KR20160080799A - METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY - Google Patents

METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY Download PDF

Info

Publication number
KR20160080799A
KR20160080799A KR1020140194039A KR20140194039A KR20160080799A KR 20160080799 A KR20160080799 A KR 20160080799A KR 1020140194039 A KR1020140194039 A KR 1020140194039A KR 20140194039 A KR20140194039 A KR 20140194039A KR 20160080799 A KR20160080799 A KR 20160080799A
Authority
KR
South Korea
Prior art keywords
compound
methyl
cancer cell
reaction
catalyst
Prior art date
Application number
KR1020140194039A
Other languages
Korean (ko)
Inventor
이종석
신준호
이희승
신희재
이연주
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020140194039A priority Critical patent/KR20160080799A/en
Publication of KR20160080799A publication Critical patent/KR20160080799A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D309/36Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
    • C07D309/38Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms one oxygen atom in position 2 or 4, e.g. pyrones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a method for total synthesis of an α-pyrone derivative comprises preparing a β-ketoester compound starting from butanol through the Witting olefin reaction, Swern oxidation reaction, Corey-Fuchs reaction and Claisen condensation, and subjecting the β-ketoester compound to 6-endo-dig intramolecular cyclization using a gold catalyst to form an α-pyrone ring and to carry out total synthesis of an α-pyrone derivative. The α-pyrone derivative obtained by the total synthesis method is (+)-violapyrone C having the same shape as the naturally occurring α-pyrone derivative and has cytotoxicity against at least 10 human cancer cell lines, and thus can be useful as an anti-cancer agent.

Description

금 촉매를 이용한 α-피론 유도체 전합성 방법 및 이에 의해 합성되어 인간 암세포주에 세포독성을 가지는 α-피론 유도체{Method for total synthesizing α-pyrone derivatives using by gold catalyst and α-pyrone derivatives having cytotoxicity against human cancer cell synthesized thereby}Pyrone derivative having a cytotoxic activity in a human cancer cell, and a method for synthesizing an? -Pyrone derivative having a cytotoxicity against human cancer cell synthesized thereby}

본 발명은 금(Au) 촉매를 이용해 α-피론 유도체를 제조하는 α-피론 유도체 전합성 방법 및 이에 의해 합성되어 인간 암세포주에 세포독성을 가지는 α-피론 유도체에 관한 것이다.The present invention relates to a pre-synthesis method of an? -Pyrone derivative for producing an? -Pyrone derivative by using a gold (Au) catalyst, and an? -Pyrone derivative synthesized by the method and cytotoxic to a human cancer cell.

노년 인구의 증가와 환경 상황의 악화로 세계적으로 암 발생률이 매년 5 % 이상씩 증가하고 있으며, 1997 년 암으로 사망한 사람은 600만 명으로서 세계 사망 인구의 12 %에 이르고 있다. 따라서, 암(cancer)은 21 세기 인간의 수명 연장을 위해 최우선적으로 극복되어야 할 과제로 인식되고 있다. With the increase in the elderly population and the deterioration of the environment, the incidence of cancer has increased by 5% every year in the world. In 1997, 6 million people died from cancer, accounting for 12% of the global death toll. Therefore, cancer is recognized as a top priority to be overcome in order to extend human life in the 21st century.

최근 질병의 진단과 치료기술의 발달로 인해 암(cancer)치료에 대해 제한적으로나마 치료율의 향상과 기능적 보존이라는 긍정적인 결과를 얻기도 했지만, 아직까지도 많은 진행성 암에 있어서의 생존율은 최근 5년 동안 국내에서는 매년 10만 명의 암 환자가 새롭게 발생하고 5만여 명이 매년 사망하는 것으로 5 내지 50%이하를 맴돌고 있다. 이러한 암은 공격적인 침습, 림프절 전이, 원격 전이와 이차 암의 발생을 특징이라 할 수 있는데 일부 암에 있어서는 다양한 연구와 치료에도 불구하고 지난 20년간 생존율이 크게 증가하지 못하고 있다. Recent advances in the diagnosis and treatment of diseases have led to limited improvements in cure rates and improved functional outcomes, but the survival rates for many advanced cancers have remained high for the past five years Is estimated to be about 5 to 50 percent annually, with about 100,000 new cancer cases annually and about 50,000 deaths each year. These cancers are characterized by aggressive invasion, lymph node metastasis, distant metastasis, and the development of secondary cancers. Despite a variety of studies and treatments for some cancers, survival rates have not increased significantly over the past 20 years.

이에 따라, 최근에는 이러한 암에 대해 분자생물학적인 접근을 통해 치료율을 높이려는 시도가 많아지고, 암의 증식, 전이와 세포사멸(apoptosis)과 관련된 표적치료에 대한 연구가 활발히 진행되고 있으며, 이와 동시에 암을 억제할 수 있는 물질로 식물, 해양 등에서 유래한 천연추출물 혹은 항산화제 등을 이용한 항암제 관련 연구가 활발하게 진행되고 있다. Recently, there have been a lot of attempts to increase the treatment rate through a molecular biological approach to cancer, and studies on target treatment related to cancer proliferation, metastasis and apoptosis have been actively conducted, and at the same time, Researches on anticancer drugs using natural extracts derived from plants, oceans and the like or antioxidants have been actively carried out.

일례로, 비특허문헌 1의 종래 기술에서는 흰손긴팔 원숭이 배설물(Hylobates hoolock feces)에서 분리한 스트렙토미세스(Streptomyces violascens , YIM100525)를 발효시켜 인간 암세포주에 세포독성을 가지는 α-피론 유도체의 일종인 Violapyrones을 제조하는 방법에 관한 기술 내용을 제시하였으며, 자연에서 분리한 미생물을 발효해 항암활성을 가지는 천연 소재를 제조하는 방법에 관한 것이다(J. Zhang, Y. Jiang, Y. Cao, J. Liu, D. Zheng, X. Chen, L. Han, C. Jiang, X. Huang, J. Nat. Prod. 2013, 76, 2126-130.).For example, in the prior art of Non-Patent Document 1, Streptomyces ( Streptomyces ) isolated from Hylobates hoolock feces violascens , YIM100525) to produce Violapyrones , a kind of α-pyrone derivative having cytotoxicity in human cancer cell lines. The present invention relates to a method for producing Violapyrones, which comprises fermenting natural microorganisms, J. Zhang, Y. Jiang, Y. Cao, J. Liu, D. Zheng, X. Chen, L. Han, C. Jiang, X. Huang, J. Nat. Prod. 2013 , 76, 2126-130.).

하지만, 상기한 종래 기술에서는 미생물을 배양 후 발효하여 천연 물질인 α-피론 유도체를 제조하는 방법은 천연 물질이 가지는 안정성 및 우수성을 가지고 있으나 수득할 수 있는 α-피론 유도체의 양이 적어 이를 분리 정제하여 대량 생산하는 방법에 사용하기에는 제한이 있다.However, in the above-mentioned prior art, the method of producing the α-pyrone derivative as a natural substance by fermenting the microorganism after culturing has stability and superiority of the natural substance, but since the amount of the obtained α-pyrone derivative is small, There is a limit to use in mass production methods.

따라서, 항암활성을 가지는 α-피론 유도체를 대량 생산할 수 있는 전합성 방법에 관한 연구가 필요한 실정이다.Therefore, there is a need for a study on a total synthesis method capable of mass production of an? -Pyrone derivative having anticancer activity.

한국등록특허 제10-1151993호 (공개일 ; 2010.01.15)Korean Patent No. 10-1151993 (published on January 15, 2010) 한국공개특허 제10-2013-0077458호 (공개일 ; 2013.07.09)Korean Patent Publication No. 10-2013-0077458 (published on; 한국공개특허 제10-2010-0017766호 (공개일 ; 2010.02.16)Korean Patent Laid-Open No. 10-2010-0017766 (published on February 16, 2010) 한국공개특허 제10-2002-0063293호 (공개일 ; 2002.08.01)Korean Patent Laid-Open No. 10-2002-0063293 (published on August, 2002)

J. Zhang, Y. Jiang, Y. Cao, J. Liu, D. Zheng, X. Chen, L. Han, C. Jiang, X. Huang, J. Nat. Prod. 2013, 76, 2126-130. J. Zhang, Y. Jiang, Y. Cao, J. Liu, D. Zheng, X. Chen, L. Han, C. Jiang, X. Huang, J. Nat. Prod. 2013, 76, 2126-130.

본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 항암활성을 가지는 α-피론 유도체를 전합성(total synthesis)하는 방법을 제공하여 천연 물질과 동일한 구조를 가지는 화합물을 대량 생산할 수 있는 방법을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been conceived to solve the problems of the prior art as described above, and it is an object of the present invention to provide a method for total synthesis of an? -Pyrone derivative having anticancer activity to mass produce a compound having the same structure as a natural substance It is intended to provide a way to be able to.

상기한 바와 같은 기술적 과제를 달성하기 위해 본 발명은, (a) 부탄올(butanol)을 요오드화물(Iodide)과 요오드화 반응시킨 후, 트리페닐포스핀(triphenyl phosphine, PPh3)과 반응시켜 포스포늄 요오드화물염을 제조하는 단계, (b) 부탄디올을 은(Ag) 촉매를 이용하여 1가 알코올로 제조한 후 스웬 산화(Swern oxidation)반응을 통해 알데히드기(aldehyde)를 도입해 부탄 알데히드를 제조하는 단계, (c) n-부틸리튬(n-butyllithium) 촉매 하에서 상기 단계 (a)에서 제조된 상기 포스포늄 요오드화물염을 일리드(ylide) 화합물로 제조하고 상기 단계 (b)에서 제조된 상기 부탄 알데히드를 첨가하여 위팅(Witting) 반응시켜 올레핀(olefin) 화합물을 제조하는 단계, (d) 팔라듐(palladium, Pd) 촉매 하에서 수소화 반응시켜 상기 올레핀 화합물 내의 탄소-탄소 이중 결합을 제거하고 1가 알코올 화합물을 제조하는 단계, (e) 스웬 산화반응을 통해 상기 단계 (d)에서 제조된 1가 알코올 화합물에 알데히드기를 도입하고, 코리-푹스(Corey-Fuchs) 반응시켜 상기 알데히드기에 탄소를 첨가해 상기 1가 알코올 화합물 말단 잔기에 알킨(alkyne)을 형성시키는 단계, (f) 상기 단계 (e)에서 형성된 말단잔기에 알킨을 포함하는 1가 알코올 화합물을 n-부틸리튬 촉매 하에서 메틸클로로포르메이트(methyl chloroformate)와 반응시켜 에스테르(ester)기를 도입하여 자이노에이트(ynoate) 화합물을 제조하는 단계, (g) 상기 자이노에이트 화합물을 클라이젠 축합(Claisen condensation) 반응시켜 호변 이성질체(tautomer) 형태의 β-케토(β-keto) 에스테르 화합물을 제조하는 단계 및 (h) 상기 호면 이성질체 형태의 β-케토 에스테르 화합물을 금(Au) 촉매하에서 6-endo-dig 분자 내 고리화(intermolecular cyclization) 반응을 통해 α-피론 고리(α-pyrone ring)를 형성시켜 α-피론 유도체를 제조하는 단계를 포함하는 α-피론 유도체 전합성 방법을 제안한다. (A) reacting butanol with iodide and then reacting with triphenyl phosphine (PPh 3 ) to produce phosphonium iodide (B) preparing butane aldehyde by using a silver (Ag) catalyst, introducing aldehyde through a swern oxidation reaction to prepare butane aldehyde, (c) reacting the phosphonium iodide salt prepared in step (a) with an ylide compound under an n-butyllithium catalyst, and reacting the butane aldehyde prepared in step (b) (D) a hydrogenation reaction in the presence of palladium (Pd) catalyst to remove carbon-carbon double bonds in the olefin compound to form a monohydric alcohol compound (E) introducing an aldehyde group into the monohydric alcohol compound prepared in the step (d) through a swhen oxidation reaction, and carrying out a Corey-Fuchs reaction to add carbon to the aldehyde group, (F) reacting a monohydric alcohol compound containing an alkyne at the terminal residue formed in the step (e) with methyl chloroformate under an n-butyllithium catalyst to form an alkyne at the terminal residue of the alcohol compound; (G) reacting the zeinioate compound with Claisen condensation to obtain a tautomeric form of β-keto (h) preparing β-keto ester compounds of the above-mentioned isomeric forms in the presence of a gold (Au) catalyst to form 6-endo-dig molecular intermolecular cyclizati pyrone derivatives by reacting an α-pyrone derivative with an α-pyrone ring to form an α-pyrone ring.

또한, 상기 금(Au) 촉매는 [비스(트리플루오로메탄술포닐)-이미데이트]-(트리페닐포스핀) 금(I)([Bis(trifluoromethanesulfonyl)-imidate]-(PPh3) gold(I))를 포함하는 것을 특징으로 한다. Also, the gold (Au) catalyst can be prepared by reacting [bis (trifluoromethanesulfonyl) -imidate] - (triphenylphosphine) -imidate] - (PPh 3 ) gold I)).

또한, 본 발명은 상기에 기재된 α-피론 유도체 전합성 방법에 의해 제조된 α-피론 유도체를 제안한다.The present invention also provides an? -Pyrone derivative prepared by the above-described all-synthetic method for the? -Pyrone derivative.

또한, 상기 α-피론 유도체는 자궁(cervix)경부암세포주, 신장(renal)암세포주, 결장(colon)암세포주, 유방(breast)암세포주, 폐(lung)암세포주, 위암(stomach)세포주, 간(liver)암세포주 및 전립선(prostate)암세포주를 포함하는 인간암세포주(human cancer cell line)에 세포독성(cytotoxicity)을 가지는 것을 특징으로 한다.The α-pyrone derivative may be used in the cervix cancer cell line, the renal cancer cell line, the colon cancer cell line, the breast cancer cell line, the lung cancer cell line, the stomach cell line, and has cytotoxicity to human cancer cell lines including liver cancer cell lines and prostate cancer cell lines.

본 발명에 따른 α-피론 유도체 전합성 방법은 금(Au) 촉매를 이용해 다양한 종류의α-피론 유도체를 20% 이상의 수율로 전합성할 수 있어, α-피론 유도체의 대량 제조에 응용될 수 있다.The α-pyrone derivative according to the present invention can be synthesized in a wide variety of α-pyrone derivatives using a gold (Au) catalyst at a yield of 20% or more, and thus can be applied to mass production of α-pyrone derivatives .

또한, 본 발명에 따른 α-피론 유도체는 10 종 이상의 인간 암세포주(Human cancer cell line)에 항암활성을 가져 α-피론 유도체를 유효 성분으로 포함하는 암 치료제 제조에 이용될 수 있다.The α-pyrone derivative according to the present invention has anticancer activity on 10 or more kinds of human cancer cell lines and can be used for the preparation of a cancer treatment agent containing an α-pyrone derivative as an active ingredient.

도 1은 본 발명에 따른 α-피론 유도체 전합성 방법에서 α-피론 유도체 제조를 위한 중간체인 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠을 제조를 위한 제 1 반응물 및 제 2 반응물을 제7.33조하는 단계를 나타낸 반응식이다.
도 2는 본 발명에 따른 α-피론 유도체 전합성 방법에서 위팅 반응을 통한 올레핀 화합물의 제조하는 단계를 나타낸 반응식이다.
도 3은 본 발명에 따른 α-피론 유도체 전합성 방법에서 1가 알코올 화합물인 (S)-6-메틸옥탄-1-올을 제조하는 단계를 나타낸 반응식이다.
도 4는 본 발명에 따른 α-피론 유도체 전합성 방법에서 (S)-6-메틸옥타날을 제조하는 단계를 나타낸 반응식이다.
도 5는 본 발명에 따른 α-피론 유도체 전합성 방법에서 자이노에이트 화합물인 (S)-메틸 8-메틸데크-2-자이노에이트를 제조하는 단계를 나타낸 반응식이다.
도 6은 본 발명에 따른 α-피론 유도체 전합성 방법에서 β-케토 에스테르 화합물인 (10S)-터트-부틸 2,10-디메틸-3-옥소도데크-4-자이노에이트를 제조하는 단계를 나타낸 반응식이다.
도 7은 본 발명에 따른 α-피론 유도체 전합성 방법에서 α-피론 유도체를 제조하는 단계를 나타낸 반응식이다.
1 is a graph showing the results of the synthesis of (S) - (((6-methyloct-4-en-1-yl) oxy) methyl) benzene, which is an intermediate for the preparation of? -Pyrone derivatives, And the first reactant for the preparation and the second reactant for the third reaction.
FIG. 2 is a schematic diagram showing a step of preparing an olefin compound through a Wittling reaction in the method of synthesizing an? -Pyrone derivative according to the present invention.
FIG. 3 is a reaction formula showing the step of preparing (S) -6-methyloctan-1-ol, which is a monohydric alcohol compound, in the method of synthesizing an? -Pyrone derivative according to the present invention.
FIG. 4 is a reaction formula showing the step of preparing (S) -6-methyloctanal in the whole synthesis method of an? -Pyrone derivative according to the present invention.
FIG. 5 is a reaction formula showing the step of preparing (S) -methyl 8-methyldeck-2-aminoate as a zincate compound in the method for synthesizing an? -Pyrone derivative according to the present invention.
6 is a diagram illustrating a step of preparing (10S) -tert-butyl 2,10-dimethyl-3-oxododec-4-aminoate, which is a? -Ketoester compound, in the entire synthesis method of an? -Pyrone derivative according to the present invention This is the reaction scheme shown.
FIG. 7 is a reaction formula showing the step of preparing an? -Pyrone derivative in the method for synthesizing an? -Pyrone derivative according to the present invention.

이하, 본 발명을 상세히 설명하도록 한다.
Hereinafter, the present invention will be described in detail.

본 발명에 따른 금 촉매를 이용한 α-피론 유도체 전합성 방법은, 부탄올(butanol)을 출발물질로 하여 크게, 위팅 올레핀 반응(Witting olefin reaction), 스웬 산화반응(Swern oxidation reaction), 코리-푹스 반응(Corey-Fuchs reaction), 클라이센 축합반응(Claisen condensation)을 거쳐 금(gold) 촉매를 이용한 α-피론 고리 (α-pyrone ring)형성을 통해 α-피론 유도체를 전합성(total synthesis)할 수 있다.The method for preparing α-pyrone derivatives using a gold catalyst according to the present invention can be broadly classified into a Witting olefin reaction, a Swern oxidation reaction and a Cori-Fuchs reaction with butanol as a starting material Pyrone derivatives can be synthesized through the formation of an α-pyrone ring using a gold catalyst via the Corey-Fuchs reaction and Claisen condensation. have.

상기한 전합성 방법을 보다 상세히 설명하면, 본 발명에 따른 금 촉매를 이용한 α-피론 유도체 전합성 방법은, (a) 부탄올(butanol)을 요오드화물(Iodide)과 요오드화 반응시킨 후, 트리페닐포스핀(triphenyl phosphine, PPh3)과 반응시켜 포스포늄 요오드화물염을 제조하는 단계, (b) 부탄디올을 은(Ag) 촉매를 이용하여 1가 알코올로 제조한 후 스웬 산화(Swern oxidation)반응을 통해 알데히드기(aldehyde)를 도입해 부탄 알데히드를 제조하는 단계, (c) n-부틸리튬(n-butyllithium) 촉매 하에서 상기 단계 (a)에서 제조된 상기 포스포늄 요오드화물염을 일리드(ylide) 화합물로 제조하고 상기 단계 (b)에서 제조된 상기 부탄 알데히드를 첨가하여 위팅(Witting) 반응시켜 올레핀(olefin) 화합물을 제조하는 단계, (d) 팔라듐(palladium, Pd) 촉매 하에서 수소화 반응시켜 상기 올레핀 화합물 내의 탄소-탄소 이중 결합을 제거하고 1가 알코올 화합물을 제조하는 단계, (e) 스웬 산화반응을 통해 상기 단계 (d)에서 제조된 1가 알코올 화합물에 알데히드기를 도입하고, 코리-푹스(Corey-Fuchs) 반응시켜 상기 알데히드기에 탄소를 첨가해 상기 1가 알코올 화합물 말단 잔기에 알킨(alkyne)을 형성시키는 단계, (f) 상기 단계 (e)에서 형성된 말단잔기에 알킨을 포함하는 1가 알코올 화합물을 n-부틸리튬 촉매 하에서 메틸클로로포르메이트(methyl chloroformate)와 반응시켜 에스테르(ester)기를 도입하여 자이노에이트(ynoate) 화합물을 제조하는 단계, (g) 상기 자이노에이트 화합물을 클라이젠 축합(Claisen condensation) 반응시켜 호변 이성질체(tautomer) 형태의 β-케토(β-keto) 에스테르 화합물을 제조하는 단계 및 (h) 상기 호면 이성질체 형태의 β-케토 에스테르 화합물을 금(Au) 촉매하에서 6-endo-dig 분자 내 고리화(intermolecular cyclization) 반응을 통해 α-피론 고리(α-pyrone ring)를 형성시켜 α-피론 유도체를 제조하는 단계를 포함한다. The total synthesis method of the present invention will be described in more detail. The method for synthesizing an α-pyrone derivative using a gold catalyst according to the present invention comprises: (a) iodination of butanol with iodide, (B) reacting butanediol with monohydric alcohol using a silver (Ag) catalyst, followed by subjecting to swern oxidation reaction to produce a phosphonium iodide salt by reacting with triphenyl phosphine (PPh 3 ) (C) reacting the phosphonium iodide salt prepared in the step (a) with an ylide compound under an n-butyllithium catalyst to produce butane aldehyde by introducing an aldehyde (B) adding the butane aldehyde prepared in step (b) to the olefin compound to form an olefin compound; and (d) hydrogenating the olefin compound under palladium (Pd) (E) introducing an aldehyde group into the monohydric alcohol compound prepared in the step (d) through a swhen oxidation reaction, removing the aldehyde group from the corey-Fuchs (F) reacting a monohydric alcohol compound containing an alkyne at the terminal moiety formed in the step (e) with an aldehyde group, - reacting with methyl chloroformate under butyl lithium catalyst to introduce an ester group to produce a ynoate compound; (g) reacting the zeinioate compound with Claisen condensation Keto ester compound in the form of a tautomer; and (h) reacting the? -Ketoester compound in the form of a racemic isomer with a gold (Au) Under 6-endo-dig cyclization in the molecule to form (intermolecular cyclization) α- Piron ring (α-pyrone ring) through the reaction and a step of producing the α- Piron derivative.

참고로, 상기한 각 단계는 α-피론 유도체를 제조하기 위해, 컬럼 크로마토그래피를 통해 각 단계에서 제조된 생성물을 정제, 분리 및 회수가 용이하도록 구성할 수 있다.
For reference, each of the above-mentioned steps can be configured to facilitate the purification, separation and recovery of the product produced in each step through column chromatography in order to produce an alpha -pyrone derivative.

상기 단계 (a)는, 부탄올(butanol)을 요오드화물(Iodide)과 요오드화 반응시킨 후, 트리페닐포스핀(triphenyl phosphine, PPh3)과 반응시켜 포스포늄염을 제조하는 단계이다.The step (a) is a step of reacting butanol with iodide and then reacting with triphenyl phosphine (PPh 3 ) to produce a phosphonium salt.

본 단계에서는 α-피론 유도체 제조를 위한 중간체인 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠을 제조하기 위해서, 제1 반응물인 포스포늄염을 제조하는 단계로서, 도 1 (a)를 참조하면, 출발 물질로 (S)-(-)-2-메틸-1-부탄올을 디클로로메탄(CH2Cl2)에 용해된 트리페닐포스핀(triphenylphosphine, Ph3P), 이미다졸(imidazole), 요오드(iodine, I2)를 이용해 (S)-(-)-2-메틸-1-부탄올의 히드록실기를 요오드화 반응시켜 (S)-1-이오도-2-메틸부탄((S)-1-iodo-2-methylbutane)을 제조하는 단계와, 상기 (S)-1-이오도-2-메틸부탄에 트리페닐포스핀과 톨루엔(toluene)을 혼합하고 100 ℃이상으로 가열하고 충분한 시간 동안 반응시켜 포스포늄 요오드화물염인 (S)-(2-메틸부틸)트리페닐-포스포늄 요오드화물((S)-(2-methylbutyl)triphenyl-phosphonium iodide)을 제조할 수 있다.
In this step, in order to prepare an intermediate (S) - ((6-methyloct-4-en-1-yl) oxy) methyl) benzene as an intermediate for the preparation of? -Pyrone derivative, a first reaction product, When the steps of manufacturing, to FIG. 1 (a), a starting material in (S) - (-) - 2- a triphenylphosphine (triphenylphosphine dissolved in the methyl-1-butanol, dichloromethane (CH 2 Cl 2) (- -, Ph 3 P) , imidazole (imidazole), iodine (iodine, I 2) (S ) with a) - 2-methyl-1 to a hydroxyl group iodination reaction of butanol, (S) -1- (S) -1-iodo-2-methylbutane), and a step of adding triphenylphosphine and toluene to (S) -1- (S) - (2-methylbutyl) triphenyl-phosphonium iodide, which is a phosphonium iodide salt, is reacted for a sufficient time and heated to 100 ° C or higher. iodide can be produced.

또한, 상기 단계 (b)는 부탄디올을 은(Ag) 촉매를 이용하여 1가 알코올로 제조한 후 스웬 산화(Swern oxidation)반응을 통해 알데히드기(aldehyde)를 도입해 부탄 알데히드를 제조하는 단계이다.In the step (b), butanediol is prepared from a monohydric alcohol using a silver (Ag) catalyst and an aldehyde is introduced through a swern oxidation reaction to produce butane aldehyde.

상기한 스웬 산화반응은 일차알코올을 알데히드로, 또는 이차알코올을 케톤으로 산화시킬 때 사용되는 일반적인 방법으로써, 본 단계에서는 α-피론 유도체 제조를 위한 중간체인 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠을 제조하기 위해서, 제2 반응물의 부탄 알데히드인 4-(벤질옥시)부타날(4-(benzyloxy)butanal)을 제조한다.The above-mentioned swan oxidation reaction is a general method used for oxidizing a primary alcohol to an aldehyde or a secondary alcohol to a ketone. In this step, an intermediate (S) - (((6-methylocte -4-en-1-yl) oxy) methyl) benzene, 4- (benzyloxy) butanal, the butanaldehyde of the second reactant, is prepared.

도 1 (b)를 참조하면, 벤질브로마이드(benzyl bromide, BnBr), 디클로로메탄 및 산화은(silver(Ⅰ) oxide, Ag2O) 촉매를 이용하여 상기 부탄디올에 벤질기를 도입하는 벤질화(benzylation) 반응시켜 히드록실기를 제거하고 4-(벤질옥시)부탄-1-올(4-(benzyloxy)butan-1-ol)을 제조하고, 4-(벤질옥시)부탄-1-올에 트리플루오로아세트산 무수물(trifluoroacetic anhydride, TFAA) 및 디메틸술폭시드(dimethyl sulfoxide, DMSO)를 이용한 스웬 산화반응을 통해 제 2 반응물인 4-(벤질옥시)부타날(4-(benzyloxy)butanal)을 제조할 수 있다.
1 (b), a benzylation reaction in which a benzyl group is introduced into the butanediol using benzyl bromide (BnBr), dichloromethane, and silver (I) oxide, Ag 2 O To obtain 4- (benzyloxy) butan-1-ol. To a solution of 4- (benzyloxy) butan-1-ol in trifluoroacetic acid 4- (benzyloxy) butanal), a second reactant, can be prepared through swain oxidation using trifluoroacetic anhydride (TFAA) and dimethyl sulfoxide (DMSO).

상기 단계 (c)는 n-부틸리튬(n-butyllithium) 촉매 하에서 상기 단계 (a)에서 제조된 상기 포스포늄 요오드화물염을 일리드(ylide) 화합물로 제조하고 상기 단계 (b)에서 제조된 상기 부탄 알데히드를 첨가하여 위팅(Witting) 반응시켜 올레핀(olefin) 화합물을 제조하는 단계이다.The step (c) may be performed by preparing the phosphonium iodide salt prepared in the step (a) as an ylide compound under an n-butyllithium catalyst and reacting the phosphonium iodide salt prepared in the step Butane aldehyde is added and the mixture is subjected to a wetting reaction to produce an olefin compound.

도 2를 참조하면, 본 단계에서는 상기한 위팅 반응을 통한 올레핀 화합물의 제조를 위해 강염기를 공급하여 자리옮김을 유도하여 올레핀을 합성하는 방법을 사용하며, 이를 위해 상기 제1 반응물인 (S)-(2-메틸부틸)트리페닐포스포늄 요오드화물에 강염기인 n-부틸리튬 촉매를 처리하여 포스포러스 일리드(phosphorus ylide)를 제조한다.Referring to FIG. 2, in this step, the olefin compound is prepared by feeding a strong base to produce an olefin compound through the above-described polymerization reaction, thereby synthesizing an olefin. To this end, the first reaction product, (2-methylbutyl) triphenylphosphonium iodide is treated with a strong base n-butyl lithium catalyst to prepare a phosphorus ylide.

이때, 일리드는 양전하와 음전하를 갖는 분자로서, 일반적으로 양전하를 띄는 헤테로 원자의 가까운 탄소에서 양성자를 제거하여 일리드가 형성되는데, 본 단계에서는 트리페닐포스핀과 이오도 알킬의 반응으로 포스포늄 염이 형성되고 강염기인 n-부틸리튬 및 테트라히드로퓨란(tetrahydropyran, THP)으로 처리하여 포스포늄 이온에서 양성자를 제거하여 포스포러스 일리드로 제조할 수 있다.In this case, an ilid is a molecule having a positive charge and a negative charge. In general, a proline is removed from a nearby carbon of a heteroatom having a positive charge to form an ilid. In this step, a phosphonium Salts can be formed and treated with strong bases such as n-butyllithium and tetrahydropyran (THP) to remove protons from the phosphonium ions to form phosphoryl iodides.

그리고, 제조된 포스포러스 일리드에 상기 제2 반응물인 4-(벤질옥시)부타날을 혼합하여 질소 가스를 공급하는 수분이 차단된 환경하에서 위팅 반응시키면, α-피론 유도체 제조를 위한 중간체인 올레핀 화합물 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠이 형성된다.
Then, the prepared second phosphorus compound (4-benzyloxy) butanal is mixed with the prepared phosphorus ylide and the resulting mixture is subjected to a wittig reaction in an environment of moisture-shielding feed of nitrogen gas to form an olefin Compound (S) - (((6-methyloct-4-en-1-yl) oxy) methyl) benzene is formed.

상기 단계 (d)에서는 팔라듐-탄소 촉매(Pd/C catalyst) 하에서 수소화 반응시켜 상기 올레핀 화합물 내의 탄소-탄소 이중 결합을 제거하고 1가 알코올 화합물을 제조하는 단계이다.In the step (d), a hydrogenation reaction is performed under a palladium-carbon catalyst (Pd / C catalyst) to remove carbon-carbon double bonds in the olefin compound to prepare a monohydric alcohol compound.

도 3을 참조하면, 본 단계에서는 수소 가스(H2)를 포화시킨 분위기 하에서 팔라듐-탄소 촉매로 수소화 반응을 유도하여 상기 올레핀 화합물 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠의 벤질기를 제거하고 탄소-탄소 이중결합을 단일 결합으로 변환시켜 1가 알코올 화합물인 (S)-6-메틸옥탄-1-올((S)-6-methyloctan-1-ol)을 제조할 수 있다.
3, in this step, a hydrogenation reaction is induced with a palladium-carbon catalyst under an atmosphere saturated with hydrogen gas (H 2 ) to produce the olefin compound (S) - (((6-methyloct- (S) -6-methyloctan-2-yl) oxy) methyl) benzene and converting the carbon-carbon double bond into a single bond to obtain a monohydric alcohol compound, 1-ol. ≪ / RTI >

상기 단계 (e)는 스웬 산화반응을 통해 상기 단계 (d)에서 제조된 1가 알코올 화합물에 알데히드기를 도입하고, 코리-푹스(Corey-Fuchs) 반응시켜 상기 알데히드기에 탄소를 첨가해 상기 1가 알코올 화합물 말단 잔기에 알킨(alkyne)을 형성시키는 단계이다.The step (e) comprises introducing an aldehyde group into the monohydric alcohol compound prepared in the step (d) through a swhen oxidation reaction, reacting with a Corey-Fuchs reaction, adding carbon to the aldehyde group, To form an alkyne at the terminal residue of the compound.

도 4를 참조하면, 본 단계에서는 상기 (S)-6-메틸옥탄-1-올을 상기 디클로로메탄에 녹인 TFAA 및 DMSO와 혼합하여 제조한 트리플루오로아세톡시디메틸설포늄 트리플루오로아세트산과 반응시켜 알콕시설포늄 염을 제조하고, 상기 알콕시설포늄 염을 N,N-디이소프로필에틸아민(N,N-diisopropylethylamine, DIPEA)과 반응시켜 알콕시설포늄 일리드(akoxysulfonium ylide)를 제조하며, 알콕시설포늄 일리드를 재배열하여 (S)-6-메틸옥타날((S)-6-methyloctanal)을 제조한다.Referring to FIG. 4, in this step, the reaction of (S) -6-methyloctan-1-ol with trifluoroacetoxydimethylsulfonium trifluoroacetic acid prepared by mixing TFAA and DMSO in dichloromethane To prepare an alkoxysulfonium salt. The alkoxysulfonyl salt is reacted with N, N-diisopropylethylamine (DIPEA) to prepare an alkoxysulfonium ylide. (S) -6-methyloctanal) is prepared by rearranging the sulfonyl chloride of (S) -6-methyloctanal.

참고로, 코리-푹스 반응은 알데히드기를 알킨으로 전환시키기 위한 반응으로, 반응성 일리드 화합물의 말단 잔기에 알킨을 첨가할 수 있는 반응으로서 본 단계에서는, 상기 (S)-6-메틸옥타날을 사브롬화탄소(carbon tetrabromide) 및 트리페닐포스핀(triphenylphosphine)과 반응시켜 제조한 포스포러스 일리드(phosphorous ylide)와 반응시켜 (S)-1,1-디브로모-7-메틸논-1-엔((S)-1,1-dibromo-7-methylnon-1-ene)을 제조하고, (S)-1,1-디브로모-7-메틸논-1-엔을 상기 n-부틸리튬과 혼합하여 리튬 아세틸일리드를 제조한 후, 리튬 아세틸일리드를 가수분해하여 상기 코리-푹스 반응시켜 (S)-7-메틸논-1-인((S)-7-methylnon-1-yne)을 제조하도록 구성하여, 1가 알코올 화합물 말단 잔기에 알킨(alkyne)을 형성시키도록 구성할 수 있다.
For reference, the Cori-Fuchs reaction is a reaction for converting an aldehyde group into an alkyne. In this step, alkyne can be added to the terminal residue of the reactive ylid compound. In this step, the (S) -6- (S) -1,1-dibromo-7-methylnon-1-ene (S) -1,1'-dibromoquinoline is reacted with phosphorous ylide prepared by reaction with carbon tetrabromide and triphenylphosphine (S) -1,1-dibromo-7-methylnon-1-ene is reacted with the n-butyllithium and the (S) -7-methylnon-1-yne) was synthesized by hydrolysis of lithium acetylide by the above Corynebacterium glutamic acid, To form an alkyne at the terminal residue of the monohydric alcohol compound.

상기 단계 (f)는 상기 단계 (e)에서 형성된 말단잔기에 알킨을 포함하는 1가 알코올 화합물을 n-부틸리튬 촉매 하에서 메틸클로로포르메이트(methyl chloroformate)와 반응시켜 에스테르(ester)기를 도입하여 자이노에이트(ynoate) 화합물을 제조하는 단계이다.In the step (f), an ester group is introduced by reacting a monohydric alcohol compound containing an alkyne at a terminal residue formed in the step (e) with methyl chloroformate under an n-butyl lithium catalyst Is a step for preparing a ynoate compound.

도 5를 참조하면, 본 단계에서는 말단잔기에 알킨을 포함하는 1가 알코올 화합물인 (S)-7-메틸논-1-인을 n-부틸리튬 촉매 하에서 메틸클로로포르메이트(methyl chloroformate)와 반응시켜 에스테르(ester)기를 도입해 자이노에이트(ynoate) 화합물을 제조하고, 상기 단계 (f)에서 제조되는 상기 자이노에이트 화합물인 (S)-메틸 8-메틸데크-2-자이노에이트((S)-methyl 8-methyldec-2-ynoate)를 제조할 수 있다.
Referring to FIG. 5, in this step, (S) -7-methylnon-1-phosphorus which is a monohydric alcohol compound containing an alkyne at the terminal residue is reacted with methyl chloroformate under n-butyl lithium catalyst (S) -methyl 8-methyldeck-2-aminoacetate ((S) -methyl 8-methyldec-2-yneate) prepared in the step (f) S) -methyl 8-methyldec-2-ynoate.

상기 단계 (g)는 상기 자이노에이트 화합물을 클라이젠 축합(Claisen condensation) 반응시켜 호변 이성질체(tautomer) 형태의 β-케토(β-keto) 에스테르 화합물을 제조하는 단계이다.The step (g) is a step of producing a β-keto ester compound in the form of a tautomer by Claisen condensation reaction of the zeinite compound.

참고로, 클라이젠 축합 반응은 에스테르기의 탄소-탄소 결합 사이에 발생하는 반응으로서, 강염기 존재하에서 β-케토(β-keto) 에스테르와 알코올을 형성시키는 반응으로서, 도 6을 참조하면, 본 단계에서는 β-케토(β-keto) 에스테르 화합물을 제조하기 위해, (S)-메틸 8-메틸데크-2-자이노에이트를 강염기성인 리튬 디이소프로필아미드(lithium diisopropylamide, LDA) 및 터트-부틸 프로피온산(tert-butyl propionate) 혼합물을 이용해 클라이젠 축합 반응시켜 호변 이성질체 형태로 존재하는 β-케토 에스테르 화합물인 (10S)-터트-부틸 2,10-디메틸-3-옥소도데크-4-자이노에이트((10S)-tert-butyl 2,10-dimethyl-3-oxododec-4-ynoate)를 제조할 수 있다.
For reference, the Clagen condensation reaction is a reaction occurring between carbon-carbon bonds of an ester group, which is a reaction for forming an alcohol with a? -Keto (? -Keto) ester in the presence of a strong base. Referring to FIG. 6, (S) -methyl 8-methyldeck-2-aminoacetate is reacted with a strong base such as lithium diisopropylamide (LDA) and tert-butylpropionic acid (tert -butyl propionate) used a mixture of Cloud now to condensation reaction β- keto ester compound present in tautomeric forms (10S) - tert-butyl-2,10- dimethyl-3-oxo-4-deck chair also Ino benzoate ((10S) -tert-butyl 2,10-dimethyl-3-oxododec-4-ynoate).

상기 단계 (h)는 상기 호면 이성질체 형태의 β-케토 에스테르 화합물을 금(Au) 촉매하에서 6-endo-dig 분자 내 고리화(intermolecular cyclization) 반응을 통해 α-피론 고리(α-pyrone ring)를 형성시켜 α-피론 유도체를 제조하는 단계이다.In step (h), the β-keto ester compound in the form of an awx isomer is reacted with an α-pyrone ring through a 6-endo-dig molecular intermolecular cyclization reaction under a gold (Au) Pyrone derivative to produce an? -Pyrone derivative.

도 7을 참조하면, 본 단계에서 분자 내 고리화 반응은 산성 금속 촉매의 존재하에서 β-케토 에스테르 화합물인 터트 부틸-자이노에이트를 바이올라피론의 내부에 있는 α-pyrone 고리로 전환할 수 있으며, 이에 의해 α-피론 유도체를 합성할 수 있다.Referring to FIG. 7, in this step, the intramolecular cyclization reaction can convert the .beta.-keto ester compound turbutyl-zinioate into an .alpha.-pyrone ring in the interior of the viola pyrone in the presence of an acidic metal catalyst, Thus, an? -Pyrone derivative can be synthesized.

이때, 사용될 수 있는 산성 금속 촉매는 백금 또는 금 촉매를 사용할 수 있으며, 본 단계에서는 [비스(트리플루오로메탄술포닐)-이미데이트]-(트리페닐포스핀) 금(I)([Bis(trifluoromethanesulfonyl)-imidate]-(PPh3) gold(I))으로 이루어진 금 촉매를 사용할 수 있다.In this case, the acidic metal catalyst that can be used may be a platinum or gold catalyst. In this step, bis (trifluoromethanesulfonyl) imidate- (triphenylphosphine) gold (I) trifluoromethanesulfonyl) -imidate] - (PPh 3 ) gold (I).

그리고, 제조된 (+)-, (-)-violapyrone C를 각각 선택적으로 합성가능하며, 광학회전 값의 비교를 통해서 천연물에서 분리 정제된 화합물이 (+)-violapyrone C와 동일한 구조를 나타낸다. (+) -, (-) - violapyrone C can be selectively synthesized, respectively. Compared with (+) - violapyrone C,

상기한 바와 같이 하여 제조된 α-피론 유도체는 (+)-바이올라피론 C((+)-violapyrone C)으로서, 천연물에서 분리 정제된 화합물과 동일한 형태를 가지며, 자궁(cervix)경부암세포주, 신장(renal)암세포주, 결장(colon)암세포주, 유방(breast)암세포주, 폐(lung)암세포주, 위암(stomach)세포주, 간(liver)암세포주 및 전립선(prostate)암세포주를 포함하는 인간암세포주(human cancer cell line)에 세포독성(cytotoxicity)을 가져 상기한 α-피론 유도체를 유효성분으로 포함하는 항암 치료제 제조에 이용될 수 있다.The α-pyrone derivative prepared as described above is (+) - viola pyrone C ((+) - violapyrone C), which has the same form as the compound isolated and purified from natural products, and is a cervix cancer cell line, kidney human cancer cells, including renal cancer cell lines, colon cancer cell lines, breast cancer cell lines, lung cancer cell lines, stomach cell lines, liver cancer cell lines and prostate cancer cell lines, Can be used for the preparation of an anticancer therapeutic agent having cytotoxicity in the human cancer cell line and containing the above-mentioned? -Pyrone derivative as an active ingredient.

본 발명에 따른 α-피론 유도체 전합성 방법은 출발 물질부터 α-피론 유도체를 전합성할 수 있으며, 금(Au) 촉매를 이용해 다양한 종류의α-피론 유도체를 제조할 수 있다.
The α-pyrone derivatives according to the present invention can synthesize α-pyrone derivatives starting from the starting materials, and various α-pyrone derivatives can be prepared using gold (Au) catalysts.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

제시된 실시예는 본 발명의 구체적인 예시일 뿐이며, 본 발명의 범위를 제한하기 위한 것은 아니다.
The embodiments presented are only a concrete example of the present invention and are not intended to limit the scope of the present invention.

<실시예><Examples>

본 실시예에 따른 α-피론 유도체를 제조하기 위해, 모든 반응은 별도의 지침에 따른 경우를 제외하고는 모두 질소분위기의 대기압 조건에서 실시하였다.In order to prepare the? -Pyrone derivative according to this example, all reactions were carried out under atmospheric pressure in a nitrogen atmosphere, except under a separate instruction.

무수 디클로로메탄(CH2Cl2), 톨루엔, 아세토나이트릴(acetonitrile, MeCN), 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 나이트로메탄(nitromethane, MeNO2) 및 테트라하이드로퓨란(tetrahydrofuran, THF)은 상업적 용도로 사용되는 것을 구입하여 사용하였으며, n-부틸리튬(n -Butyllithium)의 농도는 멘톨((-)-menthol) 및 1,10-페난트롤린(1,10-phenanthroline)을 사용하여 적정하였다. 모든 시약은 더 이상의 정제과정 없이 사용하였다.(CH 2 Cl 2 ), toluene, acetonitrile (MeCN), dimethyl sulfoxide (DMSO), nitromethane (MeNO 2 ) and tetrahydrofuran (THF) The concentration of n-butyllithium was determined by titration using menthol (-) - menthol and 1,10-phenanthroline. Respectively. All reagents were used without further purification.

실시예에 사용되는 모든 검사(workup)용, 세척용 및 크로마토그래피용 용매는 멸균시켜 사용하였다. 무수 황산나트륨(Na2SO4)을 사용하였으며, 얇은 막 크로마토 그래피법(Thin-layer chromatography)을 출발물질과 함께 스포팅되는 것에 의해 반응의 상황을 모니터링 할 수 있도록 구성하였다. p-아니스알데히드(p-Anisaldehyde)는 1350mL의 무수에탄올, 50mL의 농축 황산 및 37mL의 p-아니스알데히드를 포함하는 조성의 것을 사용하였으며, 이것은 일반적으로 사용되는 TLC 감정 용액의 조성인 것을 사용하였다.All workup, washing and chromatography solvents used in the examples were used by sterilization. Anhydrous sodium sulfate (Na 2 SO 4 ) was used and thin-layer chromatography was configured to monitor the reaction situation by spotting with the starting material. The p-anisaldehyde used was a composition containing 1350 mL of anhydrous ethanol, 50 mL of concentrated sulfuric acid and 37 mL of p-anisaldehyde, which was the composition of a commonly used TLC emotion solution.

그리고, 플래쉬 크로마토그래피 정제는 230 내지 400 메쉬(mesh)의 실리카 겔을 사용하여 수행되었으며, 1H NMR 및 13C NMR 분석 데이타는 용매로 클로로포름을 포함하고, 잔류 클로로포름(δ =7.24 (for 1H) 및 77.23 ppm (13C))을 ppm 단위까지 표현할 수 있는 다양성 500 NMR 분석기에 저장하였다. Surveyor MSQ Benchtop(Thermo Finnigan) 및 6128 Quadrupole LC-MS(Agilent Technologies)를 사용하여 질량 스펙트럼(mass spectra) 분석을 실시하였다.
The flash chromatography purification was carried out using 230 to 400 mesh of silica gel, and 1 H NMR and 13 C NMR analysis data contained chloroform as solvent and residual chloroform ( = 7.24 (for 1 H ) And 77.23 ppm ( 13 C)) were stored in a diversity 500 NMR analyzer capable of expressing up to ppm units. Mass spectra analysis was performed using Surveyor MSQ Benchtop (Thermo Finnigan) and 6128 Quadrupole LC-MS (Agilent Technologies).

1. (S)-(((6-1. (S) - (((6- methyloctmethyloct -4--4- enen -1--One- ylyl )) oxyoxy )) methylmethyl )) benzenebenzene 의 제조Manufacturing

α-피론 유도체 제조를 위한 중간체인 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠((S)-(((6-methyloct-4-en-1-yl)oxy)methyl)benzene)을 제조하기 위해, 제 1 반응물인 (S)-(2-메틸부틸) 트리페닐 포스포늄 요오드화물((S)-(2-methylbutyl) triphenyl phosphonium iodide)을 제조하였다.(S) - ((6-methyloct-4-en-1-yl) oxy) methyl) benzene, which is an intermediate for the preparation of? -pyrone derivatives, (S) - (2-methylbutyl) triphenyl phosphonium iodide), which is a first reagent, was used to prepare .

상기한 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠의 합성은, 이미다졸, 요오드, 트리페닐포스핀 및 디클로로메탄(CH2Cl2)을 이용해 (s)-(-)-2-메틸-1-부탄올((s)-(-)-2-methyl-1-butanol)의 히드록실기에 요오드화 반응을 유도하여 (S)-1-이오도-2-메틸부탄((S)-1-iodo-2-methylbutane)을 83%의 수율로 제조하였다. 그리고, 제조된 (S)-1-이오도-2-메틸부탄을 트리페닐포스핀과 톨루엔을 이용해 63시간 동안 105 ℃로 가열하여 반응물을 여과한 후, 필터케이크를 상온에서 16시간 동안 건조하여 82%의 수율로 (S)-2-(메틸부틸)트리페닐포스포늄 요오드화물을 제조하였다.The synthesis of the above-mentioned (S) - ((6-methyloct-4-en-1-yl) oxy) methyl) benzene was carried out by using imidazole, iodine, triphenylphosphine and dichloromethane (CH 2 Cl 2 ) (I) - (-) - (-) - 2-methyl-1-butanol by inducing an iodination reaction to the hydroxyl group of (s) - -2-methylbutane ((S) -1-iodo-2-methylbutane) was prepared in a yield of 83%. Then, the produced (S) -1-iodo-2-methylbutane was heated to 105 DEG C for 63 hours using triphenylphosphine and toluene to filter the reaction product, and then the filter cake was dried at room temperature for 16 hours (S) -2- (methylbutyl) triphenylphosphonium iodide in a yield of 82%.

또한, (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠을 제조하기 위한 제 2 반응물인 4-(벤질옥시)부타날은, 1,4-부탄디올(1,4-butanediol)을 산화은(I)(Ag2O), 벤질브로마이드(benzyl bromide) 및 디클로로메탄(CH2Cl2)을 이용해 선택적으로 벤질기(benzyl)를 도입하도록 벤질화(benzylation)시켜 벤질기를 도입한 중간체인 (S)-(-)-2-메틸-1-부탄올((S)-(-)-2-methyl-1-butanol)을 83%의 수율로 제조하였다.The second reactant, 4- (benzyloxy) butanal, for preparing (S) - ((6-methyloct-4- en-1-yl) oxy) Benzylation to selectively introduce a benzyl group using 1,4-butanediol using silver (I) (Ag 2 O), benzyl bromide and dichloromethane (CH 2 Cl 2 ) (S) - (-) - 2-methyl-1-butanol, which is an intermediate having an introduced benzyl group, was prepared in a yield of 83%.

그리고, 제조된 중간체인 (S)-(-)-2-메틸-1-부탄올을 트리플루오로아세트산 무수물(trifluoroacetic anhydride, TFAA) 및 디메틸설폭사이드(dimethyl sulfoxide, DMSO) 용매에서 스웬 산화반응(Swern Oxidation)을 유도하여 4-(벤질옥시)부타날(4-(benzyloxy)butanal)을 83%의 수율로 제조하였다.
The prepared intermediate (S) - (-) - 2-methyl-1-butanol was subjected to Swen oxidation reaction (Swern) in trifluoroacetic anhydride (TFAA) and dimethyl sulfoxide (DMSO) Oxidation was induced to give 4- (benzyloxy) butanal in a yield of 83%.

(S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠을 제조하기 위해서, 제 1 반응물인 5.00 mmol의 (S)-(2-메틸부틸) 트리페닐 포스포늄 요오드화물 2.3g을 플라스크에 넣고 THF에 녹인 후 0℃로 냉각시켰다. 그리고, 1.85M 농도의 헥산에 5.0 mmol 농도로 용해된 2.7 mL의 n-부틸리튬을 천천히 첨가한 후, 상온에서 30분간 교반하였다. 그리고, 반응 용기를 0℃로 냉각시킨 후 THF에 녹인 제 2 반응물인 6.50 mmol, 1.3 당량의 4-(벤질옥시)부타날 1.2g을 첨가하고, 상온에서 1시간 동안 교반한 후, 포화 염화암모늄 수용액을 첨가해주고, 유기층을 펜탄으로 추출하고 황산 나트륨을 이용해 건조한 후, 여과하고 감압농축하였다.(S) - (2-methylbutyl) triphenylphosphine (S) - ((6-methyloct-4- 2.3 g of phosphonium iodide was added to the flask and dissolved in THF, followed by cooling to 0 ° C. Then, 2.7 mL of n-butyllithium dissolved in 5.0 mmol of hexane at a concentration of 1.85 M was added slowly, and the mixture was stirred at room temperature for 30 minutes. After the reaction vessel was cooled to 0 ° C, 6.50 mmol of the second reactant dissolved in THF and 1.3 g of 4- (benzyloxy) butanal were added thereto, and the mixture was stirred at room temperature for 1 hour. Saturated ammonium chloride Aqueous solution was added thereto. The organic layer was extracted with pentane, dried over sodium sulfate, filtered, and concentrated under reduced pressure.

감압농축 후 반응생성물을 CH2Cl2/Pentane = 5:95 내지 15:85의 전개용매를 사용하여 압력 공급이 가능한 플래시 컬럼 크로마토그로피로 분리 정제하여 3.84mmol의 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠 892.1 mg을 수득하였으며, n-부틸리튬을 이용한 (S)-(2-메틸부틸)트리페닐포스포늄 요오드화물 및 알데히드의 위팅 올레핀화(Witting olefination)는 바람직한 올레핀(E/Z = 2.3:1 비율의 이성질체 혼합물)을 77%의 수율로 제조하였다.After concentration under reduced pressure, the reaction product was separated and purified by flash column chromatography using a developing solvent of CH 2 Cl 2 / Pentane = 5:95 to 15:85 to obtain 3.84 mmol of (S) - ((6- (2-methylbut-3-yl) oxy) methyl) benzene was obtained in the same manner as in Example 1, except that (S) - (2-methylbutyl) triphenylphosphonium iodide and n-butyllithium Wet olefination produced the desired olefin ( E / Z = isomer mixture in a ratio of 2.3: 1) in a yield of 77%.

그리고, 제조된 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠의 1H NMR 및 13C NMR 분석한 결과는 다음과 같다.The results of 1 H NMR and 13 C NMR analysis of (S) - (((6-methyloct-4-en-1-yl) oxy) methyl) benzene produced are as follows.

1H NMR (500 MHz, CDCl3): δ = 7.33-7.34 (d, J = 4.1 Hz, 4 H), 7.26-7.29 (m, 1 H), 5.29-5.34 (m, 1 H), 5.11-5.16 (t, J = 10.3 Hz, 1 H), 4.50 (s, 2 H), 3.47-3.49 (t, J = 6.5 Hz, 2 H), 2.33-2.36 (m, 1 H), 2.07-2.16 (m, 2 H), 1.65-1.71 (m, 2 H), 1.17-1.35 (m, 2 H), 0.92-0.93 (d, J = 6.6 Hz, 3 H), 0.82-0.85 ppm(t, J = 7.4 Hz, 3 H). 1 H NMR (500 MHz, CDCl3 ): δ = 7.33-7.34 (d, J = 4.1 Hz, 4 H), 7.26-7.29 (m, 1 H), 5.29-5.34 (m, 1 H), 5.11-5.16 (t, J = 10.3 Hz, 1 H), 4.50 (s, 2 H), 3.47-3.49 (t, J = 6.5 Hz, 2 H), 2.33-2.36 (m, 1 H), 2.07-2.16 (m J = 6.6 Hz, 3 H), 0.82-0.85 ppm (t, J = 7.4 Hz, 2H), 1.65-1.71 (m, 2H), 1.17-1.35 Hz, 3 H).

13C NMR (125 MHz, CDCl3): δ = 138.9, 137.0, 136.97, 128.5, 127.92, 127.88, 127.82, 127.81, 127.7, 73.10, 73.07, 70.1, 70.0, 38.6, 33.5, 30.4, 30.2, 30.1, 29.9, 29.3, 24.3, 21.2, 20.6, 12.2, 12.0 ppm. 13 C NMR (125 MHz, CDCl 3): δ = 138.9, 137.0, 136.97, 128.5, 127.92, 127.88, 127.82, 127.81, 127.7, 73.10, 73.07, 70.1, 70.0, 38.6, 33.5, 30.4, 30.2, 30.1, 29.9 , 29.3, 24.3, 21.2, 20.6, 12.2, 12.0 ppm.

HRMS (ESI): C16H23O [M+H]+의 산출값 231.1749; C16H23O [M+H]+의 측정값 231.1768.
HRMS (ESI): calculated for C 16 H 23 O [M + H] &lt; + &gt;231.1749; C 16 H 23 O [M + H] &lt; + &gt; 231.1768.

2. (S)-6-2. (S) -6- methyloctan메틸로탄 -1--One- olbe 및 (S)-6- And (S) -6- methyloctanal메틸코타탄 의 제조Manufacturing

(S)-6-메틸옥탄-1-올을 제조하기 위해서, 2.82 mmol의 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠 656.0 mg을 에탄올에 혼합하고, 2.54 mmol 10%의 탄소 담지 팔라듐(Palladium) 270.4 mg을 촉매를 첨가하여 수소가스를 공급하면서 가열하며, 50℃로 45시간 동안 교반하여 수소화 반응을 유도하고, 반응이 종료되면, 셀라이트(Celite)로 여과 후 CH2Cl2로 3회 반복 세척하였다. 셀라이트(celite) 패드를 통해 여과하여 촉매를 제거하고, 여과액을 감압농축하였다. 그리고, 농축액을 아틸아세트산/n-핵산 = 1:20 내지 1:5 까지 전개용매로 사용하여 플래시 컬럼 크로마토그래피하여 분리 정제 후 1차 알코올인 2.74 mmol의 (S)-6-메틸옥탄-1-올((S)-6-methyloctan-1-ol) 395.9 mg을 97%의 수율로 제조하였다.(S) -6- methyloctan-1-ol, 652.0 mg of 2.82 mmol of (S) - ((6-methyloct-4- en- 1 -yl) oxy) methyl) benzene was dissolved in ethanol , And 2.54 mmol of 10% palladium (Palladium), 270.4 mg of the catalyst, was added to the mixture. The mixture was heated while supplying hydrogen gas and stirred at 50 ° C for 45 hours to induce a hydrogenation reaction. Filtered through Celite and washed three times with CH 2 Cl 2 . The catalyst was removed by filtration through a pad of celite, and the filtrate was concentrated under reduced pressure. The concentrate was purified by flash column chromatography using an eluent of acetylacetonate / n-hexane = 1: 20-1: 5 as the developing solvent. After separation and purification, 2.74 mmol of (S) -6-methyloctan- 395.9 mg of ((S) -6-methyloctan-1-ol) was prepared in 97% yield.

그리고, 제조된 (S)-6-메틸옥탄-1-올의 1H NMR 및 13C NMR 분석한 결과는 다음과 같다.The results of 1 H NMR and 13 C NMR analyzes of the produced (S) -6-methyloctan- 1 -ol are as follows.

1H NMR (500 MHz, CDCl3): δ = 3.60-3.62 (t, J = 6.6 Hz, 2 H), 1.52-1.57 (m, 2 H), 1.22-1.32 (m, 7 H), 1.06-1.12 (m, 2 H), 0.81-0.84 (t, J = 7.5 Hz, 3 H), 0.81-0.83 ppm (d, J = 7.8 Hz, 3 H). 1 H NMR (500 MHz, CDCl3 ): δ = 3.60-3.62 (t, J = 6.6 Hz, 2 H), 1.52-1.57 (m, 2 H), 1.22-1.32 (m, 7 H), 1.06-1.12 (m, 2H), 0.81-0.84 (t, J = 7.5 Hz, 3 H), 0.81-0.83 ppm (d, J = 7.8 Hz, 3 H).

13C NMR (125 MHz, CDCl3): δ = 63.3, 36.8, 34.5, 33.0, 29.7, 27.1, 26.3, 19.4, 11.6 ppm. 13 C NMR (125 MHz, CDCl 3): δ = 63.3, 36.8, 34.5, 33.0, 29.7, 27.1, 26.3, 19.4, 11.6 ppm.

HRMS (ESI): C9H20O [M+H]+의 산출값 144.1514; C9H20O [M+H]+의 측정값 144.0677.
HRMS (ESI): calculated for C 9 H 20 O [M + H] &lt; + &gt;144.1514; C 9 H 20 O [M + H] + measurement value of 144.0677.

3. (S)-1,1-3. (S) -1,1- dibromodibromo -7--7- methylnon메틸 니론 -1--One- eneene 의 제조Manufacturing

플라스크에 3.07 mmol, 3.0 당량의 TFAA 427.3 ㎕ 및 CH2Cl2를 혼합하고 -78℃로 냉각시켜 트리플루오로-아세톡시-디메틸술포늄 트리플루오로-아세트산(trifluoro-acetoxy-dimethyl-sulfonium trifluoro-acetate)을 제조하였다. 그리고, 다른 플라스크에서 CH2Cl2에 녹인 6.15mmol, 6.0 당량의 DMSO 436.6 ㎕를 첨가하였다. 혼합물을 -78℃에서 10분간 교반한 뒤 1.02 mmol의 (S)-6-메틸옥탄-1-올 147.7 mg을 첨가한 후 -78℃에서 1시간 동안 교반하였다.The flask was charged with 3.07 mmol, 3.0 equivalents of TFAA 427.3 μL and CH 2 Cl 2 and cooled to -78 ° C. to give trifluoro-acetoxy-dimethyl-sulfonium trifluoro-acetic acid acetate. In another flask, 6.15 mmol dissolved in CH 2 Cl 2 and 436.6 μL of 6.0 equivalents of DMSO were added. The mixture was stirred at -78 ° C for 10 minutes, and then 147.7 mg of 1.02 mmol of (S) -6-methyloctan-1-ol was added thereto, followed by stirring at -78 ° C for 1 hour.

교반이 끝난 혼합물에 5.12mmol 5.04 당량의 N,N-디이소프로필에틸아민(N,N-diisopropylenthylamine, DI-PEA)을 첨가하고, 상온에서, 에틸아세트산(EtOAc)을 첨가해 반응물을 희석하였다.To the stirred mixture was added 5.12 mmol of 5.04 eq. Of N, N-diisopropylhexylamine (DI-PEA) and ethyl acetic acid (EtOAc) was added at room temperature to dilute the reaction product.

유기층을 브라인(brine)으로 세척하고 얻은 용액을 감압 농축 후에 에틸아세산/헥산 = 1:40의 전개용매로 하여 프래시 컬럼 크로마토그래피로 분리하여 0.87 mmol의 (S)-6-메틸옥타날 123.5 mg을 수득하였다. The organic layer was washed with brine, and the resulting solution was concentrated under reduced pressure, followed by separation by flash column chromatography using an eluent of ethyl acetate / hexane = 1: 40 to obtain 0.87 mmol of (S) -6-methyl octanal &Lt; / RTI &gt;

플라스크에 1.74 mmol, 2.0 당량의 사브롬화탄소(Carbon tetrabromide) 575.9 mg을 첨가하고, 상온에서 CH2Cl2에 용해시켰다.To the flask was added 1.74 mmol, 2.0 equivalents of carbon tetrabromide (575.9 mg) and dissolved in CH 2 Cl 2 at room temperature.

그리고, 플라스크를 0℃로 냉각시킨 후 3.47mmol, 4.0당량의 트리페닐포스핀(triphenylphosphine) 911.0 mg을 넣고 0℃에서 1시간 동안 교반하였다. 교반 후 0.87 mmol의 (S)-6-메틸옥타날 123.5 mg을 첨가하고 상온으로 온도를 올린 후 18시간 동안 교반하였다. 교반 후 CH2Cl2로 희석하고 증류수를 이용해서 반응을 종료하였다. 그리고 유기층을 브라인으로 세척하고 얻은 용액을 감압 증발시킨 후 100% 펜탄을 전개용매로 사용하여 컬럼 크로마토그래피 분리 정제하여 0.67 mmol의 (S)-(S)-1,1-디브로모-7-메틸논-1-엔 200.5 mg을 수득하였으며, 65%의 수율로 제조하였다After cooling the flask to 0 캜, 3.47 mmol of 4.0 equivalent of triphenylphosphine (911.0 mg) was added, and the mixture was stirred at 0 캜 for 1 hour. After stirring, 0.87 mmol of (S) -6-methyl octanal was added, and the temperature was raised to room temperature, followed by stirring for 18 hours. After stirring, the reaction mixture was diluted with CH 2 Cl 2 and the reaction was terminated using distilled water. The organic layer was washed with brine, and the resulting solution was evaporated under reduced pressure. The residue was purified by column chromatography using 100% pentane as eluent to obtain 0.67 mmol of (S) - (S) -1,1-dibromo-7- Methyl-1-ene was obtained, which was prepared in a yield of 65%

그리고, 제조된 (S)-1,1-디브로모-7-메틸논-1-엔의 1H NMR 및 13C NMR 분석한 결과는 다음과 같다.The results of 1 H NMR and 13 C NMR analyzes of (S) -1,1-dibromo-7-methyln- 1 -ene produced were as follows.

1H NMR (500 MHz, CDCl3): δ = 6.35-6.38 (t, J = 7.0 Hz, 1 H), 2.05-2.10 (q, 2 H), 1.38-1.39 (m, 2 H), 1.25-1.30 (m, 5 H), 1.07-1.13 (m, 2 H), 0.83-0.85 (t, J = 7.2 Hz, 3 H), 0.83-0.84 ppm (d, J = 6.8 Hz, 3 H). 1 H NMR (500 MHz, CDCl 3): δ = 6.35-6.38 (t, J = 7.0 Hz, 1 H), 2.05-2.10 (q, 2 H), 1.38-1.39 (m, 2 H), 1.25- 1.30 (m, 5H), 1.07-1.13 (m, 2H), 0.83-0.85 (t, J = 7.2 Hz, 3 H), 0.83-0.84 ppm (d, J = 6.8 Hz, 3 H).

13C NMR (125 MHz, CDCl3): δ = 139.1, 88.7, 36.5, 34.5, 33.3, 29.7, 28.4, 26.8, 19.4, 11.6 ppm. 13 C NMR (125 MHz, CDCl 3): δ = 139.1, 88.7, 36.5, 34.5, 33.3, 29.7, 28.4, 26.8, 19.4, 11.6 ppm.

HRMS (ESI): C10H19Br2 [M+H]+의 산출값 296.9853; C10H19Br2 [M+H]+의 측정값 296.9890.
HRMS (ESI): calculated for C 10 H 19 Br 2 [M + H] &lt; + &gt;296.9853; C 10 H 19 Br 2 [M + H] &lt; + &gt; 296.9890.

4. (S)-7-4. (S) -7- methylnon메틸 니론 -1--One- yneyne 의 제조Manufacturing

2.53 mmol의 (S)-1,1-디브로모-7-메틸논-1-엔 755.5 mg을 플라스크에 첨가하고 THF에 녹인 후 -78℃로 냉각시켰다. 냉각 후 플라스크에 1.85M 농도의 n-부틸리튬(n-butyllithium) 5.9 mL을 첨가하고, -78℃에서 1시간 동안 교반한 후, 상온에서 3시간 동안 교반한 뒤 증류수 및 펜탄을 순차적으로 첨가하고, 여과한 후 황산나트륨을 첨가해 건조하고, 여과액을 감압 농축한 후 100% 펜탄을 전개 용매로 사용하여 프래시 컬럼 크로마토그래피로 분리 정제하여 2.44 mmol의 (S)-7-메틸논-1-인((S)-7-methylnon-1-yne) 337.3 mg을 96%의 수율로 제조하였다.2.53 mmol of (S) -1,1-dibromo-7-methyl-1-ene was added to the flask and dissolved in THF and cooled to -78 ° C. After cooling, 5.9 mL of 1.85 M n-butyllithium was added to the flask, stirred at -78 ° C for 1 hour, stirred at room temperature for 3 hours, and then distilled water and pentane were added sequentially , Filtered and dried over sodium sulfate. The filtrate was concentrated under reduced pressure and then purified by flash column chromatography using 100% pentane as eluent to obtain 2.44 mmol of (S) -7-methylnon-1- ((S) -7-methylnon-1-yne) was prepared in a yield of 96%.

그리고, 제조된 (S)-7-메틸논-1-인의 1H NMR 및 13C NMR 분석한 결과는 다음과 같다.The results of 1 H NMR and 13 C NMR analyzes of (S) -7-methylnon-1 -ine produced are as follows.

1H NMR (500 MHz, CDCl3): δ = 2.15-2.18 (dt, J = 7.2 Hz, 2 H), 1.91-1.92 (t, J = 2.7 Hz, 1 H), 1.46-1.53 (m, 2 H), 1.25-1.44 (m, 5 H), 1.06-1.14 (m, 2 H), 0.820.85 (t, J = 6.8 Hz, 3 H), 0.82-0.84 ppm (d, J = 6.4 Hz, 3 H). 1 H NMR (500 MHz, CDCl 3): δ = 2.15-2.18 (dt, J = 7.2 Hz, 2 H), 1.91-1.92 (t, J = 2.7 Hz, 1 H), 1.46-1.53 (m, 2 H), 1.25-1.44 (m, 5 H), 1.06-1.14 (m, 2 H), 0.820.85 (t, J = 6.8 Hz, 3 H), 0.82-0.84 ppm (d, J = 6.4 Hz, 3 H).

13C NMR (125 MHz, CDCl3): δ = 85.0, 68.3, 36.2, 34.5, 29.7, 29.0, 26.5, 19.4, 18.6, 11.6 ppm. 13 C NMR (125 MHz, CDCl 3): δ = 85.0, 68.3, 36.2, 34.5, 29.7, 29.0, 26.5, 19.4, 18.6, 11.6 ppm.

HRMS (ESI): C10H17 [M+H]+의 산출값 137.1330; C10H17 [M+H]+의 측정값 137.1341.
HRMS (ESI): calculated for C 10 H 17 [M + H] &lt; + &gt;137.1330; C 10 H 17 [M + H] &lt; + &gt; 137.1341.

5. (10S)-5. (10S) - terttert -- butylbutyl 2,10- 2,10- dimethyldimethyl -3--3- oxododecoxododec -4--4- ynoateynoate 의 제조Manufacturing

질소 기체 분위기하에서 THF에 0.16 mmol의 (S)-7-메틸논-1-인 22.8 mg 및 1.85M의 헥산에 용해된 0.2638mmol의 n-부틸리튬 142.6㎕을 혼합한 후, -78 ℃에서 40분간 교반하였다. 교반 후 메틸 클로로포르매이트(methyl chloroformate)를 첨가한 후 상온에서 교반하고, 상온으로 온도를 올려둔 뒤 디에틸에테르를 넣고 희석하여주고, 증류수를 첨가하여 반응을 종료하였다.226 mg of (S) -7-methylnon-1-one and 142.6 占 퐉 of 0.2638 mmol of n-butyllithium dissolved in 1.85 M of hexane were mixed in THF in a nitrogen gas atmosphere, Lt; / RTI &gt; After stirring, methyl chloroformate was added, and the mixture was stirred at room temperature. The temperature was raised to room temperature, diethyl ether was added thereto, diluted, and distilled water was added to terminate the reaction.

반응이 종료된 혼합물의 유기층은 황산나트륨으로 건조하고, 여과한 후 여과액을 감압 농축하여 농축액을 제조하고, 에틸아세트산/n-헥산 = 1:30의 전개용매를 사용하여 플래시 컬럼 크로마토그래피 분리정제하여 0.16 mmol의 (S)-메틸 8-메틸데크-2-자이노에이트 31.3 mg을 수득하였다. After the reaction was completed, the organic layer was dried over sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to prepare a concentrate, which was purified by flash column chromatography using a developing solvent of ethyl acetate / n-hexane = 1: 0.13 mmol of (S) -methyl 8-methyldec-2-xenoate was obtained.

그리고, 플라스크에 2.0M의 THF에 1.31mmol 10 당량의 리튬 디이소프로필아마이드(lithium diisopropylamide, LDA)의 혼합액에 0.39 mmol 3당량의 터트-부틸 프로피오네이트(tert-butyl propionate) 59.7㎕를 혼합한 후, -78℃에서 30 분간 교반하였다. 교반 후 0.13 mmol의 (S)-메틸 8-메틸데크-2-자이노에이트 25.8 mg을 첨가한 후 -78℃에서 2시간 동안 교반하고, 디에틸에테르로 희석한뒤, 포화 염화암모늄 수용액을 첨가하여 반응을 종료하였다.Then, to the flask, 59.7 쨉 L of tert-butyl propionate (0.39 mmol) and tert-butyl propionate (0.39 mmol) were added to a mixed solution of 1.31 mmol of lithium diisopropylamide (LDA) and 2.0 M of THF Then, the mixture was stirred at -78 ° C for 30 minutes. After stirring, 0.13 mmol of (S) -methyl 8-methyldeck-2-aminoate (25.8 mg) was added and the mixture was stirred at -78 ° C for 2 hours. The mixture was diluted with diethyl ether and then saturated aqueous ammonium chloride solution And the reaction was terminated.

그리고, 디에틸에테르로 추출한 유기층을 감암 농축한 뒤, 에틸아세트산/n-헥산 = 1:35의 전개용매를 사용하여 프래시 컬럼 크로마토그래피로 분리정제하여 0.12mmol의 (10S)-터트-부틸 2,10-디메틸-3-옥소도데크-4-자이노에이트((10S)-tert-butyl 2,10-dimethyl-3-oxododec-4-ynoate) 34.3mg을 수득하였으며, 86%의 수율을 나타냈다.The organic layer extracted with diethyl ether was concentrated under reduced pressure and purified by flash column chromatography using a developing solvent of ethyl acetate / n-hexane = 1: 35 to obtain 0.12 mmol of (10S) -tet- 34.3 mg of 10-dimethyl-3-oxododec-4-zinoate ((10S) -tert-butyl 2,10-dimethyl-3-oxododec-4-ynoate) was obtained and showed a yield of 86%.

그리고, 제조된 2,10-디메틸-3-옥소도데크-4-자이노에이트의 1H NMR 및 13C NMR 분석한 결과는 다음과 같다.The results of 1 H NMR and 13 C NMR analyzes of the produced 2,10-dimethyl-3-oxododec-4-ynamoate were as follows.

1H NMR (500 MHz, CDCl3): δ = 12.27 (s, 1 H), 3.40-3.44 (q, 1 H), 2.39-2.41 (t, J = 7.0 Hz, 2 H), 2.34-2.37 (t, J = 7.1 Hz, 2 H), 1.81 (s, 3 H), 1.55 (m), 1.48 (s, 9 H), 1.45 (s, 9 H), 1.25-1.32 (m), 1.07-1.12 (m), 0.82-0.85 (t, J = 7.0 Hz, 6 H), 0.82-0.84 ppm (d, J = 6.6 Hz, 6 H). 1 H NMR (500 MHz, CDCl 3): δ = 12.27 (s, 1 H), 3.40-3.44 (q, 1 H), 2.39-2.41 (t, J = 7.0 Hz, 2 H), 2.34-2.37 ( (m, t, J = 7.1 Hz, 2H), 1.81 (s, 3H), 1.55 (m), 1.48 (s, 9H) (m), 0.82-0.85 (t, J = 7.0 Hz, 6 H), 0.82-0.84 ppm (d, J = 6.6 Hz, 6 H).

13C NMR (125 MHz, CDCl3): δ = 183.8, 173.2, 169.0, 152.1, 104.5, 100.1, 96.8, 82.0, 81.9, 79.7, 75.3, 56.1, 49.9, 36.2, 36.1, 34.5, 34.4, 29.624, 29.617, 28.6 28.4, 28.32, 28.27, 28.22, 28.19, 28.17, 28.09, 28.0, 26.6, 26.6, 19.7, 19.4, 19.34, 19.26, 14.0, 13.6, 13.0, 11.6 ppm. 13 C NMR (125 MHz, CDCl 3): δ = 183.8, 173.2, 169.0, 152.1, 104.5, 100.1, 96.8, 82.0, 81.9, 79.7, 75.3, 56.1, 49.9, 36.2, 36.1, 34.5, 34.4, 29.624, 29.617 , 28.6 28.4, 28.32, 28.27, 28.22, 28.19, 28.17, 28.09, 28.0, 26.6, 26.6, 19.7, 19.4, 19.34, 19.26, 14.0, 13.6, 13.0, 11.6 ppm.

HRMS (ESI): C18H29O3 [M+H]+의 산출값 293.2117; C18H29O3 [M+H]+의 측정값 293.2127.
HRMS (ESI): C 18 H 29 O 3 [M + H] + calculated value of 293.2117; C 18 H 29 O 3 [M + H] &lt; + &gt; 293.2127.

6. α-피론 유도체의 제조6. Preparation of? -Pyrone derivatives

10.0 mol% 농도로 0.01mmol의 [비스(트리플루오로메탠술포닐)-이미데이트]-(PPh3)[Bis(trifluoromethanesulfonyl)-imidate]-(PPh3) 금(I) 촉매 9.2 mg을 포함하는 혼합 용액에 0.12 mmol의 (10S)-터트-부틸 2,10-디메틸-3-옥소도데크-4-자이노에이트 34.3 mg을 니트로메탄(MeNO2)과 아세트산(AcOH)를 4:1 비율로 혼합한 용매에 혼합하고 상온에서 20시간 동안 교반하였다. 교반 후 에틸아세트산을 첨가하여 희석하고, 포화 중탄산소다(NaHCO3) 수용액을 첨가하여 반응을 종료하였다. 에틸아세트산으로 추출한 유기층을 감압 농축한 뒤 에틸아세트산/n-헥산 = 1:4 내지 1:2의 전개용매로 사용하여 플러시 컬럼 크로마토그래피 분리 정제하여 α-피론 유도체인 violapyrone C를 얻었으며, 0.09mmol의 violapyrone C 22.5mg을 얻었으며 수득되는 수율은 81%였다.(PPh3) -imidate] - (PPh3) gold (I) catalyst at a concentration of 10.0 mol% in a mixed solution containing 0.01 mmol of [bis (trifluoromethanesulfonyl) imidate] - (PPh3) 34.3 mg of 0.12 mmol of (10S) -tert-butyl 2,10-dimethyl-3-oxododec-4-ynamoate was dissolved in a solvent mixture of nitromethane (MeNO 2 ) and acetic acid (AcOH) And stirred at room temperature for 20 hours. After stirring, ethyl acetic acid was added to dilute, and saturated sodium bicarbonate (NaHCO 3 ) aqueous solution was added to terminate the reaction. The organic layer extracted with ethyl acetate was concentrated under reduced pressure and purified by flush column chromatography using ethyl acetate / n-hexane = 1: 4 to 1: 2 as a developing solvent to obtain violapyrone C as an? -Pyrone derivative. 0.09 mmol 22.5 mg of violapyrone C was obtained and the yield obtained was 81%.

그리고, 전체 반응에서 바이롤라피론 C(violapyrone C)는 22%의 수율로 제조되었으며, 제조된 바이롤라피론 C의 공학회전 값을 측정한 결과, 천연물에서 분리 정제된 바이롤라피론 C와 동일한 구조를 가지는 (+)-violapyrone C 임을 확인할 수 있었다.
In the whole reaction, violapyrone C was produced in a yield of 22%. The measured rotation value of the produced bollulapyrone C showed the same structure as that of the ballolapyrone C separated and purified from the natural product (+) - violapyrone C was found.

Claims (11)

(a) 부탄올(butanol)을 요오드화물(Iodide)과 요오드화 반응시킨 후, 트리페닐포스핀(triphenyl phosphine, PPh3)과 반응시켜 포스포늄 요오드화물염을 제조하는 단계;
(b) 부탄디올을 은(Ag) 촉매를 이용하여 1가 알코올로 제조한 후 스웬 산화(Swern oxidation)반응을 통해 알데히드기(aldehyde)를 도입해 부탄 알데히드를 제조하는 단계;
(c) n-부틸리튬(n-butyllithium) 촉매 하에서 상기 단계 (a)에서 제조된 상기 포스포늄 요오드화물염을 일리드(ylide) 화합물로 제조하고 상기 단계 (b)에서 제조된 상기 부탄 알데히드를 첨가하여 위팅(Witting) 반응시켜 올레핀(olefin) 화합물을 제조하는 단계;
(d) 팔라듐(palladium, Pd) 촉매 하에서 수소화 반응시켜 상기 올레핀 화합물 내의 탄소-탄소 이중 결합을 제거하고 1가 알코올 화합물을 제조하는 단계;
(e) 스웬 산화반응을 통해 상기 단계 (d)에서 제조된 1가 알코올 화합물에 알데히드기를 도입하고, 코리-푹스(Corey-Fuchs) 반응시켜 상기 알데히드기에 탄소를 첨가해 상기 1가 알코올 화합물 말단 잔기에 알킨(alkyne)을 형성시키는 단계;
(f) 상기 단계 (e)에서 형성된 말단잔기에 알킨을 포함하는 1가 알코올 화합물을 n-부틸리튬 촉매 하에서 메틸클로로포르메이트(methyl chloroformate)와 반응시켜 에스테르(ester)기를 도입하여 자이노에이트(ynoate) 화합물을 제조하는 단계;
(g) 상기 자이노에이트 화합물을 클라이젠 축합(Claisen condensation) 반응시켜 호변 이성질체(tautomer) 형태의 β-케토(β-keto) 에스테르 화합물을 제조하는 단계; 및
(h) 상기 호면 이성질체 형태의 β-케토 에스테르 화합물을 금(Au) 촉매하에서 6-endo-dig 분자 내 고리화(intermolecular cyclization) 반응을 통해 α-피론 고리(α-pyrone ring)를 형성시켜 α-피론 유도체를 제조하는 단계;를 포함하는 α-피론 유도체 전합성 방법.
(a) preparing a phosphonium iodide salt by reacting butanol with iodide and then reacting with triphenyl phosphine (PPh 3 );
(b) preparing butane aldehyde by introducing an aldehyde through a swern oxidation reaction after preparing butanediol from a monohydric alcohol using a silver (Ag) catalyst;
(c) reacting the phosphonium iodide salt prepared in step (a) with an ylide compound under an n-butyllithium catalyst, and reacting the butane aldehyde prepared in step (b) And then subjecting the mixture to a wetting reaction to prepare an olefin compound;
(d) hydrogenating the catalyst under palladium (Pd) catalyst to remove carbon-carbon double bonds in the olefin compound to produce a monohydric alcohol compound;
(e) introducing an aldehyde group into the monohydric alcohol compound prepared in the step (d) through a swhen oxidation reaction, and carrying out a Corey-Fuchs reaction to add carbon to the aldehyde group to form a terminal residue of the monohydric alcohol compound To form an alkyne on the substrate;
(f) reacting a monohydric alcohol compound containing an alkyne at the terminal residue formed in the step (e) with methyl chloroformate under an n-butyllithium catalyst to introduce an ester group to form a cyanoate ynoate) compound;
(g) subjecting the zeinioate compound to a Claisen condensation reaction to prepare a tautomeric β-keto ester compound; And
(h) Formation of the? -ketoester compound of the above-mentioned isomeric form by an intermolecular cyclization reaction of 6-endo-dig in an Au catalyst to form an? -pyrone ring, - &lt; / RTI &gt; pyrone derivative of formula (I).
제 1항에 있어서,
상기 단계 (a)는,
디클로로메탄(CH2Cl2)에 용해된 트리페닐포스핀(triphenylphosphine, PPh3), 이미다졸(imidazole), 요오드(iodine)를 이용해 (S)-(-)-2-메틸-1-부탄올의 히드록실기를 요오드화 반응시켜 (S)-1-이오도-2-메틸부탄((S)-1-iodo-2-methylbutane)을 제조하는 단계; 및
상기 (S)-1-이오도-2-메틸부탄에 트리페닐포스핀과 톨루엔(toluene)을 혼합하고 100 ℃이상으로 가열하여 포스포늄 요오드화물염인 (S)-(2-메틸부틸)트리페닐포스포늄 요오드화물((S)-(2-methylbutyl)triphenylphosphonium iodide)을 제조하는 단계;를 포함하고,
상기 단계 (b)는,
벤질브로마이드(benzyl bromide), 디클로로메탄 및 산화은(silver(Ⅰ) oxide)을 포함하는 상기 은(Ag) 촉매를 이용하여 상기 부탄디올을 벤질화(benzylation) 반응시켜 4-(벤질옥시)부탄-1-올(4-(benzyloxy)butan-1-ol)을 제조하는 단계; 및
상기 4-(벤질옥시)부탄-1-올에 TFAA(trifluoroacetic anhydride) 및 DMSO(dimethyl sulfoxide)를 혼합하고 스웬 산화반응을 통해 4-(벤질옥시)부타날(4-(benzyloxy)butanal)을 제조하는 단계;를 포함하는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
The method according to claim 1,
The step (a)
(S) - (-) - 2-methyl-1-butanol dissolved in dichloromethane (CH 2 Cl 2 ) using triphenylphosphine (PPh 3 ), imidazole and iodine Iodination of the hydroxyl group to produce (S) -1-iodo-2-methylbutane ((S) -1-iodo-2-methylbutane); And
To the above (S) -1-iodo-2-methylbutane, triphenylphosphine and toluene were mixed and heated to 100 ° C or higher to obtain (S) - (2-methylbutyl) tri To prepare phenylphosphonium iodide ((S) - (2-methylbutyl) triphenylphosphonium iodide)
The step (b)
Benzylation reaction of the butanediol using the silver catalyst including benzyl bromide, dichloromethane and silver (I) oxide to produce 4- (benzyloxy) butane-1- Ol (4- (benzyloxy) butan-1-ol); And
4- (benzyloxy) butanal (4- (benzyloxy) butanal) was prepared by mixing TFAA (trifluoroacetic anhydride) and dimethyl sulfoxide (DMSO) Wherein the method comprises the steps of:
제 2항에 있어서,
상기 (S)-(2-메틸부틸)트리페닐포스포늄 요오드화물을 상기 n-부틸리튬 촉매 처리하여 포스포러스 일리드(phosphorus ylide)를 제조하는 단계; 및
상기 포스포러스 일리드에 상기 4-(벤질옥시)부타날을 혼합하여 상기 올레핀 화합물인 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠((S)-(((6-methyloct-4-en-1-yl)oxy)methyl)benzene)을 제조하는 단계;를 포함하여
상기 단계 (c)의 올레핀 화합물을 제조하는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
3. The method of claim 2,
Treating the (S) - (2-methylbutyl) triphenylphosphonium iodide with the n-butyllithium catalyst to prepare a phosphorus ylide; And
(4-ene-1-yl) oxy) methyl) benzene ((S) - ) - (((6-methyloct-4-en-1-yl) oxy) methyl) benzene)
Wherein the olefin compound of step (c) is prepared.
제 3항에 있어서,
상기 (S)-(((6-메틸옥트-4-엔-1-일)옥시)메틸)벤젠을 상기 팔라듐(palladium, Pd) 촉매 하에서 수소화 반응시켜 상기 올레핀 화합물 내의 탄소-탄소 이중 결합을 제거하는 단계를 포함하여,
상기 단계 (d)에서 제조된 1가 알코올 화합물인 (S)-6-메틸옥탄-1-올((S)-6-methyloctan-1-ol)을 제조하는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
The method of claim 3,
The present invention relates to a process for the production of an olefin compound by hydrogenating the (S) - ((6-methyloct-4- en-1-yl) oxy) methyl) benzene under palladium (Pd) Comprising:
(S) -6-methyloctan-1-ol, which is a monohydric alcohol compound prepared in the step (d) Synthesis method.
제 4항에 있어서,
상기 (S)-6-메틸옥탄-1-올을 상기 디클로로메탄에 녹인 TFAA 및 DMSO와 혼합하여 제조한 트리플루오로아세톡시디메틸설포늄 트리플루오로아세트산과 반응시켜 알콕시설포늄 염을 제조하는 단계;
상기 알콕시설포늄 염을 N,N-디이소프로필에틸아민(N,N-diisopropylethylamine, DIPEA)과 반응시켜 알콕시설포늄 일리드(akoxysulfonium ylide)를 제조하는 단계;
상기 알콕시설포늄 일리드를 재배열하여 (S)-6-메틸옥타날((S)-6-methyloctanal)을 제조하는 단계;
상기 (S)-6-메틸옥타날을 사브롬화탄소(carbon tetrabromide) 및 트리페닐포스핀(triphenylphosphine)과 반응시켜 제조한 포스포러스 일리드(phosphorous ylide)와 반응시켜 (S)-1,1-디브로모-7-메틸논-1-엔((S)-1,1-dibromo-7-methylnon-1-ene)을 제조하는 단계;
상기 (S)-1,1-디브로모-7-메틸논-1-엔을 n-부틸리튬과 혼합하여 리튬 아세틸일리드를 제조하는 단계; 및
상기 리튬 아세틸일리드를 가수분해하여 상기 코리-푹스 반응시켜 (S)-7-메틸논-1-인((S)-7-methylnon-1-yne)을 제조하는 단계;를 포함하여,
상기 단계 (e)에서 상기 1가 알코올 화합물 말단 잔기에 알킨(alkyne)을 형성시키는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
5. The method of claim 4,
Reacting the above (S) -6-methyloctan-1-ol with trifluoroacetoxydimethylsulfonium trifluoroacetic acid prepared by mixing TFAA and DMSO dissolved in the dichloromethane to prepare an alkoxysulfonium salt ;
Reacting the alkoxysulfonyl salt with N, N-diisopropylethylamine (DIPEA) to prepare an alkoxysulfonyl ylide;
Rearranging said alkoxysulfonylidide to produce (S) -6-methyloctanal ((S) -6-methyloctanal);
Reacting the (S) -6-methyl octanal with a phosphorous ylide prepared by reacting the (S) -6-methyl octanal with carbon tetrabromide and triphenylphosphine to obtain (S) -1,1- 7-methylnon-1-ene ((S) -1,1-dibromo-7-methylnon-1-ene);
Mixing the (S) -1,1-dibromo-7-methylnon-1-ene with n-butyl lithium to prepare lithium acetylide; And
(S) -7-methylnon-1-yne by hydrolyzing the lithium acetylide and subjecting it to the Cori-Fuchs reaction to prepare (S) -7-
Wherein the alkyne is formed in the terminal residue of the monohydric alcohol compound in the step (e).
제 5항에 있어서,
상기 (S)-7-메틸논-1-인을 n-부틸리튬 촉매 하에서 메틸클로로포르메이트(methyl chloroformate)와 반응시켜 에스테르(ester)기를 도입하여 자이노에이트(ynoate) 화합물을 제조하는 단계를 포함하여,
상기 단계 (f)에서 제조되는 상기 자이노에이트 화합물인 (S)-메틸 8-메틸데크-2-자이노에이트((S)-methyl 8-methyldec-2-ynoate)를 제조하는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
6. The method of claim 5,
The step of reacting the above (S) -7-methylnon-1-yn with methyl chloroformate under n-butyllithium catalyst to introduce an ester group to prepare a ynoate compound including,
(S) -methyl 8-methyldec-2-ynoate (S) -methyl 8-methyldec-2-ynoate, which is the zeinioate compound produced in the step (f) all-synthetic method for? -pyrone derivative.
제 6항에 있어서,
상기 (S)-메틸 8-메틸데크-2-자이노에이트를 리튬 디이소프로필아미드(lithium diisopropylamide, LDA) 및 터트-부틸 프로피오네이트(tert-butyl propionate) 혼합물을 이용해 클라이젠 축합 반응시키는 단계를 포함하여,
상기 단계 (g)의 호변 이성질체 형태로 존재하는 β-케토 에스테르 화합물인 (10S)-터트-부틸 2,10-디메틸-3-옥소도데크-4-자이노에이트((10S)-tert-butyl 2,10-dimethyl-3-oxododec-4-ynoate)를 제조하는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
The method according to claim 6,
The (S) - methyl 8-methyl-2-deck chair Ino Eight lithium diisopropylamide (lithium diisopropylamide, LDA) and tert-butyl propionate using (tert -butyl propionate) Now step of the condensation reaction mixture Cloud Including,
(10S) -tert-butyl 2,10-dimethyl-3-oxododec-4-yninoate ((10S) -tert-butyl 2,10-dimethyl-3-oxododec-4-ynoate).
제 1항에 있어서,
상기 금(Au) 촉매는 [비스(트리플루오로메탄술포닐)-이미데이트]-(트리페닐포스핀) 금(I)([Bis(trifluoromethanesulfonyl)-imidate]-(PPh3) gold(I))를 포함하는 것을 특징으로 하는 α-피론 유도체 전합성 방법.
The method according to claim 1,
The gold (Au) catalyst may be selected from the group consisting of bis (trifluoromethanesulfonyl) -imidate- (triphenylphosphine) -imidate- (PPh 3 ) gold (I) ). &Lt; / RTI &gt;
제 1항 내지 제 8항 중 어느 한 항에 기재된 α-피론 유도체 전합성 방법에 의해 제조된 α-피론 유도체.9. An? -Pyrone derivative produced by the all-synthetic method for producing an? -Pyrone derivative according to any one of claims 1 to 8. 제 9항에 있어서,
(+)-바이올라피론 C((+)-violapyrone C)인 것을 특징으로 하는 α-피론 유도체.
10. The method of claim 9,
(+) - viola pyrone C ((+) - violapyrone C).
제 9항에 있어서,
자궁(cervix)경부암세포주, 신장(renal)암세포주, 결장(colon)암세포주, 유방(breast)암세포주, 폐(lung)암세포주, 위암(stomach)세포주, 간(liver)암세포주 및 전립선(prostate)암세포주를 포함하는 인간암세포주(human cancer cell line)에 세포독성(cytotoxicity)을 가지는 것을 특징으로 하는 α-피론 유도체.
10. The method of claim 9,
Colon cancer cell line, lung cancer cell line, lung cancer cell line, stomach cell line, liver cancer cell line, and prostate (including, but not limited to, cervix cancer cell line, renal cancer cell line, colon cancer cell line, prostate cancer cell line, which has cytotoxicity in a human cancer cell line including a prostate cancer cell line.
KR1020140194039A 2014-12-30 2014-12-30 METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY KR20160080799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140194039A KR20160080799A (en) 2014-12-30 2014-12-30 METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140194039A KR20160080799A (en) 2014-12-30 2014-12-30 METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY

Publications (1)

Publication Number Publication Date
KR20160080799A true KR20160080799A (en) 2016-07-08

Family

ID=56503149

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140194039A KR20160080799A (en) 2014-12-30 2014-12-30 METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY

Country Status (1)

Country Link
KR (1) KR20160080799A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063293A (en) 2000-01-05 2002-08-01 워너-램버트 캄파니 Novel Substituted Pyrazolo[4,3-e]Diazepines, Pharmaceutical Compositions Containing Them, Use as Medicinal Products and Processes for Preparing Them
KR20100017766A (en) 2007-05-10 2010-02-16 에이엠알 테크놀로지, 인크. Aryl- and heteroaryl-substituted tetrahydrobenzo-1,4-diazepines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
KR101151993B1 (en) 2007-04-19 2012-06-01 에프. 호프만-라 로슈 아게 Dihydro-benzo[b][1,4]diazepin-2-one sulfonamide derivatives
KR20130077458A (en) 2011-12-29 2013-07-09 코오롱생명과학 주식회사 Method of preparing benzodiazepine derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063293A (en) 2000-01-05 2002-08-01 워너-램버트 캄파니 Novel Substituted Pyrazolo[4,3-e]Diazepines, Pharmaceutical Compositions Containing Them, Use as Medicinal Products and Processes for Preparing Them
KR101151993B1 (en) 2007-04-19 2012-06-01 에프. 호프만-라 로슈 아게 Dihydro-benzo[b][1,4]diazepin-2-one sulfonamide derivatives
KR20100017766A (en) 2007-05-10 2010-02-16 에이엠알 테크놀로지, 인크. Aryl- and heteroaryl-substituted tetrahydrobenzo-1,4-diazepines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
KR20130077458A (en) 2011-12-29 2013-07-09 코오롱생명과학 주식회사 Method of preparing benzodiazepine derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Zhang, Y. Jiang, Y. Cao, J. Liu, D. Zheng, X. Chen, L. Han, C. Jiang, X. Huang, J. Nat. Prod. 2013, 76, 2126-130.

Similar Documents

Publication Publication Date Title
Ohrai et al. Effects of solvents and additives in the asymmetric Heck reaction of alkenyl triflates: catalytic asymmetric synthesis of decalin derivatives and determination of the absolute stereochemistry of (+)-vernolepin
JPH07504664A (en) Halichondrins and related compounds
Avenoza et al. Enantioselective synthesis of (S)-and (R)-α-methylserines: application to the synthesis of (S)-and (R)-N-Boc-N, O-isopropylidene-α-methylserinals
Kumar et al. Enantio-and diastereocontrolled conversion of chiral epoxides to trans-cyclopropane carboxylates: application to the synthesis of cascarillic acid, grenadamide and L-(−)-CCG-II
WO2019194690A1 (en) Process of vitamin k2 derivatives preparation
Meira et al. Stereoselective Heck-Matsuda arylations of chiral dihydrofurans with arenediazonium tetrafluoroborates; an efficient enantioselective total synthesis of (-)-isoaltholactone
Kuehne et al. Syntheses of 20'-deoxyvinblastine, 20'-deoxyleurosidine, 20'-deoxyvincovaline, 20'-epi-20'-deoxyvincovaline, and 20'-deoxyvincristine and its 20'-epimer through racemic and enantioselectively generated intermediates. New syntheses of D/E-cis-and trans-. PSI.-vincadifformines and D/E-cis-and-trans-20-epi-. PSI.-vincadifformines
WO2020243754A1 (en) LIGAND-ENABLED ß-C(sp3)–H LACTONIZATION FOR ß-C–H FUNCTIONALIZATIONS
Magnusson et al. Synthesis of enantiomerically pure (Z)-(2′ R)-1-O-(2′-methoxyhexadec-4′-enyl)-sn-glycerol present in the liver oil of cartilaginous fish
KR20160080799A (en) METHOD FOR TOTAL SYNTHESIZING α-PYRONE DERIVATIVES USING BY GOLD CATALYST AND α-PYRONE DERIVATIVES HAVING CYTOTOXICITY AGAINST HUMAN CANCER CELL SYNTHESIZED THEREBY
Das et al. Facile total synthesis of (−)-(5R, 6S)-6-acetoxy-5-hexadecanolide from carbohydrate, a mosquito oviposition attractant pheromone
Hanselmann et al. Enantioselective Synthesis of a Wieland-Miescher Ketone Bearing an Angular Hydroxymethyl Group
Molnár et al. A practical route for the preparation of bis (2, 2, 2-trifluoroethyl) 2-oxoalkylphosphonates
CN114411180A (en) Method for constructing sulfur (selenium) substituted phosphate compound by electrochemical hydrogen-releasing oxidation coupling
Burns et al. Synthesis of stereoisomerically pure monoether lipids
Ansari et al. Reaction of hydrogen bromide with diols of long chain α, β-unsaturated acids
CN107954872B (en) Method for synthesizing malonate type compound
Beier et al. An Efficient and Highly Selective Synthesis of (Z)-Fluoroenol Phosphates from Hydroxy Difluorophosphonates
CN110668960A (en) Preparation method of alpha-aryl alpha-aminoketone compound
Reddy et al. Stereoselective Total Synthesis of the Natural Oxylipin (6R, 7E, 9R, 10S)-6, 9, 10-Trihydroxyoctadec-7-enoic Acid1
US20240109832A1 (en) Rapid construction of tetralin, chromane, and indane motifs via cyclative c-h/c-h coupling: four-step total synthesis of (±)-russujaponol f
Kim et al. Facile preparation of α, β-unsaturated O, S-acetals and mixed acetals via 3-alkoxy-2-alkenylenesulfonium salts.
Akiyama et al. Reactions of cyclic sulfur ylides with some carbonyl compounds
CN115197188B (en) Sesquiterpene hydroquinone compound with pentacyclic skeleton and preparation method thereof
CN108276256A (en) The preparation method of (2R, 3R) -2,3- dimethoxy -1,1,4,4- tetraphenyl -1,4- butanediols

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal