KR20160090434A - 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템 - Google Patents
레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템 Download PDFInfo
- Publication number
- KR20160090434A KR20160090434A KR1020150009918A KR20150009918A KR20160090434A KR 20160090434 A KR20160090434 A KR 20160090434A KR 1020150009918 A KR1020150009918 A KR 1020150009918A KR 20150009918 A KR20150009918 A KR 20150009918A KR 20160090434 A KR20160090434 A KR 20160090434A
- Authority
- KR
- South Korea
- Prior art keywords
- image
- radar
- marine pollution
- analysis
- wavelet
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/522—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
- G01S13/524—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
- G01S13/5246—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi post processors for coherent MTI discriminators, e.g. residue cancellers, CFAR after Doppler filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/91—Radar or analogous systems specially adapted for specific applications for traffic control
- G01S13/917—Radar or analogous systems specially adapted for specific applications for traffic control for marine craft or other waterborne vessels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/40—Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
본 발명은 선박 및 해안에 설치되어 해상의 영상정보를 획득하는 엑스 밴드(X-band) 레이더; 상기 영상정보를 처리하여 해상의 대상물의 경계 및 영역을 도출하도록 웨이브렛(wavelet) 알고리즘이 구비된 서버;를 포함하는 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템에 관한 것이다.
이와 같은 본 발명은 유류유출시 해양구조물이나 선박에 탑재되어 실시간으로 정황 파악 및 근거리 유출 경로를 파악하여 유류유출에 의한 피해를 최소화하는데 기여한다.
이와 같은 본 발명은 유류유출시 해양구조물이나 선박에 탑재되어 실시간으로 정황 파악 및 근거리 유출 경로를 파악하여 유류유출에 의한 피해를 최소화하는데 기여한다.
Description
본 발명은 X-band 박용 레이더 관측·해석 기법을 활용한 해양오염에 대한 원격측정 시스템(이하, '해양오염 원격측정 시스템'이라 한다)에 관한 것이다.
이러한 해양오염 원격측정 시스템은 지리적으로 바다에 둘러싸여 있고, 조선해양산업의 선두에 위치한 우리나라에서 특히 활용가치가 높으며 신속한 방재에 필수적인 시스템으로써, 적조와 같은 자연 재해는 사전 예방 및 사후에 보다 신속한 조치를 가능하게 하고, 인재로 발생하는 유류 유출 사고에 대해서는 확산 경로를 사전에 파악하여 보다 능동적 대처를 가능하게 한다.
현재, 인터넷을 기반으로 한 네트워크(Network)의 발달로 인하여 정보와 거래에 있어서 커다란 변혁을 맞이하고 있으며, 모든 정보를 공유하고 국경이 없이 거래하는 시대가 급속하게 다가오고 있다.
또한, 네트워크를 통한 가상공간의 창조는 이러한 가상공간 안에서의 각종 서비스 제공 및 온라인 실시간 거래를 불러일으키고 있으며, 이를 통한 오프라인의 실물거래 및 각종 대행서비스는 물론 온라인 상에서의 전자상거래 등이 활성화되고 있는 실정이다.
한편, 산업물 이동 량의 증가에 따라 해양운송이 점차 증가하고 있으며, 이에 따른 대형선박의 증가와 더불어 선박의 충돌이나 기타 선박좌초 등으로 인한 해양사고가 빈번하게 일어나고 있고, 이러한 해양사고의 발생시 확산속도가 빨라 이에 수반되는 해양오염의 실태는 심각하다.
매년 평균 약 7회의 유조선의 좌초 또는 침몰에 의해 국가차원의 대형 해양오염 사고가 발생하고 있으며 방제기술분야의 개발 추세는 과거의 방제방비 및 누유 확산 시뮬레이터 개발에서 현재는 방제전략 정보시스템의 개발에 초점이 맞추어져 각 연구기관에서 개발이 진행 중에 있다. 또한, 방제지식 및 기술분야는 UN 산하단체 IMO, ITOPF 및 미국 환경청 EPA가 주도하여 국제학술 협의회(Conference)를 통하여 심의되고, 각 국의 Coast Guard 및 국제방제기구의 적용에 의해 표준화되고 있는 실정이다.
본 발명은 X-band 레이더를 활용한 실시간 유류유출 관측용 알고리즘 개발 및 이를 적용한 시스템의 제공을 목적으로 한다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적은 선박 및 해안에 설치되어 해상의 영상정보를 획득하는 엑스 밴드(X-band) 레이더와; 상기 영상정보를 처리하여 해상의 대상물의 경계 및 영역을 도출하도록 웨이브렛(wavelet) 알고리즘이 구비된 서버;를 포함하는 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템에 의해 달성된다.
경제적 측면에서는 사고에 따른 사회적 손실 비용 최소화와 연구 수행 결과로 인한 파생 효과 등이 있다. 사회적 손실 비용으로는 환경 재앙에 따른 막대한 복구 비용과 피해영역 지역 주민의 장기간 기회비용 손실 등이 있는데 본 발명에서는 유류유출시 해양구조물이나 선박에 탑재되어 실시간으로 정황 파악 및 근거리 유출 경로 파악이 가능하기 때문에 능동적인 대처가 가능하여 사회적 손실 비용을 최소화시킨다.
연구 수행 결과로 인한 파생 효과로는 원천 기술 확보 및 국산화에 따른 경제적 이득이 있을 수 있다. 원천 기술 확보와 국산화는 단기적 관점에서는 고가의 장비 구입비용 절약 및 기술료 절감이 있고, 장기적 관점에서는 원천기술 확보에 따른 기술료 취득 및 해당 시스템 판매를 통한 이득이 있다.
도 1은 X-band 레이더를 나타낸 도면,
도 2는 X-band 레이더에 의한 영상을 나타낸 도면,
도 3은 본 발명에 따른 시스템의 개략적인 구성도,
도 4는 멕시칸햇 펑션(Mexican hat funcion),
도 5 내지 도 16에서는 여러 SAR의 이미지와 SAR 이미지의 각각에 대한 웨이브렛 변환이미지가 나타나 있다.
도 2는 X-band 레이더에 의한 영상을 나타낸 도면,
도 3은 본 발명에 따른 시스템의 개략적인 구성도,
도 4는 멕시칸햇 펑션(Mexican hat funcion),
도 5 내지 도 16에서는 여러 SAR의 이미지와 SAR 이미지의 각각에 대한 웨이브렛 변환이미지가 나타나 있다.
본 발명에 따른 해양오염 원격측정 시스템은 선박 및 해안에 설치되어 해상의 영상정보를 획득하는 엑스 밴드(X-band) 레이더와; 상기 영상정보를 처리하여 해상의 대상물(예컨대, 유출유류, 녹조 등)의 경계 및 영역을 도출하도록 웨이브렛(wavelet) 알고리즘이 구비된 서버;를 포함한다.
상기 영상정보 획득은 극좌표계 기준의 연속적인 레이더 영상 신호 계측 과정과, 연속된 레이더 영상의 중첩 과정과, 레이더 영상의 노이즈를 필터링하는 과정과, 유출유 경계 도출 및 영역 확인의 과정으로 이루어진다.
상기 필터링 과정에 적용된 필터는 리 필터(Lee filter), 프로스트 필터(Frost filter), 감마 필터(gamma filter) 중 적어도 하나를 포함한다.
상기 리 필터는 스펙클(speckle) 노이즈가 포함된 레이더 영상을 부드럽게 해주며, 이미지는 선형기반의 요소를 가지는 것으로서,
의 식으로 이루어지는 것을 특징으로 한다.
w는 웨이팅(weighting) 함수로 아래와 같다.
여기서 Csp는 스펙클을 가진 영상의 인덱스이며, Cmn 전 영역 평균에 대한표준편차를 뜻한다. σ는 해석 영역에서의 표준편차이다.
상기 프로스트 필터는 지수적 감쇠 컨볼루션 커널(convolution kernel)을 사용하여, 레이더 영상의 부분적 해석을 위한 것으로서,
의 식으로 이루어지는 것을 특징으로 한다.
A는 지수적 감쇠 인수이며, μ는 해석영역 윈도우(window)의 평균값이다. σ는 해석 영역 윈도우의 표준편차이다. Ti는 계측지점과 영상 중심부까지의 거리차이의 절대값이며, Pi는 해석영역 윈도우의 그레이(grey) 레벨값이다.
상기 감마 필터는
의 식으로 이루어지는 것을 특징으로 한다.
의 식을 이용하는 것을 특징으로 한다.
여기서 a는 디레이션(dilation) 매개변수, 는 트랜스레이션(translation) 매개변수, 는 웨이브렛 함수의 컴플렉스 컨저게이트(complex conjugate)를 의미한다.
한편, 상기 웨이브렛(wavelet) 알고리즘은 해상의 대상물의 경계를 찾아내기 위해 맥시칸햇(Mexican hat) 함수를 사용하는 것을 특징으로 한다.
맥시칸햇 함수는
이다.
또한, 웨이브렛 알고리즘은 트랜스레이션 매개변수는 고정하고, 디레이션 매개변수는 2-2, 2-3, 2-4 중 어느 하나를 선택하여 수행하는 것을 특징으로 한다.
이하, 본 발명의 양호한 실시예를 도시한 첨부 도면들을 참조하여 상세히 설명한다.
본 발명은 X-band 레이더를 활용한 실시간 유류유출 관측용 알고리즘이 적용된 시스템을 제공하고자 하는 것이며, 세부적으로는 실시간 레이더 계측에서 높은 품질의 영상 해상도 및 높은 대비의 영상의 확보, 스펙클 노이즈(Speckle Noise)를 최소화하는 필터링 기법의 선정, 레이더 영상에서의 유출유 특성 구분, 레이더 영상에서의 유출유 영역 및 경계 부분 구분 등이다.
본 발명은 X-band 레이더를 활용한 실제 관측된 내용과 관측된 자료를 알고리즘에 적용하여 유류유출 구분 및 탐지를 하는 것이다.
실시간 유류유출 관측을 위해서는 선박 또는 해안에 설치된 X-band 레이더를 활용하여 해양의 실시간 관측을 수행하여 획득한 영상을 바탕으로, 유류유출 구분 및 탐지 알고리즘을 적용하여 유류유출이 있는지를 판단한다.
레이더 영상에서의 유출유 경계를 찾기 위하여 본 발명은 웨이브렛(wavelet) 알고리즘을 활용하였다. 유출유의 경계 및 영역을 구분하기 위해서 여러 가지 필터링을 활용하였는데, 본 발명에서 제안된 필터링은 외국의 연구사례에 빈번히 사용되는 방법으로, 기법이 간단하여 실시간 영상처리에 매우 유용하여, 시스템에 실시간 계측에 즉각 활용할 수 있다는 장점이 있다.
X-band 레이더는 선박이나 해안에 설치되어 기상관측, 군사용, 장애물 탐지 등 다양한 용도로 이용되고 있다. 특히 대부분의 선박, 해양구조물, 해안가 등에 설치되어 장애물 탐지를 주목적으로 사용되고 있으며, 최근 레이더 전자기파의 해수면 반사에 대한 특징을 활용하여 파랑의 정보를 얻는데 사용되고 있다. 도 1은 X-band 레이더의 모습이고, 도 2는 실제 레이더 영상이다.
<유출유 관측 알고리즘>
관측 알고리즘 개요: 레이더를 이용한 유출유 관측 및 해석은 해수면의 관측의 가장 기초적인 작업에서 시작된다. 도 2와 같이 레이더에서 나타나는 해수면의 영상은 레이더에서 방출되는 전자기파가 해수면으로의 반사에 의해서 생성된다. 이와 같은 과정에서 실제 해수면의 특징인 리플(ripple)의 개념이 도입된다. 이는 실제 해수면이 바람이나 기타 요인에 의해서 거칠게 되는 면을 의미한다.
데이터 해석의 단계는 ①극좌표계 기준의 연속적인 레이더 영상 신호 계측과, ②연속된 레이더 영상의 중척, ③레이더 영상으로의 영상 필터 알고리즘 적용, ④유출유 경계 도출 및 영역 확인으로 이루어진다.
①은 연속적으로 레이더 영상을 계측하고 저장하는 부분이다. 여기서의 영상의 품질은 A/D 컨버터가 좌우하며, 영상 해상도 및 샘플링(sampling) 주파수가 주요 요소이다.
②는 한 장의 영상은 유출유 및 해수면의 기타 물질의 신호반사 특성을 반영하기 힘들다. 따라서 레이더 영상을 중첩시킴으로 인해서 가우스분포의 특징을 가지는 수면은 0에 가까운 분포의 특성으로 수렴하는 것을 볼 수 있으며, 수면의 유출유와 같은 영역은 가우스분포를 따르지 않는다. 이러한 특성을 도출하기 위하여 다수의 레이더 영상을 중첩하여 결과를 얻는다.
③ 앞 단계의 중첩된 영상은 경계선이 명확히 구분되는 영역을 취득하지 못한다. 이는 영상의 흐림효과(blur)로 불 수 있으며, 영역 역시 경우에 따라 모호하다. 이러한 문제점을 해결하기 위하여 영상 필터를 활용한다.
④최종적으로 적용된 다양한 기법의 결과를 확인하고 평가한다.
이미지 영상 필터 웨이브렛(wavelet) 알고리즘: 레이더와 같은 전자장비로 계측된 자료는 필수적으로 노이즈의 문제에 봉착한다. 여러 종류의 노이즈에서 레이더영상은 스펙클(speckle) 노이즈의 특성을 가진다. 이는 SAR(Synthetic Aperture Rader, 개구면레이더)와 같은 전자기파의 신호에 의해서 획득되는 영상에 동일하게 발생된다. 이러한 노이즈를 "speckle"이라 불리우며, 여러 가지 필터링 기법을 적용하여 제거한다. 적용되는 필터의 특징으로는 레이더 장비 특성에서 기인하는 고주파의 특징은 보존하면서 고주파의 노이즈를 제거하는 것이다.
리 필터(Lee Filter(Lee, 1980))는 스펙클(speckle) 노이즈가 포함된 레이더 영상을 부드럽게 해주며, 이미지는 선형기반의 요소를 가진다.
w는 웨이팅(weighting) 함수로 아래와 같다.
여기서 Csp는 스펙클을 가진 영상의 인덱스이며, Cmn 전 영역 평균에 대한표준편차를 뜻한다. σ는 해석 영역에서의 표준편차이다.
프로스트 필터(Frost Filter)는 지수적 감쇠 컨볼루션 커널(convolution kernel)을 사용하여, 레이더 영상의 부분적 해석에 유용하게 활용된다. 본 필터가 리(Lee) 및 콴(Kuan) 필터와의 차이점은 임펄스 리스폰즈(impulse response)를 이용하여 관측된 영상과 반영되는 모델사이에서 오차를 최소화 한다는 장점이 있다.
A는 지수적 감쇠 인수이며, μ는 해석영역 윈도우(window)의 평균값이다. σ는 해석 영역 윈도우의 표준편차이다. Ti는 계측지점과 영상 중심부까지의 거리차이의 절대값이며, Pi는 해석영역 윈도우의 그레이(grey) 레벨값이다.
감마 필터(Gamma Filter)
<웨이브렛(wavelet) 알고리즘>
웨이브렛 변환은 많은 분야, 특히 신호와 영상의 처리 분야에서 매우 유용하게 사용되었다. 주파수 도메인으로 변환을 하게 되면 시간이나 공간상의 정보를 잃어버리는 퓨리에 변환과는 달리 웨이브렛 변환은 시간 상의 정보를 시간-스케일(scale) 혹은 시간-레벨(level) 상의 정보로 변환을 하게 된다. 이것의 장점으로는 어떤 신호가 특정 시간대에서 불연속적인 점을 갖고 있다고 하면 웨이브렛 변환으로 이 불연속점을 찾을 수 있다.
여기서 a는 디레이션(dilation) 매개변수, 는 트랜스레이션(translation) 매개변수, 는 웨이브렛 함수의 컴플렉스 컨저게이트(complex conjugate)를 의미한다.
수학식 5에서 웨이브렛 함수로 어떤 함수를 이용하느냐에 따라 웨이브렛 변환의 결과는 다양하다. 본 발명에서는 해수면 상에 존재하는 유출유나 적조의 경계부분을 찾아내기 위해 멕시칸햇(Mexican hat) 함수를 사용하였다. 수학식 6과 도 4에 2차원 멕시칸햇 함수를 나타내었다.
이 함수를 이용한 웨이브렛 변환의 예를 도 5(원래의 이미지) 및 도 6(변환된 이미지)에 나타내었다. 보는 바와 같이 영상 내의 미세한 그레이 레벨 변화를 찾아내어 경계를 도출하고 있다.
웨이브렛 변환의 예로서, 도 7 내지 도 16을 참조하여 설명하면, 본 발명에서는 X-band 레이더를 활용한 유류유출 관측시험이전에, 유출유 영상의 경계를 살펴보기 위한 내용으로 구성된다. 즉, SAR 자료에서 웨이브렛 변환을 활용하여 경계치 해석 문제에 대해서 먼저 살펴보게 된다. 수학식 5의 트랜스레이션 매개변수는 고정해 두고 디레이션 매개변수를 2-2, 2-3, 2-4 으로 설정하여 분석하였다. 디레이션 매개변수의 값에 따라 결과가 도 7 내지 도 16에 나타난 바와 같이 많은 차이를 보이는 것으로 보아 최적의 매개변수를 찾기 위해 수치 해석적 실험이 필요하다.
도 7은 SAR 영상으로서 원래의 이미지이고, 도 8은 웨이브렛에 의해 변환된 영상으로서, 디레이션 매개변수 a가 2-2인 경우이고, 도 9는 2-3인 경우이며, 도 10은 2-4인 경우이다.
도 7 내지 도 10의 경우에는, 디레이션 설정값 2-4에서 비교적 구분 가능한 영상을 얻을 수 있다.
도 11는 SAR 영상으로서 원래의 이미지이고, 도 12는 웨이브렛에 의해 변환된 영상으로서, 디레이션 매개변수 a가 2-2인 경우이고, 도 13은 2-3인 경우이며, 도 14는 2-4인 경우이다.
도 11 내지 도 14의 경우에는, 디레이션 설정값 2-2에서 비교적 구분 가능한 영상을 얻을 수 있다.
도 15는 SAR 영상으로 원래의 이미지이고, 도 16은 웨이브렛 변환 영상 이미지 이다.
이상 본 발명이 양호한 실시예와 관련하여 설명되었으나, 본 발명의 기술 분야에 속하는 자들은 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에 다양한 변경 및 수정을 용이하게 실시할 수 있을 것이다. 그러므로 개시된 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 진정한 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
10: 엑스 밴드(X-band) 레이더
Claims (9)
- 선박 및 해안에 설치되어 해상의 영상정보를 획득하는 엑스 밴드(X-band) 레이더(10);
웨이브렛(wavelet) 알고리즘으로 상기 영상정보를 처리하여 해상의 대상물의 경계 및 영역을 도출하는 서버;
를 포함하는 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템.
- 제 1항에 있어서,
상기 영상정보 획득은
극좌표계 기준의 연속적인 레이더 영상 신호 계측 과정과,
연속된 레이더 영상의 중첩 과정과,
레이더 영상의 노이즈를 필터링하는 과정과,
유출유 경계 도출 및 영역 확인의 과정으로 이루어지는 것을 특징으로 하는 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템.
- 제 2항에 있어서,
상기 필터링 과정에 적용된 필터는 리 필터(Lee filter), 프로스트 필터(Frost filter), 감마 필터(gamma filter) 중 적어도 하나를 포함하는 것을 특징으로 하는 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템.
- 제 8항에 있어서,
상기 웨이브렛 알고리즘은
트랜스레이션 매개변수는 고정하고, 디레이션 매개변수는 2-2, 2-3, 2-4 중 어느 하나를 선택하여 수행하는 것을 특징으로 하는 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150009918A KR101678450B1 (ko) | 2015-01-21 | 2015-01-21 | 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150009918A KR101678450B1 (ko) | 2015-01-21 | 2015-01-21 | 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160090434A true KR20160090434A (ko) | 2016-08-01 |
KR101678450B1 KR101678450B1 (ko) | 2016-11-23 |
Family
ID=56706721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150009918A KR101678450B1 (ko) | 2015-01-21 | 2015-01-21 | 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101678450B1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111458683A (zh) * | 2020-04-23 | 2020-07-28 | 中船重工鹏力(南京)大气海洋信息系统有限公司 | 一种分区域雷达信号处理的方法 |
CN111754139A (zh) * | 2020-07-22 | 2020-10-09 | 泰州市金海运船用设备有限责任公司 | 海洋油污警报信号接收联网呼叫系统 |
KR102469002B1 (ko) * | 2021-12-27 | 2022-11-18 | 한국해양과학기술원 | 해양오염정보 자동생성 및 표출시스템 및 그 방법 |
WO2024107319A1 (en) * | 2022-11-14 | 2024-05-23 | Kla Corporation | System and method for enhancing defect detection in optical characterization systems using a digital filter |
KR102670901B1 (ko) * | 2023-12-22 | 2024-05-30 | (주)에스이티시스템 | 해상 부유체 탐지 장치 및 해상 부유체 탐지 방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102112000B1 (ko) * | 2019-11-08 | 2020-05-18 | 동명대학교산학협력단 | 레이더 기반 해상교량 및 해안시설물 충돌 경보 시스템 |
KR102258202B1 (ko) | 2020-02-28 | 2021-05-28 | 서울대학교산학협력단 | 항공기기반 영상복원장치용 가상 해수면모델 생성장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100710545B1 (ko) | 2001-12-29 | 2007-04-24 | 에스케이 주식회사 | 해양오염 방제방법 및 시스템 |
KR100795497B1 (ko) * | 2006-07-21 | 2008-01-17 | 삼성중공업 주식회사 | 레이더를 이용한 파랑 계측 시스템 및 방법 |
US20100076693A1 (en) * | 2008-09-22 | 2010-03-25 | University Of Ottawa | Method to extract target signals of a known type from raw data containing an unknown number of target signals, intereference, and noise |
KR20110090129A (ko) * | 2010-02-02 | 2011-08-10 | 한국항공우주연구원 | 인공위성용 고속 영상 데이터 압축 처리 장치 및 방법 |
-
2015
- 2015-01-21 KR KR1020150009918A patent/KR101678450B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100710545B1 (ko) | 2001-12-29 | 2007-04-24 | 에스케이 주식회사 | 해양오염 방제방법 및 시스템 |
KR100795497B1 (ko) * | 2006-07-21 | 2008-01-17 | 삼성중공업 주식회사 | 레이더를 이용한 파랑 계측 시스템 및 방법 |
US20100076693A1 (en) * | 2008-09-22 | 2010-03-25 | University Of Ottawa | Method to extract target signals of a known type from raw data containing an unknown number of target signals, intereference, and noise |
KR20110090129A (ko) * | 2010-02-02 | 2011-08-10 | 한국항공우주연구원 | 인공위성용 고속 영상 데이터 압축 처리 장치 및 방법 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111458683A (zh) * | 2020-04-23 | 2020-07-28 | 中船重工鹏力(南京)大气海洋信息系统有限公司 | 一种分区域雷达信号处理的方法 |
CN111458683B (zh) * | 2020-04-23 | 2022-04-05 | 中船重工鹏力(南京)大气海洋信息系统有限公司 | 一种分区域雷达信号处理的方法 |
CN111754139A (zh) * | 2020-07-22 | 2020-10-09 | 泰州市金海运船用设备有限责任公司 | 海洋油污警报信号接收联网呼叫系统 |
CN111754139B (zh) * | 2020-07-22 | 2024-02-27 | 泰州市金海运船用设备有限责任公司 | 海洋油污警报信号接收联网呼叫系统 |
KR102469002B1 (ko) * | 2021-12-27 | 2022-11-18 | 한국해양과학기술원 | 해양오염정보 자동생성 및 표출시스템 및 그 방법 |
WO2024107319A1 (en) * | 2022-11-14 | 2024-05-23 | Kla Corporation | System and method for enhancing defect detection in optical characterization systems using a digital filter |
KR102670901B1 (ko) * | 2023-12-22 | 2024-05-30 | (주)에스이티시스템 | 해상 부유체 탐지 장치 및 해상 부유체 탐지 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR101678450B1 (ko) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101678450B1 (ko) | 레이더 관측과 해석 기법을 이용한 해양오염 원격측정 시스템 | |
CN101214851B (zh) | 船舶行驶智能型全天候主动安全预警系统及其预警方法 | |
Zhu et al. | Oil spill detection method using X-band marine radar imagery | |
Tajima et al. | Study on shoreline monitoring system based on satellite SAR imagery | |
Alexandrov et al. | Oil spills detection on sea surface by using Sentinel–1 SAR images | |
Majcher et al. | Residual relief modelling: digital elevation enhancement for shipwreck site characterisation | |
Stagliano et al. | Ship detection from SAR images based on CFAR and wavelet transform | |
Graziano et al. | Wake-based ship route estimation in high-resolution SAR images | |
Hagen et al. | Exploration of COLREG-relevant parameters from historical AIS-data | |
KR101814644B1 (ko) | 이안류 계측 및 예측 시스템 | |
Tello et al. | Automatic detection of spots and extraction of frontiers in SAR images by means of the wavelet transform: Application to ship and coastline detection | |
Voinov et al. | Multiclass vessel detection from high resolution optical satellite images based on deep neural networks | |
Mueller et al. | Robotic bridge inspection within strategic flood evacuation planning | |
Graziano | SAR-based ship route estimation by wake components detection and classification | |
Dongmei et al. | Classification of the different thickness of the oil film based on wavelet transform spectrum information | |
Kim et al. | Oil spill detection from RADARSAT-2 SAR image using non-local means filter | |
CN109427042B (zh) | 一种提取局部海域沉积层的分层结构和空间分布的方法 | |
CN114236490B (zh) | 基于水面回波模型的x波段导航雷达溢油探测系统 | |
CN113589283B (zh) | 一种基于星载干涉成像高度计的船只kelvin尾迹高程的提取方法 | |
Fiscella et al. | Oil spill monitoring in the Mediterranean Sea using ERS SAR data | |
Li et al. | Spatio-temporal vessel trajectory smoothing using empirical mode decomposition and wavelet transform | |
Maussang et al. | Fusion of local statistical parameters for buried underwater mine detection in sonar imaging | |
Samad et al. | Detection of oil spill pollution using RADARSAT SAR imagery | |
Tello et al. | Use of the multiresolution capability of wavelets for ship detection in SAR imagery | |
Park et al. | Object detection in infrared image with sea clutter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190925 Year of fee payment: 4 |