KR20160068399A - Thermal control system of the battery module - Google Patents

Thermal control system of the battery module Download PDF

Info

Publication number
KR20160068399A
KR20160068399A KR1020140174074A KR20140174074A KR20160068399A KR 20160068399 A KR20160068399 A KR 20160068399A KR 1020140174074 A KR1020140174074 A KR 1020140174074A KR 20140174074 A KR20140174074 A KR 20140174074A KR 20160068399 A KR20160068399 A KR 20160068399A
Authority
KR
South Korea
Prior art keywords
composite material
heat
battery
battery module
carbon fiber
Prior art date
Application number
KR1020140174074A
Other languages
Korean (ko)
Other versions
KR101637765B1 (en
Inventor
추인창
송경화
이한샘
노수정
서정훈
김경복
여인웅
곽진우
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020140174074A priority Critical patent/KR101637765B1/en
Publication of KR20160068399A publication Critical patent/KR20160068399A/en
Application granted granted Critical
Publication of KR101637765B1 publication Critical patent/KR101637765B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention relates to a thermal control system for a battery module. The thermal control system for a battery module comprises: a battery module in which a plurality of battery cells are disposed so that front surfaces thereof come into contact with each other and are connected in series; and a radiating and heating device which is provided in the battery module to cool or heat the battery cells. The radiating and heating device comprises a thermally conductive composite material disposed between the battery cells. According to the thermal control system, heat is radiated when power is applied to the thermal conductive composite material, thereby improving battery preheating performance, and thermal conductivity is improved via carbon fiber in a direction in which the carbon fiber is contained, thereby also improving cooling performance.

Description

배터리 모듈의 열제어 시스템{Thermal control system of the battery module}[0001] Thermal control system of the battery module [0002]

본 발명은 배터리 모듈의 열제어 시스템에 관한 것으로, 더욱 상세하게는 엘라스토머 소재를 사용하여 배터리 셀과의 계면 접촉을 극대화하고, 카본파이버를 통하여 수평방향 열전전도도를 향상시키는 복합소재가 구비된 배터리 모듈의 열제어 시스템에 관한 것이다.
The present invention relates to a thermal control system for a battery module, and more particularly, to a battery module having a battery module having a composite material for maximizing interfacial contact with a battery cell using an elastomeric material and improving horizontal heat conductivity through a carbon fiber To a thermal control system.

지구 온난화에 따른 유해 물질 방출 억제 등의 사회적 이슈로 인해 친환경차에 대한 관심이 증가하고 있다. 이러한 상황에서, 친환경차의 엔진이라고 할 수 있는 배터리 성능 최적화는 미래 자동차의 성능을 가늠하는 중요한 요소이고, 배터리 구동에 있어서 최적의 환경을 유지하는 것은, 친환경차의 성능을 향상시킬 수 있는 중요한 요소라 할 수 있다.Due to social issues such as the emission of harmful substances due to global warming, interest in environmentally friendly cars is increasing. In this situation, optimizing the battery performance, which is the engine of the environmentally friendly car, is an important factor for the performance of the future car. Maintaining the optimum environment for battery operation is an important factor that can improve the performance of the environmentally friendly car .

전기자동차의 경우 배터리 시스템의 신뢰성과 안정성이 전기자동차의 상품성을 결정짓는 가장 중요한 요소로 작용함에 따라 다양한 외부 온도의 변화에 따른 배터리 성능 저하 방지를 위해 배터리 시스템의 적정 온도 범위인 섭씨 35도 내지 섭씨 40도를 유지해야 하며, 이를 위해서는 일반적인 기후 조건에서는 우수한 방열 성능을 지니면서도 낮은 온도 환경에서는 적정 온도를 유지할 수 있는 파우치 셀 모듈용 열 제어 시스템이 필요하다.In the case of an electric vehicle, reliability and stability of the battery system are the most important factors that determine the commerciality of the electric vehicle. Therefore, in order to prevent battery performance deterioration due to various external temperature changes, the temperature range of the battery system, It is necessary to maintain a temperature of 40 ° C. In order to achieve this, a thermal control system for a pouch cell module capable of maintaining a proper temperature in a low temperature environment while having excellent heat radiation performance under a normal climatic condition is required.

플러그인 하이브리드 차량 또는 전기자동차의 경우 영하의 온도에서 배터리 성능을 최적의 상태로 유지하기가 어려운 상황이며, 이러한 성능 저하로 인해 연비에 심각한 저하를 초래할 수 있다.In plug-in hybrid vehicles or electric vehicles, it is difficult to maintain optimum battery performance at sub-zero temperatures, and this degradation can seriously degrade fuel economy.

그러므로, 초기 배터리 성능 발현시 배터리 성능을 극대화될 수 있도록, 배터리를 냉각 또는 예열하는 장치가 친환경차량 즉 플러그인 하이브리드 차량 또는 전기자동차에 구비되는 것이 바람직하다. 특히, 배터리를 예열하는 장치가 구비됨으로써, 극한의 환경 조건에서 냉시동에 대한 어려움을 극복할 수 있는, 냉시동 성능이 개선된다.
Therefore, it is preferable that an apparatus for cooling or preheating the battery is provided in an environmentally friendly vehicle, that is, a plug-in hybrid vehicle or an electric vehicle, so as to maximize battery performance in the initial battery performance. In particular, by providing a device for preheating the battery, the cold start performance is improved, which can overcome the difficulties of cold start in extreme environmental conditions.

대한민국 등록특허공보 제10-0353766호(2002.09.10.)Korean Registered Patent No. 10-0353766 (September 10, 2002)

이에 상기와 같은 점을 감안하여 발명된 본 발명의 목적은, 방열특성 및 발열특성을 동시에 구현가능한 배터리 모듈의 열제어 시스템을 제공하는 것이다.
SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a thermal control system for a battery module capable of simultaneously realizing heat radiation characteristics and heat generation characteristics.

위와 같은 목적을 달성하기 위하여 본 발명의 일실시예의 배터리 모듈의 열제어 시스템은, 다수개의 배터리 셀이 장면이 접하도록 배치되고, 직렬로 연결된 배터리 모듈과, 배터리 셀을 냉각 또는 승온 시키도록 배터리 모듈에 구비된 방열 및 발열장치를 포함하며, 방열 및 발열장치는, 배터리 셀 사이에 장착된 열전도성 복합소재를 포함한다. According to an aspect of the present invention, there is provided a thermal control system for a battery module, comprising: a battery module having a plurality of battery cells arranged in contact with a scene and connected in series; And the heat dissipating and heating device includes a thermally conductive composite material mounted between the battery cells.

또한, 열전도성 복합소재는, 복합소재의 몸체를 이루는 탄성력을 갖는 고분자 매트릭스와, 매트릭스에 함유되고, 전하 공급시 발열하는 필러 및, 복합소재에 내장된 방향으로 열전도도를 향상시키는 카본파이버(CARBON FIBER)를 포함할 수 있다.
In addition, the thermally conductive composite material is composed of a polymer matrix having an elastic force constituting the body of the composite material, a filler contained in the matrix and generating heat upon charge supply, and a carbon fiber for improving thermal conductivity in a direction embedded in the composite material FIBER).

위와 같은 본 발명의 배터리 모듈의 열제어 시스템에 따르면, 열전도성 복합소재에 전원을 인가할 때 열을 방출하므로, 배터리 예열 성능이 향상되고, 카본파이버를 통해 카본파이버가 내장된 방향으로 열전도도를 향상시키므로, 냉각성능 또한 향상되는 효과가 있다.According to the thermal control system of the battery module of the present invention, since the heat is released when the power is applied to the thermally conductive composite material, the battery preheating performance is improved and the thermal conductivity in the direction in which the carbon fiber is embedded through the carbon fiber So that the cooling performance is also improved.

또한, 열전도성 복합소재를 통해 배터리 냉각 및 예열이 구현되므로, 구성이 간단하다.In addition, since the battery is cooled and preheated through the thermally conductive composite material, the configuration is simple.

또한, 열전도성 복합소재는 용융온도에서 절연이 발생되는 PTC효과를 가지므로, 배터리에 가해지는 최대온도를 적정치로 조절할 수 있는 효과가 있다.Further, since the thermoconductive composite material has the PTC effect in which insulation is generated at the melting temperature, the maximum temperature applied to the battery can be adjusted to a desired value.

또한, 열전도성 복합소재에 탄성력을 갖는 고분자 매트릭스가 포함되므로, 열전도성 복합소재와 배터리 사이에 공극 발생이 방지되고, 열전달 면적이 최대화된다.
Further, since the thermally conductive composite material includes the polymer matrix having an elastic force, generation of voids between the thermally conductive composite material and the battery is prevented, and the heat transfer area is maximized.

도 1은 본 발명의 일실시예의 배터리 모듈의 열제어 시스템의 요부 사시도,
도 2는 도 1의 배터리 모듈의 열제어 시스템의 요부 단면도,
도 3은 도 1의 배터리 모듈의 열제어 시스템에 구비된 복합소재의 확대 사진,
도 4는 도 1의 배터리 모듈의 열제어 시스템에 구비된 복합소재의 개요도,
도 5는 도 1의 배터리 모듈의 열제어 시스템에 복합소재가 미장착된 경우와 장착된 경우의 열전도 예시도 및 복합소재의 발열 특성 평가 결과,
도 6은 복합소재에 포함되는 물질의 조성비에 따른 평균열전도도 등고선도,
도 7은 복합소재에 포함되는 물질의 조성비에 따른 평균승온온도 등고선도,
도 8은 복합소재의 승온시 온도변화를 나타내는 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a main part perspective view of a thermal control system of a battery module of an embodiment of the present invention,
2 is a partial sectional view of a thermal control system of the battery module of Fig. 1,
FIG. 3 is an enlarged view of a composite material provided in the thermal control system of the battery module of FIG. 1,
FIG. 4 is an outline view of a composite material provided in the thermal control system of the battery module of FIG. 1;
FIG. 5 is a graph showing the thermal conductivity of the battery module of FIG. 1 when the composite material is not attached to the thermal control system of the battery module of FIG. 1,
FIG. 6 is a graph showing average thermal conductivity contour lines according to composition ratios of materials included in a composite material,
FIG. 7 is a graph showing average temperature rising temperature contours according to composition ratios of materials included in composite materials,
8 is a graph showing a temperature change at the time of temperature rise of the composite material.

본 발명의 실시에를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 5에 도시된 바와 같이, 본 발명의 배터리 모듈의 열제어 시스템은, 다수개의 배터리 셀(100)이 장면이 접하도록 배치되고, 직렬로 연결된 배터리 모듈(200)과, 배터리 셀(100)을 냉각 또는 승온 시키도록 상기 배터리 모듈(200)에 구비된 방열 및 발열장치(300)를 포함하며, 방열 및 발열장치(300)는, 배터리 셀(100) 사이에 장착된 열전도성 복합소재(310)를 포함한다. 1 to 5, a thermal control system for a battery module according to the present invention includes a battery module 200 having a plurality of battery cells 100 arranged in contact with a scene and connected in series, And a heat dissipating and heating device 300 provided in the battery module 200 to cool or heat the battery module 100. The heat dissipating and heating device 300 includes a heat conductive composite material Gt; 310 < / RTI >

방열 및 발열장치(300)는, 복합소재(310)에 전원을 인가할 수 있도록 복합소재(310)에 구비된 전극을 포함한다. 방열 및 발열장치(300)는, 복합소재(310)와 히트파이프(320)를 통해 연결된 히트싱크(330)를 포함한다. 배터리 모듈(200)에는, 히트싱크(330)가 수용되고, 외부공기가 유입되는 열교환공간(210)이 형성된다. The heat dissipating and heating device 300 includes electrodes provided in the composite material 310 so as to apply power to the composite material 310. The heat dissipating and heating device 300 includes a heat sink 330 connected to the composite material 310 through the heat pipe 320. The heat sink 330 is accommodated in the battery module 200, and a heat exchange space 210 into which external air flows is formed.

복합소재(310)는, 복합소재(310)의 몸체를 이루는 고분자 매트릭스(311)와, 매트릭스(311)에 함유되고, 열전도도를 가지며, 전하 공급시 발열하는 필러(312) 및, 복합소재(310)에 내장된 방향으로 열전도도를 향상시키는 카본파이버(313; CARBON FIBER)를 포함한다. The composite material 310 includes a polymer matrix 311 constituting the body of the composite material 310 and a filler 312 contained in the matrix 311 and having heat conductivity and generating heat upon charge supply, And a carbon fiber 313 (CARBON FIBER) which improves the thermal conductivity in a direction embedded in the carbon fibers 310.

매트릭스(311)는, TPE(열가소성 탄성체; THERMOPLASTIC ELASTOMER) 소재 중, 크라톤(KRATON) 또는 비스타막스(VISTAMAXX)이 사용된다. 필러(312)는, EGG(팽창흑연; EXPANDED GRAPHITE GRANULE)가 사용된다. As the matrix 311, KRATON or VISTAMAXX is used among TPE (Thermoplastic Elastomer) materials. As the filler 312, EGG (expanded graphite) is used.

위와 같이 구성되는 본 발명의 배터리 모듈(200)의 열제어 시스템은, 열가소성 탄성체를 매트릭스(311)로 사용함으로써, 배터리와의 면착력이 증대된다. 열패스(열이동 궤적)를 효과적으로 형성할 수 있는 판산형 탄소계 필러(312) 즉, EGG를 기반으로 복합소재(310)를 제작하게 되므로, 열전도도가 향상된다. In the thermal control system of the battery module 200 of the present invention configured as described above, the use of the thermoplastic elastic body as the matrix 311 increases the surface bonding force with the battery. The composite material 310 is manufactured on the basis of the plate-shaped carbon-based filler 312, that is, the EGG, which can effectively form a heat path (heat transfer locus), so that the thermal conductivity is improved.

즉, 본 발명은 열전도도를 가지는 기본 기능성 필러(312) 즉 EGG기반에 카본파이버(313)를 추가적으로 적용함으로써, 열전도도 특성 최적화를 달성할 수 있다. 복합소재(310)를 이루는 매트릭스(311), 필러(312), 카본파이버(313)의 조성비를 달리함으로써, 복합소재(310)의 성형성, 제작 단가, 열전도 및 방열 특성을 목적에 따라 다양화할 수 있다. 다시말해서, 배터리의 냉각 및 예열 뿐만 아니라, 국부 발열 또는 냉각 플라스틱 소재로 사용되는 것이 가능하다.That is, according to the present invention, the thermal conductivity characteristic optimization can be achieved by further applying the basic functional filler 312 having thermal conductivity, that is, the carbon fiber 313 based on EGG. By varying the composition ratio of the matrix 311, the filler 312 and the carbon fiber 313 constituting the composite material 310, the moldability, manufacturing cost, thermal conductivity, and heat radiation characteristics of the composite material 310 can be varied . In other words, it is possible to use it as a local heating or cooling plastic material, as well as to cool and preheat the battery.

본 발명은 복합소재(310) 자체에 PTC(정 특성 온도계수; POSITIVE TEMPERATURE COEFFICIENT)효과를 가지고 있기 때문에 발열 특성 발현시 추가적인 온도 제어 소자를 적용할 필요가 없으며 필러(312) 즉 EGG의 조성비를 달리함으로써, 특정 온도까지 승온온도를 조절할 수 있게 된다. 또한, 카본파이버(313)가 포함됨으로써, 열전도방향을 특정할 수 있게 된다. 다시 말해서, 카본파이버(313)가 배치되는 방향으로 열전도도를 향상시킬 수 있다.Since the composite material 310 itself has a PTC (Positive Temperature Coefficient) effect, it is not necessary to apply an additional temperature control element when the exothermic characteristic is exhibited, and the composition ratio of the filler 312, that is, EGG, The temperature rise temperature can be adjusted to a specific temperature. Further, by including the carbon fibers 313, it becomes possible to specify the direction of heat conduction. In other words, the thermal conductivity can be improved in the direction in which the carbon fibers 313 are disposed.

EGG가 40% 미만의 함량비로 복합소재(310)에 포함되면, 복합소재(310)의 열전도도 특성이 낮아진다. 카본파이버(313)가 다량 함유될 경우, 복합소재(310) 제작비용이 증가되며, 목표로 하는 전도도를 발휘하기 위해서는 다량의 EGG가 함유되어야 할 것으로 예상된다.When the EGG is contained in the composite material 310 at a content ratio of less than 40%, the thermal conductivity characteristic of the composite material 310 is lowered. When the carbon fiber 313 is contained in a large amount, the cost of manufacturing the composite material 310 increases, and it is expected that a large amount of EGG should be contained in order to exhibit the target conductivity.

EGG가 40%의 함유된 경우, 열전도도가 낮고 발열 특성이 미비하다. 크라톤(KRATON) 즉 열가소성 탄성체의 함량이 많아지면 압출 및 사출 성형 등의 성형성에 도움은 되나 열제어 특성은 낮아진다. 카본파이버(313)의 경우 EGG 기반이 아닌 바인더 기반에서는 열제어 특성 발현을 위해 다량의 필러(312)가 함유되어야만 한다.When the content of EGG is 40%, the thermal conductivity is low and the heat generation characteristic is insufficient. If the content of KRATON, that is, thermoplastic elastomer, is large, the moldability such as extrusion and injection molding is improved, but the heat control property is lowered. In the case of the carbon fiber 313, a large amount of filler 312 must be contained in the binder-based material other than the EGG-based material to exhibit thermal control characteristics.

그러므로, 복합소재(310)는, 매트릭스(311)가 35% 내지 57%, 필러(312)가 43% 내지 60%, 카본파이버(313)가 0% 내지 15% 함유되는 것이 바람직하다. 방열 및 열전도 성능을 최대화하기 위해서는 크라톤(KRATON)이 35%, EGG가 55%, 카본파이버(313)가 10% 함량 되는 것이 바람직하다. 이때, 복합소재(310)는, 최대 20W/mK의 열전도도, 최대 섭씨 70도의 발열 온도를 구현할 수 있게 된다. 또한, 복합소재(310) 제작시 성형을 용이하게 하기 위해서는 크라톤(KRATON)이 45%, EGG가 48%, 카본파이버(313)가 7% 함량되는 것이 바람직하다.Therefore, it is preferable that the composite material 310 contains 35% to 57% of the matrix 311, 43% to 60% of the filler 312, and 0% to 15% of the carbon fiber 313. It is preferable that KRATON is 35%, EGG is 55%, and the carbon fiber 313 is 10% in order to maximize heat radiation and heat conduction performance. At this time, the composite material 310 can realize a maximum thermal conductivity of 20 W / mK and a heat generation temperature of 70 degrees Celsius. It is preferable that KRATON is 45%, EGG is 48%, and the carbon fiber 313 is 7% in order to facilitate molding when the composite material 310 is manufactured.

도 6 내지 도 7에는, 복합소재(310)를 이루는 크라톤(KRATON), EGG, 카본파이버(313; CF)의 조합된 영역을 삼각형으로 표시하였으며, 실험계획법(DOE; DESIGN OF EXPERIMENT)을 통해 얻은 결과를 점선 영역으로 표시하였다. 복합소재(310)를 이루는 크라톤(KRATON), EGG, 카본파이버(313; CF)의 조합은 서로 교호작용이 미비한 특성을 갖고 있음을 실험계획법 통계 분석을 통하여 알게 되었다.6 to 7, a combined region of KRATON, EGG, and carbon fiber 313 (CF) composing the composite material 310 is indicated by a triangle, and through DOE (Design of Experience) The obtained results are indicated by dotted lines. The combination of KRATON, EGG, and carbon fiber 313 (CF) composing the composite material 310 has a characteristic that they have little interaction with each other.

도 8에는, 복합소재(310)에 전원을 인가하였을 때, 발생되는 열을 그래프로 도시한 것이다. 외부 환경에 따른 영향을 제거하기 위하여, 환경챔버 내에서 발열실험이 진행되었다. 복합소재(310)를 통하여 발열되는 열이 적정온도에 수렴되는 것을 확인할 수 있다. 이러한 발열특성은, 냉시동 개선용 히터로 응용 가능함은 물론, 향후 친환경차 내장부품에 적용되어 국부 발열 플라스틱 기술 개발의 원천 기술로 활용될 것으로 예상된다. FIG. 8 is a graph showing the heat generated when the composite material 310 is powered. In order to eliminate the influence of the external environment, a heating test was conducted in an environmental chamber. It can be confirmed that heat generated through the composite material 310 is converged to an appropriate temperature. Such heat characteristics are expected to be applied not only as heaters for cold start-up improvement but also as a source technology for the development of local heat-generating plastics technology in the future for eco-friendly interior parts.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various changes and modifications may be made without departing from the scope of the appended claims.

100: 배터리 셀 200: 배터리 모듈
210: 열교환공간 300: 방열 및 발열장치
310: 복합소재 311: 매트릭스
312: 필러 313: 카본파이버
320: 히트파이프 330: 히트싱크
100: battery cell 200: battery module
210: Heat exchange space 300: Heat dissipation and heat generation device
310: composite material 311: matrix
312: filler 313: carbon fiber
320: heat pipe 330: heat sink

Claims (8)

다수개의 배터리 셀이 장면이 접하도록 배치되고, 직렬로 연결된 배터리 모듈;
상기 배터리 셀을 냉각 또는 승온 시키도록 상기 배터리 모듈에 구비된 방열 및 발열장치를 포함하며,
상기 방열 및 발열장치는,
상기 배터리 셀 사이에 장착된 열전도성 복합소재를 포함하는 배터리 모듈의 열제어 시스템.
A plurality of battery cells arranged in contact with the scene, the battery modules being connected in series;
And a heat dissipating and heating device provided in the battery module for cooling or heating the battery cell,
The heat dissipating and heat generating apparatus may include:
And a thermally conductive composite material mounted between the battery cells.
제1항에 있어서,
상기 방열 및 발열장치는,
상기 복합소재에 전원을 인가할 수 있도록 상기 복합소재에 구비된 전극을 포함하는 배터리 모듈의 열제어 시스템.
The method according to claim 1,
The heat dissipating and heat generating apparatus may include:
And an electrode provided in the composite material to apply power to the composite material.
제1항에 있어서,
상기 방열 및 발열장치는,
상기 복합소재와 히트파이프를 통해 연결된 히트싱크를 포함하는 배터리 모듈의 열제어 시스템.
The method according to claim 1,
The heat dissipating and heat generating apparatus may include:
And a heat sink connected to the composite material through a heat pipe.
제3항에 있어서,
상기 배터리 모듈에는,
상기 히트싱크가 수용되고, 외부공기가 유입되는 열교환공간이 형성된 배터리 모듈의 열제어 시스템.
The method of claim 3,
In the battery module,
And a heat exchange space in which the heat sink is accommodated and external air flows is formed.
제1항에 있어서,
상기 복합소재는,
상기 복합소재의 몸체를 이루는 고분자 매트릭스;
상기 매트릭스에 함유되고, 전하 공급시 발열하는 필러; 및
상기 복합소재에 내장된 방향으로 열전도도를 향상시키는 카본파이버(CARBON FIBER)를 포함하는 배터리 모듈의 열제어 시스템.
The method according to claim 1,
In the composite material,
A polymer matrix constituting the body of the composite material;
A filler contained in the matrix and generating heat upon charge supply; And
And a carbon fiber (CARBON FIBER) which improves thermal conductivity in a direction embedded in the composite material.
제5항에 있어서,
상기 매트릭스는,
TPE(열가소성 탄성체; THERMOPLASTIC ELASTOMER) 소재 중, 크라톤(KRATON) 또는 비스타막스(VISTAMAXX)인 배터리 모듈의 열제어 시스템.
6. The method of claim 5,
Wherein the matrix comprises:
Thermal control system for battery modules that are KRATON or VISTAMAXX among TPE (THERMOPLASTIC ELASTOMER) materials.
제5항에 있어서,
상기 필러는,
EGG(팽창흑연; EXPANDED GRAPHITE GRANULE)인 배터리 모듈의 열제어 시스템.
6. The method of claim 5,
The filler
Thermal control system for battery modules with EGG (EXPANDED GRAPHITE GRANULE).
제5항에 있어서,
상기 복합소재는,
상기 매트릭스가 35% 내지 57%,
상기 필러가 43% 내지 60%,
상기 카본파이버가 0% 내지 15% 함유된 배터리 모듈의 열제어 시스템.
6. The method of claim 5,
In the composite material,
Wherein the matrix comprises from 35% to 57%
Wherein the filler comprises 43% to 60%
Wherein the carbon fiber contains 0% to 15% of the carbon fiber.
KR1020140174074A 2014-12-05 2014-12-05 Thermal control system of the battery module KR101637765B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140174074A KR101637765B1 (en) 2014-12-05 2014-12-05 Thermal control system of the battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140174074A KR101637765B1 (en) 2014-12-05 2014-12-05 Thermal control system of the battery module

Publications (2)

Publication Number Publication Date
KR20160068399A true KR20160068399A (en) 2016-06-15
KR101637765B1 KR101637765B1 (en) 2016-07-07

Family

ID=56135105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140174074A KR101637765B1 (en) 2014-12-05 2014-12-05 Thermal control system of the battery module

Country Status (1)

Country Link
KR (1) KR101637765B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013534A (en) * 2019-12-18 2021-06-22 本田技研工业株式会社 Separator and solid battery module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353766B1 (en) 1996-12-30 2002-11-18 기아자동차주식회사 Battery preheating device using engine coolant of hybrid electric automobile
JP2009147187A (en) * 2007-12-17 2009-07-02 Calsonic Kansei Corp Cooling device of heating element
KR20140020376A (en) * 2012-08-07 2014-02-19 현대자동차주식회사 Radiant heat plate for battery cell module and battery cell module having the same
JP2014216313A (en) * 2013-04-26 2014-11-17 現代自動車株式会社 Device for indirectly cooling battery module of eco-friendly vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353766B1 (en) 1996-12-30 2002-11-18 기아자동차주식회사 Battery preheating device using engine coolant of hybrid electric automobile
JP2009147187A (en) * 2007-12-17 2009-07-02 Calsonic Kansei Corp Cooling device of heating element
KR20140020376A (en) * 2012-08-07 2014-02-19 현대자동차주식회사 Radiant heat plate for battery cell module and battery cell module having the same
JP2014216313A (en) * 2013-04-26 2014-11-17 現代自動車株式会社 Device for indirectly cooling battery module of eco-friendly vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013534A (en) * 2019-12-18 2021-06-22 本田技研工业株式会社 Separator and solid battery module
CN113013534B (en) * 2019-12-18 2024-02-02 本田技研工业株式会社 Separator and solid battery module

Also Published As

Publication number Publication date
KR101637765B1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
KR101428383B1 (en) Device for cooling battery module of vehicle
US9748618B2 (en) Battery assembly having a heat-dissipating and heat-emitting functions
JP6234171B2 (en) Battery module
JP6668335B2 (en) Graphite thermoelectric and / or resistive thermal management systems and methods
US9603288B2 (en) Electronic/electrical component housing with strips of metal plate and shape memory material forming a heat transfer path
RU2013103441A (en) ELECTRIC BATTERY COOLING SYSTEM AND A BATTERY WITH SUCH A SYSTEM
KR101470072B1 (en) Heat control plate for battery cell module and battery cell module having the same
US20140287293A1 (en) Temperature control device
KR200461629Y1 (en) Hair drier
KR20200021654A (en) Battery cooling device for vehicle
KR101990107B1 (en) Heat dissipation module and battery pack for electric vehicle using the same
KR101684008B1 (en) Interface plate for indirect-cooling-typed battery module and its manufacturing method
KR20150085310A (en) Battery Module With A Cell Can Be Warmed Up
KR101637765B1 (en) Thermal control system of the battery module
JP2012243446A (en) Battery pack
JP6381866B2 (en) Method for controlling / changing the temperature of the body structure of an electric vehicle or a hybrid vehicle, the vehicle and the cabin of the vehicle
CN207602730U (en) Water-cooled module
KR101163448B1 (en) A free heater apparatus for automobile rear seat
CN106299546A (en) A kind of graphene battery heat management device
KR101670021B1 (en) The battery module Heating units
KR101960773B1 (en) PTC Heater
KR101553593B1 (en) Heat-emitting heater of urea water solution
KR20130075205A (en) Device for radiating heat of the heating element
KR101462978B1 (en) A heater for vehicles
KR101946600B1 (en) PTC Heater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 4