KR20160070308A - Coating method for engine moving parts - Google Patents

Coating method for engine moving parts Download PDF

Info

Publication number
KR20160070308A
KR20160070308A KR1020140176178A KR20140176178A KR20160070308A KR 20160070308 A KR20160070308 A KR 20160070308A KR 1020140176178 A KR1020140176178 A KR 1020140176178A KR 20140176178 A KR20140176178 A KR 20140176178A KR 20160070308 A KR20160070308 A KR 20160070308A
Authority
KR
South Korea
Prior art keywords
base material
thin film
zirconium
chromium
atoms
Prior art date
Application number
KR1020140176178A
Other languages
Korean (ko)
Other versions
KR101664615B1 (en
Inventor
홍웅표
박정연
최광훈
김보경
여인웅
서지연
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020140176178A priority Critical patent/KR101664615B1/en
Publication of KR20160070308A publication Critical patent/KR20160070308A/en
Application granted granted Critical
Publication of KR101664615B1 publication Critical patent/KR101664615B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An objective of the present invention is to provide a method to coat an engine drive part which improves wear resistance and lubrication at high temperatures. According to the present invention, the method to coat the engine drive part comprises: a first step of depositing chrome (Cr) atoms on a base material by an arc ion plating method under a nitrogen (N_2) gas inflow condition to form a thin film of a mixture of chrome (Cr) and chrome nitride (CrN, Cr_2N); and a second step of depositing chrome atoms on the base material by the arc ion plating method and depositing zirconium (Zr) atoms by a sputtering method under an inflow condition of nitrogen (N_2) gas and argon (Ar) gas to form a thin film of a mixture of chrome, chrome nitride, and zirconium (Zr). The second step forms the thin film with a zirconium (Zr) content of 3.5-4.5 at%.

Description

엔진 구동 부품 코팅 방법{COATING METHOD FOR ENGINE MOVING PARTS}TECHNICAL FIELD [0001] The present invention relates to a method of coating an engine-

본 발명은 엔진 구동 부품 코팅 방법에 관한 것으로, 보다 상세하게는 엔진 작동시 윤활 특성을 높이기 위한 엔진 구동 부품 코팅 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine-driven component coating method, and more particularly, to an engine-driven component coating method for enhancing lubrication characteristics during engine operation.

자동차 부품이나 금형, 공구, 지그의 수명을 향상시키기 위한 마찰대책으로서 도금, 침탄, 질화, PVD-TiN, CVD-TiC 혹은 TRD-VC 등 다종다양한 표면개질이 행해지고 있다. 그러나 이 방법은 마찰력을 억제하는 기능이나 윤활제를 사용하지 않는 가공을 실현하기에는 만족스럽지 못하였다. 이에 마찰 특성을 개선할 목적으로 윤활오일을 사용하지 않는DLC 코팅기술이 최근 자동차 분야에 이용되고 있다.Various surface modifications such as plating, carburizing, nitriding, PVD-TiN, CVD-TiC, or TRD-VC are performed as friction measures to improve the service life of automobile parts, molds, tools and jigs. However, this method is unsatisfactory for realizing the function of suppressing the friction force or the processing without using the lubricant. DLC coating technology which does not use lubricating oil for the purpose of improving the friction property is recently used in the automotive field.

그러나 DLC 코팅은 저온에서의 윤활 특성과 내구성은 좋지만, 고온에서 이 같은 특성이 저하되고, 코팅층을 형성시키는데 시간이 오래 걸리는 문제가 있었다. 이는 특히, 고온에 항상 노출되는 엔진 구동용 부품의 마찰을 감소시키기 위한 코팅재로 DLC를 적용하지 못 하는 이유가 되고 있다.However, the DLC coating has a good lubrication property and durability at a low temperature, but has such a problem that it takes a long time to form a coating layer at such a low temperature. This is particularly the reason why DLC can not be applied as a coating material for reducing the friction of engine-driven parts which are always exposed to high temperatures.

이러한 문제를 해결하기 위해 크롬 질화물(CrN) 코팅층을 형성시키려는 시도가 있었지만, 마찰계수가 충분히 낮지 않은 문제가 있었다.To solve this problem, attempts have been made to form a chromium nitride (CrN) coating layer, but there has been a problem that the coefficient of friction is not sufficiently low.

본 발명은 이러한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 고온에서의 내마모성 및 윤활성을 향상시킬 수 있는 엔진 구동 부품 코팅 방법을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and an object of the present invention is to provide an engine driving component coating method capable of improving abrasion resistance and lubricity at high temperatures.

위 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 엔진 구동 부품 코팅 방법은, 질소(N2) 가스가 유입되는 조건 하에서, 모재에 크롬(Cr)원자를 아크 이온 플레이팅 방식으로 증착하여 크롬(Cr) 및 크롬 질화물(CrN, Cr2N) 혼합물의 박막을 형성하는 제1단계; 및 질소(N2) 가스와 아르곤(Ar) 가스가 유입되는 조건 하에서, 상기 모재에 크롬 원자를 아크 이온 플레이팅 방식으로 증착하고 지르코늄(Zr) 원자를 스퍼터링 방식으로 증착하여 크롬, 크롬 질화물 및 지르코늄(Zr) 혼합물의 박막을 형성하는 제2단계; 를 포함하고, 상기 제2단계는, 지르코늄(Zr)의 비율이 3.5~4.5at%인 박막을 형성하는 것을 특징으로 한다.In order to achieve the above object, according to an embodiment of the present invention, there is provided an engine driving component coating method comprising depositing chromium (Cr) atoms on a base material by an arc ion plating method under a condition that nitrogen (N 2 ) (Cr) and a chromium nitride (CrN, Cr 2 N) mixture; (Zr) atoms are deposited by sputtering to deposit chromium, chromium nitride, and zirconium (Zr) atoms on the base material under the condition that nitrogen (N 2 ) gas and argon A second step of forming a thin film of the (Zr) mixture; And the second step is characterized in that a thin film having a zirconium (Zr) ratio of 3.5 to 4.5 at% is formed.

상기 제1단계는, 상기 크롬 질화물 박막의 두께를 0.1mm 이하로 형성시키는 것을 특징으로 한다.The first step is characterized in that the thickness of the chromium nitride thin film is 0.1 mm or less.

상기 제1단계 및 제2단계 중에 형성되는 박막에 포함된 크롬(Cr):질소(N)의 비율은, At% 기준으로, 3:2~2:3인 것을 특징으로 한다.The ratio of chromium (Cr): nitrogen (N) contained in the thin film formed in the first and second steps is 3: 2 to 2: 3 on the basis of At%.

상기 제1단계 및 제2단계 중에 형성되는 박막의 결정립의 크기는, 20nm 이하인 것을 특징으로 한다.The size of the crystal grains of the thin film formed in the first and second steps is 20 nm or less.

상기 제1단계 이전에, 챔버 내부에 상기 모재를 설치하여 진공을 형성시키고, 상기 모재를 300℃이상에서 40분 이상 가열한 후, 상기 모재의 표면을 20분 이상 식각하는 준비단계를 더 포함하는 것을 특징으로 한다.Further comprising the step of preparing a vacuum by providing the base material in the chamber before the first step and heating the base material at 300 DEG C or more for 40 minutes or more and then etching the surface of the base material for 20 minutes or more .

상기 모재는 엔진 구동 부품인 것을 특징으로 한다.The base material is an engine-driven component.

본 발명에 의한 엔진 구동 부품 코팅 방법에 따르면 다음과 같은 효과가 있다.The method for coating an engine-driven component according to the present invention has the following effects.

첫째, 고온 환경에서 우수한 윤활성을 나타낼 수 있다.First, excellent lubricity can be exhibited in a high temperature environment.

둘째, 초고경도를 구현하여 내마모성을 크게 향상시킬 수 있다.Second, the ultra-high hardness can be realized to greatly improve abrasion resistance.

도 1은 150 ℃ 윤활 조건에서의 마찰계수를 비교한 그래프,
도 2는 경도를 비교한 그래프,
도 3은 온도에 따른 마찰계수를 비교한 그래프,
도 4는 Zr 함량에 따른 마찰계수와 경도를 비교한 그래프,
도 5는 Cr:N 함량비에 따른 마찰계수와 경도를 비교한 그래프,
도 6은 Zr 함량에 따른 조도(거칠기)를 나타낸 그래프이다.
Fig. 1 is a graph comparing friction coefficients at 150 占 폚 lubrication condition,
2 is a graph comparing hardness,
3 is a graph comparing friction coefficients according to temperature,
4 is a graph comparing the friction coefficient and the hardness according to the Zr content,
5 is a graph comparing the friction coefficient and the hardness according to the Cr: N content ratio,
6 is a graph showing the roughness (roughness) according to the Zr content.

여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. The singular forms as used herein include plural forms as long as the phrases do not expressly express the opposite meaning thereto. Means that a particular feature, region, integer, step, operation, element and / or component is specified, and that other specific features, regions, integers, steps, operations, elements, components, and / And the like.

다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Commonly used predefined terms are further interpreted as having a meaning consistent with the relevant technical literature and the present disclosure, and are not to be construed as ideal or very formal meanings unless defined otherwise.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 의한 엔진 구동 부품 코팅 방법에 대하여 설명하기로 한다.
Hereinafter, an engine driving component coating method according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

질소(N2) 가스가 유입되는 조건 하에서, 모재에 크롬(Cr)원자를 아크 이온 플레이팅 방식으로 증착하여 크롬(Cr) 및 크롬 질화물(CrN, Cr2N) 혼합물의 박막을 형성하는 제1단계 및 질소(N2) 가스와 아르곤(Ar) 가스가 유입되는 조건 하에서, 모재에 크롬 원자를 아크 이온 플레이팅 방식으로 증착하고 지르코늄(Zr) 원자를 스퍼터링 방식으로 증착하여 크롬, 크롬 질화물 및 지르코늄(Zr) 혼합물의 박막을 형성하는 제2단계를 포함하고, 제2단계는, 지르코늄(Zr)의 비율이 3.5~4.5at%인 박막을 형성하는 것이 바람직하다.A first step of depositing chromium (Cr) atoms on a base material by an arc ion plating method to form a thin film of a mixture of chromium (Cr) and chromium nitride (CrN, Cr2N) under a nitrogen (N2) Chromium nitride and zirconium (Zr) mixture are deposited by depositing chromium atoms on the base material by arc ion plating method and depositing zirconium (Zr) atoms by a sputtering method under the condition that the nitrogen (N 2) gas and the argon (Ar) And a second step of forming a thin film having a ratio of zirconium (Zr) of 3.5 to 4.5 at%.

도 4 및 도 6에 도시된 바와 같이, 지르코늄의 함량에 따라 윤활 마찰계수와 경도가 변화하는 것을 알 수 있다. 지르코늄이 증가하면 박막의 경도는 상승하고, 윤활 마찰계수는 점차 감소된다. 그러나 지르코늄의 함량이 4.5at% 이상으로 높아질 경우에는 다시 윤활 마찰계수가 상승하게 된다.As shown in FIGS. 4 and 6, it can be seen that the lubricating coefficient and hardness vary depending on the content of zirconium. As the zirconium increases, the hardness of the thin film increases, and the coefficient of lubricant friction decreases gradually. However, when the content of zirconium is increased to more than 4.5 at%, the lubrication friction coefficient again rises.

이는 지르코늄의 함량에 따라 표면 조도, 즉 거칠기가 변화하기 때문이다. 거칠기가 감소할수록 마찰이 감소하므로 윤활성이 향상된다. 이렇게 거칠기가 감소하는 것은, 지르코늄이 결정립을 미세화하는 역할을 수행하기 때문이다. 그러나 지르코늄을 과다하게 첨가할 경우, 다시 결정립의 크기가 커지면서 윤활성이 저하되기 때문에 지르코늄의 함량을 3.5~4.5at%로 제한하는 것이다.This is because the surface roughness, that is, the roughness, changes depending on the content of zirconium. As the roughness decreases, the friction decreases and the lubricity improves. This decrease in roughness is due to the fact that zirconium serves to refine the crystal grains. However, when zirconium is added in an excess amount, the content of zirconium is limited to 3.5 to 4.5 at% because the size of crystal grains is increased and the lubricity is lowered again.

CrN 합성 유도 및 높은 증착률을 위해 크롬의 증착에는 아크 이온 플레이팅 방식을 이용하고, 정확한 원자비를 첨가할 수 있도록 지르코늄의 증착에는 스퍼터 방식을 이용하는 것이 바람직하다.It is preferable to use arc ion plating method for deposition of chromium for the induction of CrN synthesis and high deposition rate, and to use a sputtering method for deposition of zirconium so that accurate atomic ratio can be added.

표 1에 본 발명의 지르코늄의 함량에 따른 마찰계수, 경도, 조도의 변화가 보다 상세히 나타나 있고, 표 2에 본 발명의 일 실시예에 따른 공정 조건이 나타나 있다.Table 1 shows changes in friction coefficient, hardness, and roughness according to the content of zirconium of the present invention in more detail, and Table 2 shows process conditions according to an embodiment of the present invention.

Zr 함량 (at%)Zr content (at%) 마찰friction
계수Coefficient
경도 (Gpa)Hardness (Gpa) 거칠기 Ra(um)Roughness Ra (um)
3.03.0 0.0350.035 33.633.6 0.090.09 3.13.1 0.0350.035 33.633.6 0.100.10 3.23.2 0.0360.036 33.833.8 0.090.09 3.33.3 0.0340.034 33.933.9 0.080.08 3.43.4 0.0350.035 34.034.0 0.090.09 3.53.5 0.0300.030 34.034.0 0.060.06 3.63.6 0.0290.029 34.134.1 0.050.05 3.73.7 0.0300.030 34.234.2 0.050.05 3.83.8 0.0300.030 34.234.2 0.060.06 3.93.9 0.0310.031 34.334.3 0.060.06 4.04.0 0.0300.030 34.434.4 0.060.06 4.14.1 0.0300.030 34.434.4 0.050.05 4.24.2 0.0290.029 34.434.4 0.060.06 4.34.3 0.0300.030 34.534.5 0.050.05 4.44.4 0.0290.029 34.534.5 0.060.06 4.54.5 0.0300.030 34.634.6 0.060.06 4.64.6 0.0350.035 34.634.6 0.090.09 4.74.7 0.0360.036 34.634.6 0.090.09 4.84.8 0.0350.035 34.734.7 0.080.08 4.94.9 0.0350.035 34.734.7 0.090.09 5.05.0 0.0360.036 34.834.8 0.080.08

공정 인자Process factor 아크 파워Arc power 스퍼터 파워Sputter power 공정 압력Process pressure 질소:아르곤 비율Nitrogen: argon ratio 조건 범위Condition range 150A150A 1.9~2.1A1.9 to 2.1 A 20 mTorr20 mTorr 1:11: 1

제1단계는, 크롬 질화물 박막의 두께를 0.1mm 이하로 형성시키는 것이 바람직하다.In the first step, the thickness of the chromium nitride thin film is preferably 0.1 mm or less.

크롬 질화물 박막은, 크롬 지르코늄 질화물(Cr-Zn-N) 박막과 모재의 격자상수 차이를 감소시킴으로써 접합 강도를 향상시키기 위한 것이다. 단, 크롬 질화물 박막의 두께가 지나치게 두꺼워질 경우, 모재와의 팽창율 및 강도 차이에 의한 균열이나 깨짐 등의 문제가 발생할 수 있기 때문에, 그 두께를 0.1mm 이하로 제한하는 것이다.The chromium nitride thin film is intended to improve the bonding strength by reducing the lattice constant difference between the chromium zirconium nitride (Cr-Zn-N) thin film and the base metal. However, when the thickness of the chromium nitride thin film is excessively increased, cracking or cracking may occur due to the expansion ratio and the difference in strength with the base material, so that the thickness is limited to 0.1 mm or less.

제1단계 및 제2단계 중에 형성되는 박막에 포함된 크롬(Cr):질소(N)의 비율은, At% 기준으로, 3:2~2:3인 것이 바람직하다.The ratio of chromium (Cr): nitrogen (N) contained in the thin film formed in the first step and the second step is preferably 3: 2 to 2: 3 on the basis of At%.

상기 비율에 따르면 크롬(Cr)과 크롬 질화물(CrN, Cr2N)의 복합상이 형성되어 경도가 상승하며, 결정립이 미세화되어 마찰계수가 낮아지는 것이다.According to the ratio, a composite phase of chromium (Cr) and chromium nitride (CrN, Cr 2 N) is formed to increase the hardness, and the crystal grains become finer and the coefficient of friction becomes lower.

도 5에 도시된 바와 같이, 크롬:질소의 비율이 50:50일 때 가장 높은 경도와 가장 난은 마찰계수를 나타낸다. 따라서, 경도가 30GPa 이상, 마찰계수가 0.04 이하를 만족하는 비율인 3:2~2:3로 크롬과 질소의 비율을 제한하는 것이다.As shown in FIG. 5, when the ratio of chromium: nitrogen is 50:50, the highest hardness and the highest hardness exhibit a coefficient of friction. Therefore, the ratio of chromium and nitrogen is limited to 3: 2 to 2: 3, which is a ratio satisfying a hardness of 30 GPa or more and a friction coefficient of 0.04 or less.

제1단계 및 제2단계 중에 형성되는 박막의 결정립의 크기는, 20nm 이하인 것이 바람직하다.The size of the crystal grains of the thin film formed in the first and second steps is preferably 20 nm or less.

상술한대로, 결정립의 크기가 작아질수록 마찰계수가 감소하기 때문에, 본 발명의 낮은 마찰계수를 만족하기 위해 결정립의 크기를 20nm 이하로 제한하는 것이다. 결정립의 크기가 20nm를 초과할 경우 마찰계수가 지나치게 높아지게 된다.As described above, since the friction coefficient decreases as the grain size decreases, the grain size is limited to 20 nm or less in order to satisfy the low friction coefficient of the present invention. When the grain size exceeds 20 nm, the coefficient of friction becomes excessively high.

제1단계 이전에, 챔버 내부에 모재를 설치하여 진공을 형성시키고, 모재를 300℃이상에서 40분 이상 가열한 후, 모재의 표면을 20분 이상 식각하는 준비단계를 더 포함하는 것을 특징으로 한다.The method further comprises a step of preparing a vacuum chamber by providing a base material in the chamber and etching the surface of the base material for at least 20 minutes after heating the base material at 300 DEG C or more for 40 minutes or more .

진공을 형성시키기 위해, 로타리 펌프를 이용해 챔버 압력을 10-3Torr까지 감압시킨 후, TMP(Turbo Molecular Pump)를 통해 최종적으로 5X10-5Torr까지 감압하여 진공도를 유지시킨다.In order to form a vacuum, the chamber pressure is reduced to 10 -3 Torr by using a rotary pump, and then the pressure is reduced to 5 × 10 -5 Torr through a TMP (Turbo Molecular Pump) to maintain the degree of vacuum.

가열하는 과정에서는, 모재의 표면과 내부의 온도 차이를 최소화하기 위해 고온 분위기를 긴 시간 유지할 필요가 있다. 이러한 가열을 통해 질소와 크롬이 반응하여 크롬 질화물을 형성시키는데 도움을 줄 수 있다.In the heating process, it is necessary to maintain the high temperature atmosphere for a long time in order to minimize the temperature difference between the surface and the inside of the base material. Through this heating, nitrogen and chromium can react to form chromium nitride.

모재를 챔버 내부에 설치하기 전에 초음파 세척기를 이용하여 에탄올과 아세톤으로 클리닝한 후, 챔버에 설치한 후에는 이온건을 이용하여 20분 이상 표면을 식각 클리닝하여 모재 표면에 존재하는 이물질을 최대한 제거한다.Before the base material is installed in the chamber, it is cleaned with ethanol and acetone using an ultrasonic cleaner. After the substrate is installed in the chamber, the surface is etched and cleaned for 20 minutes or more using an ion gun to remove the foreign substances present on the surface of the base material .

이러한 코팅이 사용되는 모재는 엔진 구동 부품인 것이 바람직하다.The base material in which such a coating is used is preferably an engine driven component.

고온에 항상 노출되는 엔진 구동용 부품의 특성상, 본 발명과 같이 고온에서 윤활 특성을 유지할 수 있는 코팅재가 필요한 것이다.A coating material capable of maintaining lubrication characteristics at a high temperature as in the present invention is required because of the characteristics of the engine driving parts which are always exposed to high temperatures.

이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, You will understand.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .

Claims (6)

질소(N2) 가스가 유입되는 조건 하에서, 모재에 크롬(Cr)원자를 아크 이온 플레이팅 방식으로 증착하여 크롬(Cr) 및 크롬 질화물(CrN, Cr2N) 혼합물의 박막을 형성하는 제1단계; 및
질소(N2) 가스와 아르곤(Ar) 가스가 유입되는 조건 하에서, 상기 모재에 크롬 원자를 아크 이온 플레이팅 방식으로 증착하고 지르코늄(Zr) 원자를 스퍼터링 방식으로 증착하여 크롬, 크롬 질화물 및 지르코늄(Zr) 혼합물의 박막을 형성하는 제2단계; 를 포함하고,
상기 제2단계는, 지르코늄(Zr)의 비율이 3.5~4.5at%인 박막을 형성하는 것을 특징으로 하는, 금속 부품 코팅 방법.
(Cr) and a chromium nitride (CrN, Cr 2 N) mixture by depositing chromium (Cr) atoms on the base material by an arc ion plating method under the condition that nitrogen (N 2 ) step; And
Chromium atoms are deposited on the base material by arc ion plating and zirconium (Zr) atoms are deposited by sputtering under the condition that the nitrogen (N 2 ) gas and the argon (Ar) gas are introduced into the base material to form chromium, chromium nitride, and zirconium A second step of forming a thin film of the Zr) mixture; Lt; / RTI >
Wherein the second step forms a thin film having a ratio of zirconium (Zr) of 3.5 to 4.5 at%.
청구항 1에 있어서,
상기 제1단계는, 상기 크롬 질화물 박막의 두께를 0.1mm 이하로 형성시키는 것을 특징으로 하는, 금속 부품 코팅 방법.
The method according to claim 1,
Wherein the first step comprises forming the chromium nitride thin film to a thickness of 0.1 mm or less.
청구항 1에 있어서,
상기 제1단계 및 제2단계 중에 형성되는 박막에 포함된 크롬(Cr):질소(N)의 비율은, At% 기준으로, 3:2~2:3인 것을 특징으로 하는, 금속 부품 코팅 방법.
The method according to claim 1,
Wherein the ratio of chromium (Cr): nitrogen (N) contained in the thin film formed in the first step and the second step is 3: 2 to 2: 3 on the basis of At% .
청구항 1에 있어서,
상기 제1단계 및 제2단계 중에 형성되는 박막의 결정립의 크기는, 20nm 이하인 것을 특징으로 하는, 금속 부품 코팅 방법.
The method according to claim 1,
Wherein the size of the crystal grains of the thin film formed in the first step and the second step is 20 nm or less.
청구항 1에 있어서,
상기 제1단계 이전에, 챔버 내부에 상기 모재를 설치하여 진공을 형성시키고, 상기 모재를 300℃이상에서 40분 이상 가열한 후, 상기 모재의 표면을 20분 이상 식각하는 준비단계를 더 포함하는 것을 특징으로 하는, 금속 부품 코팅 방법.
The method according to claim 1,
Further comprising the step of preparing a vacuum by providing the base material in the chamber before the first step and heating the base material at 300 DEG C or more for 40 minutes or more and then etching the surface of the base material for 20 minutes or more ≪ / RTI >
청구항 1 내지 청구항 5 중 어느 한 항에 있어서,
상기 모재는 엔진 구동 부품인 것을 특징으로 하는, 금속 부품 코팅 방법.
The method according to any one of claims 1 to 5,
Wherein the base material is an engine driven part.
KR1020140176178A 2014-12-09 2014-12-09 Coating method for engine moving parts KR101664615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140176178A KR101664615B1 (en) 2014-12-09 2014-12-09 Coating method for engine moving parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140176178A KR101664615B1 (en) 2014-12-09 2014-12-09 Coating method for engine moving parts

Publications (2)

Publication Number Publication Date
KR20160070308A true KR20160070308A (en) 2016-06-20
KR101664615B1 KR101664615B1 (en) 2016-10-12

Family

ID=56354166

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140176178A KR101664615B1 (en) 2014-12-09 2014-12-09 Coating method for engine moving parts

Country Status (1)

Country Link
KR (1) KR101664615B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578821A (en) * 1991-09-20 1993-03-30 Teikoku Piston Ring Co Ltd Piston ring and its manufacture
KR100762198B1 (en) * 2006-03-24 2007-10-04 이상율 Coating material and thereof coating method with superhard and high lubrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578821A (en) * 1991-09-20 1993-03-30 Teikoku Piston Ring Co Ltd Piston ring and its manufacture
KR100762198B1 (en) * 2006-03-24 2007-10-04 이상율 Coating material and thereof coating method with superhard and high lubrication

Also Published As

Publication number Publication date
KR101664615B1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
EP2316983B1 (en) Nitrogen-containing amorphous carbon and amorphous carbon layered film, and sliding member
KR101823893B1 (en) Coating material for exhaust system and the method for manufacturing thereof
WO2004076710A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
JP2007119907A (en) Wear-resistant coating, and its manufacturing method
EP3330579B1 (en) Piston ring and manufacturing method thereof
JP4359979B2 (en) Covered sliding member
JP2008001951A (en) Diamond-like carbon film and method for forming the same
TW201236876A (en) Vacuum depositing articles and method for making same
KR102576846B1 (en) Wear and/or friction reduction using molybdenum nitride based coatings
CN102286723A (en) Surface wear-resistance coating applied to automobile high-alloy steel movement friction pair
EP3163130B1 (en) Piston ring
KR101632345B1 (en) Dlc coating film and coated valve lifter
JP2009035584A (en) Sliding member
KR20230082022A (en) Hard carbon coating with improved adhesion by HiPIMS and manufacturing method thereof
US20150284843A1 (en) Coating layer of zirconium composite material and method of forming coating layer
KR20130091611A (en) Surface treatment method for coating layer
KR101673712B1 (en) Coating material for sliding part of vehicle and coating method thereof
KR101664615B1 (en) Coating method for engine moving parts
KR20130105086A (en) Piston ring for engine
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
CN105648410A (en) Titanium nitride/titanium carbide coating, preparation method thereof and coated part with titanium nitride/titanium carbide coating
KR20150118665A (en) Coating material having improved mechanical properties and low friction for sliding part of vehicle and coating method thereof
JP2001107220A (en) Machine parts coated with hard carbon film and its production method
JP6756641B2 (en) piston ring
KR101354433B1 (en) The thin film and method for manufacturing thin film containing fluorine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant