KR20160088097A - Method for Purifying Graphene Oxide - Google Patents

Method for Purifying Graphene Oxide Download PDF

Info

Publication number
KR20160088097A
KR20160088097A KR1020150007358A KR20150007358A KR20160088097A KR 20160088097 A KR20160088097 A KR 20160088097A KR 1020150007358 A KR1020150007358 A KR 1020150007358A KR 20150007358 A KR20150007358 A KR 20150007358A KR 20160088097 A KR20160088097 A KR 20160088097A
Authority
KR
South Korea
Prior art keywords
organic solvent
graphene oxide
graphene
aqueous solution
acid
Prior art date
Application number
KR1020150007358A
Other languages
Korean (ko)
Inventor
유희준
Original Assignee
주식회사 그래핀올
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그래핀올 filed Critical 주식회사 그래핀올
Priority to KR1020150007358A priority Critical patent/KR20160088097A/en
Priority to PCT/KR2016/000431 priority patent/WO2016114617A1/en
Publication of KR20160088097A publication Critical patent/KR20160088097A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • C01B31/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • C01B31/0492
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • C01B32/196Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/30Purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for purifying highly purified graphene oxide in a simple and efficient way using an organic solvent.

Description

산화 그래핀의 정제방법 {Method for Purifying Graphene Oxide}TECHNICAL FIELD The present invention relates to a method for purifying Graphene Oxide,

본 발명은 산화 그래핀의 정제방법에 관한 것으로, 보다 상세하게는 고순도의 산화 그래핀을 간단한 공정에 의해 효율적으로 정제하는 방법에 관한 것이다. TECHNICAL FIELD The present invention relates to a method for purifying graphene oxide, and more particularly, to a method for efficiently purifying high-purity graphene oxide by a simple process.

산화그래핀(Graphene Oxide)은 환원(reduction) 공정 이후에 그래핀과 유사한 전기화학적 특성을 보이면서 대량 생산이 용이하기 때문에, 산업적으로 그래핀을 대량 생산하기 위한 출발 물질로 사용된다. 최근에는 산화그래핀 자체가 가지는 우수한 기계적, 화학적 특이성을 이용한 엔지니어링 플라스틱, 유기합성 촉매, 산화그래핀-금속 복합체, 산화그래핀-고분자 복합체와 같은 산화그래핀 자체를 이용한 기능성 첨단 신소재에 대한 연구가 활발하게 이루어지고 있다. 산화그래핀은 다양한 산업 분야에서 쉽게 응용될 수 있기 때문에 산화그래핀의 산업적 중요성과 관련 시장은 매우 크다 할 수 있다.Graphene Oxide is used as a starting material for the mass production of graphene in industry because it is easy to mass-produce with electrochemical characteristics similar to graphene after the reduction process. Recently, research on advanced functional materials using functionalized graphene such as engineering plastics, organic synthesis catalysts, oxidized graphene-metal composites, and oxidized graphene-polymer composites using the excellent mechanical and chemical specificity of oxidized graphene itself . Since oxidized graphene can be easily applied in various industrial fields, the industrial importance of oxidized graphene and the related market can be very large.

일반적으로 산화그래핀을 제조하는 방법은 과량의 강산과 산화력이 강한 중금속 산화제를 이용하는 방법이 이용된다[대한민국 공개특허 제10-2014-0045851호 참조]. 산화 공정 이후에 반드시 거쳐야 하는 중요한 공정이 산화 공정에서 발생하는 산폐액과 중금속 이온들을 제거하는 정제공정인데, 이러한 정제공정은 산화그래핀의 순도와 물성을 결정하기 때문에 매우 중요한 공정이다. 특히 중금속 이온 물질은 반드시 완전히 제거되어야 본래의 산화그래핀의 특성을 가지면서 사용될 수 있기 때문에 과량의 증류수를 이용한 반복 세정 작업이 요구된다.Generally, a method of producing an oxidized graphene is a method using an excessive oxidizing agent and a strong oxidizing agent [see Korean Patent Publication No. 10-2014-0045851]. An important process that must be performed after the oxidation process is a purification process that removes acidic wastewater and heavy metal ions generated in the oxidation process. This purification process is an important process because it determines the purity and physical properties of the oxidized graphene. In particular, heavy metal ion materials must be completely removed to use the graphene grains with the characteristics of the original graphene grains.

종래의 산화그래핀 정제 방법으로는 원심 분리, 투석(Dialysis), 필터와 같은 방법이 사용되어 왔다. 하지만 이러한 방법들은 정제의 시간이 길고, 과량의 중금속 산폐액이 발생하기 때문에 대량 생산이 어렵고 환경적인 측면에서도 문제가 된다. 또한, 기존의 산화그래핀 정제 방법은 내산성 고가 장비의 사용이 반드시 요구되기 때문에 경제적으로 산화그래핀을 대량 생산하는데 어려운 점이 있다. Conventional graphene oxide graphene purification methods include centrifugal separation, dialysis, and filtration. However, these methods are difficult to mass-produce and environmental problems because of the long purification time and excessive heavy metal acid waste solution. In addition, since the existing graphene oxide graphene refining method is required to use acid-resistant high-priced equipment, it is difficult to economically produce graphene oxide in a large quantity.

대한민국 공개특허 제10-2014-0045851호Korean Patent Publication No. 10-2014-0045851

본 발명자들은 산화그래핀의 정제에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, 친수성 입자로 물에 잘 분산되는 산화그래핀이 놀랍게도 유기용매층으로 이동되어 중금속 산폐액으로부터 분리 정제될 수 있음을 알아내고, 본 발명을 완성하게 되었다. DISCLOSURE OF THE INVENTION The present inventors have conducted intensive studies to solve the above problems in the purification of graphene oxide, and as a result, it has been found that the graphene oxide which is dispersed well in water as hydrophilic particles can be surprisingly moved to the organic solvent layer and can be separated and purified from the heavy metal acid waste solution And the present invention has been completed.

따라서, 본 발명의 목적은 고순도의 산화그래핀을 유기용매를 이용하여 효율적으로 간단하게 정제하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a simple and efficient method for purifying high-purity oxide graphene using an organic solvent.

본 발명의 일 실시형태는 그라파이트를 산과 중금속 산화제를 이용하여 산화시켜 생성되는 산화그래핀 수용액을 유기용매를 이용하여 상 분리(phase separation)하는 단계를 포함하는 산화그래핀의 정제방법에 관한 것이다.One embodiment of the present invention relates to a method for purifying graphene oxide comprising the step of phase separation using an organic solvent in an aqueous solution of an oxidized graphene produced by oxidizing graphite with an acid and a heavy metal oxidizing agent.

본 발명의 일 실시형태에서, 상기 산화그래핀 수용액은 그라파이트를 산과 중금속 산화제를 이용하여 산화시켜 생성되는 것으로, 당해 기술분야에서 통상적으로 사용되는 방법에 의해 제조할 수 있다.In one embodiment of the present invention, the graphene oxide aqueous solution is produced by oxidizing graphite with an acid and a heavy metal oxidizing agent, and can be produced by a method commonly used in the art.

상기 산으로는 황산, 인산, 질산 등을 사용할 수 있으며, 상기 중금속 산화제로는 과망간산칼륨(potassium permanganate: KMnO4), 크롬산(Chromic acid: H2CrO4) 등을 사용할 수 있다.As the acid, sulfuric acid, phosphoric acid, nitric acid and the like can be used. As the heavy metal oxidizing agent, potassium permanganate (KMnO 4 ), chromic acid (H 2 CrO 4 ) and the like can be used.

상기 방법에 의해 제조된 산화그래핀 수용액에는 과량의 폐산과 금속 이온이 포함되어 있다.The graphene oxide aqueous solution prepared by the above method contains excessive amounts of waste acid and metal ions.

본 발명의 일 실시형태에 따르면, 극성(relative polarity) 차로 인하여 산화그래핀 수용액과 혼합되지 않으면서 비중(density) 차로 인해 상 분리가 되는 유기용매를 사용하여 산화그래핀을 유기용매층으로 이동시키고, 폐산과 금속 이온이 포함된 수용액층을 상 분리한다.According to one embodiment of the present invention, graphene grains are moved to an organic solvent layer using an organic solvent that is phase-separated due to a density difference without being mixed with an aqueous solution of graphene due to a relative polarity difference Phase separation of the aqueous solution layer containing the spent acid and the metal ion.

구체적으로, 상기 산화그래핀 수용액에 유기용매를 혼합하고 교반한 후, 상 분리(phase separation)가 되도록 일정 시간 방치한 다음, 분별 깔대기를 이용하여 유기용매층으로 이동한 산화그래핀을 폐산과 금속 이온이 포함된 수용액층으로부터 분리한다.Specifically, an organic solvent is mixed and stirred in the aqueous solution of the oxidized graphene, and the solution is allowed to stand for a predetermined time for phase separation. Then, the graphene oxide transferred to the organic solvent layer by using a separating funnel is mixed with the waste acid Ions are separated from the aqueous solution layer containing the ions.

본 발명의 일 실시형태에서, 상기 유기용매는 상기 산화그래핀 수용액을 기준으로 50 내지 150 부피%, 바람직하게는 80 내지 120 부피%로 사용할 수 있다.In one embodiment of the present invention, the organic solvent may be used in an amount of 50 to 150% by volume, preferably 80 to 120% by volume, based on the aqueous solution of the oxidized graphene.

본 발명의 일 실시형태에서, 상기 유기용매는 디메틸 에테르, 에틸 아세테이트, 2-부탄온, 1-헵탄올, 1-펜탄올 및 1-부탄올로 구성된 군으로부터 선택된 하나 이상일 수 있다.
In one embodiment of the present invention, the organic solvent may be at least one selected from the group consisting of dimethyl ether, ethyl acetate, 2-butanone, 1-heptanol, 1-pentanol and 1-butanol.

본 발명의 일 실시형태에 따른 정제방법은 상기 상 분리 단계 이후에 산화그래핀을 건조 및 분쇄하는 단계를 추가로 포함할 수 있다.
The purification method according to an embodiment of the present invention may further include drying and crushing the oxidized graphene after the phase separation step.

본 발명의 일 실시형태에 따른 정제방법에 의해 정제된 산화그래핀은 물에 분산시킬 경우 침전 없이 반투명 상태를 유지하며, pH가 3 내외로 폐산이 거의 제거되고 금속 이온이 거의 완벽히 제거된 고순도 산화그래핀이다.The graphene oxide purified by the purification method according to an embodiment of the present invention maintains a translucent state without precipitation when dispersed in water and has a high purity oxidation state in which almost no spent acid is removed and the metal ion is almost completely removed It is grapina.

본 발명에 따르면, 고가의 특별한 장치 없이 교반기와 분별 깔대기만을 이용하여 짧은 시간 내에 폐산과 금속 이온 물질을 분리할 수 있다. 또한, 기존 반복 작업이 필요한 원심분리나 필터 그리고 투석과 같은 방법에 비해 정제 시간이 매우 짧고 간편하기 때문에 경제성이 매우 우수하며, 산 폐액 발생이 크게 줄어들어 친환경적이다. 아울러, 단 한번의 공정만으로도 산과 금속 이온을 거의 완벽하게 제거할 수 있어 고품질의 산화그래핀을 생산하는 데 매우 효과적이다.According to the present invention, the spent acid and the metal ion material can be separated in a short time by using only the stirrer and the separating funnel without expensive special apparatus. In addition, since the purification time is very short and simple compared with centrifugal separation, filter and dialysis, which require the conventional repetitive operation, the economical efficiency is excellent, and the generation of acid waste is greatly reduced, thereby being environmentally friendly. In addition, it is very effective in producing high quality graphene oxide because it can almost completely remove acid and metal ions by a single process.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It should be apparent to those skilled in the art that these embodiments are for illustrative purpose only and that the scope of the present invention is not limited to these embodiments.

제조예 1: Preparation Example 1:

그라파이트 분말 1g에 황산(H2SO4) 90ml와 인산(H3PO4) 10ml를 넣고 1시간 가량 교반하여 그라파이트 분말이 산에 충분히 풀리도록 한 후, 혼합물이 5℃ 내외가 되도록 얼음 중탕 환경에서 과망간산칼륨(KMnO4) 6g을 천천히 넣은 후 24시간 교반하여 그라파이트 산화 반응을 실시하였다. 산화 반응된 반응물을 다시 얼음 중탕하여 냉각시킨 후, 2% 과산화수소 100ml를 넣어 산화그래핀 용액을 얻어내었다. 수득한 산화그래핀 용액에는 산화 공정에서 사용된 강산과 금속 이온이 과량으로 포함되어 있다.
90 ml of sulfuric acid (H 2 SO 4 ) and 10 ml of phosphoric acid (H 3 PO 4 ) were added to 1 g of the graphite powder and stirred for about 1 hour to sufficiently dissolve the graphite powder in the acid. 6 g of potassium permanganate (KMnO 4 ) was slowly added thereto, followed by stirring for 24 hours to carry out graphite oxidation reaction. The oxidized reaction product was cooled again by ice bathing, and then 100 ml of 2% hydrogen peroxide was added to obtain an oxidized graphene solution. The obtained oxidized graphene solution contains excessive amounts of strong acid and metal ions used in the oxidation step.

실시예 1: Example 1:

제조예 1에서 수득한 산화그래핀 용액 30ml에 디메틸 에테르(극성 = 0.117, 비중 = 0.713 g/ml) 30ml를 혼합하였다. 10분간 교반한 후 혼합 용액을 상 분리가 되도록 15분간 고정하였다. 상 분리되어 아래로 가라앉은 중금속 산폐액을 분별 깔대기를 이용하여 분리하여 정제하였다. 한편, 디메틸 에테르층으로 이동한 산화그래핀은 상온에서 건조한 후 분쇄하여 산화그래핀 분말을 제조하였다.
30 ml of the oxidized graphene solution obtained in Production Example 1 was mixed with 30 ml of dimethyl ether (polarity = 0.117, specific gravity = 0.713 g / ml). After stirring for 10 minutes, the mixed solution was fixed for 15 minutes to allow phase separation . The heavy metal acid waste which has been phase separated and settled down was separated and purified by using a separating funnel. On the other hand, the oxidized graphene moved to the dimethyl ether layer was dried at room temperature and then pulverized to prepare an oxidized graphene powder.

실시예 2: Example 2:

디메틸 에테르 대신에 에틸 아세테이트 (극성 = 0.228, 비중 = 0.894 g/ml)를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 산화그래핀 분말을 제조하였다.
Oxidized graphene powder was prepared in the same manner as in Example 1, except that ethyl acetate (polarity = 0.228, specific gravity = 0.894 g / ml) was used instead of dimethyl ether.

실시예 3: Example 3:

디메틸 에테르 대신에 2-부탄온 (극성 = 0.327, 비중 = 0.805 g/ml)를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 산화그래핀 분말을 제조하였다.
Oxide graphene powder was prepared in the same manner as in Example 1, except that 2-butanone (polarity = 0.327, specific gravity = 0.805 g / ml) was used instead of dimethyl ether.

실시예 4:Example 4:

디메틸 에테르 대신에 1-헵탄올 (극성 = 0.549, 비중 = 0.819 g/ml)를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 산화그래핀 분말을 제조하였다.
Oxidized graphene powder was prepared in the same manner as in Example 1, except that 1-heptanol (polarity = 0.549, specific gravity = 0.819 g / ml) was used instead of dimethyl ether.

실시예 5:Example 5:

디메틸 에테르 대신에 1-펜탄올 (극성 = 0.568, 비중 = 0.814 g/ml)를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 산화그래핀 분말을 제조하였다.
Oxide graphene powder was prepared in the same manner as in Example 1, except that 1-pentanol (polarity = 0.568, specific gravity = 0.814 g / ml) was used instead of dimethyl ether.

실시예 6:Example 6:

디메틸 에테르 대신에 1-부탄올 (극성 = 0.586, 비중 = 0.81 g/ml)를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 산화그래핀 분말을 제조하였다.
Oxidized graphene powder was prepared in the same manner as in Example 1, except that 1-butanol (polarity = 0.586, specific gravity = 0.81 g / ml) was used instead of dimethyl ether.

비교예 1: Comparative Example 1:

제조예 1에서 수득한 산화그래핀 용액을 1차 원심분리하여 고형분만을 얻어내고, 에탄올을 1000ml 혼합하여 1시간 동안 교반해 준 후 5마이크로 포어 크기를 갖는 필터를 이용하여 진공펌프를 이용한 감압조건 하에서 필터하였다. 필터된 산화그래핀 고형분을 다시 에탄올 1000ml에 분산하여 진공 필터하는 정제 과정을 추가로 3회 반복한 후, 얻어진 산화그래핀 고형분을 건조, 분쇄하여 분말로 제조하였다.
The oxidized graphene solution obtained in Preparation Example 1 was subjected to primary centrifugation to obtain only a solid component. 1,000 ml of ethanol was mixed and stirred for 1 hour, and then, using a filter having a size of 5 micro pores, under a reduced pressure condition using a vacuum pump Filtered. The filtered graphene graphene solids were again dispersed in 1000 ml of ethanol and subjected to a vacuum filtration process. The obtained graphene graphene solids were dried and pulverized to prepare powders.

비교예 2: Comparative Example 2:

제조예 1에서 수득한 산화그래핀 용액을 6000rpm에서 1시간 동안 원심분리하여 폐산 용액과 산화그래핀을 분리하였다. 이후 얻어진 산화그래핀 고형분을 다시 증류수 1000ml에 교반하면서 분산시키고 다시 6000rpm에서 1시간 원심분리하였다. 이러한 원심분리 공정을 총 3회 반복 실시하였다. 마지막으로 원심분리하여 얻어진 산화그래핀 고형분을 건조, 분쇄하여 분말로 제조하였다.
The graphene oxide solution obtained in Production Example 1 was centrifuged at 6000 rpm for 1 hour to separate the waste acid solution and the oxidized graphene. The resulting graphene oxide grains were dispersed in 1,000 ml of distilled water with stirring and centrifuged again at 6000 rpm for 1 hour. This centrifugation process was repeated three times in total. Finally, the grafted oxide grains obtained by centrifugal separation were dried and pulverized to prepare powders.

실험예 1: Experimental Example 1:

실시예 1 및 2에서 건조, 분쇄 공정 후 얻어진 최종 산화그래핀 분말을 각각 물에 1mg/ml 농도로 분산 시킨 후 pH를 측정하여, 유기용매를 이용한 분리정제 공정 이후 잔류하는 산의 함량을 비교 분석하였다.In Examples 1 and 2, the final graphene grains obtained after the drying and pulverizing processes were each dispersed in water at a concentration of 1 mg / ml, and the pH was measured. The residual acid content after the separation and purification process using an organic solvent was compared Respectively.

산화그래핀 분산용액의 pH는 각각 2.6 그리고 3.0으로, 산이 거의 제거되었음을 확인할 수 있었다.
The pH of the graphene dispersion solution was 2.6 and 3.0, respectively, indicating that the acid was almost removed.

실험예 2: Experimental Example 2:

실시예 1-6 및 비교예 1-2에서 수득한 산화그래핀 분말의 XPS(X-ray photoelectron spectroscopy)를 분석하여 그 결과를 하기 표 1에 나타내었다.X-ray photoelectron spectroscopy (XPS) of the oxidized graphene powders obtained in Examples 1-6 and 1-2 was analyzed and the results are shown in Table 1 below.

Mn (atom%)Mn (atom%) S (atom%)S (atom%) 실시예 1Example 1 -- 2.2 2.2 실시예 2Example 2 -- 1.83 1.83 실시예 3Example 3 0.70.7 2.57 2.57 실시예 4Example 4 0.450.45 6.04 6.04 실시예 5Example 5 -- 6.5 6.5 실시예 6Example 6 -- 4.46 4.46 비교예 1Comparative Example 1 0.8510.851 2.52.5 비교예 2Comparative Example 2 0.6870.687 2.372.37

상기 표 1에서 보듯이, 본 발명에 따른 정제방법에 의해 정제된 산화그래핀 분말은 단 한번의 공정만으로, 정제 후 잔류하는 산에 의해 검출되는 원소성분(S)이 낮게 나오면서, 중금속 산화제의 사용에 의해 잔류하는 금속 이온 성분(Mn)이 거의 완벽히 검출되지 않으므로, 고품질(고순도)의 산화그래핀이 생성됨을 확인할 수 있었다. As shown in Table 1, the graphene oxide fine particles purified by the purification method according to the present invention show only a small amount of elemental component (S) detected by the residual acid after purification, (High purity) graphene grains were generated because the remaining metal ion component (Mn) was almost completely not detected by the catalyst.

Claims (9)

그라파이트를 산과 중금속 산화제를 이용하여 산화시켜 생성되는 산화그래핀 수용액을 유기용매를 이용하여 상 분리(phase separation)하는 단계를 포함하는 산화그래핀의 정제방법.And phase separation of an aqueous solution of an oxidized graphene produced by oxidizing graphite with an oxidizing agent of heavy metal using an organic solvent. 제1항에 있어서, 산은 황산, 인산 및 질산으로 구성된 군으로부터 선택된 하나 이상인 정제방법.The purification method according to claim 1, wherein the acid is at least one selected from the group consisting of sulfuric acid, phosphoric acid and nitric acid. 제1항에 있어서, 중금속 산화제는 과망간산칼륨 및 크롬산으로 구성된 군으로부터 선택된 하나 이상인 정제방법.The purification method according to claim 1, wherein the heavy metal oxidizing agent is at least one selected from the group consisting of potassium permanganate and chromic acid. 제1항에 있어서, 극성(relative polarity) 차로 인하여 산화그래핀 수용액과 혼합되지 않으면서 비중(density) 차로 인해 상 분리가 되는 유기용매를 사용하여 산화그래핀을 유기용매층으로 이동시키고, 폐산과 금속 이온이 포함된 수용액층을 상 분리하는 정제방법.The method according to claim 1, wherein the graphene oxide is moved to an organic solvent layer using an organic solvent which is phase-separated due to a density difference without being mixed with an aqueous solution of a graphene oxide due to a polarity difference, A method for phase separation of an aqueous solution layer containing metal ions. 제1항에 있어서, 산화그래핀 수용액에 유기용매를 혼합하고 교반한 후, 상 분리가 되도록 방치한 다음, 분별 깔대기를 이용하여 유기용매층으로 이동한 산화그래핀을 폐산과 중금속 이온이 포함된 수용액층으로부터 분리하는 정제방법.The method of claim 1, wherein the graphene oxide aqueous solution is mixed with an organic solvent, stirred, and left to stand for phase separation. Then, the graphene oxide moved to the organic solvent layer by a separating funnel is mixed with waste acid and heavy metal ions And separating from the aqueous solution layer. 제1항에 있어서, 유기용매는 산화그래핀 수용액을 기준으로 50 내지 150 부피%로 사용되는 정제방법.The purification method according to claim 1, wherein the organic solvent is used in an amount of 50 to 150% by volume based on an aqueous solution of graphene oxide. 제1항에 있어서, 유기용매는 산화그래핀 수용액을 기준으로 80 내지 120 부피%로 사용되는 정제방법.The purification method according to claim 1, wherein the organic solvent is used in an amount of 80 to 120% by volume based on the aqueous solution of graphene oxide. 제1항 내지 제7항 중 어느 한 항에 있어서, 유기용매는 디메틸 에테르, 에틸 아세테이트, 2-부탄온, 1-헵탄올, 1-펜탄올 및 1-부탄올로 구성된 군으로부터 선택된 하나 이상인 정제방법.8. The process according to any one of claims 1 to 7, wherein the organic solvent is at least one selected from the group consisting of dimethyl ether, ethyl acetate, 2-butanone, 1-heptanol, 1-pentanol and 1-butanol . 제1항에 있어서, 상 분리 단계 이후에 산화그래핀을 건조 및 분쇄하는 단계를 추가로 포함하는 정제방법.The method of claim 1, further comprising the step of drying and grinding the oxidized graphene after the phase separation step.
KR1020150007358A 2015-01-15 2015-01-15 Method for Purifying Graphene Oxide KR20160088097A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150007358A KR20160088097A (en) 2015-01-15 2015-01-15 Method for Purifying Graphene Oxide
PCT/KR2016/000431 WO2016114617A1 (en) 2015-01-15 2016-01-15 Purification method for graphene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150007358A KR20160088097A (en) 2015-01-15 2015-01-15 Method for Purifying Graphene Oxide

Publications (1)

Publication Number Publication Date
KR20160088097A true KR20160088097A (en) 2016-07-25

Family

ID=56406092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150007358A KR20160088097A (en) 2015-01-15 2015-01-15 Method for Purifying Graphene Oxide

Country Status (2)

Country Link
KR (1) KR20160088097A (en)
WO (1) WO2016114617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108088A (en) 2017-03-24 2018-10-04 한국화학연구원 Synthesis method of graphene oxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3061743A1 (en) * 2017-05-05 2018-11-08 The Regents Of The University Of California Purification and drying of graphene oxide
CN115650222A (en) * 2022-11-04 2023-01-31 中星(广州)纳米材料有限公司 Method for applying organic acid in graphene preparation process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140045851A (en) 2012-10-09 2014-04-17 주식회사 그래핀올 Method of producing graphene oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265709B1 (en) * 2011-06-03 2013-05-20 주식회사 아이디티인터내셔널 a method and apparatus for manufacturing graphite oxide
CN103864059B (en) * 2012-12-18 2015-06-24 中国科学院兰州化学物理研究所 Graphene high-efficiency preparation method based on extraction purification technology
JP5617992B2 (en) * 2013-11-08 2014-11-05 三菱瓦斯化学株式会社 Method for producing purified graphite oxide particle-containing liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140045851A (en) 2012-10-09 2014-04-17 주식회사 그래핀올 Method of producing graphene oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108088A (en) 2017-03-24 2018-10-04 한국화학연구원 Synthesis method of graphene oxide

Also Published As

Publication number Publication date
WO2016114617A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JPH0822733B2 (en) Separation and purification method of carbon nanotube
JP6762850B2 (en) Method for producing graphite oxide derivative
JP2023093641A (en) Purification and drying of graphene oxide
US20170240428A1 (en) Two-dimensional materials
KR20160088097A (en) Method for Purifying Graphene Oxide
US9919264B2 (en) Enhanced graphene oxide membranes and methods for making same
Naghizadeh Comparison between activated carbon and multiwall carbon nanotubes in the removal of cadmium (II) and chromium (VI) from water solutions
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
JP2019518704A (en) How to get graphene oxide
Anouar et al. Synthesis and multifaceted use of phosphorylated graphene oxide: growth of titanium dioxide clusters, interplay with gold nanoparticles and exfoliated sheets in bioplastics
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
Junaidi et al. Effect of graphene oxide (GO) and polyvinylpyrollidone (PVP) additives on the hydrophilicity of composite polyethersulfone (PES) membrane
CN102992309A (en) Method for quickly preparing high-quality graphene oxide solids in large scale
CN106587046A (en) Purification method of artificial diamond
CN107970890B (en) Hydroxyl iron modified activated carbon composite material and preparation method thereof
CN103846076A (en) Method for preparing magnetic graphene oxide
CN107282001B (en) Preparation and application method of polyaluminium chloride modified graphene oxide adsorbent
Chang et al. Highly efficient and selective recovery of Cu (II) from wastewater via ion flotation with amidoxime functionalized graphene oxide as nano collector
WO2011120273A1 (en) Method for preparing manganese sulfate monohydrate
EP3375756A1 (en) Oxidized graphite derivative and method for producing same
US11945723B2 (en) Method for producing carbon material complex
WO2015119235A1 (en) Production method for purified material containing crystalline l-carnosine zinc complex
KR101688543B1 (en) Filter Media Coated by Nanosheet Graphene Oxide and Method for Manufacturing the Same
CN106006609A (en) Method for preparing graphene with step-by-step purification method
JP2017095307A (en) Method for producing aqueous nanodiamond dispersion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application