in the polyketone polymerization is a method of extracting palladium present in the heavy end, which is a by-product of the MeOH purification process in the polymerization process. As a technique for extracting palladium from a Heavy End solution obtained as a by-product in a MeOH distillation column, there is a palladium recovery technique using the ion exchange resin described in KR 1200807 B1. This is a method of pretreating the heavy end solution from the methanol distillation column with an appropriate pH, passing the ion exchange resin selectively to adsorb palladium, further separating the palladium through the desorption process, and reusing the ion exchange resin. This technique is effective in separating the selective palladium, but it has the burden of the additional facilities such as acid tank, titration tank and desorption solution for pH adjustment of the heavy end solution and the burden on expensive ion exchange resin.

한국 등록특허 10-1200807호Korean Patent No. 10-1200807 국제 공개특허 WO00/09611호WO00 / 09611

본 발명은 폴리케톤 중합에 사용되는 팔라듐촉매의 회수량을 증대하기 위하여 Heavy End 용액내 간단한 염기/환원제의 처방으로 팔라듐의 침전량을 최대화 하는 방법을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a method of maximizing the amount of palladium precipitated by a simple base / reducing agent formulation in a heavy end solution in order to increase the recovery of palladium catalyst used in polyketone polymerization.

상기한 목적을 달성하기 위하여, 본 발명은 폴리케톤 중합용매로 사용한 MeOH의 분별증류 정제장치의 Heavy End 부산물중 약 2~4ppm의 팔라듐을 함유한 맑은 용액에 염기 및 환원제를 처리하여 액상에 존재하는 팔라듐을 침전상으로 전환시키는 기술을 제공한다.In order to accomplish the above object, the present invention provides a method for purifying a polyketone which comprises treating a clear solution containing about 2 to 4 ppm of palladium in a MeOH fractionation distillation and purification apparatus used as a polymerization solvent of a polyketone with a base and a reducing agent, To provide a technique for converting palladium to a precipitate phase.

본 발명의 폴리케톤 중합공정에서 발생되는 부산물에서 팔라듐 촉매 회수량을 최대화 하는 간단하고 추가설비가 불필요한 기술을 제공한다. MeOH 분별증류장치의 부산물인 Heavy End 용액의 상온냉각과 염기/환원제의 소량 처방으로 팔라듐을 침전시켜 팔라듐 촉매의 회수 Process를 간단하게 수행한다. The present invention provides a simple and unnecessary facility for maximizing the recovery of the palladium catalyst in the byproducts generated in the polyketone polymerization process of the present invention. The palladium catalyst is recovered by simple precipitation of palladium by cooling the Heavy End solution, which is a byproduct of the MeOH fractional distillation apparatus, at room temperature and a small amount of base / reducing agent.

본 발명은 상기한 목적을 달성하기 위하여, 폴리케톤 중합용매로 사용한 MeOH의 분별증류 정제장치의 Heavy End 부산물중 약 2~4ppm의 팔라듐을 함유한 맑은 용액에 염기 및 환원제를 처리하여 액상에 존재하는 팔라듐을 침전상으로 전환시키는 기술을 제공한다. In order to achieve the above object, the present invention provides a method for purifying a polyketone which comprises treating a clear solution containing about 2 to 4 ppm of palladium among the Heavy End by-products of a fractional distillation and purification apparatus using MeOH as a polymerization solvent, To provide a technique for converting palladium to a precipitate phase.

팔라듐은 촉매활성을 가진 상태에서는 2가 내지 4가의 양이온으로 존재하며 극성 및 약한 극성의 용매에 용해된 상태로 존재하며, 팔라듐 0가(원자)의 형태로 변환시 검정색의 침전물로 존재하여 왕수/질산 등 강산 이외의 용매에서는 용해되지 않는다. 따라서 중합촉매로 사용되는 팔라듐은 2가의 이온상태를 안정하게 유지하기 위해 바이덴테이트 포스핀 리간드와 pK4 이하의 산을 첨가하여 아세톤에 용해후 보관 하여 촉매용액을 보관한다. 중합에 사용된 팔라듐의 약 50%는 폴리케톤 파우더 내부에 존재하며, 나머지 약 50%는 중합용매인 MeOH와 같이 배출되어 MeOH의 분별증류후 Heavy End에 남게 된다. 상기의 팔라듐의 분배 메카니즘은 아직 밝혀져 있지 않으나, 팔라듐-포스핀리간드를 사용한 촉매시시템에서는 상기와 같은 팔라듐의 존재비율은 일정하게 유지하고 있다. 팔라듐2가 이온은 용액이 산성인 상태에서 상대적으로 안정한 형태를 유지하고 있으며, 산의 부재시 장기간 보관에 따라 팔라듐 0가의 검은색 침전을 발생시킨다. Palladium exists as a divalent to tetravalent cation in the state of catalytic activity and exists in a state of being dissolved in a solvent of polarity and weak polarity and exists as a black precipitate upon transformation into the form of palladium 0 (atom) It does not dissolve in solvents other than strong acids. Therefore, the palladium used as the polymerization catalyst is stored in the acetone and stored after the addition of the bidentate phosphine ligand and the acid below pK4 in order to stably maintain the divalent ion state. Approximately 50% of the palladium used in the polymerization is present in the polyketone powder, and the remaining 50% is discharged as MeOH, which is a polymerization solvent, and remains in the heavy end after the fractional distillation of MeOH. Although the mechanism of the palladium distribution is not known, the presence of palladium in the catalyst system using the palladium-phosphine ligand remains constant. Palladium divalent ions maintain a relatively stable morphology when the solution is acidic and produce black precipitates of palladium 0 over long periods of storage in the absence of acid.

이러한 팔라듐 이온특성에 착안하여, 본 발명은 Heavy End 용액의 상태를 염기성으로 변환시키고 저렴한 환원제를 첨가하여 용액내 팔라듐의 상태를 최대한 침전상태로 제조하여 팔라듐의 회수Process를 간소화 하기 위함이다. MeOH 정제탑에서 발생하는 Heavy End 용액은 약 60~70℃의 갈색의 맑은 용액으로 방출되나 상온으로 냉각됨에 따라 침전을 유발하여 표 1과 같은 구성을 갖게 된다. In view of such palladium ion characteristics, the present invention aims to simplify the recovery process of palladium by converting the state of the heavy end solution into a basic state and adding an inexpensive reducing agent to prepare the palladium state in the solution to the maximum precipitation state. The Heavy End solution generated from the MeOH purification column is released into a clear solution of brown at about 60-70 ° C., but precipitates as it is cooled to room temperature, resulting in the structure shown in Table 1.

sample 분류sample classification 발생량 비중Occurrence rate Pd 잔존비율Pd remaining ratio MeOH 함량(ppm)MeOH content (ppm) 침전물(solid)The solid (solid) 3.7%3.7% 82%82% N/AN / A 용액(liquid)Liquid 96.3%96.3% 18%18% 12.2912.29

팔라듐은 0가 2가 4가의 양이온 상태로 존재할 수 있으며, 0가의 팔라듐은 왕수/강산 이외에는 녹지않는 검정 고체상 형태를 유지하며, 2가 4가의 양이온은 극성의 유기용매에 용해된 상태로 존재한다. 특히 팔라듐 2가의 양이온은 폴리케톤 중합촉매 또는 하이드로 포르밀화 반응등 촉매로서 폭넓은 분야에 대표적인 촉매로 사용된다. Palladium can exist in a cationic state of 0, bivalent tetravalent, and 0-valent palladium maintains a black solid phase form that does not dissolve except for aqua regia / strong acid, and the divalent tetravalent cation exists in a polar organic solvent. In particular, palladium divalent cations are used as catalysts for polyketone polymerization catalysts or hydroformylation reactions as catalysts in a wide range of fields.

본 발명의 촉매금속 회수방법에 있어 폴리케톤의 중합공정은 다음과 같다. 폴리케톤은 일산화탄소와 공중합하는 에틸렌성 불포화 화합물과 금속촉매중합체와의 반응으로 중합된다. 일산화탄소와 공중합하는 에틸렌성 불포화 화합물의 예로는 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 환상 올레핀; 염화비닐 등의 할로겐화비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산에스테르 등을 들 수 있다. 이들 에틸렌성 불포화 화합물은 단독 또는 복수종의 혼합물로서 사용된다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2~4인 α-올레핀, 가장 바람직하게는 에틸렌이다.The polymerization process of the polyketone in the catalyst metal recovery method of the present invention is as follows. The polyketone is polymerized by the reaction of an ethylenically unsaturated compound that co-polymerizes with carbon monoxide with a metal catalyst polymer. Examples of the ethylenically unsaturated compound copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, -Olefins such as hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and? -Methylstyrene; But are not limited to, cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricyclodecene, pentacyclopentadecene, pentacyclohexadecene, Cyclic olefins such as cyclododecene; Vinyl halides such as vinyl chloride; Ethyl acrylate, and acrylates such as methyl acrylate. These ethylenically unsaturated compounds are used singly or as a mixture of plural kinds. Of these, preferred ethylenically unsaturated compounds are? -Olefins, more preferably? -Olefins having 2 to 4 carbon atoms, and most preferably ethylene.

일산화탄소와 에틸렌성 불포화 화합물의 반응 용기 내에서의 비율은 중합 활성 및 회수 비용의 관점에서, 일산화탄소/에틸렌성 불포화 화합물의 몰비가 1/1 내지 1/2.5가 바람직하다. 일산화탄소와 에틸렌성 불포화 화합물의 첨가 방법에는 특별히 제한은 없고, 미리 양자를 혼합한 후 첨가할 수도 있고, 또 각각 별도의 공급 라인에서 첨가할 수도 있다. 본 발명에서는 일산화탄소와 에틸렌성 불포화 화합물의 몰비가 1/2.5와 1/1인 혼합 가스를 미리 혼합한 후 일정 비율의 모노머를 지속적으로 투입하여 중합 활성을 높일 수 있었다The molar ratio of the carbon monoxide / ethylenically unsaturated compound to the ethylenically unsaturated compound in the reaction vessel is preferably 1/1 to 1 / 2.5 from the viewpoints of polymerization activity and recovery cost. The method of adding the carbon monoxide and the ethylenically unsaturated compound is not particularly limited and may be added after mixing them in advance, or they may be added in separate feed lines. In the present invention, a mixed gas having a molar ratio of carbon monoxide and an ethylenic unsaturated compound of 1 / 2.5 and 1/1 was mixed in advance, and then a certain amount of monomer was continuously added to increase the polymerization activity

본 발명을 실시함에 있어서, 중합법으로서는 액상 매체를 사용하는 용액중합법, 현탁중합법, 소량의 중합체에 고농도의 촉매 용액을 함침시키는 기상중합법 등이 사용된다. 중합은 배치식 또는 연속식 중 어느 것이어도 좋다. 중합에 사용하는 반응기는 공지의 것을 그대로 사용하거나 또는 가공하여 사용할 수 있다. 중합온도는 특별히 제한은 없고, 일반적으로 40~180℃, 바람직하게는 50~120℃이다. 중합시의 압력에 대해서도 제한은 없으나, 일반적으로 상압~20MPa, 바람직하게는 4~15MPa이다.In carrying out the present invention, the polymerization method includes a solution polymerization method using a liquid medium, a suspension polymerization method, a vapor phase polymerization method in which a small amount of a polymer is impregnated with a high concentration catalyst solution, and the like. The polymerization may be either batchwise or continuous. As the reactor used for the polymerization, known ones can be used as they are or by processing. The polymerization temperature is not particularly limited and is generally 40 to 180 占 폚, preferably 50 to 120 占 폚. The pressure at the time of polymerization is not particularly limited, but is generally from normal pressure to 20 MPa, preferably from 4 to 15 MPa.

폴리케톤 중합촉매로서의 팔라듐은 초산팔라듐의 형태로 투입되며 바이덴테이트 포스핀 리간드와 결합하여 pK 4 이하의 산이 첨가되면 2가의 안정한 상태를 유지하며 에틸렌성 불포화 화합물과 일산화탄소의 교대공중합을 이루어 낸다. 중합공정 후에는 폴리케톤 중합물에 약 50%가 잔존하며 중합용매인 MeOH으로 약 50%의 팔라듐이 2가의 형태로 배출된다고 보고되어 있다. Palladium as a polyketone polymerization catalyst is added in the form of palladium acetate. When an acid below pK 4 is added by bonding with a bidentate phosphine ligand, bivalent stable state is maintained and alternating copolymerization of an ethylenically unsaturated compound and carbon monoxide is achieved. After the polymerization process, it is reported that about 50% of the polyketone polymer remains and about 50% of the palladium is discharged in a bivalent form by the polymerization solvent MeOH.

본 기술은 이미 존재하고 있는 Heavy End 저장조에 단순 여과장치만 추가하여 염기/환원제의 일정량 첨가로 Heavy End 용액내 존재하는 팔라듐의 약 90% 이상을 침전화시켜 팔라듐의 회수process를 간소화하는데 있다. 이에 사용되는 염기는 NaOH, KOH, LiOH, Mg(OH)2 및 NH3로 이루어진 군에서 선택된 어느 하나이고, 환원제로는 Sodium thiosulfate, ferrocyanide, Sodium Borohydride, Diborane, Lithium aluminium hydride, Sulfite Compound 및 Hydrazine로 이루어진 군에서 선택된 어느 하나이나 이에 한정되지는 않는다. 염기와 환원제는 각각이 독립되어 사용될 수 있고, 염기와 환원제를 동시에 사용할 수도 있다.This technique simplifies the palladium recovery process by adding only a simple filtration device to the already existing Heavy End storage tank, and by adding a certain amount of base / reducing agent, about 90% or more of the palladium present in the heavy end solution is dredged. The base used herein is any one selected from the group consisting of NaOH, KOH, LiOH, Mg (OH) 2 and NH3, and the reducing agent includes sodium thiosulfate, ferrocyanide, sodium borohydride, diborane, lithium aluminum hydride, But are not limited thereto. The base and the reducing agent may be used independently, and the base and the reducing agent may be used at the same time.

염기의 함유량은 0.5 내지 3 g/l 가 바람직하며, 환원제의 함유량은 0.5 내지 2 g/l 가 바람직하다.The content of the base is preferably 0.5 to 3 g / l, and the content of the reducing agent is preferably 0.5 to 2 g / l.

(1) 폴리케톤 중 원소량(1) The amount of the polyketone

팔라듐, 원소에 대해서 ICP-AES를 이용하여 측정하였다.Palladium and elements were measured using ICP-AES.

비교예 1Comparative Example 1

폴리케톤 중합설비의 가동시 실시간 가동중인 MeOH 분별증류장치에서 발생되는 부산물인 Heavy End 용액을 실시간으로 채취하여 상온(약 20℃)로 자연냉각 하였다. Heavy End 용액 배출시의 온도는 65℃ 였으며 갈색의 탁한 용액이었으며, 냉각에 따라 갈색의 침전물이 발생하였다. 총 15.77kg의 용액을 10um glass filter 로 고액분리 하였으며, 침전물 582g을 수득하였다. 고체상/액체상의 ICP-AES 분석을 통한 결과 고체상에 507ppm(82%), 액체상에 4.2ppm(18%)의 팔라듐이 잔존하였다. Heavy - end solution, which is a by - product of MeOH fractionation distillation device operating in real - time during polyketone polymerization, is collected in real time and naturally cooled to room temperature (about 20 ° C). The temperature at the time of discharging the Heavy End solution was 65 ° C. It was a brownish turbid solution, and brown precipitates were formed upon cooling. A total of 15.77 kg of the solution was subjected to solid-liquid separation with a 10-μm glass filter, and 582 g of a precipitate was obtained. ICP-AES analysis of the solid / liquid phase revealed 507 ppm (82%) of palladium on the solid phase and 4.2 ppm (18%) on the liquid phase.

실시예 1~5Examples 1-5

비교예 1에서 수득한 Heavy End 액체상을 채취하여 NaOH 및 Sodium thiosulfate를 표 2와 같이 처방하여 6시간 교반후 여과하고 용액상을 ICP-AES 분석을 통해 용액상의 팔라듐 잔사량감소를 확인하였다. Heavy End Liquid 내 NaOH 첨가량 증가에 따른 고체상내 팔라듐 침전량의 증가 경향이 관찰되었다.The Heavy End liquid phase obtained in Comparative Example 1 was sampled, NaOH and sodium thiosulfate were formulated as shown in Table 2, stirred for 6 hours, filtered, and the amount of palladium remaining in the solution phase was confirmed through ICP-AES analysis. The increase of NaOH addition in Heavy End Liquid was accompanied by increasing tendency of palladium precipitation in solid phase.

sample 분류sample classification NaOH 첨가량 (g/l)Amount of NaOH added (g / l) Na2S2O3 첨가량
(g/l)
Amount of Na2S2O3 added
(g / l)
Pd 함유량
(ppm)
Pd content
(ppm)
발생량(g)Amount Generated (g) Pd 잔존비율(%)Pd remaining ratio (%)
비교예1Comparative Example 1 Heavy End SolidHeavy End Solid -- -- 507507 582582 8282 Heavy End liquidHeavy End liquid -- -- 4.24.2 15.19015.190 1818 실시예1Example 1 Heavy End SolidHeavy End Solid -- -- 507507 582582 8383 Heavy End liquidHeavy End liquid 0.50.5 -- 3.93.9 15.19015.190 1717 실시예2Example 2 Heavy End SolidHeavy End Solid -- -- 507507 582582 8585 Heavy End liquidHeavy End liquid 1.01.0 -- 3.53.5 15.19015.190 1515 실시예3Example 3 Heavy End SolidHeavy End Solid -- -- 507507 582582 8989 Heavy End liquidHeavy End liquid 1.51.5 -- 2.32.3 15.19015.190 1111 실시예4Example 4 Heavy End SolidHeavy End Solid -- -- 507507 582582 9797 Heavy End liquidHeavy End liquid 2.02.0 -- 1.41.4 15.19015.190 77 실시예5Example 5 Heavy End SolidHeavy End Solid -- -- 507507 582582 9494 Heavy End liquidHeavy End liquid 1.01.0 1.01.0 1.31.3 15.19015.190 66

Claims (1)

폴리케톤 중합공정의 팔라듐 금속 촉매 회수방법에 있어서,팔라듐-바이덴테이트 포스핀리간드-pK 4이하의 산으로 구성된 액상 폴리케톤 슬러리 중합공정의 분별증류 정제과정 중 발생하는 부산물 용액(Heavy End Solution)에 염기 및/또는 환원제를 사용하여 팔라듐을 고체상으로 침전시켜 부산물 용액(Heavy End Solution)내 팔라듐 잔존량을 7% 미만으로 하며,
상기 염기는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화리튬(LiOH), 수산화마그네슘(Mg(OH)2) 및 암모니아(NH3)로 이루어진 군에서 선택된 어느 하나이고, 상기 환원제는 티오황산나트륨(Sodium thiosulfate), 페로시아나이드(ferrocyanide), 수소화알루미늄리튬(Lithium aluminium hydride) 및 아황산염 화합물(sulfite Compound)로 이루어진 군에서 선택된 어느 하나이며,
상기 염기의 함유량은 0.5 내지 3g/l이고, 상기 환원제의 함유량은 0.5 내지 2g/l인 것을 특징으로 하는 팔라듐 금속 촉매 회수방법.
In a method for recovering a palladium metal catalyst in a polyketone polymerization process, a by-product solution (Heavy End Solution) generated during a fractional distillation purification process of a liquid polyketone slurry polymerization process composed of an acid of palladium-bidentate phosphine ligand- Palladium is precipitated in a solid phase using a base and / or a reducing agent to reduce the amount of palladium remaining in the by-product solution to less than 7%
Wherein the base is any one selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2) and ammonia (NH3), and the reducing agent is sodium thiosulfate Sodium thiosulfate, ferrocyanide, lithium aluminum hydride, and sulfite compound, and is preferably selected from the group consisting of sodium thiosulfate, ferrocyanide,
Wherein the content of the base is 0.5 to 3 g / l, and the content of the reducing agent is 0.5 to 2 g / l.
KR1020160102000A 2016-08-10 2016-08-10 Method for the recovery of catalytic metal from polyketone KR101695713B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160102000A KR101695713B1 (en) 2016-08-10 2016-08-10 Method for the recovery of catalytic metal from polyketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160102000A KR101695713B1 (en) 2016-08-10 2016-08-10 Method for the recovery of catalytic metal from polyketone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140129089A Division KR20160036887A (en) 2014-09-26 2014-09-26 Method for the recovery of catalytic metal from polyketone

Publications (2)

Publication Number Publication Date
KR20160100285A true KR20160100285A (en) 2016-08-23
KR101695713B1 KR101695713B1 (en) 2017-01-12

Family

ID=56875563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160102000A KR101695713B1 (en) 2016-08-10 2016-08-10 Method for the recovery of catalytic metal from polyketone

Country Status (1)

Country Link
KR (1) KR101695713B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009611A1 (en) 1998-08-10 2000-02-24 Asahi Kasei Kogyo Kabushiki Kaisha Polyketone solution
JP2009102722A (en) * 2007-10-25 2009-05-14 Yokohama Kinzoku Kk Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal
KR20090072442A (en) * 2007-12-28 2009-07-02 주식회사 효성 Process for producing polyketone
KR20120103079A (en) * 2011-03-09 2012-09-19 (주)알티아이엔지니어링 Method for the recovery of precious metals from polyketone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009611A1 (en) 1998-08-10 2000-02-24 Asahi Kasei Kogyo Kabushiki Kaisha Polyketone solution
JP2009102722A (en) * 2007-10-25 2009-05-14 Yokohama Kinzoku Kk Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal
KR20090072442A (en) * 2007-12-28 2009-07-02 주식회사 효성 Process for producing polyketone
KR20120103079A (en) * 2011-03-09 2012-09-19 (주)알티아이엔지니어링 Method for the recovery of precious metals from polyketone
KR101200807B1 (en) 2011-03-09 2012-11-14 (주)알티아이엔지니어링 Method for the recovery of precious metals from polyketone

Also Published As

Publication number Publication date
KR101695713B1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
CN107428657B (en) Polyacrylic acid production system and method
CN108026013B (en) Production system/production method for acrylic acid and precursor thereof
US3984388A (en) Process to prepare polyketones
KR20090090154A (en) Method for recovering catalysts from a copolymerization process
KR20130044223A (en) Method for producing polyalkylene carbonates
JP3773963B2 (en) Method for producing polyether polyol
CN115304577B (en) Preparation method of vinylene carbonate
EP3020742B1 (en) Trioxane composition and method for storing same
JPH10212348A (en) Production of polyether polyol
KR20160036887A (en) Method for the recovery of catalytic metal from polyketone
KR101695713B1 (en) Method for the recovery of catalytic metal from polyketone
KR101097478B1 (en) Method for the Preparation of Purified Elastomers from Solution
CN112739675B (en) Method for recovering high quality 3-methyl-but-3-en-1-ol
US20040214718A1 (en) Inorganic intercalating nano-catalyst for the fixation of carbon dioxide into aliphatic polycarbonate and a process for preparing the same
CN109776762B (en) O-cresol formaldehyde epoxy resin and preparation method and application thereof
CN111646929A (en) Method for purifying dimethyl sulfoxide
EP3250545B1 (en) Processes for producing acetic acid
KR101799093B1 (en) Production method of poly(alkylene carbonate) particles
JP2015214521A (en) Purification method of compound, production method of polymeric compound, and photolithographic material
CN108654704B (en) Functional material and production method and application thereof
US20040220353A1 (en) Process for preparation of polyether polyols
US4189565A (en) Process for polymerizing trioxane
JP2613708B2 (en) Method for producing epoxy resin film containing no impurity ions
CN117143331B (en) Method and production system for refining polyether ketone by supercritical carbon dioxide
CN113980262B (en) Preparation method of epoxy end-capped allyl alcohol polyether

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191212

Year of fee payment: 4