KR20160064315A - Analysis method of organic matters for developing water quality parameter in wastewater reuse - Google Patents

Analysis method of organic matters for developing water quality parameter in wastewater reuse Download PDF

Info

Publication number
KR20160064315A
KR20160064315A KR1020140167374A KR20140167374A KR20160064315A KR 20160064315 A KR20160064315 A KR 20160064315A KR 1020140167374 A KR1020140167374 A KR 1020140167374A KR 20140167374 A KR20140167374 A KR 20140167374A KR 20160064315 A KR20160064315 A KR 20160064315A
Authority
KR
South Korea
Prior art keywords
organic material
liquid chromatography
organic
sample
chromatography system
Prior art date
Application number
KR1020140167374A
Other languages
Korean (ko)
Other versions
KR101634457B1 (en
Inventor
조재원
박종관
전경미
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020140167374A priority Critical patent/KR101634457B1/en
Publication of KR20160064315A publication Critical patent/KR20160064315A/en
Application granted granted Critical
Publication of KR101634457B1 publication Critical patent/KR101634457B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention provides a new organic material analysis method which precisely analyzes an organic material by using a preparative liquid chromatography and a pyrolysis gas chromatography mass spectroscopy. The organic material analysis method includes the steps of: experimenting relation between dissolved organic carbon (DOC) and absorbance (UV) of an organic material sample by using a liquid chromatography system; experimenting resolving power of each molecular weight of the sample used by the experimenting step; experimenting a flow velocity of the preprocessing liquid chromatography system by injecting the organic material sample of the experimenting step; measuring a recovery ratio by injecting an organic material sample into the preprocessing liquid chromatography system used in the step; analyzing input water and output water of constructed wetlands through the result of the step; and confirming a property of an organic material by using the pyrolysis gas chromatography mass spectroscopy connected to a thermal decomposition apparatus.

Description

하수 재이용수를 위한 수질인자 개발용 유기물 분석 방법{Analysis method of organic matters for developing water quality parameter in wastewater reuse}Technical Field [0001] The present invention relates to an organic matter analysis method for developing a water quality factor for sewage reuse water,

본 발명은 하수 재이용수를 위한 수질인자 개발용 유기물 분석 방법에 관한 것이다. 더욱 상세하게는 전처리용 액체 크로마토그래피(preparative liquid chromatography)와 열분해 장치를 연결한 가스크로마토그래피 질량 분석기(pyrolysis-gas chromatography mass spectroscopy)를 사용하여 처리된 하수 내의 유기물을 정밀 분석하는 방법에 관한 것이다.
The present invention relates to a method for analyzing an organic matter for developing a water quality factor for sewage reused water. More particularly, the present invention relates to a method for precisely analyzing organic matter in treated sewage by using pyrolysis-gas chromatography mass spectroscopy coupled with a preparative liquid chromatography and a pyrolysis apparatus.

고속액체 크로마토그래피(HPLC)는 1967년 Huber가 시스템을 개발한 이후로 꾸준하게 개발되었다(Huber, J.K.F., and Hulsman, J. A., A study of liquid chromatography in columns, Anal . Chem . 38:305, 1967). High-performance liquid chromatography (HPLC) has been steadily developed since Huber developed the system in 1967 (Huber, JKF, and Hulsman, JA, A study of liquid chromatography in columns, Anal . Chem . 38: 305, 1967).

전처리용 액체 크로마토그래피는 시료중의 복합성분을 크로마토그래피를 이용하여 단일 성분으로 분리한 후 원하는 성분을 높은 순도와 수율로 제조하여 구조를 확인하고 표준품을 제조하거나 제품을 양산하는데 사용된다.Liquid chromatography for pretreatment is used to separate a complex component in a sample into a single component by chromatography and then to produce a desired component in high purity and yield to confirm the structure and to manufacture a standard product or to mass-produce a product.

수중 유기화합물의 특성은 수질 정화 시스템에서 매우 중요한 역할을 한다. 천연 유기 물질(NOM)은 자연에 의해 부패되거나, 생물 또는 미생물 분해과정에 의하여 생성된 다양한 유기 물질인 소독 부산물(DBP)을 생성하며(D.M. White et al., Natural Organic Matter and DBP Formation Potenatial in Alaskan Water Supplies, Water Res., vol. 37:939-947, 2003), 막의 오염을 일으키기도 한다(Lee S et al ., Combined influence of natural organic matter and colloid particles on nanofiltration membrane fouling. J. Membr. Sci. 262:2741, 2005). Characteristics of aquatic organic compounds play an important role in water purification systems. Natural organic materials (NOM) produce disinfection byproducts (DBP), which are various organic materials that are decayed by nature or produced by biological or microbial degradation processes (DM White et al ., Natural Organic Matter and DBP Formation Potential in Alaskan Water Supplies, Water Res., vol. 37: 939-947, 2003), causing membrane contamination (Lee S meat al ., Combined influence of natural organic matter and colloid particles on nanofiltration membrane fouling. J. Membr. Sci. 262: 2741, 2005).

따라서, 수중 유기물의 연구는 수질 정화 및 관리 시스템 개선에 유용한 정보를 제공 할 수 있다. 유기물의 특성은 1980 년대부터 연구되어 왔지만, 유기물에 대한 분석 방법은 TOC 측정, 254 nm에서의 UV를 이용한 흡광도 측정 및 HPLC에 의한 분자량 크기에 따른 분포 조사 등으로 지금과 비교해 크게 달라지지 않았다. 그러나 이러한 분석 방법으로는 유기물을 각 특성에 따라 정밀 분석하는데 어려움이 있다.Thus, the study of aquatic organisms can provide useful information to improve water quality management and management systems. The characteristics of organic materials have been studied since the 1980s, but the analytical methods for organic substances have not changed much compared to now, such as TOC measurement, absorbance measurement using UV at 254 nm, and molecular weight distribution by HPLC. However, this method has difficulties in analyzing the organic matter precisely according to each characteristic.

다양한 분자량을 가진 시료내의 유기물의 존재는 크기 배제 크로마토그래피(size exclusion chromatography) 방법을 이용하여 확인할 수 있으나, 분자량의 크기에 따른 TOC 및 UV 흡광도 값을 알기에는 어려움이 있다. 이 문제를 해결하기 위해, 식품 또는 제약 산업에 이용되고 있는 전처리용 액체 크로마토그래피 시스템을 유기물 분석에 적용 하였다(C. M. Grill et al ., Resolution of a racemic pharmaceutical intermediate: a comparison of preparative HPLC, steady state recycling, and simulated moving bed, Journal of Chromatography A, vol. 1026:101108, 2004). The presence of organic substances in samples with various molecular weights can be confirmed by size exclusion chromatography, but it is difficult to know the TOC and UV absorbance values depending on the molecular weight. To solve this problem, a liquid chromatography system for pretreatment used in the food or pharmaceutical industry was applied to organic matter analysis (CM Grill et al ., Resolution of a racemic pharmaceutical intermediate: a comparison of preparative HPLC, steady state recycling, and simulated moving bed, Journal of Chromatography A, vol. 1026: 101108, 2004).

열분해 가스크로마토그래피 질량분석(Pyrolysis Gas chromatography Mass Spectrometry) 방법은 고체 시료에 고온의 열을 가해 가스 형태로 열분해 한 후에 분해된 분자의 질량을 분석하는 방법으로, 유기물질의 화학적 구조를 분석하는데 있어서 적합한 방법이다.Pyrolysis Gas Chromatography (Mass Spectrometry) is a method of analyzing the mass of decomposed molecules after pyrolysis in a gas form by applying high temperature heat to a solid sample. It is suitable for analyzing the chemical structure of organic materials. Method.

본 발명의 선행특허기술은 막분리를 이용한 하수 및 침출수의 순수화 재이용 방법이 제10-0515849호에 개시된 바 있으나 이는 침출수를 중점적으로 전처리 공정, 역삼투막 분리공정, 후처리 공정, 폴리싱 공정 등으로 상수도 수질처리 뿐만 아니라 발전용수로 사용하는 하수 및 침출수의 재이용 방법에 관한 것이다. 또 수질정화용 기능성 메디아 및 그 제조 방법이 대한민국 등록특허 제10-0872353호에 개시된 바 있으나 이는 하천 및 호수, 하폐수에 포함되어 있는 오염물질 및 영양염류의 처리가 향상되도록 모재에 기능성 소재조성물을 코팅하여 미세 공극율과 비표면적을 증가시킨 수질정화를 위한 기능성 메디아와 그 제조방법에 관한 것이다. 그리고 유기물질 분석방법이 대한민국 등록특허 제10-0551700호에 개시되어 있으나 이는 카바닐과 벤조피렌을 액체 크로마토그래피를 이용해 분리시키고 자외선 검출기로 파장을 측정해 이들을 동시에 분석하는 것에 관한 것이다. 또 유기물 정성, 정량 분석을 이용한 BOD 측정방법이 대한민국 등록특허 제10-1305993에 개시되어 있으나 이는 수질에 포함된 유기물의 용존산소량, 전도도, 형광특성, 자외선 흡광도를 포함하는 정성, 정량 분석에 관한 것이다. 따라서, 상기 특허문헌 어디에도 전처리용 액체 크로마토그래피와 열분해 장치를 연결한 가스크로마토그래피 질량분석기를 이용하여 유기물을 분석하는 방법은 개시된 바 없다.
The prior art of the present invention discloses a pure recycling method of sewage and leachate using membrane separation as disclosed in Japanese Patent Application No. 10-0515849, but this is mainly due to the fact that leachate is mainly used for pretreatment, reverse osmosis membrane separation, post- The present invention relates to a method for reuse of sewage and leachate used for power generation water as well as water treatment. In addition, although the functional medicament for water purification and its manufacturing method are disclosed in Korean Patent No. 10-0872353, a functional material composition is coated on a base material so as to improve the treatment of pollutants and nutrients contained in rivers, lakes and wastewater To a functional medium for purification of water having increased microporosity and specific surface area, and a method for producing the same. Korean Patent No. 10-0551700 discloses a method for analyzing organic materials, which relates to separation of carbanil and benzopyran by liquid chromatography, and measurement of wavelength with an ultraviolet detector and simultaneous analysis thereof. A BOD measurement method using organic qualitative and quantitative analysis is disclosed in Korean Patent No. 10-1305993, but it relates to qualitative and quantitative analysis including dissolved oxygen amount, conductivity, fluorescence property and ultraviolet absorbance of an organic substance contained in water quality . Therefore, none of the above-mentioned patent documents discloses a method for analyzing organic matter using a gas chromatography mass spectrometer in which a liquid chromatograph for pretreatment is connected to a pyrolysis apparatus.

따라서, 본 발명의 목적은 유기물 분획을 위한 전처리용 액체 크로마토그래피 시스템을 구축하는 것으로 유기물 분석에 사용되는 시료의 볼륨을 최대 10 ml로 주입 할 수 있도록 하며, 크기 배제 원리를 이용한 컬럼을 제작하여 UV 및 RI 검출기를 사용해 유기물을 분석 할 수 있도록 장치를 구성하였다. 주입된 시료의 분석 효율을 높이기 위해 최적의 유속을 운전되고 회수율이 높은 유기물 분석방법을 제공하는데 있다. Accordingly, it is an object of the present invention to construct a liquid chromatography system for pretreatment for an organic fraction so that a volume of a sample used for organic matter analysis can be injected at a maximum of 10 ml, and a column using a size exclusion principle is manufactured, And RI detector to analyze the organic matter. And to provide an organic material analysis method that operates at an optimum flow rate and has a high recovery rate to increase the analysis efficiency of the injected sample.

본 발명의 다른 목적은 대량의 주입 시료로부터 이용한 전처리용 액체 크로마토그래피 시스템을 이용해 유기물을 분석하여 이를 수질환경 분석자료로 제공하는데 있다.
Another object of the present invention is to analyze organic matter by using a liquid chromatography system for pretreatment, which is used from a large amount of an injection sample, and to provide it as a water environment analysis data.

본 발명의 상기 목적은 전처리용 액체 크로마토그래피 시스템을 이용해 유기물 시료의 용존유기탄소량(DOC)과 흡광도(UV)의 상관관계를 실험하는 단계와; 상기단계에서 사용한 시료의 분자량별 분리능을 실험하는 단계와; 상기단계의 유기물 시료를 주입하여 전처리용 액체 크로마토그래피 시스템의 최적 유속을 실험하는 단계와; 상기 단계의 유기물 시료를 전처리용 액체 크로마토그래피 시스템에 주입하여 회수율을 측정하는 단계와; 상기 단계로부터 얻어진 결과를 통해 인공습지의 유입수와 유출수를 분석하는 단계와; 열분해 장치를 연결한 가스크로마토그래피 질량분석기를 사용하여 유기 물질의 특성을 측정하는 단계를 통해서 달성하였다.
The above object of the present invention can be achieved by a method of analyzing the relationship between the amount of dissolved organic carbon (DOC) and the absorbance (UV) of an organic material sample using a pretreatment liquid chromatography system; Testing the resolution of the sample used in the step by molecular weight; Injecting an organic material sample of the above step to test an optimum flow rate of a pretreatment liquid chromatography system; Injecting the organic material sample into the liquid chromatography system for pretreatment to measure the recovery rate; Analyzing influent and effluent of the constructed wetland through the results obtained from the step; And measuring the characteristics of the organic material using a gas chromatography mass spectrometer connected to a pyrolysis apparatus.

본 발명은 액체 크로마토그래피를 이용하여 유기물을 분석하고, 열 분해 장치를 연결한 가스크로마토그래피 질량분석기를 통해 유기 물질의 특성을 측정함으로써 신규한 유기물 분석 방법을 제공하는 뛰어난 효과가 있다.
The present invention has an excellent effect of providing a novel organic material analysis method by analyzing organic materials using liquid chromatography and measuring the characteristics of organic materials through a gas chromatography mass spectrometer connected to a thermal decomposition device.

도 1은 본 발명에 따른 전처리용 액체 크로마토그래피 시스템을 위한 DOC와 UV 반응 상관관계 실험결과를 나타낸 그래프이다.
도 2은 본 발명에 따른 전처리용 액체 크로마토그래피 시스템을 위한 분자량 에 따른 분리능 결과를 나타낸 그래프이다.
도 3는 본 발명에 따른 전처리용 액체 크로마토그래피 시스템을 위한 최적 유속 실험 결과를 나타낸 그래프이다.
도 4은 본 발명에 따른 인공 습지에서 유기물의 유입수와 유출수를 전처리용 액체 크로마토그래피 시스템을 통해 비교 분석한 결과를 나타낸 그래프이다.
1 is a graph showing the results of DOC and UV reaction correlation experiments for a pretreatment liquid chromatography system according to the present invention.
FIG. 2 is a graph showing the results of resolution according to molecular weight for a liquid chromatography system for pretreatment according to the present invention. FIG.
3 is a graph showing the results of an optimal flow rate experiment for a liquid chromatography system for pretreatment according to the present invention.
FIG. 4 is a graph showing the results of comparative analysis of influent and effluent of organics in a wetland with a liquid chromatographic system for pretreatment according to the present invention.

본 발명의 구체적인 내용을 실시예를 들어 상세하게 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 발명이 하기 실시예에 한정되는 것은 아니다.
Specific examples of the present invention will be described in detail with reference to examples. The following examples are for illustrative purposes only and are not intended to limit the invention.

실시예Example 1. 수중 유기물질 수집 1. Collecting organic matter in water

본 발명에 사용된 유기물질은 2014년 5월 20일에 전라북도 남원의 인공습지의 유입수과 유출수로부터 수집하였다. 상기단계에서 수집된 시료는 부엌과 욕실에서 정화 처리로 재이용되는 중수도용수를 사용하여 온도, pH, 전기전도도 및 산화 환원 전위(ORP)를 측정 하였다. 이온 크로마토그래피(DX120, Dionex, USA) 컬럼은 양이온 교환 컬럼 IonPac AS14(4 x 250 mm, Dionex, USA)와 음이온 교환 컬럼 IonPac CS12A (4 x 250 mm, Dionex, USA)을 양이온과 음이온의 농도측정을 위해 사용하였다. 시료의 전체 유기 탄소와 유기 질소는 총 유기 탄소 분석기(TOC-V CPH, Shimadzu, Japan)와 질소 분석기(TNM-1, Shimadzu, Japan)를 사용하여 측정하였다.
The organic material used in the present invention was collected on May 20, 2014 from influent and effluent from a man-made wetland in Namwon, Jeollabuk-do. PH, electrical conductivity, and redox potential (ORP) were measured using water in the tap water, which was recycled as a purification treatment in kitchens and bathrooms. IonPac AS14 (4 x 250 mm, Dionex, USA) and anion exchange column IonPac CS12A (4 x 250 mm, Dionex, USA) were used to measure the cation and anion concentration . The total organic carbon and organic nitrogen of the sample were measured using a total organic carbon analyzer (TOC-V CPH, Shimadzu, Japan) and a nitrogen analyzer (TNM-1, Shimadzu, Japan).

실시예Example 2. 전처리용 액체 크로마토그래피를 사용한 시료 준비 2. Sample preparation using liquid chromatography for pretreatment

본 발명에 사용된 시료 5 ml을 토요펄 컬럼(25020 mm, Grom, Germany)에 시료를 주입 하여 UV 검출기 (LC-9201, JAI, Japan)를 포함한 전처리용 액체 크로마토그래피(LC-9201, JAI, Japan)와 RI 검출기(RI detector 50s, JAI, Japan)에 사용하여 시료로부터 유기물을 분획 추출하였다. 이동상은 2.4 mM sodium phosphate와 1.6 mM disodium hydrogen phosphate 및 96.0 mM sodium chloride를 유속 2 ml/min으로 분리하였다. (LC-9201, JAI, Japan) containing a UV detector (LC-9201, JAI, Japan) was injected into a sample of 5 ml used in the present invention on a Toyopearl column (25020 mm, Grom, Germany) Japan) and RI detector (RI detector 50s, JAI, Japan). The mobile phase was separated by 2.4 mM sodium phosphate, 1.6 mM disodium hydrogen phosphate and 96.0 mM sodium chloride at a flow rate of 2 ml / min.

낮은 DOC 농도(1 mgC/L~5 mgC/L)의 시료일 경우에 분석을 용이하게 하기 위해 진공 회전 농축기(EYELA, Japan)로 시료를 농축 하였다. 전처리용 액체 크로마토그래피의 검량선을 위한 분자량 표준 용액은 Polyetylenglycol(PEG, Sigma-aldrich, USA)을 사용 하였다. 열분해 장치를 연결한 가스 크로마토그래피 질량 분석을 위해 수중에 존재하는 유기물의 분석은 동결건조기(Ilshin, Korea)로 건조하여 고체 형태의 유기물을 얻은 후, 열분해 장치(EGA/PY-3030D, Frontier Lab, Japan)를 이용해 샘플을 분해하고 가스 크로마토그래피 질량 분석기(Agilents, USA)를 사용하여 분석하였다. 사용된 컬럼은 DB-5MS(Agilents, USA) 컬럼(30 m 0.25 mm 0.25 m) 이고, 가스크로마토그래피의 오븐 온도는 50~290℃로 높여주었고 질량 탐색 범위는 50-500 AMU이었다. 열분해 온도는 500℃이었다.
In case of low DOC concentration (1 mgC / L ~ 5 mgC / L), the sample was concentrated with a vacuum rotary condenser (EYELA, Japan) to facilitate the analysis. Polyethyleneglycol (PEG, Sigma-aldrich, USA) was used as the molecular weight standard solution for the calibration curve of the liquid chromatography for pretreatment. For analysis of the organic substances present in the water for mass spectrometry coupled with the pyrolysis device, the organic substances in the water were analyzed by a pyrolysis device (EGA / PY-3030D, Frontier Lab, Japan) and analyzed using a gas chromatography mass spectrometer (Agilents, USA). The column used was a DB-5MS (Agilent, USA) column (30 m 0.25 mm 0.25 m) and the oven temperature of the gas chromatography was increased to 50-290 ° C and the mass search range was 50-500 AMU. The thermal decomposition temperature was 500 ° C.

실시예3Example 3 . 전처리용 액체 크로마토그래피의 최적화 시스템. Optimization System for Liquid Chromatography for Pretreatment

전처리용 액체 크로마토그래피 시스템을 사용하여 특정 유기물을 분석하기 위해 본 발명에서는 크기 배재 크로마토그래피(SEC)를 수행함에 있어서 토요펄 레진이 충진된 컬럼과 인산 완충 용액을 사용하였다. 본 발명에 따른 전처리용 액체 크로마토그래피 시스템의 최적화된 조건을 찾기 위해 주입 된 시료의 회수율, UV 검출 적합성, 최적 유속 실험, 분자량별 분리능 실험을 실시하였다.
In order to analyze a specific organic substance using a liquid chromatography system for pretreatment, a column packed with Toyopulacein and a phosphate buffer solution were used in the present invention in performing size exclusion chromatography (SEC). In order to find optimized conditions of the liquid chromatography system for pretreatment according to the present invention, the recovery rate of the injected samples, the suitability for UV detection, the optimum flow rate experiment, and the resolution by molecular weight were tested.

실험예Experimental Example 1. 시료의 회수율 측정  1. Measurement of sample recovery

주입된 시료의 회수율은 스와니 강 천연 유기 물질이 40 mgC/L가 용해된 시료를 사용하여 측정하였다. 상기 시료 5 mL을 컬럼에 주입 한 후, UV 검출기에 의해 샘플 전체를 분석하였다. 분획한 시료 중의 유기 탄소의 질량은 DOC 농도와 분석 시료의 양을 곱하여 회수율을 산출 하였다(표 1). 시료는 총 3회 주입하였고 분석된 시료의 회수율은 86 %~ 95.8 % 였다. 평균 회수율은 92.2±5.4 %였다.The recovery of the injected samples was determined using a sample of 40 mg C / L dissolved in Swahili natural organic material. 5 mL of the sample was injected into the column, and the entire sample was analyzed by a UV detector. The mass of organic carbon in the fractionated sample was calculated by multiplying the DOC concentration by the amount of analytical sample (Table 1). The sample was injected 3 times in total, and the recovery rate of the analyzed samples was 86% ~ 95.8%. The average recovery rate was 92.2 ± 5.4%.

분석 시료의 회수율 측정 결과Results of recovery of analytical sample SampleSample DOC (mgC/L)DOC (mgC / L) Volume (ml)Volume (ml) Carbon mass (mgC)Carbon mass (mgC) Recovery (%)Recovery (%) Injected sampleInjected sample 38.538.5 55 0.19250.1925 -- Fractionated sample 1Fractionated sample 1 4.54.5 4141 0.18450.1845 95.895.8 Fractionated sample 2Fractionated sample 2 4.84.8 34.534.5 0.16560.1656 86.086.0 Fractionated sample 3Fractionated sample 3 4.34.3 42.542.5 0.18270.1827 94.994.9

실험예Experimental Example 2.  2. DOCDOC 농도와  Concentration and UVUV 반응의 상관관계 측정 Measuring the Correlation of Reactions

전처리용 액체 크로마토그래피 시스템의 유기물 분석을 위한 UV 검출기 최적 조건을 조사하기 위해 UV 반응을 유기물의 농도에 따라서 관찰 하였다(도 1). 스와니 강 천연 유기 물질 35.7, 18.3, 9.3, 4.1, 2.3 mgC/L를 용해하였고 상기 천연 유기 물질들은 DOC 농도에 따라 UV 검출 강도와 밀접한 상관관계(R2 = 0.9967)를 보였다.
In order to investigate the optimum condition of the UV detector for the organic matter analysis of the pretreatment liquid chromatography system, the UV reaction was observed according to the concentration of organic matter (Fig. 1). Suwani natural organic substances 35.7, 18.3, 9.3, 4.1 and 2.3 mgC / L were dissolved, and the natural organic substances showed a close correlation (R 2 = 0.9967) with the UV detection intensity depending on the DOC concentration.

실험예Experimental Example 3.  3. RIRI 검출기와  Detector PEGPEG 의 분자량에 따른 분리 실험Separation experiments according to molecular weight

본 발명에 따른 크기 배제 크로마토그래피에서 시스템 검량선 작성을 위한 분자량 표준 용액으로는 PEG 용액을 이 실험에 사용하였다(도 2). PEG는 이중 결합 부위가 없고 지방족 폴리에테르를 포함하는 분자 구조 때문에 PEG 용액은 UV 에서는 검출 되지 않았다. 따라서, 분자량에 따라 컬럼의 분리 효율을 확인하기 위하여 RI 검출기를 이용하여 600, 1000, 4600 MW PEG 용액의 RT(retention time)를 측정하였다. 각각의 PEG는 서로 다른 RT을 가지고 있었고 분자량과 RT 사이의 측정된 R2 값은 0.9781이었다.
In the size exclusion chromatography according to the present invention, a PEG solution was used in this experiment as a molecular weight standard solution for preparing a system calibration curve (FIG. 2). Because PEG has no double bond sites and the molecular structure contains aliphatic polyether, PEG solution was not detected in UV. Therefore, the RT (retention time) of 600, 1000, and 4600 MW PEG solution was measured using an RI detector to confirm the separation efficiency of the column according to the molecular weight. Each PEG had different RT and the measured R 2 value between molecular weight and RT was 0.9781.

실험예Experimental Example 4. 최적 유속 실험 4. Optimal Flow Velocity Experiment

본 발명에 따른 액체 크로마토그래피 시스템에서 최적 유속은 분리 효율과 연관되어 있기 때문에 매우 중요하다. 유속이 높으면 시료를 빠르게 분리할 수 있지만, 높은 압력으로 인해 컬럼에 손상을 입혀 분리 효율을 저하시킨다. 따라서 빠른 분석 시간과 높은 분리 효율을 만족시킬 수 있는 최적의 유속 조건을 찾는 것이 중요하다. 분리 효율을 평가하는 경우 분자량과 검출기 반응의 감도 사이의 RT가 중요한 요인이 된다. 600 MW PEG와 4600 MW PEG가 혼합된 시료 5 mL를 액체 크로마토그래피에 주입하고 유속에 따라 분석하였다(도 3). The optimum flow rate in the liquid chromatography system according to the present invention is very important because it is related to the separation efficiency. The higher the flow rate, the faster the sample can be separated, but the higher pressure will damage the column and reduce the separation efficiency. Therefore, it is important to find the optimum flow rate condition to satisfy the fast analysis time and the high separation efficiency. When evaluating the separation efficiency, RT between the molecular weight and the sensitivity of the detector reaction is an important factor. 5 mL of a mixture of 600 MW PEG and 4600 MW PEG was injected into the liquid chromatography and analyzed according to the flow rate (FIG. 3).

상기실험에서 분석한 4 mL/min 및 3 mL/min 유속의 크로마토그램은 시료 내의 유기물의 분자량에 따라 서로 다른 2개의 피크로 분리되었다. 그러나 2 mL/min의 유속에서는 서로 다른 4개의 피크가 분리되었는데 이것은 유속이 느려지게 되면서 분리능이 좀 더 향상되어 두 개의 평균 분자량 피크 이외의 유기물들이 검출되어 나타난 것으로 판단된다. 4 mL/min과 3 mL/min 유속의 크로마토그램의 분석은 RI 반응과 RT가 유사한 값을 보여주었지만 2 mL/min 유속의 크로마토그램은 600 MW PEG 피크(피크 1)와 4600 MW PEG 피크(피크 3) 사이의 시간이 더 길어짐을 보였다.
The chromatograms at the flow rates of 4 mL / min and 3 mL / min analyzed in the above experiment were separated into two different peaks depending on the molecular weight of the organic matter in the sample. However, at the flow rate of 2 mL / min, four different peaks were separated, which is considered to be due to the fact that organic compounds other than the two average molecular weight peaks are detected as the flow rate is decreased and the resolution is further improved. Analysis of chromatograms at 4 mL / min and 3 mL / min showed similar values for RI and RT, but chromatograms at a flow rate of 2 mL / min showed a 600 MW PEG peak (peak 1) and a 4600 MW PEG peak Peak 3) was longer.

실험예Experimental Example 5. 인공 습지의 유입수와 유출수 내의 유기물에 대한 시스템 응용  5. Application of system for organic matter in influent and effluent of manmade wetlands

도 4는 UV 검출기로 검출한 유입수와 유출수 시료의 전처리용 액체 크로마토그래피 크로마토그램 결과이다. 인공 습지의 유입수와 유출수 시료 5 mL을 각각 주입하고, 실험에 사용한 이동상의 유속은 2 mL/min으로 하였다(도 4). 4 is a result of liquid chromatography chromatogram for pretreatment of influent and effluent samples detected with a UV detector. The inflow water of the wetland and 5 mL of the effluent water were injected respectively, and the flow rate of the mobile phase used in the experiment was 2 mL / min (FIG. 4).

상기단계의 두 시료는 동일한 RT를 나타내는 3개의 피크를 가지고 있었다. 이는 각각의 시료가 유사한 분자량 분포를 가진 것으로 보이나(피크 1은 21000 Da , 피크 2는 2300 Da, 그리고 피크 3은 1200 Da), 3개의 각 시료의 피크 높이는 차이가 있었고, 특히 유출수 시료의 피크 1의 크기는 감소되었다. The two samples in the above step had three peaks indicating the same RT. This indicates that each sample has a similar molecular weight distribution (Peak 1 is 21000 Da, Peak 2 is 2300 Da, and Peak 3 is 1200 Da), but the peak heights of the three samples were different, The size of the.

주입된 시료의 유입수(100 mgC/L)와 유출수(100 mgC/L)는 유사한 농도를 가지고 있었지만, 두 시료 사이에 피크의 면적 비율은 차이가 있었다.이는 인공습지에서 존재하는 미생물의 활성 또는 물리 화학적 방법에 의해 유기물이 변형 또는 흡착되어 피크 1의 유기물 감소 기작이 발생 될 수 있다는 것을 보여주었다.
The influent (100 mg C / L) and effluent (100 mg C / L) of the injected samples had similar concentrations, but the peak area ratio between the two samples was different. It has been shown that an organic matter may be deformed or adsorbed by a chemical method and an organic matter reduction mechanism of a peak 1 may occur.

실험예Experimental Example 6. 열분해 장치를 연결한 가스크로마토그래피 질량분석기에 의한 유기물의 특성화 6. Characterization of organic matter by gas chromatograph mass spectrometer connected with pyrolysis device

본 발명에 따른 인공 습지에서 피크 1의 유기 물질 제거 기작을 찾기 위해 열분해 장치를 연결한 가스크로마토그래피 질량분석기로 유기 물질의 특성을 확인하였다. [표 2]에서와 같이 분석 결과 피크 1의 주요성분은 지방족 탄화수소(Aliphatic hydrocarbons)로 나타났다.The characteristics of the organic material were confirmed by a gas chromatograph mass spectrometer connected to a pyrolysis apparatus in order to find a mechanism for removing the organic material at peak 1 in the artificial wetland according to the present invention. As shown in Table 2, the main component of peak 1 was aliphatic hydrocarbons.

지방족 탄화수소는 용액과 세제 및 주방용 오일에 포함되어 있으며 특히, 옥타 데칸 산, 헥사 데칸 산은 비누와 세제 및 요리용 오일의 주된 화합물이다. 따라서 열분해파편(pyrolysis fragments)의 대부분의 화합물은 부엌과 욕실에서 얻어진 생활 하수를 시료로 분석하였기 때문에 피크 1의 물질은 세제와 요리용 오일이 포함되어있으며, 이러한 지방족 탄화수소는 지방산의 분자 구조로 인해 토양에 흡착되거나 생분해되므로 피크 1의 감소가 나타났다고 판단된다. 이러한 4-phenyltoluene 및 나프탈렌과 같은 방향족 탄소(polyhydroxylic aromatic carbons)의 경우에는 대부분 소수성 방향족 고리를 가지고 있으므로 방향족 고리를 가진 세제 조각이 검출된 결과를 낸 것으로 분석된다.
Aliphatic hydrocarbons are contained in solutions, detergents and kitchen oils, and in particular, octadecanoic acid and hexadecanoic acid are the main compounds in soaps and detergents and cooking oils. Therefore, most of the compounds in pyrolysis fragments have been analyzed as samples of domestic sewage from kitchens and bathrooms, so Peak 1 contains detergents and cooking oils, It is judged that the peak 1 is decreased because it is adsorbed or biodegraded in the soil. In the case of polyhydroxylic aromatic carbons such as 4-phenyltoluene and naphthalene, it is analyzed that the result is the detection of detergent fragments having aromatic rings since they have mostly hydrophobic aromatic rings.

피크 1의 분류된 샘플에 대한 열분해 조각 분석 결과Analysis results of pyrolytic slices of the classified samples of peak 1 1One stst PyrolysisfragmentsPyrolysisfragments 22 ndnd PyrolysisfragmentsPyrolysisfragments CompoundsCompounds OriginOrigin CompoundsCompounds OriginOrigin Octadecanoic acidOctadecanoic acid AHAH Octadecanoic acidOctadecanoic acid AHAH Hexadecanoic acidHexadecanoic acid AHAH Hexadecanoic acidHexadecanoic acid AHAH CholesterolCholesterol AHAH Diethyl PhthalateDiethyl Phthalate PHAPHA Cholesta-3,5-dieneCholesta-3,5-diene AHAH CholesterolCholesterol AHAH SqualeneSqualene AHAH Cholesta-3,5-dieneCholesta-3,5-diene AHAH Dodecanoic acidDodecanoic acid AHAH NaphthaleneNaphthalene PHAPHA Trans-2-tetradeceneTrans-2-tetradecene AHAH Dodecanoic acidDodecanoic acid AHAH 4-Phenyltoluene4-Phenyltoluene PHAPHA Trans-2-tetradeceneTrans-2-tetradecene AHAH 1-Tridecene1-Tridecene AHAH HeptadeceneHeptadecene AHAH NaphthaleneNaphthalene PHAPHA 1-Tridecene1-Tridecene AHAH Hexadecyl 2-ethylhexanoateHexadecyl 2-ethylhexanoate AHAH DeceneDecene AHAH 5-Phenylundecane5-Phenylundecane AHAH 2-Ethylhexyl3-(4-methoxyphenyl)acrylate2-Ethylhexyl 3- (4-methoxyphenyl) acrylate AHAH 6-Dodecanylbenzene6-Dodecanylbenzene AHAH 4,5-Dimethyl-9H-fluoren-9-ol4,5-Dimethyl-9H-fluoren-9-ol PHAPHA 5-Phenyldecane5-Phenyldecane AHAH 4-Phenyltoluene4-Phenyltoluene PHAPHA DodeceneDodecene AHAH DeceneDecene AHAH HeptadeceneHeptadecene AHAH

*AH=aliphatic hydrocarbons, PHA=polyhydroxylic aromatic cabons
* AH = aliphatic hydrocarbons, PHA = polyhydroxylic aromatic cabons

이상 설명한 바와 같이 본 발명은 하수 재이용수 수질인자 개발을 위한 유기물 분석방법으로 대용량 시료를 사용할 수 있는 전처리용 크로마토그래피 및 열분해 장치를 연결한 가스 크로마토그래피 질량분석 시스템을 이용하여 유기물질의 특성을 용이하고 정밀하게 측정 평가하는데 뛰어난 효과가 있으므로 수질환경 산업상 매우 유용한 발명인 것이다.
As described above, the present invention is an organic material analysis method for development of water quality factors for sewage reuse, and it is possible to easily characterize organic materials by using a mass spectrometry system for gas chromatography combined with pretreatment chromatography and pyrolysis apparatus It is a very useful invention in the water environment industry because it has an excellent effect to measure and evaluate precisely.

Claims (3)

전처리용 액체 크로마토그래피 시스템의 컬럼 이동상을 이용해 유기물 시료의 용존유기탄소량(DOC)과 흡광도(UV)의 상관관계를 실험하는 단계와; 상기단계에서 사용한 유기물 시료의 분자량별 분리능을 실험하는 단계와; 상기단계의 유기물 시료를 주입하여 전처리용 액체 크로마토그래피 시스템의 최적 유속을 실험하는 단계와; 상기 단계에서 사용한 전처리용 액체 크로마토그래피 시스템에 유기물 시료를 주입 하여 회수율을 측정하는 단계와; 상기 단계로부터 얻어진 결과를 통해 인공습지의 유입수와 유출수를 분석하는 단계와; 열분해 장치를 연결한 가스 크로마토그래피 질량분석기를 사용해 유기 물질의 특성을 확인하는 것이 특징인 유기물 분석 방법Examining the correlation between the amount of dissolved organic carbon (DOC) and the absorbance (UV) of an organic material sample using a column moving phase of a pretreatment liquid chromatography system; Testing the resolution of the organic material sample by molecular weight; Injecting an organic material sample of the above step to test an optimum flow rate of a pretreatment liquid chromatography system; Injecting an organic material sample into the liquid chromatography system for pretreatment used in the above step to measure the recovery rate; Analyzing influent and effluent of the constructed wetland through the results obtained from the step; An organic substance analysis method characterized by confirming the characteristics of an organic substance using a gas chromatography mass spectrometer connected to a pyrolysis apparatus 제 1항에 있어서, 상기 전처리용 액체 크로마토그래피 시스템의 컬럼 이동상은 2.4 mM sodium phosphate, 1.6 mM disodium hydrogen phosphate, 96.0 mM sodium chloride인 것이 특징인 유기물 분석 방법The method according to claim 1, wherein the column moving phase of the pretreatment liquid chromatography system is 2.4 mM sodium phosphate, 1.6 mM disodium hydrogen phosphate, and 96.0 mM sodium chloride. 제 1항에 있어서, 상기 열분해 장치를 연결한 가스 크로마토그래피 질량분석기 내부의 오븐의 온도는 50~290 ℃, 질량 탐색 범위는 50-500 AMU인 것이 특징인 유기물 분석 방법

The method according to claim 1, wherein the temperature of the oven inside the gas chromatograph mass spectrometer connected to the pyrolysis apparatus is 50 to 290 DEG C and the mass search range is 50 to 500 AMU

KR1020140167374A 2014-11-27 2014-11-27 Analysis method of organic matters for developing water quality parameter in wastewater reuse KR101634457B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140167374A KR101634457B1 (en) 2014-11-27 2014-11-27 Analysis method of organic matters for developing water quality parameter in wastewater reuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140167374A KR101634457B1 (en) 2014-11-27 2014-11-27 Analysis method of organic matters for developing water quality parameter in wastewater reuse

Publications (2)

Publication Number Publication Date
KR20160064315A true KR20160064315A (en) 2016-06-08
KR101634457B1 KR101634457B1 (en) 2016-07-11

Family

ID=56193343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140167374A KR101634457B1 (en) 2014-11-27 2014-11-27 Analysis method of organic matters for developing water quality parameter in wastewater reuse

Country Status (1)

Country Link
KR (1) KR101634457B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358128A (en) * 2018-12-03 2019-02-19 南京大学 A kind of organic nitrogen-organic carbon tandem online test method and device
CN115684325A (en) * 2022-10-17 2023-02-03 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Ultrahigh-resolution mass spectrometry method for dissolving organic carbon and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
하수처리장 방류수의 자연유기물 구조 및 분포특성연구, 국립환경과학원 영산강물환경 연구소(2011)* *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358128A (en) * 2018-12-03 2019-02-19 南京大学 A kind of organic nitrogen-organic carbon tandem online test method and device
CN109358128B (en) * 2018-12-03 2024-04-09 南京大学 Organic nitrogen-organic carbon serial on-line detection method and device
CN115684325A (en) * 2022-10-17 2023-02-03 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Ultrahigh-resolution mass spectrometry method for dissolving organic carbon and application thereof

Also Published As

Publication number Publication date
KR101634457B1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
Hao et al. Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion
Kim et al. Application of online liquid chromatography 7 T FT-ICR mass spectrometer equipped with quadrupolar detection for analysis of natural organic matter
Makoś et al. Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid–liquid microextraction with gas chromatography–mass spectrometry
Meng et al. A review on analytical methods for pharmaceutical and personal care products and their transformation products
Zhang et al. Study on transformation of natural organic matter in source water during chlorination and its chlorinated products using ultrahigh resolution mass spectrometry
Vallecillos et al. Fully automated ionic liquid-based headspace single drop microextraction coupled to GC–MS/MS to determine musk fragrances in environmental water samples
Wang et al. Application of advanced characterization techniques to assess DOM treatability of micro-polluted and un-polluted drinking source waters in China
Stenson Reversed-phase chromatography fractionation tailored to mass spectral characterization of humic substances
Qiao et al. Short-and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: spatial distributions, source apportionment and risk assessment
Lu et al. Molecularly imprinted polymers for dispersive solid‐phase extraction of phenolic compounds in aqueous samples coupled with capillary electrophoresis
Cai et al. Analysis of sonolytic degradation products of azo dye Orange G using liquid chromatography–diode array detection-mass spectrometry
Wang et al. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes
JP2021189169A (en) Non-targeted identification method for conversion product of trace organic pollutant in environmental medium
Chen et al. Simultaneous screening for lipophilic and hydrophilic toxins in marine harmful algae using a serially coupled reversed-phase and hydrophilic interaction liquid chromatography separation system with high-resolution mass spectrometry
Morés et al. Development of a high‐throughput method based on thin‐film microextraction using a 96‐well plate system with a cork coating for the extraction of emerging contaminants in river water samples
Kunacheva et al. Chemical characterization of low molecular weight soluble microbial products in an anaerobic membrane bioreactor
CN103592399A (en) Method capable of simultaneously measuring organochlorine pesticide concentration and synthetic musk concentration in human serum
Xia et al. Resolving mass fractions and congener group patterns of C8− C17 chlorinated paraffins in commercial products: Associations with source characterization
Li et al. Purification and enrichment of polycyclic aromatic hydrocarbons in environmental water samples by column clean-up coupled with continuous flow single drop microextraction
KR101634457B1 (en) Analysis method of organic matters for developing water quality parameter in wastewater reuse
Zherebker et al. Separation of benzoic and unconjugated acidic components of leonardite humic material using sequential solid-phase extraction at different pH values as revealed by Fourier transform ion cyclotron resonance mass spectrometry and correlation nuclear magnetic resonance spectroscopy
Mazivila et al. A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT)
Čelić et al. Environmental analysis: Emerging pollutants
Zhang et al. Ionic liquid-based foam flotation followed by solid phase extraction to determine triazine herbicides in corn
Castro et al. Analysis, occurrence and removal efficiencies of organophosphate flame retardants (OPFRs) in sludge undergoing anaerobic digestion followed by diverse thermal treatments

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant