KR20160071038A - Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst - Google Patents

Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst Download PDF

Info

Publication number
KR20160071038A
KR20160071038A KR1020140178252A KR20140178252A KR20160071038A KR 20160071038 A KR20160071038 A KR 20160071038A KR 1020140178252 A KR1020140178252 A KR 1020140178252A KR 20140178252 A KR20140178252 A KR 20140178252A KR 20160071038 A KR20160071038 A KR 20160071038A
Authority
KR
South Korea
Prior art keywords
tricyclopentadiene
ionic liquid
chloride
catalyst
dicyclopentadiene
Prior art date
Application number
KR1020140178252A
Other languages
Korean (ko)
Other versions
KR101665004B1 (en
Inventor
정병훈
한정식
임진형
김수정
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020140178252A priority Critical patent/KR101665004B1/en
Publication of KR20160071038A publication Critical patent/KR20160071038A/en
Application granted granted Critical
Publication of KR101665004B1 publication Critical patent/KR101665004B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/924Reactor shape or disposition

Abstract

The present invention relates to a method of effectively preparing tricyclopentadiene that is an oligomer of dicyclopentadiene and cyclopentadiene by using an ionic liquid catalyst, and more particularly, to a method of effectively preparing tricyclopentadiene through oligomerization of dicyclopentadiene and cyclopentadiene by using an ionic liquid catalyst including a catalyst precursor containing triethylamine chloride (TEAC) or 1-butyl-3-methylimidazolium chloride (BMIC) as a cationic catalyst precursor, and iron(III) chloride (FeCl3) or copper chloride (CuCl) as an anion catalyst precursor.

Description

이온성 액체 촉매를 이용한 트리시클로펜타디엔 제조방법{Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst}[0001] The present invention relates to a method for preparing tricyclopentadiene using an ionic liquid catalyst,

본 발명은 고밀도에너지 액체연료로 알려진 엑소-테트라하이드로트리시클로펜타디엔(exo-tetrahydrotricyclopentadiene, exo-THTCPD)의 원료물질인 트리시클로펜타디엔을 이온성 액체 촉매를 이용하여 디시클로펜타디엔과 시클로펜타디엔의 소중합 반응으로 제조하는 방법에 관한 것이다.The invention exo known as high-density energy liquid fuel -tetrahydro tree cyclopentadiene using a raw material in the tree cyclopentadiene the ionic liquid catalyst of (exo -tetrahydrotricyclopentadiene, exo -THTCPD) dicyclopentadiene and cyclopentadiene In the presence of a catalyst.

석유화학 공정에서 원유정제 처리 후 생성되는 부산물 또는 나프타를 크래킹(cracking) 반응으로 생성되는 C5 및 C9 유분 중 디시클로펜타디엔(dicyclopentadiene)은 국내 생산량이 10만 톤에 이르고 있으나 대부분 부가가치가 낮은 합성수지 생산에 이용되고 있다. 상기 디시클로펜타디엔을 트리시클로펜타디엔(tricyclopentadiene)으로 변형시키면, 단위부피당 발열량이 높은 고밀도에너지 액체연료인 테트라하이드로트리시클로펜타디엔(tetratricyclopentadiene)으로 용적이 제한된 항공기나 제트기 등에 사용되는 고부가가치의 연료에 쓰일 수 있다.In the petrochemical process, byproducts generated after refining crude oil or C 5 produced by cracking reaction of naphtha And dicyclopentadiene in C 9 oil are used for the production of synthetic resins with a low domestic value of 100,000 tons. When the dicyclopentadiene is transformed into tricyclopentadiene, tetracyclopentadiene, which is a high-density energy liquid fuel having a high calorific value per unit volume, is used as a high-value-added fuel Can be used.

트리시클로펜타디엔은 디시클로펜타디엔(dicyclopentadiene)과 시클로펜타디엔(cyclopentadiene)의 소중합체로, 수소화 반응을 거쳐 최종적으로 엔도-테트라하이드로트리시클로펜타디엔(endo-tetrahydrotricyclopentadiene)을 얻는다. 하지만 상기 엔도-테트라하이드로트리시클로펜타디엔은 상온에서 고체로 존재하기 때문에 액체연료로 사용하기에는 문제가 있었다.Tree cyclopentadiene is dicyclopentadiene (dicyclopentadiene) and cyclopentanone finally endo to the oligomer of the diene (cyclopentadiene), after the hydrogenation reaction to obtain the tetrahydro-tricyclo pentadiene (endo -tetrahydrotricyclopentadiene). However, since the endo-tetrahydrotricyclopentadiene exists as a solid at room temperature, it has a problem to be used as a liquid fuel.

따라서, 엔도-테트라하이드로트리시클로펜타디엔의 이성화 반응을 거치면 액체연료로 사용하기 위해 유동성이 향상된 엑소-테트라하이드로트리시클로펜타디엔(exo-tetrahydrotricyclopentadiene)을 얻을 수 있다.Thus, the endo-can be obtained tetrahydro tree cyclopentadiene (exo -tetrahydrotricyclopentadiene) - tetrahydro-tree geochimyeon the isomerization reaction of cyclopentadiene with improved exo fluidity for use as a liquid fuel.

상기 엔도-테트라하이드로트리시클로펜타디엔의 이성화 반응은 루이스산(Lewis acid) 계 촉매인 염화알루미늄(AlCl3)이 널리 알려져 있다. 하지만 루이스산 촉매가 디시클로펜타디엔과 시클로펜타디엔의 소중합 반응에 적용된 사례는 없다.Aluminum chloride (AlCl 3 ), which is a Lewis acid catalyst, is widely known for the isomerization of the endo-tetrahydrotricyclopentadiene. However, Lewis acid catalysts have not been applied to the polymerization of dicyclopentadiene and cyclopentadiene.

또한, 트리시클로펜타디엔은 디시클로펜타디엔과 시클로펜타디엔의 딜스-알더(Diels-Alder) 반응을 통하여 얻어진다고 알려져 있다. 하지만 상기 딜스-알더 반응에서 디시클로펜타디엔의 전환율은 60% 미만으로 효과적인 소중합체 제조가 어려웠다.It is also known that tricyclopentadiene is obtained through a Diels-Alder reaction of dicyclopentadiene and cyclopentadiene. However, in the above-mentioned Diels-Alder reaction, conversion of dicyclopentadiene is less than 60%, which makes it difficult to produce an effective oligomer.

(0001) 미국등록특허 US 7,488,860(0001) US registered patent US 7,488,860 (0002) 미국등록특허 US 4,086,286(0002) US registered patent US 4,086,286 (0003) 미국등록특허 US 4,401,837(0003) US registered patent US 4,401,837 (0004) 미국등록특허 US 4,059,644(0004) U.S. Pat. No. 4,059,644

(0001) Yang YL et al., Chem. Comm., 2, 226-227, 2004(0001) Yang YL et al., Chem. Comm., 2, 226-227, 2004 (0002) Xiong Z et al., React. Kinet. Catal. Lett., 89-97, 85(1), 2005(0002) Xiong Z et al., React. Kinet. Catal. Lett., 89-97, 85 (1), 2005

본 발명에서는 이온성 액체 촉매를 이용하여 디시크로펜타디엔과 시클로펜타디엔의 소중합 반응을 통하여 생성된 소중합체인 트리시클로펜타디엔을 효과적으로 제조하는 방법을 제공하는 데 그 목적이 있다.
It is an object of the present invention to provide a method for effectively producing tricyclopentadiene, which is an oligomer produced through a dimerization reaction of dicyclopentadiene and cyclopentadiene using an ionic liquid catalyst.

상기와 같은 목적을 달성하기 위해 본 발명은 엑소-테트라하이드로트리시클로펜타디엔(exo-tetrahydrotricyclo pentadiene, exo-THTCPD)의 원료물질인 트리시클로펜타디엔(tricyclopentadiene)과 그 제조방법에 관한 것으로, 음이온 촉매 전구체와 양이온 촉매 전구체로 이루어진 이온성 액체 촉매를 이용하여 디시클로펜타디엔(dicyclopentadiene)과 시클로펜타디엔(cyclopentadien)의 소중합 반응으로 소중합체인 트리시클로펜타디엔(tricyclopentadiene)을 제조한다.The present invention to achieve the above object, the exo-tetrahydro-tree cyclopentadiene the raw material of (exo -tetrahydrotricyclo pentadiene, exo -THTCPD) tricyclo penta relates to a diene (tricyclopentadiene) and a method of manufacturing the same, an anionic catalyst An oligomeric tricyclopentadiene is prepared by oligomerization of dicyclopentadiene and cyclopentadien using an ionic liquid catalyst consisting of a precursor and a cationic catalyst precursor.

상기 이온성 액체 촉매의 음이온 촉매 전구체는 삼염화철(iron(Ⅲ) chloride, FeCl3) 또는 염화구리(copper chloride, CuCl)를 사용하며, 양이온 촉매 전구체는 트리에틸아민 클로라이드(triethylamine chloride, TEAC) 또는 1-뷰틸-3-메틸이미다졸륨 클로라이드(1-butyl-3-methylimidazolium chloride, BMIC)를 사용할 수 있다.The anion catalyst precursor of the ionic liquid catalyst is selected from the group consisting of iron (III) chloride and copper chloride (CuCl), and the cation catalyst precursor is triethylamine chloride (TEAC) or 1 -Butyl-3-methylimidazolium chloride (BMIC) may be used.

또한, 상기 이온성 촉매 함량은 10 내지 20 중량%이 포함되는 것을 특징으로 한다.The content of the ionic catalyst is 10 to 20% by weight.

그리고, 상기 디시클로펜타디엔과 시클로펜타디엔의 소중합 제조방법은 고압 반응기에서 145 내지 160 ℃의 반응온도로 수행되는 것을 특징으로 한다.
The method of preparing the dicyclopentadiene and the cyclopentadiene in a low pressure reactor is carried out at a reaction temperature of 145 to 160 ° C.

본 발명에 따른 트리시클로펜타디엔의 제조방법으로 이온성 액체 촉매를 사용하면 디시클로펜타디엔과 시클로펜타디엔의 소중합 반응을 통해 합성된 트리사이클로펜타디엔은 전환율과 제조 수율이 향상된다.When the ionic liquid catalyst is used in the process for producing tricyclopentadiene according to the present invention, tricyclopentadiene synthesized through the dimerization reaction of dicyclopentadiene and cyclopentadiene has improved conversion and yield.

또한, 대부분 합성수지 생산에 이용되는 상기 디시클로펜타디엔을 이용하여 변형된 트리사이클로펜타디엔은 항공기나 제트기와 같은 항공분야의 고부가가치의 연료로써 사용되는 테트라하이드로트리시클로펜타디엔의 원료물질로 그 활용성을 향상시킬 수 있다.
In addition, the tricyclopentadiene modified by using dicyclopentadiene, which is mostly used in the production of synthetic resin, is used as a raw material for tetrahydrotricyclopentadiene used as a high value-added fuel in the aviation sector such as an aircraft or a jet It is possible to improve the property.

본 발명의 트리시클로펜타디엔 제조방법으로, 디시클로펜타디엔과 시클로펜타디엔의 소중합 반응에서 이용되는 이온성 액체 촉매는 양이온 촉매 전구체와 음이온 촉매 전구체의 조합으로 아르곤(Ar) 가스가 채워진 글러브박스에서 제조된 촉매이다.The ionic liquid catalyst used in the dimerization reaction of dicyclopentadiene and cyclopentadiene in the process for producing a tricyclopentadiene of the present invention is a combination of a cation catalyst precursor and an anion catalyst precursor and is used in a glove box ≪ / RTI >

상기 양이온 촉매 전구체는 트리에틸아민 클로라이드(triethylamine chloride, TEAC)이나 1-뷰틸-3-메틸이미다졸륨 클로라이드(1-butyl-3-methylimidazolium chloride, BMIC) 중에서 선택되는 하나를 사용하며, 상기 음이온 촉매 전구체는 산도가 낮은 삼염화철(iron(Ⅲ) chloride, FeCl3)이나 염화구리(copper chloride, CuCl) 중에서 선택되는 하나를 사용한다.The cation catalyst precursor is one selected from triethylamine chloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC), and the anion catalyst The precursor may be one selected from the group consisting of iron (III) chloride (FeCl 3 ) or copper chloride (CuCl).

상기 디시클로펜타디엔과 시클로펜타디엔의 소중합 반응은 고압 반응기 내부를 질소 가스로 치환시키고, 이후 4Å 분자체(molecular sieve)를 이용하여 수분을 제거한 엔도-디시클로펜타디엔(95%)과 이온성 액체 촉매를 캐뉼라(cannula)를 사용하여 고압 반응기에 넣으면서 상기 소중합 반응을 진행하여 트리시클로펜타디엔을 제조한다.The dimerization reaction of dicyclopentadiene and cyclopentadiene was carried out by replacing the inside of the high-pressure reactor with nitrogen gas and then using endo-dicyclopentadiene (95%) in which moisture was removed by using 4Å molecular sieve and ion The liquid-phase catalyst is introduced into a high-pressure reactor using a cannula, and the above-mentioned polymerization is carried out to prepare tricyclopentadiene.

이하,실시예를 통해 본 발명을 좀 더 구체적으로 설명하나, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited thereto.

제 1 실시예는 먼저, 이온성 액체 촉매의 제조는 아르곤 가스가 존재하는 글러브박스에서 진행되었으며, 양이온 촉매 전구체로 1-뷰틸-3-메틸이미다졸륨 클로라이드(1-butyl-3-methylimidazolium chloride, BMIC)와 음이온 촉매 전구체로는 삼염화철(iron(Ⅲ) chloride, FeCl3)를 2 : 1 몰비 만큼 정량하고, 70℃온도와 300 rpm 속도로 상기 촉매 전구체가 액체 상태가 될 때까지 교반자석(margnetic bar)를 이용하여 교반을 진행하였다. 이후, 만들어진 이온성 액체 촉매를 필요한 만큼 정량하여 바이알(virl)에 넣고 알루미늄 씰(seal)로 완전히 밀봉시켜, 글러브박스에서 꺼낸다.In the first embodiment, the preparation of the ionic liquid catalyst was carried out in a glove box in which argon gas was present, and 1-butyl-3-methylimidazolium chloride was used as a cation catalyst precursor. (III) chloride and FeCl 3 as anion catalyst precursors at a molar ratio of 2: 1 and at a temperature of 70 ° C. and a rate of 300 rpm until the catalyst precursor becomes a liquid state, The mixture was stirred using a margnetic bar. Then, the prepared ionic liquid catalyst is quantified as necessary, placed in a virl, completely sealed with an aluminum seal, and taken out of the glove box.

그 다음, 엔도-디시클로펜타디엔(95%)을 정량한 후 캐뉼라를 이용하여 질소 가스가 채워진 고압 반응기 속에 투입한다. 이후 상기 제조된 이온성 액체 촉매 함량은 10 중량%을 넣고, 온도를 145℃, 반응 압력은 9 bar, 교반 속도는 500 rpm, 20 시간 동안 소중합 반응을 진행하여 트리시클로펜타디엔을 제조하였다.Then, endo-dicyclopentadiene (95%) is quantitatively measured and then introduced into a high-pressure reactor filled with nitrogen gas using a cannula. Then, 10 weight% of the prepared ionic liquid catalyst was added, and the polymerization was carried out at a temperature of 145 ° C., a reaction pressure of 9 bar, and a stirring speed of 500 rpm for 20 hours to prepare tricyclopentadiene.

제 2 실시예는 상기 제 1 실시예와 동일한 방법으로 이온성 액체 촉매와 트리시클로펜타디엔을 제조한다. 다만 양이온 촉매 전구체는 트리에틸아민 클로라이드(triethylamine chloride, TEAC)를, 음이온 전구체로는 염화구리(CuCl)를 사용하여 이온성 액체 촉매를 제조하였으며, 상기 제조된 이온성 액체 촉매 함량을 20 중량%으로 하고, 고압 반응기의 온도는 145℃으로 하여 트리시클로펜타디엔을 제조하였다. The second embodiment produces an ionic liquid catalyst and tricyclopentadiene in the same manner as in the first embodiment. However, an ionic liquid catalyst was prepared using triethylamine chloride (TEAC) as the cation catalyst precursor and copper chloride (CuCl) as the anion precursor, and the ionic liquid catalyst content was 20 wt% And the temperature of the high-pressure reactor was set to 145 ° C to prepare tricyclopentadiene.

또한, 제 3 실시예도 상기 제 1 실시예와 동일한 방법으로 이온성 액체 촉매 촉매와 트리시클로펜타디엔을 제조하였다. 다만 양이온 촉매 전구체는 트리에틸아민 클로라이드(triethylamine chloride, TEAC)를, 음이온 촉매 전구체는 염화구리(CuCl)를 사용하여 이온성 액체 촉매를 제조하였으며, 상기 이온성 액체 촉매 함량을 20 중량%으로 고압 반응기의 온도를 160℃로 하여 트리시클로펜타디엔을 제조하였다.Also in the third embodiment, an ionic liquid catalyst catalyst and tricyclopentadiene were prepared in the same manner as in the first embodiment. An ionic liquid catalyst was prepared by using triethylamine chloride (TEAC) as the cation catalyst precursor and copper chloride (CuCl) as the anion catalyst precursor. The ionic liquid catalyst content was 20 wt% Was changed to 160 ° C to prepare tricyclopentadiene.

또한, 제 4 실시예도 상기 제 1 실시예와 동일한 방법으로 이온성 액체 촉매와 트리시클로펜타디엔을 제조하였다. 다만 양이온 촉매 전구체는 트리에틸아민 클로라이드(triethylamine chloride, TEAC)를, 음이온 촉매 전구체는 삼염화철(FeCl3)을 사용하여 이온성 액체 촉매를 제조하였으며, 상기 이온성 액체 촉매 함량을 10 중량%으로 고압 반응기의 온도를 반응 온도를 160℃로 하여 트리시클로펜타디엔을 제조하였다.Also in the fourth embodiment, an ionic liquid catalyst and tricyclopentadiene were prepared in the same manner as in the first embodiment. An ionic liquid catalyst was prepared by using triethylamine chloride (TEAC) as the cation catalyst precursor and iron chloride (FeCl 3 ) as the anion catalyst precursor. The ionic liquid catalyst content was adjusted to 10 wt% Tricyclopentadiene was prepared by setting the temperature of the reactor at a reaction temperature of 160 占 폚.

제 1 비교예는 엔도-디시클로펜타디엔(95%)을 정량한 후 케뉼라를 이용하여 질소 가스로 채운 고압 반응기 속에 투입하고, 이온성 액체 촉매가 없이 반응 온도를 145℃, 반응 압력은 9 bar, 교반 속도는 500 rpm, 반응 시간은 20 시간으로 소중합 반응시켜 트리시클로펜타디엔을 얻었다. In the first comparative example, endo-dicyclopentadiene (95%) was quantitatively introduced into a high-pressure reactor filled with nitrogen gas using a cannula. The reaction temperature was 145 ° C and the reaction pressure was 9 bar, stirring speed of 500 rpm, and reaction time of 20 hours to obtain tricyclopentadiene.

상기 제 1 실시예 내지 4 실시예 및 제 1 비교예에서 반응이 끝난 후 얻은 생성물은 톨루엔에 희석 후 실리카 젤(silica gel)과 클레이를 이용해 필터를 하여 이온성 액체 촉매를 제거한 다음 기체 크로마토그래피(gas chromatograph, GC)를 사용해 각각의 생성물을 분석하였고, 이때, 상기 기체 크로마토그래피의 질량분석기 검출기는 불꽃 이온화 검출기(Flame lonization Detector, FID)을 사용하였으며, 아래의 표 1에 상기 분석결과를 나타내었다.After the completion of the reaction in Examples 1 to 4 and Comparative Example 1, the product was diluted with toluene, filtered using silica gel and clay to remove the ionic liquid catalyst, and then subjected to gas chromatography gas chromatograph (GC). The mass spectrometer of the gas chromatography was a Flame Lonization Detector (FID), and the results of the analysis are shown in Table 1 below .

구분division 이온성 액체 촉매Ionic liquid catalyst 촉매 함량
(중량%)
Catalyst content
(weight%)
반응 온도
(℃)
Reaction temperature
(° C)
TCPD 수율
(%)
TCPD yield
(%)
전환율
(%)
Conversion Rate
(%)
제 1 비교예 Comparative Example 1 -- -- 145145 45.345.3 51.151.1 제 1 실시예 First Embodiment BMIC / FeCl3 BMIC / FeCl 3 1010 145145 43.543.5 57.557.5 제 2 실시예 Second Embodiment TEAC / CuClTEAC / CuCl 2020 145145 45.245.2 65.265.2 제 3 실시예 Third Embodiment TEAC / CuClTEAC / CuCl 2020 160160 61.161.1 80.980.9 제 4 실시예Fourth Embodiment TEAC / FeCl3 TEAC / FeCl 3 1010 160160 44.644.6 84.284.2

상기 표 1에 나타낸 바와 같이, 이온성 액체 촉매를 이용하여 디시클로펜타디엔과 시클로펜타디엔의 소중합 반응을 통한 트리시클로펜타디엔은 촉매를 사용하지 않은 제 1 비교예에 비해 이온성 액체 촉매 사용하면 제 1 실시예 내지 제 4 실시예와 같이 전환율이 증가하는 것을 확인하였다. As shown in the above Table 1, tricyclopentadiene through dimerization reaction of dicyclopentadiene and cyclopentadiene using an ionic liquid catalyst was compared with Comparative Example 1 using no catalyst, , It was confirmed that the conversion rate was increased as in the first to fourth embodiments.

특히 제 2 실시예 및 제 3 실시예와 같이 동일한 이온성 액체 촉매의 조건일 경우, 반응 온도가 증가되면 이전보다 더 높은 전환율을 얻었으며, TEAC / CuCl의 이온성 액체 촉매 사용은 디시클로펜타디엔과 시클로펜타디엔 소중합체인 트리시클로펜타디엔(TCPD)의 수율과 전환율을 동시에 향상시키는 효과가 있음을 확인할 수 있었다.
In particular, in the case of the same ionic liquid catalyst conditions as in the second and third embodiments, an increase in the reaction temperature resulted in a higher conversion rate than before, and the use of an ionic liquid catalyst of TEAC / And tricyclopentadiene (TCPD), which is a cyclopentadiene oligomer, at the same time.

Claims (6)

음이온 촉매 전구체와 양이온 촉매 전구체로 이루어진 이온성 액체 촉매를 이용하여 디시클로펜타디엔(dicyclopentadiene)과 시클로펜타디엔(cyclopentadien)의 소중합 반응으로 소중합체인 트리시클로펜타디엔(tricyclopentadiene)을 제조하는 것을 특징으로 하는 트리시클로펜타디엔 제조방법.
Tricyclopentadiene, an oligomer, is produced by the oligomerization of dicyclopentadiene and cyclopentadien using an ionic liquid catalyst consisting of an anionic catalyst precursor and a cationic catalyst precursor. By weight, based on the total weight of the tricyclopentadiene.
제 1 항에 있어서, 상기 음이온 촉매 전구체는 삼염화철(iron(Ⅲ) chloride, FeCl3) 또는 염화구리(copper chloride, CuCl)를 사용하는 것을 특징으로 하는 트리시클로펜타디엔 제조방법.
The method of claim 1, wherein the anionic catalyst precursor three iron (iron (Ⅲ) chloride, FeCl 3) or tri cyclopentadiene method characterized by using a copper chloride (copper chloride, CuCl).
제 1 항에 있어서, 상기 양이온 촉매 전구체는 트리에틸아민 클로라이드(triethylamine chloride, TEAC) 또는 1-뷰틸-3-메틸이미다졸륨 클로라이드(1-butyl-3-methylimidazolium chloride, BMIC)를 사용하는 것을 특징으로 하는 트리시클로펜타디엔 제조방법.
The method according to claim 1, wherein the cation catalyst precursor is triethylamine chloride (TEAC) or 1-butyl-3-methylimidazolium chloride (BMIC) By weight, based on the total weight of the tricyclopentadiene.
제 1 항에 있어서, 상기 이온성 액체 촉매 함량은 10 내지 20 중량%이 포함되는 것을 특징으로 하는 트리시클로펜타디엔 제조방법.
The method of claim 1, wherein the ionic liquid catalyst content is comprised between 10 and 20 wt%.
제 1 항에 있어서, 상기 디시클로펜타디엔(dicyclopentadiene)과 시클로펜타디엔(cyclopentadien)의 소중합 방법은 고압 반응기에서 145 내지 160 ℃의 반응온도로 수행되는 것을 특징으로 하는 트리시클로펜타디엔 제조방법.
The method of claim 1, wherein the dicyclopentadiene and cyclopentadienes are carried out in a high-pressure reactor at a reaction temperature of 145 to 160 ° C.
제 1 항 내지 제 5항 중 어느 하나의 항에 따른 방법에 의해 제조된 트리시클로펜타디엔.6. Tricyclopentadiene prepared by the process according to any one of claims 1 to 5.
KR1020140178252A 2014-12-11 2014-12-11 Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst KR101665004B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140178252A KR101665004B1 (en) 2014-12-11 2014-12-11 Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140178252A KR101665004B1 (en) 2014-12-11 2014-12-11 Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst

Publications (2)

Publication Number Publication Date
KR20160071038A true KR20160071038A (en) 2016-06-21
KR101665004B1 KR101665004B1 (en) 2016-10-11

Family

ID=56353684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140178252A KR101665004B1 (en) 2014-12-11 2014-12-11 Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst

Country Status (1)

Country Link
KR (1) KR101665004B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621046A (en) * 2022-04-02 2022-06-14 淄博鲁华泓锦新材料集团股份有限公司 Method for preparing high-purity dicyclopentadiene under catalysis of ionic liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059644A (en) 1976-02-12 1977-11-22 Shell Oil Company High density fuels
US4086286A (en) 1976-09-03 1978-04-25 Suntech, Inc. Isomerization of tetrahydropolycyclopentadienes to a missile fuel additive
US4401837A (en) 1980-06-02 1983-08-30 The United States Of America As Represented By The Secretary Of The Navy Exo-tetrahydrotricyclopentadiene, a high density liquid fuel
US7488860B2 (en) 2006-09-13 2009-02-10 Chinese Petroleum Corp. Method for producing exo-tetrahydrodicyclopentadiene using ionic liquid catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059644A (en) 1976-02-12 1977-11-22 Shell Oil Company High density fuels
US4086286A (en) 1976-09-03 1978-04-25 Suntech, Inc. Isomerization of tetrahydropolycyclopentadienes to a missile fuel additive
US4401837A (en) 1980-06-02 1983-08-30 The United States Of America As Represented By The Secretary Of The Navy Exo-tetrahydrotricyclopentadiene, a high density liquid fuel
US7488860B2 (en) 2006-09-13 2009-02-10 Chinese Petroleum Corp. Method for producing exo-tetrahydrodicyclopentadiene using ionic liquid catalyst

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
(0001) Yang YL et al., Chem. Comm., 2, 226-227, 2004
(0002) Xiong Z et al., React. Kinet. Catal. Lett., 89-97, 85(1), 2005
논문 1 : Theories and Applications of Chem. Eng. *
논문 2 : Fuel. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621046A (en) * 2022-04-02 2022-06-14 淄博鲁华泓锦新材料集团股份有限公司 Method for preparing high-purity dicyclopentadiene under catalysis of ionic liquid
CN114621046B (en) * 2022-04-02 2024-01-09 淄博鲁华泓锦新材料集团股份有限公司 Method for preparing high-purity dicyclopentadiene through ionic liquid catalysis

Also Published As

Publication number Publication date
KR101665004B1 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
CN100374400C (en) Method of preparing exo-dicyclopentadiene from endo-dicyclopentadiene or cyclopentadiene
KR20170127982A (en) Method for oligomerization of ethylele
KR101665004B1 (en) Manufacturing method of Tricyclopentadiene Using Ionic Liquid Catalyst
DE102006039904A1 (en) Propene preparation by metathesis of butenes and ethene in steam cracking plant, uses butene starting material obtained by combining steam cracking product with ethene oligomerization product
US20150175502A1 (en) Method for making high purity dicyclopentadiene
JPH02503313A (en) Method for producing 1-butene and/or hexenes
KR101919398B1 (en) Molecular Weight Regulator and Process for Producing Petroleum Resins Using the Same
CN106588555B (en) A method of preparing cyclopentadiene and methyl cyclopentadiene
KR101595604B1 (en) Cycloolefin Polymers and Method for Preparing the Same
US3794692A (en) Process for the production of squalene-type-hydrocarbons
KR101553899B1 (en) Preparation method for oligomer of dicyclopentadiene and cyclopentadiene using aluminium silicate catalyst, aluminium silicate catalyst, and preparing method for the same
CN105542852A (en) Synthetic process method of high-density hydrocarbon
CN107915565B (en) Method for preparing exo-dicyclopentadiene through bridge-type dicyclopentadiene isomerization
CN115872823A (en) Method for preparing methyl cyclopentadiene dimer by cracking carbon nine fraction
Darabi et al. Synthesis, properties and molecular structure of a new isomer of [2.4]-paracyclophanetetraene:(E, Z, E, Z)-[2.4]-paracyclophanetetraene
US11078139B1 (en) Cyclopentadiene fuels
KR102358409B1 (en) Method for quenching pyrolysis product
US3004014A (en) Styrene polymerization
JP6326749B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
JP6179095B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
US2371794A (en) Preparation of cyclopentanone
US11739034B2 (en) Recovery of isoprene and CPD from a pygas stream
JPH0583088B2 (en)
US3363016A (en) Isomerization of cyclooctadiene compounds
KR102559646B1 (en) Method for preparing 1,3-cyclopentanediol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191002

Year of fee payment: 4