KR20160098653A - A method of preparing silicon based anode active materials and lithium secondary battery using the same - Google Patents

A method of preparing silicon based anode active materials and lithium secondary battery using the same Download PDF

Info

Publication number
KR20160098653A
KR20160098653A KR1020150020232A KR20150020232A KR20160098653A KR 20160098653 A KR20160098653 A KR 20160098653A KR 1020150020232 A KR1020150020232 A KR 1020150020232A KR 20150020232 A KR20150020232 A KR 20150020232A KR 20160098653 A KR20160098653 A KR 20160098653A
Authority
KR
South Korea
Prior art keywords
silicon
metal
silicon nanowire
lithium secondary
secondary battery
Prior art date
Application number
KR1020150020232A
Other languages
Korean (ko)
Other versions
KR101654281B1 (en
Inventor
백성호
박정수
김재현
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020150020232A priority Critical patent/KR101654281B1/en
Publication of KR20160098653A publication Critical patent/KR20160098653A/en
Application granted granted Critical
Publication of KR101654281B1 publication Critical patent/KR101654281B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

Provided in the present invention are a method for manufacturing a silicon nanowire for a lithium secondary battery coated with a metal on a surface, and a silicon nanowire for a lithium secondary battery manufactured therefrom. The method comprises the steps of: (a) forming a silicon nanowire by a metal-catalyst etching method; (b) removing the randomly electrodeposited metal on the surface of the etched silicon nanowire; and (c) carrying the silicon nanowire in a diluted solution of strong acid and precipitating metal particles on the surface of the silicon nanowire. Provided is the lithium secondary battery, which has high capacity and can perform charging and discharging at a high speed.

Description

실리콘계 음극활물질의 제조방법 및 이를 이용한 리튬이차전지{A method of preparing silicon based anode active materials and lithium secondary battery using the same}[0001] The present invention relates to a method for preparing a silicon-based anode active material and a lithium secondary battery using the same,

본 발명은 이차전지용 실리콘계 음극활물질 및 이를 이용한 리튬이차전지에 관한 것으로, 이들의 제조방법에 대해서 기술한다. The present invention relates to a silicon-based negative electrode active material for a secondary battery and a lithium secondary battery using the same.

최근 급증하고 있는 스마트폰 및 태블릿 PC와 같은 개인휴대 단말장치나 하이브리드 전기자동차, 플러그인 전기자동차와 같은 전기자동차의 전원장치로서 리튬이차전지에 대한 수요가 크게 증가하고 있으며, 특히 기존의 상용 리튬이차전지의 음극 및 양극 소재를 대체할 수 있는 고출력 및 고에너지밀도 활물질 개발이 전 세계적으로 활발히 진행되고 있다. 2. Description of the Related Art Demand for lithium secondary batteries has been greatly increased as a power source for electric vehicles such as personal portable terminal devices such as smart phones and tablet PCs, hybrid electric vehicles and plug-in electric vehicles, High-power and high-energy-density active materials capable of replacing the anode and cathode materials have been actively developed all over the world.

음극의 경우 대부분의 상용 리튬이차전지에서 사용되는 흑연의 이론 용량이 372mAh/g 수준이므로 고용량 배터리 구현이 불가능하다. 이를 극복하기 위한 활물질로서 이론용량이 4,200mAh/g에 달하는 실리콘을 기반으로 하는 실리콘계 음극활물질이 크게 주목받아 왔다. 실리콘 음극활물질은 도전재(카본) 및 접착제(바인더)를 실리콘 재료와 혼합하여 슬러리 형태로 제조한 후 금속집전체 위에 코팅하는 것이 일반적이다.In the case of the cathode, since the theoretical capacity of graphite used in most commercial lithium secondary batteries is 372 mAh / g, it is impossible to realize a high capacity battery. As an active material for overcoming this problem, a silicon based anode active material having a theoretical capacity of 4,200 mAh / g has attracted much attention. The silicon anode active material is generally prepared by mixing a conductive material (carbon) and an adhesive (binder) with a silicone material to prepare a slurry and then coating the material on the metal current collector.

한편, 리튬과 전기화학적으로 합금이 이루어지는 대부분의 금속 및 금속산화물 물질과 마찬가지로 실리콘 또한 충방전에 따르는 부피팽창과 수축에 의한 전극의 기계적 손상, 이에 의한 급속한 수명 단축 문제를 해결하기 위해서 입자의 나노 사이즈화 및 리튬 활성/비활성 이종재료와의 복합화를 통한 성능향상이 추구되고 있다. 이러한 방법 중 하나로 실리콘의 부피 팽창과 수축에 상당한 완충력을 가지고 있어서 실리콘의 균열을 방지할 수 있는 실리콘을 나노 와이어 형태로 식각시켜 음극활물질로 사용하려는 많은 연구가 시도되었다. On the other hand, in order to solve the mechanical damage of the electrode due to the volume expansion and shrinkage caused by charging and discharging, and the rapid shortening of the service life due to the charging and discharging, as well as most metal and metal oxide materials in which an alloy is electrochemically alloyed with lithium, Improvement in performance through the combination of lithium and active / inactive lithium materials has been pursued. As one of these methods, many researches have been made to use silicon as a negative electrode active material in the form of nanowires, which can prevent cracking of silicon due to a considerable buffering force against volume expansion and shrinkage of silicon.

하지만, 이러한 실리콘 나노와이어를 이용한 음극활물질을 리튬이차 전지에 사용할 경우, 고속 충방전 시 실리콘 표면에 형성되는 고체 전해질 계면으로 인해 비용량 및 사이클 특성이 저하되는 단점이 있다.However, when the negative electrode active material using such a silicon nanowire is used in a lithium secondary battery, the non-capacity and cycle characteristics are deteriorated due to the solid electrolyte interface formed on the silicon surface during high-speed charge and discharge.

특허 참조 문헌:Patent Reference:

한국공개특허 제10-2010-0127990호 Korean Patent Publication No. 10-2010-0127990

한국공개특허 제10-2011-0123578호Korean Patent Publication No. 10-2011-0123578

본 발명은 상기 문제점을 해결하고, 실리콘 나노와이어를 음극활물질로 사용하는 경우에 있어, 표면에 형성되는 고체 전해질계면을 억제시켜 사이클 특성 개선하고, 용량 특성을 향상시키는 것을 목적으로 한다. 이를 위해 본 발명은 표면에 금속 입자가 코팅된 실리콘 나노와이어를 음극 확물질을 제공하고, 고용량 및 고속충방전의 구현의 가능한 리튬이차전지를 제공한다. . DISCLOSURE Technical Problem The present invention aims to solve the above problems and to improve the cycle characteristics and the capacity characteristics by suppressing the solid electrolyte interface formed on the surface when the silicon nanowires are used as the negative electrode active material. To this end, the present invention provides a lithium secondary battery capable of realizing a high-capacity and high-speed charge-discharge by providing a cathode material with a silicon nanowire whose surface is coated with metal particles. .

본 발명의 일 구현예는 금속촉매식각법에 의하여 실리콘 나노와이어를 형성하는 (a) 단계; 식각된 실리콘 나노와이어 표면에 무작위로 전착된 금속을 제거하는 (b) 단계; 및 실리콘 나노와이어를 강산의 희석액에 담지하여 실리콘 나노와이어 표면에 금속 입자를 석출시키는 (c) 단계를 포함하는 리튬이차전지용 실리콘 나노와이어의 제조방법을 제공한다. One embodiment of the present invention includes the steps of (a) forming a silicon nanowire by metal catalyst etching; (B) removing randomly electrodeposited metal on the etched silicon nanowire surface; And (c) depositing metal particles on the surface of the silicon nanowire by supporting the silicon nanowires in a dilution liquid of a strong acid. The present invention also provides a method of manufacturing a silicon nanowire for a lithium secondary battery.

본 발명의 일 구현예에서, (a) 단계는 식각액에 실리콘 기판을 담지하는 것을 포함하며, 상기 식각액은 불산(HF) 수용액 및 용해된 금속을 포함한다. In one embodiment of the present invention, step (a) comprises supporting a silicon substrate on an etchant, wherein the etchant comprises an aqueous solution of hydrofluoric acid (HF) and a molten metal.

본 발명의 일 구현예에서, 상기 불산 수용액의 농도는 4 M 내지 5 M이다. In one embodiment of the present invention, the concentration of the aqueous solution of hydrofluoric acid is 4M to 5M.

본 발명의 일 구현예에서, (c) 단계에서 강산의 희석액이 0.01M 내지 1M의 농도이다. In one embodiment of the present invention, the diluent of the strong acid in step (c) has a concentration of 0.01M to 1M.

본 발명의 일 구현예에서, 상기 금속이 은, 금, 구리, 납, 주석, 니켈, 코발트, 카드뮴, 철, 크롬, 및 아연으로부터 선택되는 1 이상이다. In one embodiment of the present invention, the metal is at least one selected from silver, gold, copper, lead, tin, nickel, cobalt, cadmium, iron, chromium and zinc.

본 발명의 일 구현예에서, 상기 금속이 은이 포함된다. In one embodiment of the invention, the metal comprises silver.

본 발명의 일 구현예에서, 상기 불산 수용액 내의 금속의 농도가 0.01M 내지 0.05M이다. In one embodiment of the present invention, the concentration of the metal in the aqueous solution of hydrofluoric acid is 0.01M to 0.05M.

본 발명의 일 구현예에서, (b) 단계가 질산 에칭액에 실리콘 나노와이어를 담지함으로써 수행된다.In one embodiment of the present invention, step (b) is carried out by supporting a silicon nanowire in a nitric acid etching solution.

본 발명의 일 구현예에서, (c) 단계의 강산이 불산(HF), 염산(HCl), 황산(H2SO4) 또는 질산(HNO3)이다. Is In one embodiment, (c) the strong acid in step hydrofluoric acid (HF), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4) or nitric acid (HNO 3).

본 발명의 다른 구현예는, 상기 방법에 의하여 제조된 리튬이차전지용 실리콘 나노와이어를 제공하며, 이때 실리콘 나노와이어의 표면에 금속 입자가 균일하게 분포된다.Another embodiment of the present invention provides a silicon nanowire for a lithium secondary battery manufactured by the above method, wherein metal particles are uniformly distributed on the surface of the silicon nanowire.

본 발명의 다른 구현예는, 상기 실리콘 나노와이어를 포함하는 음극 활물질을 제공한다. Another embodiment of the present invention provides an anode active material comprising the silicon nanowire.

본 발명의 다른 구현예는, 상기 음극 활물질을 사용하는 리튬이차전지를 제공한다.Another embodiment of the present invention provides a lithium secondary battery using the negative electrode active material.

본 발명은 실리콘 나노와이어 표면에 금속 입자를 코팅시키는 방법 및 이로부터 얻어지는 음극 활물질을 이용하여 용량 특성 및 사이클 특성이 개선된 리튬이차전지를 제공한다. 나아가, 본 발명에 따른 리튬이차전지를 이용함으로써 전기자동차 및 대형 에너지저장장치의 구현이 가능해 진다. The present invention provides a lithium secondary battery improved in capacity characteristics and cycle characteristics by a method of coating metal particles on the surface of a silicon nanowire and a negative electrode active material obtained therefrom. Further, by using the lithium secondary battery according to the present invention, it becomes possible to realize an electric vehicle and a large energy storage device.

도 1은 금속 입자가 코팅된 실리콘 나노와이어 형성 공정의 모식도이다.
도 2는 금속 입자가 코팅된 실리콘 나노와이어와 부착되지 않은 실리콘 나노와이어 SEM 이미지를 각각 나타낸 것이다. ((a) 및 (c): 실시예의 금속 입자가 코팅된 실리콘 나노와이어, (b) 및 (d): 비교예의 금속 입자가 코팅되지 않은 금속 실리콘 나노와이어를 나타낸 것이다.
도 3은 금속 입자가 코팅된 실리콘 나노와이어와 부착되지 않은 실리콘 나노 와이어의 XRD 스펙트럼을 나타낸 것이다.
도 4는 금속 입자가 코팅된 실리콘 나노와이어 TEM 이미지(좌) 및 EDX 이미지(우) 금속 입자가 코팅된 실리콘 나노와이어의 TEM 이미지 및 EDX mapping 이미지를 나타낸다.
도 5는 실시예 및 비교예에서 제조된 실리콘 나노와이어를 이용하여 제조된 코인셀의 임피던스 측정결과를 각각 나타낸 것이다.
1 is a schematic view of a process of forming a silicon nanowire with metal particles coated thereon.
2 shows SEM images of silicon nanowires coated with metal particles and silicon nanowires not attached, respectively. (a) and (c): silicon nanowires coated with metal particles of the examples, and (b) and (d): metallic silicon nanowires not coated with metal particles of the comparative example.
FIG. 3 shows the XRD spectrum of silicon nanowires coated with metal particles and silicon nanowires not adhered thereto.
FIG. 4 shows a TEM image and EDX mapping image of a silicon nanowire coated with metal particles (left) and a silicon nanowire coated with EDX image (right) metal particles. FIG.
FIG. 5 shows impedance measurement results of a coin cell fabricated using the silicon nanowires manufactured in Examples and Comparative Examples, respectively.

본 발명의 일 구현예는 표면에 금속이 코팅된 리튬이차전지용 실리콘 나노와이어를 제조하는 방법 및 이로부터 제조된 실리콘 나노와이어를 제공한다.One embodiment of the present invention provides a method of manufacturing a silicon nanowire for a lithium secondary battery having a surface coated with a metal and a silicon nanowire produced therefrom.

본 발명의 일 구현예로, 상기 방법은, 금속촉매식각법에 의하여 실리콘 나노와이어를 형성하는 (a) 단계, 식각된 실리콘 나노와이어 표면에 전착된 금속을 제거하는 (b) 단계; 및 실리콘 나노와이어를 강산의 희석액에 담지하여 실리콘 나노와이어 표면에 금속 입자를 석출시키는 (c) 단계를 포함한다.  In one embodiment of the present invention, the method includes: (a) forming a silicon nanowire by metal catalyst etching; (b) removing a metal electrodeposited on the surface of the etched silicon nanowire; And (c) supporting the silicon nanowires in a diluted solution of strong acid to precipitate the metal particles on the surface of the silicon nanowires.

본 발명의 또 다른 구현예는, 상기 제조방법에 의하여 얻어진 실리콘 나노와이어를 기판으로부터 분리시킨 후, 도전재 및 바인더와 혼합하여 슬러리 형태로 제조한 뒤, 금속집전체 위에 코팅하여 음극재를 제조하고 이로부터 최종적으로 리튬이차전지를 제조하는 방법을 제공한다. In another embodiment of the present invention, the silicon nanowires obtained by the above-described method are separated from a substrate, mixed with a conductive material and a binder to prepare a slurry, and then coated on a metal current collector to produce an anode material Thereby providing a method for finally manufacturing a lithium secondary battery.

본 발명의 또 다른 구현예는 상기 방법에 의하여 제조된 리튬이차전지를 제공한다. Another embodiment of the present invention provides a lithium secondary battery produced by the above method.

이하에서는 본 발명에 대해 보다 구체적으로 설명한다.
Hereinafter, the present invention will be described in more detail.

(a) 단계 (a)

먼저, (a) 단계에서는 금속촉매식각법을 이용하여 실리콘 나노와이어를 식각한다. 일 구현예로, 실리콘 기판을 불산(HF) 수용액 및 용해된 금속을 포함하는 식각액에 담지시켜 도 1a과 같이 실리콘 나노와이어를 형성시킨다. 이때, 상기 식각액은 4 내지 5 M의 범위, 바람직하게는 4.6 내지 5 M 범위의 불산(HF) 수용액을 포함한다. First, in step (a), the silicon nanowires are etched using a metal catalyst etching method. In one embodiment, the silicon substrate is supported on an etchant containing an aqueous solution of hydrofluoric acid (HF) and a molten metal to form silicon nanowires as shown in FIG. 1A. Wherein the etchant comprises a hydrofluoric acid (HF) solution in the range of 4 to 5 M, preferably in the range of 4.6 to 5 M.

상기 금속은 실리콘 기판을 산화시키는 촉매로 작용하여 실리콘 산화물을 형성하고, 불산 수용액이 실리콘 산화물을 식각함으로써 실리콘 나노와이어가 형성된다. 이때, 상기 금속은 은, 금, 구리, 납, 주석, 니켈, 코발트, 카드뮴, 철, 크롬, 및 아연으로부터 선택되는 1 이상일 수 있으며, 바람직하게는 은이다. 금속 입자와 입자는 서로 간격을 가지도록 제어되어야 하며, 이를 위해 바람직하게는 금속 입자의 사이즈가 수십 내지 수백 nm의 범위일 수 있다. 이러한 조건을 만족하여야 (c) 단계를 거쳐 형성된 실리콘 나노와이어 표면에 균일한 코팅이 이루어질 수 있다. 상기 불산 수용액 내에 용해된 금속의 농도는 0.01M 내지 0.05 M의 범위, 바람직하게는 0.03M 내지 0.04M 범위일 수 있다. 대표적으로, 은(Ag) 입자를 사용한 경우, 실리콘의 식각 반응시 일어나는 산화 환원 반응식을 아래와 같다.
The metal functions as a catalyst for oxidizing the silicon substrate to form silicon oxide, and the silicon nanowire is formed by etching the silicon oxide in the hydrofluoric acid aqueous solution. At this time, the metal may be at least one selected from silver, gold, copper, lead, tin, nickel, cobalt, cadmium, iron, chromium and zinc. The metal particles and the particles must be controlled to be spaced apart from each other, and preferably the size of the metal particles may be in the range of tens to hundreds of nanometers. When this condition is satisfied, a uniform coating can be formed on the surface of the silicon nanowire formed through step (c). The concentration of the metal dissolved in the aqueous solution of hydrofluoric acid may be in the range of 0.01M to 0.05M, preferably 0.03M to 0.04M. Typically, when silver (Ag) particles are used, the redox reaction that occurs during the etching reaction of silicon is as follows.

4Ag+ + 4e- => 4Ag(s) (1) (환원반응)4Ag + + 4e - = > 4Ag (s) (1) (reduction reaction)

Si +6HF => SiF6 2 - + 6H+ + 4e- (2) (산화반응)Si + 6HF = > SiF 6 2 - + 6H + + 4e - (2) (Oxidation reaction)

Si(s) + 4Ag+ + 6HF => 4 Ag (s) + SiF6 2 - + 6H+ (3) (산화-환원반응)
Si (s) + 4Ag + + 6HF => 4 Ag (s) + SiF 6 2 - + 6H + (3) ( oxidation-reduction reaction)

상기 산화-환원 반응(3)에서 볼 수 있듯이, 식각 반응시, 은(Ag)이 환원되어 실리콘 나노와이어의 상부, 하부, 표면 및/또는 나노와이어의 사이에 은이 무작위적으로 전착된다. 따라서, 실리콘 나노와이어 상에 은 입자가 불균일하게 존재하고, 이러한 은을 제거하기 위하여, 하기 (b) 단계를 실시한다.
As shown in the oxidation-reduction reaction (3), during the etching reaction, silver (Ag) is reduced and silver is randomly deposited between the top, bottom, surface and / or nanowire of the silicon nanowire. Therefore, the silver particles are non-uniformly present on the silicon nanowire, and the following step (b) is performed to remove the silver.

(b) 단계(b)

(b) 단계에서는 상기 식각된 실리콘 나노와이어의 상부, 하부, 표면 및/또는 나노와이어의 사이에 무작위로 전착된 금속을 제거한다. In step (b), randomly electrodeposited metal is removed between the top, bottom, and / or nanowires of the etched silicon nanowires.

일 구현예로, 실리콘 나노와이어를 에칭액에 담지하여 전착된 금속을 제거한다. 이 경우 도 1b와 같이 실리콘 나노와이어의 상부, 하부, 표면 및/또는 나노와이어의 사이에 존재하는 금속이 제거된다. 대표적으로 금속이 은인 경우, (b) 단계에서 일어나는 산화 환원 반응식은 아래와 같다. In one embodiment, the silicon nanowires are carried on an etchant to remove electrodeposited metal. In this case, as shown in FIG. 1B, the metal existing between the top, bottom, surface and / or the nanowire of the silicon nanowire is removed. Typically, when the metal is silver, the oxidation-reduction reaction that takes place in step (b) is as follows.

3Ag(s) + 4HNO3 => 3 AgNO 3 + NO + 2H2O (4)3Ag (s) + 4HNO 3 => 3 AgNO 3 + NO + 2H 2 O (4)

이때, 에칭액으로 질산이 사용되며, 질산에 실리콘 나노와이어를 담지시켜 전착 금속을 제거한다. 이를 통해, 추후 (c) 단계에서는 나노와이어 표면에 은 등의 금속을 균일하게 석출시킨다.
At this time, nitric acid is used as an etchant, and silicon nitride is carried on nitric acid to remove electrodeposited metal. Thus, in step (c), metal such as silver is uniformly deposited on the surface of the nanowire.

(c) 단계(c)

(c) 단계에서는 실리콘 나노와이어를 강산의 희석액에 담지하여 실리콘 나노와이어 표면에 금속 입자를 석출시킨다. 석출된 금속 입자가 표면에 코팅된 실리콘 나노와이어는 고체전해질 계면(solid electrolyte interface, SEI)이 제어되고, 전기전도도가 개선된 리튬이차 전지를 제공할 수 있다. 또한, 본 발명에서는 별도의 용액을 준비할 필요 없이, (a) 단계에서 사용되었던 불산 등의 식각액을 증류수로 희석하여도 사용할 수 있기 때문에 비용 절감 측면에서도 우수하다. 강산으로는 불산 이외에 염산(HCl), 황산(H2SO4) 또는 질산(HNO3)이 사용될 수 있다. In step (c), the silicon nanowires are carried in a dilute solution of strong acid to precipitate metal particles on the surface of the silicon nanowires. The silicon nanowire having the surface of the precipitated metal particles coated thereon can provide a lithium secondary battery in which the solid electrolyte interface (SEI) is controlled and the electrical conductivity is improved. In addition, in the present invention, since the etching solution such as hydrofluoric acid used in step (a) can be diluted with distilled water without preparing a separate solution, it is also excellent in terms of cost reduction. As the strong acid, hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), or nitric acid (HNO 3 ) may be used in addition to hydrofluoric acid.

상기 강산의 희석액의 농도는 0.01M 내지 1M, 바람직하게는 0.4M 내지 0.5M 로 사용될 수 있다. 한편, (c) 단계에서 석출된 은(Ag)은 입경 크기가 균일할 뿐 아니라, 실리콘 나노와이어의 표면에도 매우 균일하게 분포하기 때문에, 음극 활물질로 사용되는 경우, 고체 전해질계면의 형성을 억제시키는 효과가 매우 탁월하며, 그로 인해 고용량 및 고속충방전의 구현의 가능한 리튬이차전지를 제공할 수 있다. The concentration of the diluted solution of the strong acid may be 0.01M to 1M, preferably 0.4M to 0.5M. On the other hand, the silver (Ag) precipitated in the step (c) is uniformly distributed not only in the size of the grain size but also on the surface of the silicon nanowire. Therefore, when used as a negative electrode active material, The effect is very excellent, and thus it is possible to provide a lithium secondary battery capable of realizing a high capacity and high charge / discharge rate.

본 발명의 또 다른 구현예는 상기 실리콘 나노와이어를 포함하는 음극 활물질 및 이를 이용한 리튬 이차 전지를 제공한다. 이러한 리튬 이차전지는, 용량 특성, 사이클 특성 및 안정성이 우수하다. 리튬 이차전지를 제조하는 방법은 일반적으로 공지된 방법과 동일하며 이에 대한 자세한 설명은 생략하도록 한다.
Another embodiment of the present invention provides a negative active material comprising the silicon nanowire and a lithium secondary battery using the negative active material. Such a lithium secondary battery has excellent capacity characteristics, cycle characteristics and stability. The method of manufacturing the lithium secondary battery is generally the same as the known method, and a detailed description thereof will be omitted.

실시예Example

단계 1: Step 1: 금속촉매식각법을Metal catalytic etching 이용한 실리콘  Used silicon 나노와이어Nanowire 형성 formation

증류수 200 mL에 AgNO3 0.68g 과 HF(48 ~ 52 %) 16.8 mL를 첨가하여 약 10분간 교반하여 불산 수용액을 제조하였다. 이때, 불산 수용액의 농도는 4.6 M 이고, 용해된 은의 농도는 0.04M 이었다. 반응기에 상기 불산 수용액 200 mL를 넣은 뒤, 실리콘 기판을 담지하였다. 실리콘 기판을 식각하여 실리콘 나노와이어를 제조하였다.
0.68 g of AgNO 3 and 16.8 mL of HF (48 to 52%) were added to 200 mL of distilled water, and the mixture was stirred for about 10 minutes to prepare an aqueous solution of hydrofluoric acid. At this time, the concentration of the aqueous solution of hydrofluoric acid was 4.6 M and the concentration of dissolved silver was 0.04 M. After 200 mL of the aqueous solution of hydrofluoric acid was added to the reactor, the silicon substrate was carried thereon. Silicon substrates were etched to produce silicon nanowires.

단계 2: 실리콘 Step 2: Silicone 나노와이어에On the nanowire 전착된Electrodeposited 은( silver( AgAg ) 입자의 제거Removal of Particles

실리콘 나노와이어 표면에 금속 입자를 코팅시켜 음극 활물질의 전기전도도를 향상시키기 위해, 실리콘 기판을 질산에 담지시켰다. 이로써, 단계 1에서 생성되어 실리콘 나노와이어 상부, 하부, 표면 및 나노와이어의 사이에 무작위로 형성된 은(Ag) 입자를 제거하였다.
In order to improve the electrical conductivity of the negative electrode active material by coating metal particles on the surface of the silicon nanowire, the silicon substrate was supported on nitric acid. Thus, silver (Ag) particles generated in step 1 randomly formed between the top, bottom, surface and nanowires of the silicon nanowires were removed.

단계 3: 실리콘 Step 3: Silicone 나노와이어Nanowire 표면의 코팅  Surface coating

0.45M의 희석된 불산 수용액을 제조하여 반응기에 상기 희석된 불산 수용액 500mL를 넣은 뒤, 단계 2를 거친 실리콘 기판을 담지하였다. 이로써 표면에 은 입자가 석출된 실리콘 나노와이어를 얻었다.
A diluted hydrofluoric acid aqueous solution of 0.45 M was prepared, 500 mL of the diluted hydrofluoric acid aqueous solution was added to the reactor, and the silicon substrate after step 2 was carried thereon. As a result, a silicon nanowire having silver particles precipitated on its surface was obtained.

비교예Comparative Example : :

상기 단계 3만을 실시하지 않고 나머지는 상기 실시예과 동일한 방법을 사용하여 실리콘 나노와이어를 얻었다.
Silicon nanowires were obtained in the same manner as in the above example except that the above step 3 was not performed.

시험예Test Example 1: 실리콘  1: Silicon 나노와이어의Nanowire SEMSEM 측정 Measure

실시예 및 비교예에서 제조된 실리콘 나노와이어의 SEM 사진을 측정하여 도 2에 나타내었다. 도 2의 (a) 및 (c)는 실시예의 은 입자가 코팅된 실리콘 나노와이어의 SEM 이미지를 각각 나타낸 것이며, 도 2의 (b) 및 (d)는 비교예의 실리콘 나노와이어 SEM 실리콘 이미지를 각각 나타낸 것이다.
SEM photographs of the silicon nanowires prepared in Examples and Comparative Examples were measured and shown in Fig. 2 (a) and 2 (c) show SEM images of the silver-coated silicon nanowires of the embodiment, and FIGS. 2 (b) and 2 .

시험예Test Example 2. 실리콘  2. Silicon 나노와이어의Nanowire XRDXRD 측정 Measure

실시예 및 비교예에서 제조된 실리콘 나노와이어의 XRD를 측정하여 도 3에 나타내었다. 도 3은 실시예의 실리콘 나노와이어가 은(Ag)에 의해 석출되었음을 나타낸다.
The XRD of the silicon nanowires prepared in Examples and Comparative Examples was measured and shown in FIG. Fig. 3 shows that the silicon nanowires of the embodiment were precipitated by silver (Ag).

시험예Test Example 3: 실리콘  3: Silicon 나노와이어의Nanowire TEMTEM 측정 Measure

실시예 및 비교예에서 제조된 실리콘 나노와이어의 TEM 사진을 측정하여 도 4에 나타내었다. 도 4는 실시예의 금속 입자가 코팅된 실리콘 나노와이어 TEM 이미지(좌) 및 EDX 이미지(우)와 비교예의 금속 입자가 표면에 석출된 실리콘 나노와이어의 TEM 이미지 및 EDX mapping 이미지를 나타낸다.
TEM photographs of the silicon nanowires prepared in Examples and Comparative Examples were measured and shown in FIG. FIG. 4 shows a TEM image and EDX mapping image of a silicon nanowire coated with metal particles of the embodiment (left) and an EDX image (right) coated with metal particles, and a silicon nanowire having a metal particle of the comparative example precipitated on its surface.

시험예Test Example 4: 실리콘  4: Silicon 나노와이어의Nanowire 임피던스 측정 Impedance measurement

실시예 및 비교예에서 제조한 실리콘 나노와이어를 초음파분쇄기를 이용하여 실리콘 기판으로부터 분리하고, 카본 도전재 및 바인더와 혼합하여 슬러리 형태로 제조한 후, 금속집전체 위에 코팅하여, 리튬이차전지의 음극재로 준비하였다. 이러한 음극재를 코인셀 형태의 리튬이차전지로 제작하고 임피던스 측정하여, 그 결과를 도 5에 나타내었다.The silicon nanowires prepared in Examples and Comparative Examples were separated from the silicon substrate using an ultrasonic grinder and mixed with a carbon conductive material and a binder to prepare slurries and then coated on a metal current collector to form a negative electrode Prepared as ashes. The negative electrode material was fabricated from a lithium secondary cell in the form of a coin cell, and the impedance was measured. The results are shown in FIG.

구체적으로 실시예 및 비교예의 실리콘 나노와이어를 이용한 리튬이차전지를 0.5C-rate의 충전속도로 전압이 1V (vs. Li)에 이를 때까지 충전하고, 다시 동일한 전류로 전압이 0.01V (vs. Li)에 이를 때까지 방전하였다. 이어서, 동일한 전류와 전압 구간에서 충전 및 방전을 30회 반복한 후, 1~1000Hz의 주파수 범위에서 10mV의 전압범위로 임피던스 분석을 시행하였다. Specifically, the lithium secondary battery using the silicon nanowires of the examples and comparative examples was charged at a charging rate of 0.5 C-rate until the voltage reached 1 V (vs. Li), and then the voltage was changed to 0.01 V (vs. Li). ≪ / RTI > Subsequently, charging and discharging were repeated 30 times in the same current and voltage section, and impedance analysis was performed in a voltage range of 10 mV in the frequency range of 1 to 1000 Hz.

도 5에 나타나 바와 같이, 금속 입자가 코팅된 실시예의 실리콘 나노와이어가 비교예의 실리콘 나노와이어에 비하여 코인셀 저항이 낮은 것을 확인하였다. 이를 통해 금속 입자를 실리콘 나노와이어 표면에 코팅할 경우 전기전도성이 향상됨을 알 수 있었다. As shown in FIG. 5, it was confirmed that the silicon nanowires of the example in which the metal particles were coated had lower coin cell resistance than the silicon nanowires of the comparative example. As a result, the electrical conductivity is improved when the metal particles are coated on the surface of the silicon nanowire.

Claims (12)

금속촉매식각법에 의하여 실리콘 나노와이어를 형성하는 (a) 단계;
식각된 실리콘 나노와이어 표면에 무작위로 전착된 금속을 제거하는 (b) 단계; 및
실리콘 나노와이어를 강산의 희석액에 담지하여 실리콘 나노와이어 표면에 금속 입자를 석출시키는 (c) 단계
를 포함하는 리튬이차전지용 실리콘 나노와이어의 제조방법.
(A) forming a silicon nanowire by a metal catalyst etching method;
(B) removing randomly electrodeposited metal on the etched silicon nanowire surface; And
(C) step of depositing metal particles on the surface of the silicon nanowire by supporting the silicon nanowires in a dilution liquid of strong acid
Wherein the silicon nanowire is a silicon nanowire.
제1항에 있어서,
(a) 단계는 식각액에 실리콘 기판을 담지하는 것을 포함하며,
식각액이 불산(HF) 수용액 및 용해된 금속을 포함하는 것을 특징으로 하는, 방법.
The method according to claim 1,
(a) comprises supporting a silicon substrate on an etchant,
Characterized in that the etchant comprises an aqueous solution of hydrofluoric acid (HF) and a molten metal.
제2항에 있어서,
불산 수용액의 농도가 4 M 내지 5 M인 것을 특징으로 하는, 방법.
3. The method of claim 2,
Characterized in that the concentration of the hydrofluoric acid aqueous solution is from 4 M to 5 M.
제1항에 있어서,
(c) 단계에서 강산의 희석액이 0.01M 내지 1M의 농도인 것을 특징으로 하는, 방법.
The method according to claim 1,
wherein the diluted solution of strong acid in step (c) has a concentration of 0.01M to 1M.
제2항에 있어서,
금속이 은, 금, 구리, 납, 주석, 니켈, 코발트, 카드뮴, 철, 크롬, 및 아연으로부터 선택되는 1 이상인 것을 특징으로 하는, 방법.
3. The method of claim 2,
Wherein the metal is at least one selected from silver, gold, copper, lead, tin, nickel, cobalt, cadmium, iron, chromium and zinc.
제5항에 있어서,
금속이 은을 포함하는 것을 특징으로 하는, 방법.
6. The method of claim 5,
Wherein the metal comprises silver.
제2항에 있어서,
불산 수용액 내의 금속의 농도가 0.01M 내지 0.05M인 것을 특징으로 하는, 방법.
3. The method of claim 2,
Wherein the concentration of the metal in the aqueous solution of hydrofluoric acid is 0.01M to 0.05M.
제1항에 있어서,
(b) 단계가 질산 에칭액에 실리콘 나노와이어를 담지함으로써 수행되는 것을 특징으로 하는, 방법.
The method according to claim 1,
(b) is carried out by supporting the silicon nanowires in a nitric acid etching solution.
제1항에 있어서, 강산이 불산(HF), 염산(HCl), 황산(H2SO4) 또는 질산(HNO3)인 것을 특징으로 하는, 방법.Method according to claim 1, wherein the strong acid, characterized in that hydrofluoric acid (HF), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4) or nitric acid (HNO 3),. 제1항 내지 제9항 중 어느 한 항의 제조방법에 의하여 제조된 실리콘 나노와이어로서, 표면에 금속 입자가 균일하게 분포되어 있는 리튬이차전지용 실리콘 나노와이어. 10. A silicon nanowire for a lithium secondary battery, wherein metal nanoparticles are uniformly distributed on a surface of the silicon nanowire produced by the manufacturing method according to any one of claims 1 to 9. 제10항의 리튬이차전지용 실리콘 나노와이어를 포함하는 음극 활물질. An anode active material comprising the silicon nanowire for a lithium secondary battery according to claim 10. 제11항의 음극 활물질을 사용하는 리튬이차전지. A lithium secondary battery using the negative electrode active material according to claim 11.
KR1020150020232A 2015-02-10 2015-02-10 A method of preparing silicon based anode active materials and lithium secondary battery using the same KR101654281B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150020232A KR101654281B1 (en) 2015-02-10 2015-02-10 A method of preparing silicon based anode active materials and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150020232A KR101654281B1 (en) 2015-02-10 2015-02-10 A method of preparing silicon based anode active materials and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
KR20160098653A true KR20160098653A (en) 2016-08-19
KR101654281B1 KR101654281B1 (en) 2016-09-06

Family

ID=56874751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150020232A KR101654281B1 (en) 2015-02-10 2015-02-10 A method of preparing silicon based anode active materials and lithium secondary battery using the same

Country Status (1)

Country Link
KR (1) KR101654281B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365776A (en) * 2018-01-29 2018-08-03 清华大学 A kind of moisture generator and preparation method thereof
CN110203876A (en) * 2019-06-28 2019-09-06 浙江大学 A kind of silicon nanowires chip and the Mass Spectrometry detection method based on silicon nanowires chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100127990A (en) * 2009-05-27 2010-12-07 한국과학기술연구원 Metal ions-assisted electroless etching method for the bundle type silicon nano-rod composite and its application as anode materials for lithium secondary batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100127990A (en) * 2009-05-27 2010-12-07 한국과학기술연구원 Metal ions-assisted electroless etching method for the bundle type silicon nano-rod composite and its application as anode materials for lithium secondary batteries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365776A (en) * 2018-01-29 2018-08-03 清华大学 A kind of moisture generator and preparation method thereof
CN108365776B (en) * 2018-01-29 2020-08-28 清华大学 Wet gas generator and preparation method thereof
CN110203876A (en) * 2019-06-28 2019-09-06 浙江大学 A kind of silicon nanowires chip and the Mass Spectrometry detection method based on silicon nanowires chip
WO2020259186A1 (en) * 2019-06-28 2020-12-30 杭州汇健科技有限公司 Silicon nanowire chip and silicon nanowire chip-based mass spectrum detection method
CN110203876B (en) * 2019-06-28 2022-02-18 杭州汇健科技有限公司 Silicon nanowire chip and mass spectrum detection method based on silicon nanowire chip

Also Published As

Publication number Publication date
KR101654281B1 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
KR101103841B1 (en) Metal ions-assisted electroless etching method for the bundle type silicon nano-rod composite and its application as anode materials for lithium secondary batteries
US9871244B2 (en) Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9105905B2 (en) Anode material having a uniform metal-semiconductor alloy layer
CN102569758B (en) Anode material having a uniform metal-semiconductor alloy layer
US20120034524A1 (en) Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
CN109390568A (en) Positive mixing material and its manufacturing method
JP2015082374A (en) Method for manufacturing electrode, electrode of secondary battery, and secondary battery using the same
CN113036100B (en) Lithium metal composite negative electrode containing rigid particle framework and preparation method thereof
KR101654281B1 (en) A method of preparing silicon based anode active materials and lithium secondary battery using the same
CN109167029A (en) A kind of the silicon nitride modification lithium anode material and preparation method of lithium-sulfur cell
JPWO2014069541A1 (en) Anode material for metal secondary battery and method for suppressing dendrite of anode for metal secondary battery
CN113451658A (en) All-solid-state lithium ion battery with three-dimensional electrode structure and manufacturing method thereof
CN109309223A (en) A kind of Co3O4/ Pd nanometer combined electrode material and preparation method thereof
CN106414324B (en) The cathode of silicon materials and secondary cell
KR101589458B1 (en) A method for manufacturing silicon nanowire and a method for manufacturing silicon anode material and lithium secondary battery using the same
JP2012094351A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery, and battery pack
Sourav et al. Silicon nanowire anode for lithium ion battery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 4