KR20160090134A - Preparation method of ZnO nanofiber and uses thereof - Google Patents

Preparation method of ZnO nanofiber and uses thereof Download PDF

Info

Publication number
KR20160090134A
KR20160090134A KR1020150010045A KR20150010045A KR20160090134A KR 20160090134 A KR20160090134 A KR 20160090134A KR 1020150010045 A KR1020150010045 A KR 1020150010045A KR 20150010045 A KR20150010045 A KR 20150010045A KR 20160090134 A KR20160090134 A KR 20160090134A
Authority
KR
South Korea
Prior art keywords
zinc oxide
zno
pva
nanoparticles
solution
Prior art date
Application number
KR1020150010045A
Other languages
Korean (ko)
Inventor
오태환
임영민
알푸타라나다낼
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020150010045A priority Critical patent/KR20160090134A/en
Publication of KR20160090134A publication Critical patent/KR20160090134A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides a zinc oxide nanofiber manufacturing method including: a step of adding polyvinyl alcohol (PVA) to a solvent (first step); a step of adding zinc oxide (ZnO) nanoparticles to the solvent (second step); a step of preparing a mixed solution by mixing the polyvinyl alcohol solution of the first step with the zinc oxide (ZnO) nanoparticles solution of the second step (third step); and skin-core nanofiber preparation through dual nozzle electrospinning of the polyvinyl alcohol (PVA) solution of the first step and the mixed solution of the third step. The present invention also provides a UV-blocking composition containing the zinc oxide nanofiber synthesized according to the present invention as an effective ingredient.

Description

산화아연 나노섬유 제조방법 및 이의 용도{Preparation method of ZnO nanofiber and uses thereof}Preparation method of ZnO nanofiber and uses thereof < RTI ID = 0.0 >

본 발명은 PVA/산화아연 나노섬유를 제조하는 방법 및 상기 방법으로 제조된 나노 섬유를 자외선 차단제로 이용하는 기술에 관한 것이다.The present invention relates to a method for producing PVA / zinc oxide nanofiber and a technique for using the nanofiber prepared by the above method as a sunscreen agent.

나노구(nanosphere), 나노막대(nanorod), 나노선(nanowire) 및 양자점(quantum dot)과 같은 나노 규모의 물질은 체적당 표면적 비율에서 높은 종횡비를 나타낼 수 있으므로, 최근에는 이들의 합성 방법이 주목받고 있다. Nanoscale materials such as nanospheres, nanorods, nanowires, and quantum dots can exhibit high aspect ratios in volume per volume area, and recently their synthesis method has attracted attention .

나노입자는 화학적 침전, 졸-겔 합성방법 및 용매열합성(solvothermal)/수열합성(hydrothermal) 반응을 포함한 다양한 방법으로 합성되어 왔는데, 이들 중 수열합성 방법 및 졸-겔(sol-gel) 합성 방법은 낮은 공정 온도, 무 촉매 성장, 낮은 비용 및 대규모 생산 능력과 같은 다양한 장점들을 가지고 있다. 또한, 수열합성(hydrothermal) 방법의 경우, 적합한 반응 온도, 시간 및 전구체의 농도에 따라, 나노입자의 형태 및 크기를 조절할 수 있다.Nanoparticles have been synthesized by a variety of methods including chemical precipitation, sol-gel synthesis, and solvent-based solvothermal / hydrothermal reactions. Among them, hydrothermal synthesis and sol- Have a variety of advantages such as low process temperatures, non-catalytic growth, low cost and large scale production capacity. Further, in the case of the hydrothermal method, the shape and size of the nanoparticles can be adjusted according to a suitable reaction temperature, time, and concentration of the precursor.

다양한 무기물 중 자외선 차단, 전도율, 화학적 선택성, 물리적 안정성 및 낮은 가격과 같은 다양한 기능적 특징을 갖는 산화아연 나노입자에 대한 관심이 증가되고 있으며, 이러한 산화아연 나노입자는 광학 물질 분야, 센서, 전계효과 트랜지스터(fieldeffect transistors), 자외선 차단제 및 청색 발광 장치(blue luminescent devices)등 광범위하게 사용될 수 있다. Interest in zinc oxide nanoparticles having various functional properties such as ultraviolet shielding, conductivity, chemical selectivity, physical stability, and low price among various minerals is increasing, and zinc oxide nanoparticles are widely used in the fields of optical materials, sensors, field effect transistors (fieldeffect transistors), ultraviolet light blocking agents, and blue luminescent devices.

나노선, 나노벨트, 나노튜브, 나노꽃 및 나노막대와 같은 다양한 산화아연 나노구조들은 이미 합성되어 왔으며, 산화아연 나노막대 및 나노구는 양자 크기 효과 때문에 고유한 특성을 갖는 것으로 보고되어 졌다.. Various zinc oxide nanostructures such as nanowires, nanobelts, nanotubes, nanoflowers and nanorods have already been synthesized, and zinc oxide nanorods and nanospheres have been reported to have inherent properties due to the quantum size effect.

자외선 밴드는 UV-A (315.400nm), UV-B (280.315nm) 및 UV-C (100.280nm)와 같은 세 영역으로 구성되어 있다. UV-C는 성층권의 오존 때문에 지구의 표면에 도달할 수 없으나, UV-A 노출은 피부 세포의 면역 반응을 감소시키고 노화 신호를 생산하며, UV-B 노출은 홍반(erythema) 및 피부암을 유발의 원인이 되는 것으로 알려져 있다.The ultraviolet band consists of three regions, UV-A (315.400 nm), UV-B (280.315 nm) and UV-C (100.280 nm). UV-C is unable to reach the Earth's surface due to stratospheric ozone, but UV-A exposure reduces the immune response of skin cells and produces an aging signal. UV-B exposure is the cause of erythema and skin cancer Is known to be.

이렇듯이 피부에 위험한 영향을 미치는 자외선을 차단하는 산화아연의 자외선(UV) 차단 능력은 매우 흥미로운 특징이라 할 수 있다. The ultraviolet (UV) blocking ability of zinc oxide, which blocks ultraviolet rays that can have a dangerous effect on skin, is a very interesting feature.

폴리비닐 알콜(polyvinyl alcohol; PVA)은 무독성, 수용성, 생체 적합성, 화학적 저항성, 친수성 및 좋은 섬유 형성 능력과 같은 고유한 특징을 갖고 있기 때문에 고분자 화합물 중 좋은 재료이다. 이러한 PVA는 약품, 편광 필름을 위한 포장, 장벽 막, 약물 전달 시스템을 위한 젤 및 다른 의학 및 화장품 조성물로 사용될 수 있다.Polyvinyl alcohol (PVA) is a good material in polymer compounds because it has unique properties such as non-toxicity, water-solubility, biocompatibility, chemical resistance, hydrophilicity and good fiber forming ability. Such PVA can be used as a drug, a package for polarizing film, a barrier film, a gel for a drug delivery system, and other medical and cosmetic compositions.

스킨-코어 구조의 동축 전기방사(coaxial electrospinning)는 의공학(biomedical engineering), 여과 및 분산, 마이크로일렉트로닉스(microelectronics) 분야에서 관심이 증가 되고 있는 기술이며, 스킨-코어 구조 전기방사 망은 축전기, 바이오센서, 부드러운 조직 및 연료 전지 분리막으로 이용가능하다.Coaxial electrospinning of the skin-core structure is an increasingly popular technology in the fields of biomedical engineering, filtration and dispersion, and microelectronics. Skin-core structure electrospinning networks include capacitors, biosensors , Soft tissue and fuel cell membranes.

한국공개특허 제10-2013-0070333호Korean Patent Publication No. 10-2013-0070333

본 발명은 이중 노즐 전기방사를 이용하여 PVA 코어 층과 산화아연 나노입자 스킨 층으로 구성된 스킨-코어 구조의 PVA/산화아연 나노섬유 제조하는 방법을 제공하고, 상기 방법으로 제조된 PVA/산화아연 나노섬유를 자외선 차단제로 이용하고자 한다. The present invention provides a method for producing a skin-core structure of PVA / zinc oxide nanofibers composed of a PVA core layer and a zinc oxide nanoparticle skin layer using dual nozzle electrospinning, and a method for producing a PVA / zinc oxide nano- We want to use the fiber as a sunscreen.

본 발명은 용매에 폴리비닐 알콜(polyvinyl alcohol; PVA)을 첨가하는 단계(제1단계); 용매에 산화아연(ZnO) 나노입자를 첨가하는 단계(제2단계); 상기 제1단계의 폴리비닐 알콜 용액 및 제2단계의 산화아연(ZnO) 나노입자 용액을 혼합하여 혼합용액을 제조하는 단계(제3단계);및 상기 제1단계의 폴리비닐 알콜(PVA) 용액 및 제3단계의 혼합용액을 이중 노즐 전기방사법을 통해 스킨-코어 구조의 나노섬유를 제조하는 산화아연 나노섬유 제조방법을 제공한다.The present invention relates to a process for producing polyvinyl alcohol (PVA) by adding polyvinyl alcohol (PVA) to a solvent (first step); Adding zinc oxide (ZnO) nanoparticles to the solvent (second step); (3) preparing a mixed solution by mixing the polyvinyl alcohol solution of the first step and the zinc oxide (ZnO) nanoparticle solution of the second step (step 3), and mixing the polyvinyl alcohol solution And a third step of preparing a skin-core nanofiber by a double nozzle electrospinning method.

또한, 본 발명은 상기 산화아연 나노섬유를 유효성분으로 함유하는 자외선 차단제 조성물을 제공한다.The present invention also provides an ultraviolet screening composition comprising the zinc oxide nanofiber as an active ingredient.

본 발명에 따르면, PVA와 함께 졸-겔(sol-gel)방법으로 제조된 구형의 산화아연 나노입자를 전기방사하여 제조된 나노섬유가 기존의 수열방법으로 PVP(Poly vinyl pyrrolidone) 또는 CTAB(hexa decyl trimethyl ammonium bromide) 캡핑제와 함께 제조된 산화아연 나노입자와 전기방사된 나노섬유보다 자외선 차단에 탁월하였으며, 또한, 단일 노즐에 의한 전기방사 방법보다 PVA 코어 층과 콜로이드 산화아연 스킨 층으로 구성된 스킨-코어 구조의 PVA/산화아연 나노섬유의 차단 효과가 증가하는 것을 확인할 수 있었다.According to the present invention, nanofibers prepared by electrospinning spherical zinc oxide nanoparticles prepared by a sol-gel method together with PVA can be used as a conventional hydrothermal method, such as PVP (polyvinyl pyrrolidone) or CTAB (hexa decyl trimethyl ammonium bromide capping agent and a nanofiber of zinc oxide nanoparticles and a skin composed of a PVA core layer and a colloid zinc oxide skin layer rather than an electrospinning method by a single nozzle - It was confirmed that the blocking effect of PVA / zinc oxide nanofiber of core structure is increased.

따라서, 본 발명은 PVA/산화아연 나노섬유 제조방법을 제공하며, 본 발명의 나노섬유 제조방법에 따라 합성된 PVA/산화아연 나노섬유를 효과적인 자외선 차단제로 사용할 수 있다. Accordingly, the present invention provides a method for producing PVA / zinc oxide nanofibers, and the PVA / zinc oxide nanofibers synthesized according to the nanofiber manufacturing method of the present invention can be used as an effective ultraviolet screening agent.

도 1은 각각 다른 합성 방법 및 캡핑제로 준비된 산화아연(ZnO) 나노입자의 광각 X선 회절(WAXD) 프로파일 결과이다.
도 2는 산화아연(ZnO) 나노입자의 SEM 이미지 및 크기 분포를 확인한 결과로; (a)는 수열합성된 산화아연(ZnO)이며, (b)는 PVP를 캡핑제로 사용하여 수열합성된 산화아연(ZnO-HPPVP)이며, (c)는 CTAB를 캡핑제로 사용하여 수열합성된 산화아연(ZnO-HP-CTAB)이며, (d)는 졸-겔 합성된 산화아연(ZnO-SG)의 결과이다.
도 3은 산화아연(ZnO) 나노입자의 TEM 이미지로, (a)는 수열방법으로 합성된 산화아연(ZnO)이며, (b)는 PVP를 캡핑제로 사용하여 수열방법으로 합성된 산화아연(ZnO-HPPVP)이며, (c)는 CTAB를 캡핑제로 사용하여 수열방법으로 합성된 산화아연(ZnO-HP-CTAB)이며, (d)는 졸-겔 합성된 산화아연(ZnO-SG)의 결과이다.
도 4는 졸-겔(sol-gel) 방법으로 합성된 콜로이드 산화아연(ZnO) 나노입자의 FE-TEM 이미지 결과이다.
도 5는 PVA/ZnO로 합성된 나노섬유의 SEM 이미지 및 직경 분포를 확인한 결과로, (a)는 PVA/ZnO 나노섬유이며, (b)는 PVA/PVP로 캡핑된 산화아연(ZnO-HP-PVP)으로 합성된 나노섬유이며, (c)는 PVA/CTAB로 캡핑된 산화아연(ZnO-HP-CTAB)으로 합성된 나노섬유이며, (d)는 PVA/졸-겔 방법으로 제조된 산화아연(ZnO-SG)으로 합성된 나노 섬유의 결과이다.
도 6은 PVA/ZnO로 합성된 나노섬유의 TEM 이미지로, (a)는 PVA/ZnO 나노섬유이며, (b)는 PVA/PVP로 캡핑된 산화아연(ZnO-HP-PVP)으로 합성된 나노섬유이며, (c)는 PVA/CTAB로 캡핑된 산화아연(ZnO-HP-CTAB)으로 합성된 나노섬유이며, (d)는 PVA/졸-겔 방법으로 제조된 산화아연(ZnO-SG)으로 합성된 나노 섬유의 결과이다.
도 7은 PVA/ZnO로 합성된 나노섬유의 UV 투과율을 확인한 결과로, (a)는 UV 스펙트럼(spectrum)을 나타낸 것이며, (b)는 400 nm에서 금형형상에 따른 UV 투과율을 나타낸 것이며, (c)는 산화아연 입자 함량에 따른 UV 투과율을 나타낸 것이다.
Figure 1 shows the results of wide angle X-ray diffraction (WAXD) profiles of zinc oxide (ZnO) nanoparticles prepared with different synthesis methods and capping agents.
FIG. 2 shows SEM images and size distributions of zinc oxide (ZnO) nanoparticles; FIG. (a) is a hydrothermally synthesized zinc oxide (ZnO), (b) is zinc oxide (ZnO-HPPVP) hydrothermally synthesized by using PVP as a capping agent, and (c) Zinc (ZnO-HP-CTAB), and (d) is the result of zinc oxide (ZnO-SG) synthesized by sol-gel.
FIG. 3 is a TEM image of zinc oxide (ZnO) nanoparticles, in which (a) is zinc oxide (ZnO) synthesized by a hydrothermal method, (b) is zinc oxide (ZnO) synthesized by hydrothermal method using PVP as a capping agent, (ZnO-HP-CTAB) synthesized by hydrothermal method using CTAB as a capping agent, and (d) is a result of zinc oxide (ZnO-SG) .
FIG. 4 is a FE-TEM image of colloidal zinc oxide (ZnO) nanoparticles synthesized by a sol-gel method.
Fig. 5 shows the SEM image and diameter distribution of the nanofibers synthesized with PVA / ZnO. Fig. 5 (a) shows the PVA / ZnO nanofiber, (C) is nanofiber synthesized with zinc oxide (ZnO-HP-CTAB) capped with PVA / CTAB, and (d) is a nanofiber synthesized with PVA / sol- (ZnO-SG).
FIG. 6 is a TEM image of a nanofiber synthesized with PVA / ZnO, wherein (a) is a PVA / ZnO nanofiber and (b) is a nanofiber synthesized from zinc oxide (ZnO-HP-PVP) capped with PVA / (C) is nanofiber synthesized with PVA / CTAB-capped zinc oxide (ZnO-HP-CTAB), and (d) is zinc oxide (ZnO-SG) prepared by the PVA / It is the result of synthesized nanofiber.
FIG. 7 shows the UV transmittance of nanofibers synthesized with PVA / ZnO. FIG. 7 (a) shows the UV spectrum, FIG. 7 (b) shows the UV transmittance according to the mold shape at 400 nm, c) shows the UV transmittance according to the zinc oxide particle content.

본 발명은 용매에 폴리비닐 알콜(polyvinyl alcohol; PVA)을 첨가하는 단계(제1단계); 용매에 산화아연(ZnO) 나노입자를 첨가하는 단계(제2단계); 상기 제1단계의 폴리비닐 알콜 용액 및 제2단계의 산화아연(ZnO) 나노입자 용액을 혼합하여 혼합용액을 제조하는 단계(제3단계);및 상기 제1단계의 폴리비닐 알콜(PVA) 용액 및 제3단계의 혼합용액을 이중 노즐 전기방사법을 통해 스킨-코어 구조의 나노섬유를 제조하는 산화아연 나노섬유 제조방법을 제공할 수 있다.The present invention relates to a process for producing polyvinyl alcohol (PVA) by adding polyvinyl alcohol (PVA) to a solvent (first step); Adding zinc oxide (ZnO) nanoparticles to the solvent (second step); (3) preparing a mixed solution by mixing the polyvinyl alcohol solution of the first step and the zinc oxide (ZnO) nanoparticle solution of the second step (step 3), and mixing the polyvinyl alcohol solution And a third step of preparing a skin-core nanofiber by a double nozzle electrospinning method.

보다 상세하게는, 상기 산화아연 나노입자는 졸-젤(Sol-gel) 방법으로 합성된 5 내지 15 nm 크기의 콜로이드 산화아연 나노입자일 수 있다.More specifically, the zinc oxide nanoparticles may be colloidal zinc oxide nanoparticles having a size of 5 to 15 nm synthesized by a sol-gel method.

본 발명의 일실시예에 따르면, 도 2 및 도 3과 같이 기존의 수열합성법으로 합성된 산화아연 나노입자와 PVP 또는 CTAB 캡핑제와 함께 수열합성된 산화아연 나노입자의 경우, 막대모양의 산화아연 나노입자들이 확인된 반면, 졸-젤(Sol-gel) 방법으로 합성된 콜로이드 산화아연 나노입자의 경우, 상기 캡핑제와 수열합성된 산화아연 나노 입자들보다 작은 크기의 구형의 나노입자들이 확인되었으며, 도 6과 같이 콜로이드 산화아연 나노입자의 분산 효과가 뛰어난 것을 확인할 수 있었으며, 도 7(a) 및 7(c)와 같이 콜로이드 산화아연 나노입자를 사용하여 합성된 PVA/ZnO 나노섬유가 상기 캡핑제와 수열합성된 산화아연 나노 입자들을 사용하여 합성된 PVA/ZnO 나노섬유보다 탁월한 자외선 차단효과를 나타내었다.According to one embodiment of the present invention, in the case of the zinc oxide nanoparticles synthesized by the conventional hydrothermal synthesis method as shown in FIGS. 2 and 3 and the zinc oxide nanoparticles hydrothermally synthesized together with the PVP or CTAB capping agent, While nanoparticles were identified, in the case of colloidal zinc oxide nanoparticles synthesized by the sol-gel method, spherical nanoparticles smaller in size than the zinc nanoparticles synthesized with the capping agent were identified , It was confirmed that the dispersion effect of the colloidal zinc oxide nanoparticles was excellent as shown in FIG. 6, and the PVA / ZnO nanofiber synthesized by using the colloidal zinc oxide nanoparticles as shown in FIGS. 7 (a) and 7 ZnO nanofibers synthesized by using zinc oxide nanoparticles synthesized by hydrothermal synthesis and pine.

상기 폴리비닐 알콜 용액은 용매 100 중량부에 대하여 1 내지 20 중량부로 포함될 수 있으며, 상기 산화아연(ZnO) 나노입자 용액은 용매 100 중량부에 대하여 0.1 내지 10 중량부로 포함될 수 있으나, 이에 한정되는 것은 아니다.The polyvinyl alcohol solution may be contained in an amount of 1 to 20 parts by weight based on 100 parts by weight of the solvent, and the zinc oxide (ZnO) nanoparticle solution may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the solvent. no.

또한, 본 발명의 전기방사시 사용되는 전압은 5 내지 30 kV이며, 주사속도는 0.5 내지 5 mL/h일 수 있으며, 상기 전기방사시 사용되는 이중 노즐의 평균 직경은 코어 직경이 0.30 내지 0.50 mm이며, 스킨의 안쪽 및 바깥 직경이 각각 0.60 내지 1.50 mm 및 0.90 내지 1.65 mm일 수 있으며, 보다 바람직하게는 전기방사시 사용되는 전압은 15 kV이며, 주사속도는 1 mL/h일 수 있으며, 상기 전기방사시 사용되는 이중 노즐의 평균 직경은 코어 직경이 0.33 mm이며, 스킨의 안쪽 및 바깥 직경이 각각 0.63 mm 및 1.07 mm 일 수 있으나, 이에 한정되는 것은 아니다.Also, the voltage used in the electrospinning of the present invention may be 5 to 30 kV, the scanning speed may be 0.5 to 5 mL / h, and the average diameter of the double nozzles used in the electrospinning may be 0.30 to 0.50 mm And the inner and outer diameters of the skin may be 0.60 to 1.50 mm and 0.90 to 1.65 mm, respectively, more preferably the voltage used for electrospinning is 15 kV, the scanning speed may be 1 mL / h, The average diameter of the double nozzles used in electrospinning may be 0.33 mm in core diameter and 0.63 mm and 1.07 mm in inner and outer skins, respectively, but is not limited thereto.

따라서, 본 발명의 스킨-코어 구조의 나노섬유는 산화아연 나노입자가 스킨 층을 이루며, 폴리비닐 알콜(PVA)이 코어 층을 이룰 수 있다. Therefore, in the skin-core structure nanofiber of the present invention, zinc oxide nanoparticles form a skin layer, and polyvinyl alcohol (PVA) can form a core layer.

본 발명의 다른 일실시예에 따르면, 도 7(b)와 같이 PVA(스킨)/산화아연(코어)로 합성된 나노 섬유와 단일 노즐로 합성된 PVA/ZnO 나노 섬유는 산화아연(스킨)/PVA(코어)로 합성된 나노섬유보다, 산화아연(스킨)/PVA(코어)로 합성된 나노섬유가 20% 이상 증가된 UV 차단 능력을 나타내었다. According to another embodiment of the present invention, the nanofiber synthesized from PVA (skin) / zinc oxide (core) and the PVA / ZnO nanofiber synthesized from a single nozzle are mixed with zinc oxide (skin) / The nanofiber synthesized from zinc oxide (skins) / PVA (core) showed a UV blocking ability that was increased by 20% or more than that of the nanofiber synthesized with PVA (core).

따라서, 본 발명은 본 발명에 따라 제조된 산화아연 나노섬유를 유효성분으로 함유하는 자외선 차단제 조성물을 제공할 수 있으며, 상기 자외선 차단제 조성물은 마스크, 마스크 팩 및 자외선차단용 화장료조성물로 사용될 수 있으나, 이에 한정되는 것은 아니다.Accordingly, the present invention can provide an ultraviolet screening composition containing zinc oxide nanofibers produced according to the present invention as an active ingredient, and the ultraviolet screening composition can be used as a mask, a mask pack, and a cosmetic composition for ultraviolet screening, But is not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1> 재료 1> Material

질산 아연(Zinc nitrate; Zn(NO3)2), 수산화나트륨(NaOH), 아세트산아연(zinc acetate; Zn(O2CCH3)2) 및 수산화리튬(lithium hydroxide; LiOH)을 Duksan에서 구매하였으며, 폴리비닐 알콜(polyvinyl alcohol; PVA)은 DC Chemical(Seoul, Korea)에서 구입하여 사용하였으며, 수평균중합도(Pn) 및 비누화도(DS)는 각각 1700 및 99.9 %였다.Zinc nitrate (Zn (NO 3 ) 2 ), sodium hydroxide (NaOH), zinc acetate (Zn (O 2 CCH 3 ) 2 ) and lithium hydroxide (LiOH) were purchased from Duksan, Polyvinyl alcohol (PVA) was purchased from DC Chemical (Seoul, Korea) and the number average degree of polymerization (Pn) and saponification degree (DS) were 1700 and 99.9%, respectively.

폴리비닐피롤리돈(Poly vinyl pyrrolidone; PVP)를 Wako Pure Chemical Industries(Japan)에서 구입하였으며, 헥사데실 트라이메틸암모늄 브로마이드(hexa decyl trimethyl ammonium bromide; CTAB)를 Tokyo Chemical Industry Co., Ltd.에서 구입하여 사용하였다. 또한, 무수에틸알콜(Absolute ethanol)을 Daejung Chemicals & Metals Co., Ltd.에서 얻었으며, 상기 모든 물질은 추가 정제 없이 사용하였다.Poly vinyl pyrrolidone (PVP) was purchased from Wako Pure Chemical Industries (Japan), and hexadecyl trimethyl ammonium bromide (CTAB) was purchased from Tokyo Chemical Industry Co., Ltd. Respectively. Absolute ethanol was also obtained from Daejung Chemicals & Metals Co., Ltd. All of the above materials were used without further purification.

2차 증류수를 사용하여 수열합성법(hydrothermal method)으로 산화아연(ZnO) 나노입자를 합성하였으며, 무수에틸알콜을 사용하여 콜로이드성 산화아연(colloidal ZnO)을 준비하였다.Zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method using secondary distilled water, and colloidal ZnO was prepared using anhydrous ethyl alcohol.

<< 실시예Example 2> 산화아연 나노입자 합성  2> Synthesis of zinc oxide nanoparticles

1. 수열합성법(1. hydrothermal synthesis ( hydrothermalhidrothermal methodmethod )을 이용한 산화아연() Of zinc oxide ZnOZnO ) 나노입자 합성 ) Synthesis of nanoparticles

산화아연 나노입자를 합성하기 위해, 질산 아연 0.1M과 수산화나트륨 0.2M를 혼합하고 실온에서 2시간 동안 끊임없이 교반시켰다. To synthesize zinc oxide nanoparticles, 0.1M zinc nitrate and 0.2M sodium hydroxide were mixed and continuously stirred at room temperature for 2 hours.

상기 혼합된 용액을 Teflon beaker에 옮긴 후, 오토클레이브(autoclave)에서 2 시간 동안 200℃로 가열하였다. 반응 후 오토클레이브를 실온으로 냉각시키고 산화아연 입자를 침전시켰다. 상기 침전물을 Na+ 및 NO3 -가 제거된 증류수로 여러번 세척하고 하루 동안 100℃에서 건조시킨 후, 건조된 분말을 막자와 막자사발로 분쇄하였다.The mixed solution was transferred to a Teflon beaker and then heated to 200 DEG C for 2 hours in an autoclave. After the reaction, the autoclave was cooled to room temperature and zinc oxide particles were precipitated. The precipitate was washed several times with Na + and NO 3 - removed distilled water, dried at 100 ° C. for one day, and then the dried powder was pulverized with a mortar and mortar.

또한, 산화아연 나노입자의 크기와 모양을 달리하기 위해, PVP 및 CTAB와 같은 캡핑제를 첨가하였는데 먼저, 0.05 wt% PVP 또는 CTAB를 질산 아연 용액과 혼합한 후 상기 전술한 산화아연 나노입자 합성 방법과 동일한 과정으로 산화아연 나노입자를 제조하였다.In order to change the size and shape of the zinc oxide nanoparticles, a capping agent such as PVP and CTAB was added. First, 0.05 wt% of PVP or CTAB was mixed with a zinc nitrate solution, and the zinc oxide nanoparticle synthesis method Zinc oxide nanoparticles were prepared by the same procedure as described above.

2. 졸-젤 합성법(2. Sol-gel synthesis ( solleft -- gelcome synthesissynthesis )을 이용한 콜로이드 산화아연() Of colloidal zinc oxide ZnOZnO ) 합성) synthesis

졸-젤 합성법(sol-gel synthesis)을 이용하여 콜로이드 산화아연 나노입자를 제조하기 위해, 환류 응집방법을 사용하였으며, 아세트산아연(zinc acetate)과 무수에틸알콜을 추가 정제 없이 사용하였다. To prepare colloidal zinc oxide nanoparticles using sol-gel synthesis, a reflux condensation method was used, and zinc acetate and anhydrous ethyl alcohol were used without further purification.

먼저, 1L 둥근 바닥 증류플라스크에 0.5L 무수에틸알콜과 0.1 mol 아세트산아연을 넣은 후 증류플라스크를 응축기에 위치시키고 용액을 80℃에서 180분간 환류시켰다. 환류반응 동안 흰색 응축물을 수집하였으며, 마무리 단계에서 반응물(전구체) 0.2L 및 응축물 0.3L를 얻었으며, 이렇게 얻어진 전구체에 아연 에톡시드(ethoxide) 타입의 화합물이 포함되어 있었다.First, a 1 L round bottom distillation flask was charged with 0.5 L of anhydrous ethyl alcohol and 0.1 mol of zinc acetate, the distillation flask was placed in a condenser, and the solution was refluxed at 80 ° C for 180 minutes. During the reflux reaction, a white condensate was collected and 0.2 L of the reactant (precursor) and 0.3 L of condensate were obtained in the finishing step, and the precursor thus obtained contained zinc ethoxide type compound.

상기 전구체 0.2L를 무수에틸알콜 0.5L에 희석하고 최종 수산화리튬 농도가 0.14M이 되도록 0.07 mol 수산화리튬(lithium hydroxide) 분말을 전구체에 첨가하였다. 0.2 L of the precursor was diluted with 0.5 L of anhydrous ethyl alcohol and 0.07 mol lithium hydroxide powder was added to the precursor to a final lithium hydroxide concentration of 0.14M.

초음파 배쓰를 이용하여 상기 혼합물의 가수분해 반응을 가속화시키고, 수산화리듐 분말이 더 이상 발견되지 않을 때까지 가수분해 반응을 실온에서 유지시켰다(대략 1시간 동안 유지시킴). The hydrolysis reaction of the mixture was accelerated using an ultrasonic bath and the hydrolysis reaction was maintained at room temperature (maintained for about 1 hour) until no more lithium hydroxide powder was found.

이렇게 얻어진 산화아연 콜로이드 현탁액을 유리 섬유 필터(0.1μm)에 통과시켜 먼지 및 용해되지 않고 남아있는 수산화리튬을 여과하여 제거하였다. The zinc oxide colloidal suspension thus obtained was passed through a glass fiber filter (0.1 μm) to remove dust and remaining undissolved lithium hydroxide by filtration.

마지막으로 상기 콜로이드를 진공 회전농축기를 이용하여 30℃에서 아연 농도를 0.1 M에서 0.5 M로 농축시켰다. Finally, the colloid was concentrated from 0.5 M to 0.5 M at 30 ° C using a vacuum rotary condenser.

상기 전술한 각각의 산화아연 나노입자 합성방법 및 캡핑제들을 표 1과 같이 정리하였다. The above-described zinc oxide nanoparticle synthesis method and capping agents were summarized as shown in Table 1.

시료sample 합성 방법Synthesis method 캡핑제(Capping agent ( cappingcapping agentagent )) ZnOZnO 수열합성법(hydrothermal method)Hydrothermal method -- ZnO/PVPZnO / PVP 수열합성법(hydrothermal method)Hydrothermal method PVPPVP ZnO/CTABZnO / CTAB 수열합성법(hydrothermal method)Hydrothermal method CTABCTAB ZnO-SGZnO-SG Sol-gelSol-gel --

<< 실시예Example 3>  3> ZnOZnO // PVPPVP 로 합성된 나노섬유 제조 방법Of Nanofibers Synthesized with

금속 바늘, 실린지 펌프, 수십 킬로 볼트를 전달할 수 있는 고전압 공급 전원과 방사구 및 접지된 컬렉터로 구성되는 전기방사법(Electrospinning)을 이용하여 나노섬유를 제조하였다.Nanofibers were fabricated using electrospinning consisting of metal needles, syringe pumps, high-voltage power supplies capable of delivering tens of kilo-volts, and spinnerets and grounded collectors.

전기방사법은 고전압을 고분자 유체에 적용시켜 유체내 전기적 전하를 유도하고, 전하가 임계량에 도달할 때, 바늘 끝의 작은 물방울로부터 유체 분출이 이루어지며, 전기방사 분출은 접지된 컬렉터의 낮은 포텐셜을 향하여 이동되어 Taylor cone을 형성한다. Electrospinning applies a high voltage to the polymer fluid to induce electrical charge in the fluid, and when the charge reaches a critical amount, fluid ejection occurs from the droplet at the tip of the needle, and the electrospinning ejection is directed toward the low potential of the grounded collector To form a Taylor cone.

코어 실린더의 평균 직경은 0.33 mm이고 스킨 환형 관(skin annulus)의 안 및 바깥 직경은 각각 0.63 및 1.07 mm 였으며, 랜드 길이는 7 mm였다. The average diameter of the core cylinder was 0.33 mm, the inner and outer diameters of the skin annulus were 0.63 and 1.07 mm, respectively, and the land length was 7 mm.

먼저, 증류수에 9 wt% PVA를 90℃에서 2시간 동안 용해시켰으며, 증류수에 실시예 2에서 다른 방법으로 합성된 각각의 산화아연(ZnO) 나노입자 1 wt%를 실온에서 2시간 동안 분산시킨 후 각각 상기 PVA 용액과 혼합하였다. 이렇게 혼합된 PVA/ZnO 용액과 PVA 용액을 두 개의 10 mL 실린지에 각각 옮겨 담고 PVA/ZnO 용액을 나노 섬유의 스킨층으로, PVA 용액을 나노섬유의 코어로 사용하였다. First, 9 wt% PVA was dissolved in distilled water at 90 ° C for 2 hours, and 1 wt% of zinc oxide (ZnO) nanoparticles synthesized by another method in Example 2 was dispersed in distilled water for 2 hours at room temperature And then mixed with the PVA solution. The mixed PVA / ZnO solution and the PVA solution were transferred to two 10 mL syringes, and the PVA / ZnO solution was used as the skin layer of the nanofiber and the PVA solution was used as the core of the nanofiber.

고전압 공급 전원의 양극을 금속성의 이중 노즐에 고정시킨 후, 각 스킨 및 코어 용액을 실온에서 1 mL/h 속도로 컬렉터를 향하여 전기방사하였다. 표 2와 같이 상기 전기방사에 적용된 전압은 15 kV 였으며, 바늘 팁에서 컬렉터까지의 거리는 12 cm 였다. The anode of the high-voltage power supply was fixed to a metallic double nozzle, and each skin and core solution was electrospun at a rate of 1 mL / h at room temperature toward the collector. As shown in Table 2, the voltage applied to the electrospinning was 15 kV, and the distance from the needle tip to the collector was 12 cm.

고분자 용액Polymer solution 용매(solvent)The solvent 증류수(Distilled water)Distilled water PVA 농도PVA concentration 9 wt%9 wt% 전기방사Electric radiation

적용 전압Applied voltage 15 kV15 kV
속도speed 1 ml/h1 ml / h 팁에서 컬렉터까지의 거리Distance from tip to collector 12 cm12 cm

그 결과, 알루미늄 포일(foil)로 덮인 스틸 드럼 위로 나노섬유가 수집되었다.       As a result, the nanofibers were collected on a steel drum covered with an aluminum foil.

<< 실시예Example 4> 나노입자 및 전기방사 나노섬유 확인 4> Confirmation of nanoparticles and electrospun nanofibers

1. 나노입자 및 전기방산 나노섬유 확인 방법1. Identification of nanoparticles and electro-dispersive nanofibers

나노입자 및 전기방사 나노섬유의 형태를 확인하기 위해, 백금 코팅 후 전자방출형 주사전자현미경(field emission scanning electron microscope; FE-SEM, S-4100, Hitachi Co.,Japan)을 이용하여 촬영한 각 시료의 SEM 이미지로 평균 직경 및 나노입자의 두께를 확인하였으며, 추가적으로 투과형 전자현미경(Transmission electron microscopy; TEM, H-7600, Hitachi Co., Japan) 및 전자방출 투과형 전자현미경(Field-Emission transmission electron microscopy; FE-TEM, S-4800, Hitachi Co., Japan)으로 확인하였다. (FE-SEM, S-4100, Hitachi Co., Japan) after platinum coating to confirm the morphology of nanoparticles and electrospun nanofibers The average diameter and the thickness of the nanoparticles were confirmed by a SEM image of the sample, and a transmission electron microscope (TEM, H-7600, Hitachi Co., Japan) and a field-emission transmission electron microscope ; FE-TEM, S-4800, Hitachi Co., Japan).

산화아연 나노입자의 결정 구조를 광각 X선 회절(Wide-angle X-ray diffraction; WAXD, D/MAX-2500, Rigaku, Tokyo, Japan)을 이용하여 3°/min 스캔 율로 확인하였으며, PVA/ZnO로 구성된 나노섬유 망의 UV 투과율은 자외-가시광 분광법(UV-vis spectroscopy; Carry5000, Agilent Co., USA)으로 확인하였다.The crystal structure of zinc oxide nanoparticles was confirmed at 3 ° / min scan rate using wide-angle X-ray diffraction (WAXD, D / MAX-2500, Rigaku, Tokyo, Japan) (UV-vis spectroscopy, Carry 5000, Agilent Co., USA) was used to confirm the UV transmittance of the nanofiber network.

2. 산화아연(2. Zinc oxide ( ZnOZnO ) 나노입자 형태 확인) Identification of nanoparticle morphology

실시예 2의 수열합성법으로 열수 침전된 산화아연, PVA 및 CTAB 캡핑제로 합성된 산화아연 및 졸-겔(sol-gel) 합성된 콜로이드 산화아연을 도 1과 같이 확인하였다. Zinc oxide synthesized by hydrothermal synthesis of Example 2, zinc oxide synthesized with PVA and CTAB capping agent, and colloid zinc oxide synthesized with sol-gel were identified as shown in FIG.

상기 산화아연 나노입자들의 광각 X선 회절(WAXD) 프로파일 결과, 산화아연 나노입자들의 피크 강도에 약간의 변화가 발견되었으나, 모두 전형적인 산화아연 결정체 피크를 나타내었으며, 산화아연 나노입자들의 광각 X선 회절(WAXD) 패턴 결과, 산화아연 결정의 100, 002, 101, 102, 110, 103 및 112의 회절 면이 각각 2θ의 31°, 34°, 36°, 48°, 57°, 63°및 68°에서 특징적인 주요 피크로 확인되었다. As a result of the wide angle X-ray diffraction (WAXD) profile of the zinc oxide nanoparticles, a slight change in the peak intensity of the zinc oxide nanoparticles was found, but all showed typical zinc oxide crystal peaks. (WAXD) pattern showed that the diffraction planes of 100, 002, 101, 102, 110, 103 and 112 of zinc oxide crystals were 31 °, 34 °, 36 °, 48 °, 57 °, 63 ° and 68 ° Which was identified as a characteristic peak.

또한, 도 1을 참고하면, 캡핑제 첨가에 의해 회절 피크의 강도가 감소하는 것을 확인할 수 있었는데, 이는 캡핑제 첨가에 의해 결정화도가 감소하기 때문으로 순수한 산화아연과 비교해볼 때, 캡핑제는 거대입자의 성장율을 감소시키는 반면, 작은 입자는 유지시키는 방법으로 핵 생성 속도에 영향을 줄 수 있는 것으로 확인되었다. 콜로이드 산화아연은 다른 시료들보다 낮은 광각 X선 회절(WAXD) 강도와 광범위한 피크를 나타내는 것을 확인할 수 있었으며, 이를 통하여 콜로이드 산화아연은 낮은 결정화도 및 매우 작은 결정 크기를 갖는 것을 확인할 수 있었다. Also, referring to FIG. 1, it was confirmed that the intensity of the diffraction peak was decreased by the addition of the capping agent because the degree of crystallization was decreased by the addition of the capping agent. As compared with pure zinc oxide, , While small particles were found to be capable of affecting the rate of nucleation by maintaining the growth rate. It was confirmed that colloidal zinc oxide exhibited lower broad-angle X-ray diffraction (WAXD) strength and broader peak than other samples, and it was confirmed that colloidal zinc oxide has a low crystallinity and a very small crystal size.

또한, 각각 다른 캡핑제 및 합성 방법으로 생산된 산화아연 나노입자들의 SEM 이미지와 나노입자의 입자 크기 분포를 확인하였다. 생산된 나노입자의 크기 일관성과 데이터의 통계적 유의성을 확인하기 위해, 세 번씩 반복 실험을 수행하고, FE-SEM을 통하여 다른 위치의 시료들을 분석하였다. In addition, SEM images of zinc oxide nanoparticles produced by different capping agents and synthetic methods and particle size distribution of nanoparticles were confirmed. In order to confirm the consistency of the produced nanoparticles and the statistical significance of the data, repeated experiments were carried out three times and the samples at different positions were analyzed by FE-SEM.

그 결과, 도 2의 오른쪽 그래프와 같이 크기 분산을 확인할 수 있었으며, 두 타입의 나노입자 형태를 확인할 수 있었다.As a result, the size distribution was confirmed as shown in the right graph of FIG. 2, and both types of nanoparticles were confirmed.

도 2(a) 내지 2(c)를 참고하면, 열수 침전 방법으로 합성된 산화아연은 대개 6 각형의 막대 모양을 나타내었다. 도 2(a)의 순수한 산화아연의 직경은 90-120 nm 였으며, 도 2(b)의 PVP가 포함된 산화아연은 60-90 nm 직경의 나노 막대를 형성하고 있는 것을 확인하였다. Referring to Figs. 2 (a) to 2 (c), the zinc oxide synthesized by the hydrothermal precipitation method generally showed a hexagonal rod shape. The diameter of the pure zinc oxide of FIG. 2 (a) was 90-120 nm, and the zinc oxide containing PVP of FIG. 2 (b) formed nanorods of 60-90 nm diameter.

PVP는 N-비닐 피롤리돈 단량체로 구성된 수용성 고분자로 입자성장에 있어서, 아연 이온과 배위 결합(coordinate bond)을 형성할 수 있기 때문에 PVP의 추가는 응집으로부터 나노입자를 보호할 수 있다.Since PVP is a water-soluble polymer composed of N-vinylpyrrolidone monomers, the addition of PVP can protect nanoparticles from agglomeration, since they can form coordinate bonds with zinc ions in particle growth.

CTAB가 포함된 산화아연은 도 2(c)와 같이 40-70 nm 직경 범위를 나타내었으며, PVP가 포함된 산화아연보다 상대적으로 가늘고 균일한 구조가 확인되었다.As shown in FIG. 2 (c), the zinc oxide containing CTAB exhibited a diameter of 40-70 nm, and a relatively thin and uniform structure was confirmed as compared with zinc oxide containing PVP.

양이온 계면활성제인 CTAB는 수용액 상에서 완벽하게 이온화되어, 양성 아미노 헤드 그룹 형성을 유도한다. 따라서, 산화아연과 함께 CTAB가 첨가되면 정전기 상호작용 및 구조적 상보성을 통하여 마이셀(micelles)의 인터페이스에서 하나 또는 그 이상의 헤드 그룹과 결합이 유도됨에 따라, 작은 산화아연 나노입자가 형성되는 것을 확인할 수 있었다.The cationic surfactant, CTAB, is completely ionized in aqueous solution, leading to positive aminohead group formation. Therefore, it was confirmed that when CTAB is added together with zinc oxide, small zinc oxide nanoparticles are formed due to induction of bonding with one or more head groups at the interface of micelles through electrostatic interaction and structural complementation .

상기 결과들로부터 나노 막대 크기의 감소는 캡핑제에 의해 나타나는 것이 확인되었다.From these results it was confirmed that the reduction of the nanorod size was indicated by the capping agent.

반면, 졸-겔 합성법으로 생산된 콜로이드 산화아연은 도 2(d)와 같이, 대부분 구 형태의 입자인 것으로 확인되었다. 많은 핵의 존재는 기존 성장 입자 위에 아연 이온의 제한된 양을 단위체로 추가할 수 있기 때문에 c-축을 따른 우선적인 성장을 막는다. 따라서, 콜로이드 산화아연은 상대적으로 동일한 축 내에서 성장하는 것을 확인할 수 있었으며, 통계학적 분석으로 콜로이드 산화아연 입자 크기가 5 nm 내지 15 nm 사이인 것으로 확인되었다. On the other hand, the colloid zinc oxide produced by the sol-gel synthesis method was confirmed to be mostly spherical particles as shown in Fig. 2 (d). The presence of many nuclei prevents the preferential growth along the c-axis because it can add a limited amount of zinc ions onto the existing growth particles as monomers. Thus, it was confirmed that the colloidal zinc oxide grows in a relatively same axis, and statistical analysis confirmed that the colloidal zinc oxide particle size was between 5 nm and 15 nm.

추가적으로, 구멍이 포함되어 있고 용매가 증발할 수 있는 탄소 코팅된 구리 그리드 위에 각각의 시료들이 희석된 현탁액의 방울을 올려놓은 샘플을 준비한 후, 도 3과 같이 TEM 이미지로 산화아연 나노입자의 나노구조 및 형태학적 측면을 확인하였다. In addition, a sample was prepared in which droplets of a diluted suspension of each sample were placed on a carbon-coated copper grid containing holes and the solvent could evaporate, and then the nanostructures of the zinc oxide nanoparticles And morphological aspects were confirmed.

그 결과, 도 3(a) 내지 3(c)와 같이 열수 침전으로 생성된 순수한 산화아연 및 캡핑제가 포함된 산화아연의 결정이 막대형태인 것을 확인할 수 있었다. 또한, 나노막대의 직경은 순수한 산화아연의 나노막대 직경보다 캡핑제가 포함된 산화아연의 나노막대 직경이 상대적으로 감소한 것을 확인할 수 있었다. As a result, it was confirmed that the pure zinc oxide produced by hydrothermal precipitation and the zinc oxide crystal containing the capping agent were rod-shaped as shown in Figs. 3 (a) to 3 (c). In addition, the diameter of the nanorods was found to be relatively smaller than the diameter of the nanorods of pure zinc oxide.

또한, 도 3(d)와 같이 콜로이드 산화아연은 구형인 것이 확인되었다.Also, it was confirmed that the colloidal zinc oxide was spherical as shown in Fig. 3 (d).

콜로이드 산화아연의 FE-TEM 이미지 및 이에 따른 고속푸리에변화(fast Fourier transform; FFT) 패턴을 확인하였다.An FE-TEM image of the colloidal zinc oxide and the resulting fast Fourier transform (FFT) pattern were confirmed.

그 결과, 도 4와 같이 콜로이드 산화아연의 입자가 대략적인 구형으로 확인되었으며, 격자무늬를 통하여 콜로이드 산화아연의 입자들이 다수의 면을 가진 단일 결정체인 것이 확인되었다. 또한, 입자 크기가 5 nm 내지 10 nm 사이인 것으로 확인되었다. As a result, as shown in FIG. 4, the particles of the colloidal zinc oxide were found to be rough spherical, and it was confirmed that the particles of the colloid zinc oxide were a single crystal having many faces through the lattice pattern. It was also confirmed that the particle size was between 5 nm and 10 nm.

또한, 도 5(b)의 FFT 패턴은 산화아연 나노입자의 110 및 002 면을 확인한 결과로, FFT 이미지로부터 002 면의 면간 거리(D-spacing)가 0.25 nm인 것을 확인할 수 있었다.The FFT pattern of FIG. 5 (b) confirmed that the 110 and 002 planes of the zinc oxide nanoparticles were confirmed, and it was confirmed that the D-spacing of the 002 plane from the FFT image was 0.25 nm.

3. 3. PVAPVA // 산화아연(ZnO)로With zinc oxide (ZnO) 구성된 나노섬유 확인 Identify Configured Nanofibers

실시예 3에서 합성된 각각 다른 산화아연 나노입자를 이용하여 PVA(코어)/ZnO(스킨)으로 전기방사된 나노섬유를 확인하였다. Nanofibers electrospun with PVA (core) / ZnO (skin) were identified using different zinc oxide nanoparticles synthesized in Example 3.

그 결과, PVA(코어)/ZnO(스킨)으로 전기방사된 나노섬유의 SEM 이미지인 도 5와 같이, 모든 나노 섬유가 뚜렷한 배열 없이 무작위로 배열되어 있었으며, 나노섬유 직경 범위가 200nm에서 500nm인 것을 확인하였다.As a result, all of the nanofibers were randomly arranged without a clear arrangement, and the nanofiber diameters ranged from 200 nm to 500 nm as shown in FIG. 5, which is an SEM image of nanofibers electrospun with PVA (core) / ZnO Respectively.

또한, 나노섬유로 구성된 표면은 부드러웠는데, 이를 통하여 PVA가 코어로 포함된 산화아연 나노입자는 좋은 결합인 것을 확인할 수 있었다. Also, the surface composed of the nanofibers was soft, and it was confirmed that the zinc oxide nanoparticles containing the PVA as a core are good bonds.

TEM 이미지인 도 6(a) 내지 6(c)를 참고하면, PVA/ZnO로 구성된 나노섬유에서 큰 산화아연 나노입자는 응집하는 경향이 나타나는 것으로 확인된 반면, 도 6(d)와 같이 콜로이드 산화아연 나노입자는 순수한 산화아연보다 더 잘 분산되었으며, 합성된 나노섬유 내에서 산화아연의 구 형태가 잘 유지된 것으로 확인되었다6 (a) to 6 (c), which are TEM images, it was confirmed that large zinc oxide nanoparticles in the nanofiber composed of PVA / ZnO exhibited agglomeration tendency. On the other hand, as shown in FIG. 6 (d) The zinc nanoparticles were better dispersed than the pure zinc oxide, and it was confirmed that the spherical shape of the zinc oxide was maintained well in the synthesized nanofiber

상기 결과로부터, PVA 고분자 매트릭스 내에서 작은 입자 크기는 좋은 나노입자 분포와 관련 있는 것을 확인하였다. From the above results, it was confirmed that the small particle size in the PVA polymer matrix is related to the good nanoparticle distribution.

다음으로, PVA/ZnO로 합성된 나노섬유의 UV 투과 스펙트라를 200 nm 에서 600 nm 파장 범위에서 확인하였다.Next, the UV transmittance spectra of nanofibers synthesized with PVA / ZnO were observed in the wavelength range from 200 nm to 600 nm.

그 결과, 도 7 (a)와 같이 PVA에 산화아연 나노입자가 첨가된 경우 UV 투과성이 상당히 감소하였으며, 이러한 결과는 UV-B 및 UV-A 스펙트럼 영역(315 nm-400 nm) 범위 내에서 산화아연의 감소된 입자 크기에 의한 명백한 효과인 것으로 확인되었다. As a result, when the zinc oxide nanoparticles were added to the PVA as shown in FIG. 7 (a), the UV transmittance was considerably reduced, and these results were confirmed by the fact that the oxidation was observed within the UV-B and UV-A spectral range (315 nm to 400 nm) Lt; RTI ID = 0.0 &gt; reduced particle size of zinc. &Lt; / RTI &gt;

산화아연 나노입자는 UV-A 및 UV-B 복사를 흡수할 수 있다. 따라서 4가지 방법으로 합성된 PVA/ZnO 나노섬유의 UV 투과 스펙트라를 비교하여 PVA/ZnO로 합성된 나노섬유의 UV 차단 능력을 확인하였다. Zinc oxide nanoparticles can absorb UV-A and UV-B radiation. Therefore, UV blocking ability of nanofiber synthesized with PVA / ZnO was confirmed by comparing the UV transmission spectra of PVA / ZnO nanofibers synthesized by the four methods.

그 결과, 도 7 (a)와 같이 산화아연(ZnO) < 산화아연(ZnO)/PVP < 산화아연(ZnO)/CTAB < 콜로이드 산화아연(ZnO) 순으로 UV 차단 능력이 증가하는 것이 확인되었다.As a result, it was confirmed that the UV blocking ability was increased in the order of zinc oxide (ZnO) / zinc oxide (ZnO) / PVP (zinc oxide) / CTAB (colloidal zinc oxide).

상기 결과들로부터 산화아연 나노입자의 크기 및 분포는 UV 차단 능력에 영향을 주는 것으로 확인되었다.From the above results, it was confirmed that the size and distribution of zinc oxide nanoparticles affected the UV blocking ability.

또한, 도 7(b)는 각각 다른 노즐 타입 및 산화아연 입자의 스킨-코어 위치를 변경하여 합성한 PVA/ZnO 나노섬유의 UV 투과성(400nm)을 비교한 결과로, 산화아연(스킨)/PVA(코어)로 합성된 나노섬유는 매우 뛰어난 UV 차단 능력을 나타낸 반면, PVA(스킨)/산화아연(코어)로 합성된 나노 섬유와 단일 노즐로 합성된 PVA/ZnO 나노 섬유는 산화아연(스킨)/PVA(코어)로 합성된 나노섬유보다 20% 덜 감소된 효과를 나타내었다. 7 (b) is a graph comparing the UV transmittance (400 nm) of the PVA / ZnO nanofibers synthesized by changing the nozzle type and the skin-core position of the zinc oxide particles, (Core) nanofibers exhibited excellent UV blocking ability, while PVA / ZnO nanofibers synthesized from PVA (skin) / zinc oxide (core) nanofibers and single nozzle synthesized zinc oxide (skin) / PVA (core) nanofibers.

상기 결과로부터 산화아연 나노입자가 스킨 층에 위치할 경우, UV 차단이 더욱 효과적인 것을 확인할 수 있었다.From the above results, it was confirmed that UV blocking is more effective when the zinc oxide nanoparticles are located on the skin layer.

다음으로, 다양한 양의 산화아연 나노입자로 합성된 나노섬유의 UV 차단 효과를 확인하였다.Next, the UV blocking effect of nanofibers synthesized with various amounts of zinc oxide nanoparticles was confirmed.

그 결과, 도 7(c)와 같이 콜로이드 산화아연으로 구성된 PVA 나노섬유의 UV 차단 효과가 동일한 양의 다른 나노입자들보다 뛰어난 것을 확인할 수 있었다. 또한, 1wt% 콜로이드 산화아연 및 1.5wt% 콜로이드 산화아연의 투과율이 각각 5% 및 1%로 확인되었다.As a result, it was confirmed that the UV blocking effect of the PVA nanofiber composed of the colloidal zinc oxide was superior to other nanoparticles of the same amount as in FIG. 7 (c). Also, the transmittances of 1 wt% colloidal zinc oxide and 1.5 wt% colloidal zinc oxide were 5% and 1%, respectively.

상기 결과로부터 작은 크기의 나노입자가 잘 분포될 경우 UV 차단에 효과적인 것으로 확인됨에 따라, 작은 크기를 갖는 콜로이드 산화아연은 적은 양으로도 UV를 효과적으로 차단할 수 있다.
From the above results, it is confirmed that when small-sized nanoparticles are well distributed, it is effective for UV shielding, so that colloidal zinc oxide having a small size can effectively block UV even in a small amount.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (8)

용매에 폴리비닐 알콜(polyvinyl alcohol; PVA)을 첨가하는 단계(제1단계);
용매에 산화아연(ZnO) 나노입자를 첨가하는 단계(제2단계);
상기 제1단계의 폴리비닐 알콜 용액 및 제2단계의 산화아연(ZnO) 나노입자 용액을 혼합하여 혼합용액을 제조하는 단계(제3단계);및
상기 제1단계의 폴리비닐 알콜(PVA) 용액 및 제3단계의 혼합용액을 이중 노즐 전기방사법을 통해 스킨-코어 구조의 나노섬유를 제조하는 산화아연 나노섬유 제조방법.
Adding polyvinyl alcohol (PVA) to the solvent (first step);
Adding zinc oxide (ZnO) nanoparticles to the solvent (second step);
(3) mixing the polyvinyl alcohol solution of the first step and the zinc oxide (ZnO) nanoparticle solution of the second step to prepare a mixed solution; and
Wherein the nanofibers of the skin-core structure are prepared by the double-nozzle electrospinning of the polyvinyl alcohol (PVA) solution of the first step and the mixed solution of the third step.
청구항 1에 있어서, 상기 산화아연 나노입자는 졸-젤(Sol-gel) 방법으로 합성된 5 내지 15 nm 크기의 콜로이드 산화아연 나노입자인 것을 특징으로 하는 산화아연 나노섬유 제조방법.The method according to claim 1, wherein the zinc oxide nanoparticles are colloidal zinc oxide nanoparticles having a size of 5 to 15 nm synthesized by a sol-gel method. 청구항 1에 있어서, 상기 폴리비닐 알콜 용액은 용매 100 중량부에 대하여 1 내지 20 중량부로 포함되는 것을 특징으로 하는 산화아연 나노섬유 제조방법.The method according to claim 1, wherein the polyvinyl alcohol solution is contained in an amount of 1 to 20 parts by weight based on 100 parts by weight of the solvent. 청구항 1에 있어서, 상기 산화아연(ZnO) 나노입자 용액은 용매 100 중량부에 대하여 0.1 내지 10 중량부로 포함되는 것을 특징으로 하는 산화아연 나노섬유 제조방법.[2] The method of claim 1, wherein the zinc oxide (ZnO) nanoparticle solution is contained in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the solvent. 청구항 1에 있어서, 상기 전기방사시 사용되는 전압은 5 내지 30 kV이며, 주사속도는 0.5 내지 5 mL/h인 것을 특징으로 하는 산화아연 나노섬유 제조방법.The method of claim 1, wherein the voltage used for electrospinning is 5 to 30 kV and the scanning speed is 0.5 to 5 mL / h. 청구항 1에 있어서, 상기 전기방사시 사용되는 이중 노즐의 평균 직경은 코어 직경이 0.30 내지 0.50 mm이며, 스킨의 안쪽 및 바깥 직경이 각각 0.60 내지 1.50 mm 및 0.90 내지 1.65 mm 인 것을 특징으로 하는 산화아연 나노섬유 제조방법. [3] The method according to claim 1, wherein the average diameter of the double nozzles used in the electrospinning is 0.30 to 0.50 mm in core diameter and 0.60 to 1.50 mm and 0.90 to 1.65 mm in the inner and outer diameters of the skins, Method of manufacturing nanofibers. 청구항 1에 있어서, 상기 스킨-코어 구조의 나노섬유는 산화아연 나노입자가 스킨 층을 이루며, 폴리비닐 알콜(PVA)이 코어 층을 이루는 것을 특징으로 하는 산화아연 나노섬유 제조방법. [Claim 2] The method according to claim 1, wherein the skin-core nanofibers comprise zinc oxide nanoparticles as a skin layer and polyvinyl alcohol (PVA) as a core layer. 청구항 1 내지 청구항 7 중 어느 한 항으로 제조된 산화아연 나노섬유를 유효성분으로 함유하는 자외선 차단제 조성물.




A sunscreen composition comprising zinc oxide nanofibers prepared according to any one of claims 1 to 7 as an active ingredient.




KR1020150010045A 2015-01-21 2015-01-21 Preparation method of ZnO nanofiber and uses thereof KR20160090134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150010045A KR20160090134A (en) 2015-01-21 2015-01-21 Preparation method of ZnO nanofiber and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150010045A KR20160090134A (en) 2015-01-21 2015-01-21 Preparation method of ZnO nanofiber and uses thereof

Publications (1)

Publication Number Publication Date
KR20160090134A true KR20160090134A (en) 2016-07-29

Family

ID=56617639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150010045A KR20160090134A (en) 2015-01-21 2015-01-21 Preparation method of ZnO nanofiber and uses thereof

Country Status (1)

Country Link
KR (1) KR20160090134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043842A1 (en) * 2016-08-30 2018-03-08 고려대학교 산학협력단 Nanofiber-nanowire composite and preparation method therefor
CN112030355A (en) * 2020-09-07 2020-12-04 渤海大学 Preparation method of nano ZnO modified CMA/TP-PLA coaxial nanofiber membrane through in-situ synthesis
CN114045611A (en) * 2021-11-17 2022-02-15 广东粤港澳大湾区国家纳米科技创新研究院 Preparation method of zinc oxide nanofiber membrane
CN114990728A (en) * 2022-06-20 2022-09-02 浙江理工大学 Preparation method of high-strength sheath-core conductive hydrogel fiber with dopamine modified polypyrrole-polyvinyl alcohol as core material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130070333A (en) 2011-12-19 2013-06-27 서울대학교산학협력단 Fabrication of zno nanoparticles embedded tio2 nanofibers by electrospinning and antibactericidal application under uv, visible light and without light irradiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130070333A (en) 2011-12-19 2013-06-27 서울대학교산학협력단 Fabrication of zno nanoparticles embedded tio2 nanofibers by electrospinning and antibactericidal application under uv, visible light and without light irradiation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043842A1 (en) * 2016-08-30 2018-03-08 고려대학교 산학협력단 Nanofiber-nanowire composite and preparation method therefor
CN108138367A (en) * 2016-08-30 2018-06-08 高丽大学校产学协力团 Nanofiber-nanowire composite and its production method
JP2019505700A (en) * 2016-08-30 2019-02-28 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Nanofiber-nanowire composite and method for producing the same
EP3508622A4 (en) * 2016-08-30 2020-04-01 Korea University Research and Business Foundation Nanofiber-nanowire composite and preparation method therefor
US10895023B2 (en) 2016-08-30 2021-01-19 Korea University Research And Business Foundation Nanofiber-nanowire composite and preparation method therefor
CN112030355A (en) * 2020-09-07 2020-12-04 渤海大学 Preparation method of nano ZnO modified CMA/TP-PLA coaxial nanofiber membrane through in-situ synthesis
CN112030355B (en) * 2020-09-07 2023-08-08 渤海大学 Preparation method of in-situ synthesized nano ZnO modified CMA/TP-PLA coaxial nanofiber membrane
CN114045611A (en) * 2021-11-17 2022-02-15 广东粤港澳大湾区国家纳米科技创新研究院 Preparation method of zinc oxide nanofiber membrane
CN114990728A (en) * 2022-06-20 2022-09-02 浙江理工大学 Preparation method of high-strength sheath-core conductive hydrogel fiber with dopamine modified polypyrrole-polyvinyl alcohol as core material

Similar Documents

Publication Publication Date Title
CN108138367B (en) Nanofiber-nanowire composite and method for producing the same
Iskandar Nanoparticle processing for optical applications–A review
TWI398271B (en) Long-lasting anti-microbial composition with nanowires and anti-microbial film and spray
CN101815563B (en) Hollow porous microspheres
KR20160090134A (en) Preparation method of ZnO nanofiber and uses thereof
EP2072466A1 (en) Core-shell-type cerium oxide microparticle, dispersion solution comprising the microparticle, and process for production of the microparticle or dispersion solution
WO2018099945A1 (en) Zinc oxide microparticles, preparation method, and use thereof
Akhavan et al. Synthesis of antimicrobial silver/hydroxyapatite nanocomposite by gamma irradiation
CN102860325A (en) Bactericidal nano-silver water gel and preparation method thereof
WO2010072688A1 (en) Nanoparticulate titanium dioxide particles with a crystalline core, a metal-oxide shell and an outer skin containing organic groups, and method for the manufacture thereof
Pereira et al. Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing
JP2008075010A (en) Resin composite
Shahmiri et al. Effect of pH on the synthesis of CuO nanosheets by quick precipitation method
Selvi et al. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications
Al-Ahmed et al. Electrospun nanofibrous scaffolds of ε-polycaprolactone containing graphene oxide and encapsulated with magnetite nanoparticles for wound healing utilizations
DE112010004610T5 (en) Silica nanofiber / metal oxide nanocrystal composite and method of making the same
Kumar et al. Synthesis of mesoporous SiO 2–ZnO nanocapsules: Encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery
Sunaryono et al. The effect of Ag nanoparticles in Ag/polyvinyl alcohol nanofiber composites
Hammadi et al. Synthesis, characterization and biological activity of zinc oxide nanoparticles (ZnO NPs)
KR101490456B1 (en) Titanium dioxide nanorods and method for manufacturing thereof
Namazi et al. Peripherally functionalized based dendrimers as the template for synthesis of silver nanoparticles and investigation the affecting factors on their properties
KR101679789B1 (en) Polyvinyl Alcohol/Polyethylene Terephthalate nanofibers produced by electrospinning
Wei et al. A hybrid hydrogel with in situ formed Ag-nanoparticles within 3D networks that exhibits broad antibacterial activities
Ferdowsi et al. Fabrication and characterization of electrospun PVA/CdS and PVA/TiO 2 nanocomposite thin films as n-type semiconductors
Abdelhafiz et al. Preparation and characterization of bioactive polyvinylpyrrolidone film via electrospinning technique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal