KR20160088501A - nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof - Google Patents

nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof Download PDF

Info

Publication number
KR20160088501A
KR20160088501A KR1020150007505A KR20150007505A KR20160088501A KR 20160088501 A KR20160088501 A KR 20160088501A KR 1020150007505 A KR1020150007505 A KR 1020150007505A KR 20150007505 A KR20150007505 A KR 20150007505A KR 20160088501 A KR20160088501 A KR 20160088501A
Authority
KR
South Korea
Prior art keywords
bismuth
iron
nano
valent iron
present
Prior art date
Application number
KR1020150007505A
Other languages
Korean (ko)
Other versions
KR101719047B1 (en
Inventor
장윤석
이충섭
김재환
오다솜
공 지안유
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020150007505A priority Critical patent/KR101719047B1/en
Publication of KR20160088501A publication Critical patent/KR20160088501A/en
Application granted granted Critical
Publication of KR101719047B1 publication Critical patent/KR101719047B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a nanoscale zero-valent iron and a method for producing the nanoscale zero-valent iron, and more specifically, to a nanoscale zero-valent iron for treating soil and groundwater contaminants comprising dissimilar metals, and a method for producing the nanoscale zero-valent iron for treating soil and groundwater contaminants. One purpose of the present invention is to provide a nanoscale zero-valent iron comprising new dissimilar metals which is effective in the treatment of soil and water. Another purpose of the present invention is to provide a method for producing a nanoscale zero-valent iron comprising new dissimilar metals which is effective in the treatment of soil and water. The other purpose of the present invention is to provide a method for effectively treating contaminated soil and water using the method for producing the nanoscale zero-valent iron comprising the new dissimilar metals. An agent for treating soil and/or water according to the present invention comprises nanoscale zero-valent iron doped with bismuth, and exhibits a maximally threefold improved treatment efficiency compared to existing nZVI at aerobic/anaerobic conditions in the purification treatment of environmental pollutants such as RDX and others.

Description

토양 및 지하수 오염물질 처리용 나노영가철 및 그 제조 방법{nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof}BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to nanofiltration iron for the treatment of soil and groundwater pollutants,

본 발명은 나노 영가철 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 이종 금속을 포함하는 토양 및 지하수 오염물질 처리용 나노영가철 및 그 제조 방법에 관한 것이다.The present invention relates to a nano-zirconium-containing iron and a method for producing the same, and more particularly, to a nano-zirconium-containing iron for treating soil and groundwater contaminants containing different metals and a method for producing the same.

nZVI를 이용한 토양/지하수 내 오염물질 제거는 환경 분야에 적용되고 있는 대표적인 나노기술 중 하나이다. 이를 개선하기 위해서 이종 금속을 도핑하는 방안들이 개발되고 있다. Removal of pollutants in soil / groundwater using nZVI is one of the representative nanotechnologies applied in the environmental field. In order to improve this, a method of doping a dissimilar metal is being developed.

한국과학기술원에 허여된 대한민국 특허 제 1190283호에서는 구리 또는 팔라듐으로 도핑된 이종금속 나노 영가철을 이용하여 토양 및 지하수 오염물질 처리에 사용하는 방법이 개시되어 있다. Korean Patent No. 1190283 issued to the Korea Advanced Institute of Science and Technology (KOKAI) discloses a method for treating contaminants in soil and groundwater using heterogeneous metal nano-zirconium iron doped with copper or palladium.

광주과학기술원에 허여된 대한민국 특허 제1076765호에서는 구리, 니켈, 또는 팔라듐으로 도핑된 이종금속 나노 영가철을 이용하여 질산성 질소를 처리하는 방법이 개시되어 있다. Korean Patent No. 1076765 issued to Kwangju Institute of Science and Technology discloses a method for treating nitrate nitrogen using dissimilar metal nanospherites doped with copper, nickel, or palladium.

그러나 여전히 효과적인 나노 영가철 및 그 제조 방법에 대한 요구가 계속되고 있다. However, there is a continuing need for effective nanosilver iron and its manufacturing method.

본 발명에서 해결하고자 하는 과제는 토양 및 수처리에 효과적인 새로운 이종 금속 나노 영가철을 제공하는 것이다. A problem to be solved by the present invention is to provide a novel heterogeneous metal nano-zirconiferrous which is effective for soil and water treatment.

본 발명에서 해결하고자 하는 다른 과제는 토양 및 수처리에 효과적인 새로운 이종 금속 나노 영가철의 제조 방법을 제공하는 것이다. Another problem to be solved by the present invention is to provide a new method for producing heterometallic nano-sagittal iron effective for soil and water treatment.

본 발명에서 해결하고자 하는 또 다른 과제는 새로운 이종 금속 나노 영가철의 제조 방법을 이용하여 효과적으로 오염된 토양 및 물을 처리하는 방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide a method for effectively treating contaminated soil and water by using the method for producing new heterogeneous metal nano-sagittal iron.

상기와 같은 과제를 해결하기 위해서, 본 발명에 따른 나노 영가철은 비스무스로 도핑된 것을 특징으로 한다. In order to solve the above-mentioned problems, the nano- And is doped with bismuth.

이론적으로 한정된 것은 아니지만, Bi-nZVI는 혐기성 조건에서는 비스무스의 산화로 (Bi0 → Bi3 +) 추가적인 전자 전달과 빠른 전자 발생속도로 인해 기존의 나노영가철 보다 더 효과적으로 오염물질을 환원분해 할 수 있으며, 또한 용존산소가 존재하는 호기성 조건에서도 철의 산화로 인한 반응성 저하가 일어나는 기존의 나노영가철과는 달리, Bi-nZVI는 비스무스로의 전자전달을 통해 더 많은 양의 Fe2 +, H2O2를 생성하고(아래식 참조) 이들의 반응(Fenton reaction)을 통해 OH radical을 형성시켜 오염물질의 산화분해를 촉진시킬 수 있다.Although it is not theoretically limited, Bi-nZVI can be decomposed more efficiently than conventional nano-scale zero-valent iron due to additional electron transfer and fast electron generation rate due to oxidation of bismuth (Bi 0 → Bi 3 + ) under anaerobic conditions Unlike the conventional nano-zirconium ferrite, which has a reduced reactivity due to oxidation of iron even under the aerobic conditions in which dissolved oxygen exists, Bi-nZVI has a higher amount of Fe 2 + , H 2 O 2 (see equation below) and form OH radicals through their Fenton reaction to promote oxidative degradation of contaminants.

Fe0 + O2 + 2H+ → Fe2 + + H2O2 Fe 0 + O 2 + 2H + - & gt ; Fe 2 + + H 2 O 2

Fe0 + H2O2 + 2H+ → Fe2 + + 2H2O Fe 0 + H 2 O 2 + 2H + - & gt ; Fe 2 + + 2H 2 O

Fe0 + 2Bi3 + → Fe2 + + 2Bi2 + Fe 0 + 2Bi 3 + - > Fe 2 + + 2Bi 2 +

Fe2 + + H2O2 → Fe3 + +·OH + OH- (Fenton reaction)Fe 2 + + H 2 O 2 → Fe 3 + + · OH + OH - (Fenton reaction)

본 발명에 있어서, 상기 비스무스는 주기율표상에서 전이후 금속으로 분류되는 금속으로 나노영가철의 표면에 도핑된다. 상기 도핑된 비스무스는 바람직하게는 영가인 비스무스이다. 상기 비스무스는 전체의 0.01~10 중량%, 바람직하게는 0.1~9 중량%, 가장 바람직하게는 0.5~5 중량%의 범위로 도핑된다. In the present invention, the bismuth is doped to the surface of the nano-zirconium iron with a metal classified as metal on the periodic table. The doped bismuth is preferably bismuth, which is zero valence. The bismuth is doped in a total amount of 0.01 to 10 wt%, preferably 0.1 to 9 wt%, and most preferably 0.5 to 5 wt%.

본 발명에 있어서, 상기 비스무스로 도핑된 나노 영가철의 제조 방법은 In the present invention, the method for producing bismuth-doped nano-

FeSO4·7H2O 와 Bi(NO3)3·5H2O 를 물에 녹여 Fe2 +-Bi3 +의 혼합용액을 제조하는 단계와;Preparing a mixed solution of Fe 2 + -Bi 3 + by dissolving FeSO 4 · 7H 2 O and Bi (NO 3 ) 3 · 5H 2 O in water;

NaBH4를 물에 녹여 용액을 제조하고, 상기 Fe2 +-Bi3 +의 혼합용액에 NaBH4 수용액을 적가하여 표면에 bismuth가 도핑된 Bi-nZVI를 제조하는 단계와; 및NaBH 4 is dissolved in water to prepare a solution, and NaBH 4 aqueous solution is added dropwise to the Fe 2 + -Bi 3 + mixed solution to prepare Bi-nZVI doped with bismuth on the surface; And

상기 제조된 Bi-nZVI를 질소(N2)로 purging한 증류수로 세척하여 표면의 불순물을 제거한 후, 진공건조기에서 60 ℃에서 6시간 동안 건조시키는 단계를 포함한다.The Bi-nZVI thus prepared is washed with distilled water purged with nitrogen (N 2 ) to remove impurities on the surface, and then dried in a vacuum drier at 60 ° C for 6 hours.

본 발명은 일 측면에서, 비스무스가 도핑된 나노 영가철은 나노 영가철의 제조 과정에서 비스무스 염을 첨가하는 것을 특징으로 한다.In one aspect, the present invention is characterized in that the bismuth-doped nanospharous iron is added with a bismuth salt during the production of the nanospherite.

본 발명에 있어서, 상기 나노 영가철은 Fe용액을 NaBH4로 환원하여 제조될 수 있으며, 상기 비스무스로 도핑된 나노 영가철은 나노영가철을 합성하는 과정에서 철염에 비스무스염을 혼합하여 제조할 수 있다.In the present invention, the nano-zirconium iron may be prepared by reducing an Fe solution to NaBH 4 , and the bismuth-doped nano-zirconium iron may be prepared by mixing bismuth salts with iron salts in the course of synthesizing nano- have.

본 발명의 실시에 있어서, 상기 비스무스가 도핑된 나노 영가철은 Fe용액에 bismuth 염을 첨가한 후 NaBH4로 환원하여 제조될 수 있다. 상기 비스무스염은 비스무스 나이트레이트를 사용할 수 있다. 상기 비스무스 나이트레이트(nitrate)는 첨가농도를 0.17 g/L ~ 0.68 g/L로 조정하여 나노 영가철이 표면에 도핑시킬 수 있다. In the practice of the present invention, the bismuth-doped nanocrystalline iron may be prepared by adding a bismuth salt to an Fe solution and then reducing it to NaBH 4 . The bismuth salt may be bismuth nitrate. The bismuth nitrate can be doped to the surface by adjusting the addition concentration to 0.17 g / L to 0.68 g / L.

본 발명은 일 측면에 있어서, 비스무스가 도핑된 나노 영가철을 이용하여 오염된 토양 및 물을 산화/환원 처리하는 방법을 제공한다. In one aspect, the present invention provides a method for oxidation / reduction treatment of contaminated soil and water using bismuth-doped nanospheresulfite.

본 발명에 있어서, 상기 토양 및 수처리 방법은 혐기 또는 호기 조건하에서 루어질 수 있으며, 바람직하게는 비스무스로 도핑된 나노 영가철의 산화/환원 반응 속도를 향상시킬 수 있도록 중성의 혐기 조건하에 이루어질 수 있다. In the present invention, the soil and water treatment process can be run under anaerobic or aerobic conditions, and can be carried out under neutral anaerobic conditions to improve the rate of oxidation / reduction of the nano- .

본 발명에 있어서, 상기 오염물질은 RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine), 트리나이트로톨루엔(Trinitrotoluene; TNT), 니트로톨루엔, 니트로벤젠, 디니트로벤젠, 디니트로톨루엔, Polycyclic aromatic hydrocarbon (PAH), Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs), 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylenel; PCE), 트리클로로에탄(Trichoroethane; TCA), 테트라클로로에탄(Tetrachloroethane; PCA), 클로로포름, 염소화메탄 또는 이들의 둘 이상의 혼합물일 수 있다. In the present invention, the contaminants are selected from the group consisting of hexahydro-1,3,5-trinitro-1,3,5-triazine, trinitrotoluene (TNT), nitrotoluene, nitrobenzene, dinitrobenzene, (PBDEs), Trichlorethylene (TCE), Tetrachloroethylenel (PCE), trichloroethane (PCE), trichlorethylene Trichoroethane (TCA), tetrachloroethane (PCA), chloroform, chlorinated methane, or a mixture of two or more thereof.

본 발명에 있어서, 상기 비스무스가 도핑된 나노 영가철은 RDX 등 환경오염물질의 정화처리에 있어 호기/혐기조건에서 기존의 nZVI에 비해 최대 3배가 넘는 획기적인 처리속도를 가질 수 있다. In the present invention, the bismuth-doped nano-zirconium iron may have an epoch-making processing speed of up to three times higher than that of the conventional nZVI under the aerobic / anaerobic conditions in the purification treatment of environmental pollutants such as RDX.

본 발명에 따르면, 간편한 방법으로 표면에 bismuth가 도핑된 새로운 나노영가철인 Bi-nZVI를 합성할 수 있으며, 이는 RDX 등 환경오염물질의 정화처리에 있어 호기/혐기조건에서 기존의 nZVI에 비해 최대 3배가 향상된 처리효율을 보이는 획기적인 효과가 있다.According to the present invention, it is possible to synthesize Bi-nZVI, which is a novel nano-zirconium oxide having a bismuth-doped surface, by a simple method. In the treatment of environmental pollutants such as RDX, There is an epoch-making effect that the ship has improved processing efficiency.

도 1은 본 발명에 따른 Bi-nZVI의 HRTEM/EDX와 XPS분석결과이다.
도 2는 본 발명에 따른 Bi-nZVI의 HRTEM과 XRD분석결과이다.
도 3은 Bismuth이온의 첨가량에 따른 RDX 분해 비교 그래프이다.
도 4는 다양한 조건에서 Bi-nZVI와 nZVI의 RDX 분해정도를 나타내는 표이다.
도 5는 환원조건에서 Bi-nZVI와 Au, Co, Pd-nZVI의 RDX 분해 HPLC 스펙트럼이다.
1 shows HRTEM / EDX and XPS analysis results of Bi-nZVI according to the present invention.
2 shows HRTEM and XRD analysis results of Bi-nZVI according to the present invention.
3 is a comparative graph of decomposition of RDX according to the addition amount of Bismuth ions.
Fig. 4 is a table showing the degree of decomposition of Bi-nZVI and nZVI in various conditions.
Figure 5 shows the RDX decomposition HPLC spectrum of Bi-nZVI and Au, Co, and Pd-nZVI under reducing conditions.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail by way of examples. It is to be understood by those skilled in the art that these embodiments are for further illustrating the present invention and that the scope of the present invention is not limited to these embodiments.

실시예Example 1 One

실험재료 준비Preparation of experimental material

환경오염물질로서 RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine)을 준비하였으며, 부산물 분석을 위하여 MNX(hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), TNX(hexahydro-1,3,5-trinitroso-1,3,5-triazine)을 준비하였다. 또한 나노영가철 제조를 위하여 bismuth nitrate(Bi(NO3)3·5H2O), ferrous sulfate(FeSO4·7H2O), sodium borohydride(NaBH4)가 사용되었다. RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was prepared as an environmental pollutant and MNX (hexahydro-1-nitroso-3,5- dinitro- 5-triazine) and TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). In addition, bismuth nitrate (Bi (NO 3 ) 3 .5H 2 O), ferrous sulfate (FeSO 4 .7H 2 O) and sodium borohydride (NaBH 4 ) were used for the production of nanosilver iron.

실시예Example 2 2

Bi-nZVI의 제조Preparation of Bi-nZVI

증류수는 N2로 1시간 퍼징(purging)시킨 3차 증류수를 사용하였으며, 하기 2-1 및 2-2공정은 모두 N2 퍼징상태에서 진행하였다. The distilled water was purged with N 2 for 1 hour, and the following 2-1 and 2-2 steps proceeded in N 2 purging state.

2-1. Bi3 +-Fe2 + 용액제조2-1. Preparation of Bi 3 + -Fe 2 + solution

FeSO4·7H2O 2.0 g과 Bi(NO3)3·5H2O 0.14g (Fe의 4%at)을 증류수 200 ml에 녹여 Fe2 +와 Bi3 +의 혼합용액을 제조하였다.
2.0 g of FeSO 4 .7H 2 O and 0.14 g of Bi (NO 3 ) 3 .5H 2 O (4% of Fe) were dissolved in 200 ml of distilled water to prepare a mixed solution of Fe 2 + and Bi 3 + .

2-2. 환원제 첨가2-2. Reducing agent addition

NaBH4 0.0032 g을 10 ml의 증류수에 녹여 0.32g/L의 NaBH4 용액을 제조하였다. 2-1에서 제조된 Bi-Fe 혼합용액에 2-2의 NaBH4 수용액을 1 ml/min의 균일한 속도로 적가하여 Bi-nZVI를 제조하였다. (반응식 (1) 참조)
0.0032 g of NaBH 4 was dissolved in 10 ml of distilled water to prepare a 0.32 g / L NaBH 4 solution. Bi-nZVI was prepared by dropping a 2-2 NaBH 4 aqueous solution at a uniform rate of 1 ml / min into the Bi-Fe mixed solution prepared in 2-1. (See Reaction Scheme (1)).

2FeSO4 + 2Bi(NO3)3 + 10NaBH4 + 30H2O → 2Fe-Bi(s) + 35H2 (g) + 10B(OH)3 + 2Na2SO4 + 6NaNO3 (1)
2FeSO 4 + 2Bi (NO 3) 3 + 10NaBH 4 + 30H 2 O → 2Fe-Bi (s) + 35H 2 (g) + 10B (OH) 3 + 2Na 2 SO 4 + 6NaNO 3 (1)

2-3. 세척 및 건조2-3. Washing and drying

2-2에서 제조된 Bi-nZVI를 N2로 purging한 증류수로 3회 세척하여 표면의 불순물을 제거한 후, 60℃ 이상의 진공 오븐에 6시간 동안 건조시킨다.
Bi-nZVI prepared in 2-2 was washed three times with distilled water purged with N 2 to remove impurities on the surface, and then dried in a vacuum oven at 60 ° C or higher for 6 hours.

실시예Example 3 3

Bi-nZVI 입자특성 분석Characterization of Bi-nZVI Particles

3-1. Bi-nZVI의 입자형상3-1. Particle shape of Bi-nZVI

HRTEM/EDX(High resolution transmission electron microscopy/energy dispersive X-ray)(JEM-2200FS, JEOL, Japan)를 이용하여 상기 Bi-nZVI의 입자형성과 원소구성을 분석하였다.Particle formation and elemental structure of the Bi-nZVI were analyzed using HRTEM / EDX (JEM-2200FS, JEOL, Japan) using high resolution transmission electron microscopy.

그 결과, 도 2의 (a)에 나타난 바와 같이, 상기 Bi-nZVI입자 기존에 보고된 nZVI와 마찬가지로 구형의 철 입자가 사슬구조로 연결되어 있음을 확인할 수 있다. 또한, 표면 EDX 분석 (도 1의 (a))에서 iron(Fe), oxygen(O) 이외에 bismuth(Bi) signal이 관찰이 되었고, bismuth는 철 입자 표면에 균일하게 분포하고 있는 것으로 드러났다.
As a result, as shown in FIG. 2 (a), the Bi-nZVI particles can be confirmed to have a chain structure of spherical iron particles as in the previously reported nZVI. In addition, in the surface EDX analysis (Fig. 1 (a)), bismuth (Bi) signals were observed in addition to iron (Fe) and oxygen (O), and bismuth was uniformly distributed on the surface of iron particles.

3-2. Bi-nZVI의 성분분석3-2. Analysis of components of Bi-nZVI

XRD(X-ray diffraction) (MAC Science Co., Japan) 분석을 통해서 Bi-nZVI에서는 철과 비스무트의 peak들이 관찰이 되었고, 산화물 peak들은 검출되지 않았다 (도 2의 (b)).From the analysis of X-ray diffraction (XRD) (MAC Science Co., Japan), peaks of iron and bismuth were observed in Bi-nZVI, and oxide peaks were not detected (FIG.

3-3. Bi-nZVI의 표면 특성 분석3-3. Analysis of surface characteristics of Bi-nZVI

Bi-nZVI에 존재하는 원소들의 화학결합상태를 측정하기 위해서 Mg Ka (1253.6 eV)선을 사용하는 XPS (X-ray photoelectron spectroscopy) 분석기 (ESCALAB 220iXL, VG scientific, USA)를 이용하였다. X-ray photoelectron spectroscopy (ESCALAB 220iXL, VG scientific, USA) using Mg Ka (1253.6 eV) was used to measure the chemical bonding state of the elements present in Bi-nZVI.

또한, bismuth 성분은 Bi 4f에서 관찰된 peak의 결합에너지 값에 따라 Bi0 임을 알 수 있었다 (도 1의 (c)). Further, the bismuth component may be represented by Bi 0 (Fig. 1 (c)).

따라서, 도 1과 2의 결과를 모두 종합했을 때, Bi-nZVI는 철 표면에 영가 bismuth 금속이 도핑된 새로운 종류의 나노 영가철 임을 나타낸다.
Thus, when both the results of Figures 1 and 2 are combined, Bi-nZVI indicates a new type of nano-zirconium iron doped with zero valence bismuth metal on the iron surface.

실시예Example 4. 대표적인 환경오염물질 정화처리 실험 4. Representative environmental pollutant purification treatment experiment

4-1. Bismuth 첨가량에 따른 RDX 분해실험4-1. RDX decomposition experiment according to the amount of bismuth added

상기 Bi-nZVI의 반응성은 폭발성 오염물질 중 하나인 RDX 분해를 통해 측정하였다. RDX 분해 실험은 pH 5.85 가량의 비교적 중성 조건과 pH 3 가량의 산성 조건에서 각각 진행되었으며, 40 ml의 RDX 10 ppm 용액에 0.04 g의 Bi-nZVI를 상온에서 혼합하여 rolling mixer (15 rpm)에서 교반하였다. 시간 별 RDX의 정량은 액체크로마트그래피(High performance liquid chromatography, Agilent 1100)를 사용하여 수행하였다. The reactivity of the Bi-nZVI was measured by RDX degradation, one of the explosive contaminants. The RDX degradation experiments were carried out under relatively neutral conditions of pH 5.85 and acidic conditions of pH 3, respectively. To 40 ml of RDX 10 ppm solution, 0.04 g of Bi-nZVI was mixed at room temperature and stirred in a rolling mixer (15 rpm) Respectively. Quantification of RDX by time was performed using liquid chromatography (High Performance Liquid Chromatography, Agilent 1100).

상기와 같이 RDX에 대한 분해실험을 진행하되, 합성 과정에서 첨가되는 Bi(NO3)3·5H2O 농도를 0.17 g/L ~ 1.19 g/L로 다르게 하여 실험결과를 비교하였다. 그 결과, 도 3에 나타난 바와 같이 0.17 ~ 0.68 g/L 범위에서 bismuth의 농도가 증가할수록 RDX 분해속도가 빨라지나, 그 이상의 농도에서는 속도가 감소함을 확인할 수 있었다. 상기 결과를 토대로 가장 좋은 RDX 분해효율을 보이는 Bi-nZVI를 얻기 위해서는 0.68 g/L의 bismuth nitrate 농도를 사용하는 것이 바람직하다는 것을 알 수 있다.
The decomposition experiments for RDX were carried out as described above, and the experimental results were compared by varying the concentration of Bi (NO 3 ) 3 .5H 2 O added in the synthesis process from 0.17 g / L to 1.19 g / L. As a result, as shown in FIG. 3, it was confirmed that as the concentration of bismuth increases in the range of 0.17 to 0.68 g / L, the rate of RDX degradation becomes faster, but the rate decreases at a higher concentration. Based on the above results, it can be seen that it is preferable to use a bismuth nitrate concentration of 0.68 g / L to obtain Bi-nZVI having the best decomposition efficiency of RDX.

4-2. 나노영가철과 이종금속 나노영가철 종류에 따른 RDX 분해속도 비교4-2. Comparison of RDX degradation rate with different types of nano-zero iron and niobium metal

상기 Bi-nZI은 다양한 조건에서 (중성과 산성 pH의 호기, 혐기조건) 기존의 나노영가철 (nZVI)보다 뛰어난 분해 활성을 보인다 (도 4). The Bi-nZI exhibits better decomposing activity than conventional nano-zirconium iron (nZVI) under various conditions (aerobic and anaerobic conditions at neutral and acid pH) (Fig. 4).

또한, 중성의 혐기조건에서 Au, Co, Pd 로 도핑된 나노영가철보다 RDX의 분해에 있어서 더욱 빠른 속도를 보임을 확인할 수 있었다 (도 5). 이는 새롭게 합성된 Bi-nZI가 RDX에 대해 높은 반응성을 가지고 있다는 것을 나타낸다. In addition, it was confirmed that the decomposition of RDX was faster than that of nano-zero iron doped with Au, Co, and Pd under neutral anaerobic conditions (FIG. 5). This indicates that the newly synthesized Bi-nZI has a high reactivity to RDX.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

비스무스로 도핑된 것을 특징으로 하는 나노 영가철. Characterized in that it is doped with bismuth. 제1항에 있어서, 상기 비스무스는 영가인 것을 특징으로 하는 나노 영가철.The nano-Zero-iron as set forth in claim 1, wherein the bismuth is zero spirit. 제1항에 있어서, 상기 비스무스는 0.01~10 중량%인 것을 특징으로 하는 나노 영가철. The nano-zirconium iron according to claim 1, wherein the bismuth is 0.01 to 10 wt%. 비스무스 염을 첨가하는 것을 특징으로 하는 나노 영가철의 제조 방법.Wherein the bismuth salt is added. 제4항에 있어서, 상기 나노 영가철은 Fe용액에 비스무스 염을 첨가하여 NaBH4로 환원하여 제조하는 것을 특징으로 하는 나노 영가철의 제조 방법.The method according to claim 4, wherein the nano-zirconium iron is prepared by adding a bismuth salt to an Fe solution and reducing it to NaBH 4 . 제4항 또는 제5항에 있어서, 상기 비스무스염은 비스무스 나이트레이트인 것을 특징으로 하는 나노 영가철의 제조 방법.The method according to claim 4 or 5, wherein the bismuth salt is bismuth nitrate. 제6항에 있어서, 상기 비스무스 나이트레이트는 첨가농도가 0.17 g/L ~ 0.68 g/L인 것을 특징으로 하는 나노 영가철의 제조 방법.7. The method of claim 6, wherein the bismuth nitrate has an added concentration of 0.17 g / L to 0.68 g / L. 비스무스가 도핑된 나노 영가철을 이용하여 오염된 토양 및 물을 산화/환원 반응으로 처리하는 방법.A method for treating contaminated soil and water by oxidation / reduction reaction using bismuth-doped nano-zirconium iron. 제8항에 있어서, 상기 오염물질은 RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine), 트리나이트로톨루엔(Trinitrotoluene; TNT), 니트로톨루엔, 니트로벤젠, 디니트로벤젠, 디니트로톨루엔, Polycyclic aromatic hydrocarbon (PAH), Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs), 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylenel; PCE), 트리클로로에탄(Trichoroethane; TCA), 테트라클로로에탄(Tetrachloroethane; PCA), 클로로포름, 염소화메탄로 이루어진 그룹에서 하나 이상 선택되는 것을 특징으로 하는 방법.The method of claim 8, wherein the contaminant is selected from the group consisting of hexahydro-1,3,5-trinitro-1,3,5-triazine, trinitrotoluene (TNT), nitrotoluene, nitrobenzene, dinitrobenzene (PBDEs), Trichlorethylene (TCE), Tetrachloroethylenel (PCE), Trichloroethylene (PCE), and the like. Characterized in that it is selected from the group consisting of trichoroethane (TCA), tetrachloroethane (PCA), chloroform, chlorinated methane. 제8항에 있어서, 상기 처리는 중성 혐기 조건에서 이루어지는 것을 특징으로 하는 방법. 9. The method of claim 8, wherein the treatment is performed in a neutral anaerobic condition. 비스무스로 도핑된 나노 영가철을 포함하는 것을 특징으로 하는 토양 처리제.Lt; RTI ID = 0.0 > nano-valent < / RTI > iron doped with bismuth. 비스무스로 도핑된 나노 영가철을 포함하는 수처리제.A water treatment agent containing nano-valent iron doped with bismuth.
KR1020150007505A 2015-01-15 2015-01-15 nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof KR101719047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150007505A KR101719047B1 (en) 2015-01-15 2015-01-15 nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150007505A KR101719047B1 (en) 2015-01-15 2015-01-15 nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20160088501A true KR20160088501A (en) 2016-07-26
KR101719047B1 KR101719047B1 (en) 2017-03-23

Family

ID=56680763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150007505A KR101719047B1 (en) 2015-01-15 2015-01-15 nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101719047B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107649511A (en) * 2017-11-09 2018-02-02 环境保护部华南环境科学研究所 A kind of method for promoting Zero-valent Iron degradation of polychlorinated biphenyl
CN108998040A (en) * 2018-05-28 2018-12-14 上海环科环境评估咨询有限公司 Arsenic in soil and pollution of chromium based on organic clay load nanometer iron-series repair medicament
KR20190009561A (en) * 2017-07-19 2019-01-29 한국남동발전 주식회사 Soil conditioner using coal ash ball and manufacturing method thereof
CN109956619A (en) * 2019-03-28 2019-07-02 江苏淮河化工有限公司 A kind of benzene or methylbenzene nitration class biochemical procss for treating waste water
KR20210073048A (en) * 2019-12-10 2021-06-18 고려대학교 산학협력단 Sulfur doped micro zerovalent metal and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126539A (en) * 2012-05-11 2013-11-20 주식회사 엘지화학 Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126539A (en) * 2012-05-11 2013-11-20 주식회사 엘지화학 Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chemical Communications, 50, 8597-8600 (2014.06.11) *
Environmental Science & Technology, 44, 1786-1791 (2010)* *
Environmental Science & Technology, 45, 4896-4903 (2011)* *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190009561A (en) * 2017-07-19 2019-01-29 한국남동발전 주식회사 Soil conditioner using coal ash ball and manufacturing method thereof
CN107649511A (en) * 2017-11-09 2018-02-02 环境保护部华南环境科学研究所 A kind of method for promoting Zero-valent Iron degradation of polychlorinated biphenyl
CN107649511B (en) * 2017-11-09 2020-09-25 生态环境部华南环境科学研究所 Method for promoting degradation of polychlorinated biphenyl by zero-valent iron
CN108998040A (en) * 2018-05-28 2018-12-14 上海环科环境评估咨询有限公司 Arsenic in soil and pollution of chromium based on organic clay load nanometer iron-series repair medicament
CN108998040B (en) * 2018-05-28 2020-07-03 上海建科环境技术有限公司 Soil arsenic and chromium pollution remediation agent based on organic clay loaded nano iron system
CN109956619A (en) * 2019-03-28 2019-07-02 江苏淮河化工有限公司 A kind of benzene or methylbenzene nitration class biochemical procss for treating waste water
KR20210073048A (en) * 2019-12-10 2021-06-18 고려대학교 산학협력단 Sulfur doped micro zerovalent metal and method for manufacturing the same
US11981980B2 (en) 2019-12-10 2024-05-14 Korea University Research And Business Foundation Sulfur-doped micro zero-valent metal reducing agent and method for preparing the same

Also Published As

Publication number Publication date
KR101719047B1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
KR101719047B1 (en) nanoscale zero-valent iron for purification of infested soil or pollutants in groundwater and the manufacturing method thereof
Jiang et al. Difunctional chitosan-stabilized Fe/Cu bimetallic nanoparticles for removal of hexavalent chromium wastewater
Gao et al. Scavenging of Cr (VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar
Wang et al. Enhanced degradation of atrazine by nanoscale LaFe1-xCuxO3-δ perovskite activated peroxymonosulfate: Performance and mechanism
Weng et al. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions
Fanaei et al. The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen
Tang et al. pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions
Feng et al. Degradation of 1, 4-dioxane via controlled generation of radicals by pyrite-activated oxidants: synergistic effects, role of disulfides, and activation sites
Huang et al. Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation
US11370022B2 (en) Method for the synthesis of a zero-valent metal micro- and nanoparticles in the presence of a noble metal
EP3672721A1 (en) New composites for extraction of metal or contaminating chemical species
Idrees et al. Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles
KR20120038793A (en) D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants
Meng et al. Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmannite biosynthesized using Acidithiobacillus ferrooxidans
Xiao et al. Activation of sulfite via zero-valent iron-manganese bimetallic nanomaterials for enhanced sulfamethazine removal in aqueous solution: Key roles of Fe/Mn molar ratio and solution pH
Wang et al. Ternary FeS/γ-Fe2O3@ N/S-doped carbon nanohybrids dispersed in an ordered mesoporous silica for efficient peroxymonosulfate activation
Kale et al. Colour removal of phthalocyanine based reactive dye by nanoparticles
Saberi Comparison of Pb2+ removal efficiency by zero valent iron nanoparticles and Ni/Fe bimetallic nanoparticles
Che et al. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites
Fu et al. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron
Chen et al. Effective degradation of azo dyes in the dark by Cu2+ active sites in CaSrNiCu oxides
Ourique et al. Comparative study of the direct black removal by Fe, Cu, and Fe/Cu nanoparticles
Lem et al. The enhanced reduction of bromate by highly reactive and dispersive green nano-zerovalent iron (G-NZVI) synthesized with onion peel extract
Saim et al. Synthesis of ASB-CuO nanocomposite for efficient cyanide degradation from aqueous systems: Fundamentals and potential applications to tailings water from gold operations
JP5814083B2 (en) Organic compound decomposition material, method for producing the same, and environmental purification method using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 4