KR20160061175A - Piezoelectric ceramics composition, piezoelectric element, and method for the same - Google Patents
Piezoelectric ceramics composition, piezoelectric element, and method for the same Download PDFInfo
- Publication number
- KR20160061175A KR20160061175A KR1020140163748A KR20140163748A KR20160061175A KR 20160061175 A KR20160061175 A KR 20160061175A KR 1020140163748 A KR1020140163748 A KR 1020140163748A KR 20140163748 A KR20140163748 A KR 20140163748A KR 20160061175 A KR20160061175 A KR 20160061175A
- Authority
- KR
- South Korea
- Prior art keywords
- piezoelectric
- sintering
- added
- pbo
- composition
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 53
- 239000000919 ceramic Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 21
- 238000005245 sintering Methods 0.000 claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 12
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 9
- 239000012071 phase Substances 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000009766 low-temperature sintering Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229910005805 NiNb Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
- C04B35/493—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62685—Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8548—Lead-based oxides
- H10N30/8554—Lead-zirconium titanate [PZT] based
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3258—Tungsten oxides, tungstates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
- C04B2235/3274—Ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/81—Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/877—Conductive materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
본 발명은 압전 세라믹스 조성물, 압전소자 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition, a piezoelectric element and a manufacturing method thereof.
압전 액츄에이터, 압전 공진자, 압전 필터 등의 적층형 압전 소자에 사용되는 대표적인 압전 세라믹스에는 Ag-Pd 합금으로 이루어지는 내부전극층과 PZT계 압전 세라믹으로 이루어지는 세라믹스층을 교대로 적층하여 동시에 소성한 것이 많이 사용되고 있는데, 응용범위가 넓어지고, 친환경 공정에 대한 요구가 확대됨에 따라 기존 압전 세라믹스에 대하여 새로운 조성을 첨가하는 연구가 활발히 수행되고 있다. 예를 들어 한국공개특허 KR 1994-0022936호에는 기계적 결합계수가 높은 압전 세라믹스 조성물이 기재되어 있다.Typical piezoelectric ceramics used for laminated piezoelectric devices such as piezoelectric actuators, piezoelectric resonators, and piezoelectric filters include an internal electrode layer made of an Ag-Pd alloy and a ceramics layer made of a PZT piezoelectric ceramics, which are alternately laminated and fired at the same time , The application range is widening, and the demand for environment-friendly process is expanded. Therefore, studies for adding a new composition to existing piezoelectric ceramics are actively performed. For example, Korean Patent Publication No. KR 1994-0022936 discloses a piezoelectric ceramics composition having a high mechanical coupling coefficient.
본 발명은 고전계 구동시에도 특성의 저하가 없는 압전 세라믹스 조성물, 압전소자, 및 이를 이용한 압전 세라믹스의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a piezoelectric ceramic composition, a piezoelectric device, and a method of manufacturing a piezoelectric ceramics using the piezoelectric ceramic composition, the piezoelectric device and the piezoelectric ceramic composition without deterioration in characteristics at the time of high-
본 발명에서는 (1-x)Pb(Mg1 /2W1 /2)0.03(Ni1 /3Nb2 /3)0.09(ZryTi1 -y)0.88O3 + xBiFeO3 (x=0 또는 0.015, y=0.47~0.53)의 기본조성에 LiCO3 , CaCO3 , PbO, CuO 및 Fe2O3 중 하나 이상의 소결조제가 첨가된 압전 세라믹스 조성물, 상기 조성물을 포함하는 압전 소자, 및 압전 세라믹스의 제조방법을 제시한다.According to the present invention (1-x) Pb (Mg 1/2 W 1/2) 0.03 (Ni 1/3
본 발명에 따른 압전 세라믹스용 조성물은 저온소결이 가능하고, 이를 통해 제조된 압전 세라믹스는 그 구조적 특성, 압전특성 및 유전특성이 개선된다.The composition for piezoelectric ceramics according to the present invention is capable of low-temperature sintering, and the piezoelectric ceramics produced therefrom have improved structural characteristics, piezoelectric characteristics and dielectric properties.
도 1은 PMW-PNN-PZT 세라믹스 조성에 Fe2O3 첨가량 변화에 따른 X-선 회절 패턴 결과를 나타낸 것이다.
도 2는 소결온도 변화와 Fe2O3 첨가량의 변화에 따른 시편의 밀도를 나타낸 것이다.
도 3a~e는 PMW-PNN-PZT 세라믹스 조성에 Fe2O3를 첨가하여 920ºC에서 소성한 시편들의 미세구조를 관찰하기 위해 각 시편들의 표면을 나타낸 SEM 이미지이다.
도 4 및 도 5는 소결온도 변화와 Fe2O3 첨가량 변화에 따른 시편의 전기기계결합 계수 kP(도 4)와 k31(도 5)의 변화를 나타낸 것이다.
도 6 및 도 7은 소결온도의 변화와 Fe2O3 첨가량의 변화에 따른 시편의 압전상수 d33 (도 6)와 d31(도 7)의 변화를 나타낸 것이다.
도 8은 소결온도의 변화와 Fe2O3 첨가량의 변화에 따른 상온에서의 유전상수(εr) 변화를 나타낸 것이다.
도 9는 제작된 PMW-PNN-PZT + BiFeO3조성 최종분말과 소결된 펠릿(pellet)의 X선 회절 패턴을 나타낸 것이다.
도 10은 PMW-PNN-PZT + BiFeO3 세라믹스의 SEM 이미지를 나타낸 것이다.
도 11은 일반적인 산화물 혼합법을 이용해서 920ºC에서 소결된 PMW-PNN-PZT + BiFeO3 세라믹스의 유전상수 온도의존성을 나타낸 것이다.
도 12는 PMW-PNN-PZT 세라믹스 조성에 다양한 소결조제 형태에 따른 X-선 회절 패턴 결과를 나타낸 것이다.
도 13은 PMW-PNN-PZT 세라믹스 조성에 다양한 소결조제 형태에 따른 X-선 회절 패턴 결과를 나타낸 것이다.
도 14는 Zr/Ti 비에 따른 비유전율을 나타내는 그래프이다.
도 15는 Zr/Ti 비에 따른 전기기계 결합계수를 나타내는 그래프이다.
도 16은 Zr/Ti 비에 따른 압전상수를 나타내는 그래프이다.
도 17은 Zr/Ti 비에 따른 항전계(coercive field)를 나타내는 그래프이다.FIG. 1 shows the X-ray diffraction pattern of the PMW-PNN-PZT ceramics composition according to the amount of Fe 2 O 3 added.
2 shows the density of a specimen according to changes in sintering temperature and addition of Fe 2 O 3 .
3a-e are SEM images showing the surface of each specimen to observe the microstructure of the PMW-PNN-PZT ceramics composition after calcination at 920 ° C with Fe 2 O 3 added.
Figs. 4 and 5 show changes in the electromechanical coupling coefficients k P (FIG. 4) and k 31 (FIG. 5) of the specimen with changes in the sintering temperature and the addition amount of Fe 2 O 3 .
6 and 7 is the piezoelectric constant of the specimen according to the change of the change in Fe 2 O 3 addition amount of the sintering temperature d 33 (Fig. 6) and d 31 (Fig. 7).
Figure 8 2 O 3 changes in the sintering temperature and Fe (Ε r ) at room temperature with changes in the addition amount.
FIG. 9 shows an X-ray diffraction pattern of a final PMW-PNN-PZT + BiFeO 3 composition powder and a sintered pellet.
10 shows an SEM image of PMW-PNN-PZT + BiFeO 3 ceramics.
11 shows the dielectric constant temperature dependence of PMW-PNN-PZT + BiFeO 3 ceramics sintered at 920 ° C using a general oxide mixing method.
FIG. 12 shows X-ray diffraction patterns of PMW-PNN-PZT ceramics composition according to various sintering aid forms.
FIG. 13 shows X-ray diffraction patterns of PMW-PNN-PZT ceramics composition according to various sintering aid forms.
14 is a graph showing the relative dielectric constant according to the Zr / Ti ratio.
15 is a graph showing the electromechanical coupling coefficient according to the Zr / Ti ratio.
16 is a graph showing the piezoelectric constant according to the Zr / Ti ratio.
17 is a graph showing the coercive field according to the Zr / Ti ratio.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.BRIEF DESCRIPTION OF THE DRAWINGS The present invention is capable of various modifications and various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. It is to be understood, however, that the invention is not to be limited to the specific embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprises" or "having" and the like are used to specify that there is a feature, a number, a step, an operation, an element, a component or a combination thereof described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명자들은 저온소결 압전 세라믹스를 개발하기 위하여 PMW-PNN-PZT 조성 세라믹스를 선택하였고, 이때 첨가되는 소결조제로는 LiCO3, CaCO3, PbO, CuO 및 Fe2O3 중 하나 이상을 이용하였다. 상기 소결조제는 LiCO3 및 CaCO3를 첨가하거나, 또는 PbO, CuO를 일정하게 유지하고, Fe2O3의 함량에 변화를 주어, 900ºC~ 940ºC까지의 소결온도에서 이에 따른 유전 및 압전특성을 조사하였다.
The present inventors selected PMW-PNN-PZT composition ceramics to develop low-temperature sintered piezoelectric ceramics. At least one of LiCO 3 , CaCO 3 , PbO, CuO and Fe 2 O 3 was used as a sintering aid. The sintering aids were investigated for their dielectric and piezoelectric properties at sintering temperatures of 900 ° C to 940 ° C by adding LiCO 3 and CaCO 3 , or by keeping PbO and CuO constant and varying the content of Fe 2 O 3 Respectively.
본 발명의 일 측면에 따르면, (1-x)Pb(Mg1 /2W1 /2)0.03(Ni1 /3Nb2 /3)0.09(ZryTi1 -y)0.88O3 + xBiFeO3 (x=0 또는 0.015, y=0.47~0.53)의 기본조성에 LiCO3 , CaCO3 , PbO, CuO 및 Fe2O3 중 하나 이상의 소결조제가 첨가된 압전 세라믹 조성물이 제공된다.According to an aspect of the invention, (1-x) Pb ( Mg 1/2 W 1/2) 0.03 (Ni 1/3
일 실시예에 있어서, 상기 소결조제로 0.2wt%LiCO3 및 0.25wt%CaCO3이 첨가될 수 있다. In one embodiment, a 0.2wt% LiCO 3 and 0.25wt% CaCO 3 may be added as the sintering aid.
일 실시예에 있어서, 상기 소결조제로 0.3wt%PbO, 0.3wt%CuO, 및 0.1~0.4wt% Fe2O3 가 첨가될 수 있다.In one embodiment, 0.3 wt% PbO, 0.3 wt% CuO, and 0.1 to 0.4 wt% Fe 2 O 3 may be added as the sintering aid.
본 발명의 다른 측면에 따르면, PbO, MgO, WO, NiO, Nb2O5, ZrO2, TiO2을 (1-x)Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)0.09(ZryTi1-y)0.88O3 + xBiFeO3 (x=0 또는 0.015, y=0.47~0.53) 의 기본조성이 되도록 칭량하여 준비하는 단계; 상기에서 MgO, WO, NiO, Nb2O5, ZrO2, TiO2을 혼합하여 1차 하소하는 단계; 상기 1차 하소된 시료와 PbO를 상기 기본 조성에 맞도록 혼합 및 분쇄하여 2차 하소하는 단계; 상기 2차 하소된 시료에 0.3wt%PbO, 0.3wt%CuO, 0.1~0.4wt% Fe2O3, 또는 0.2wt% LiCO3 및 0.25wt% CaCO3를 첨가하고 혼합 및 분쇄하는 단계; 및 상기 혼합물을 소결하는 단계를 포함하는 압전 세라믹스의 제조방법이 제공된다.According to another aspect of the invention, PbO, MgO, WO, NiO , Nb 2
일 실시예에 있어서, 상기 소결은 승·하강온도 구배를 3℃/min으로 하여 900℃~940℃의 온도에서 2시간 동안 소결할 수 있다.In one embodiment, the sintering can be performed at a temperature of 900 ° C to 940 ° C for 2 hours at a rate of 3 ° C / min.
본 발명의 다른 측면에 따르면, 본 발명의 일 실시예에 따른 압전 세라믹 조성물을 포함하는 압전소자가 제공된다. 상기 압전 소자로는 예를 들어, 압전 액츄에이터, 압전 공진자, 압전 필터, 압전 센서, 초음파 트랜스듀서, 및 고효율 커패시터 등이 있으며, 반드시 이에 한정되는 것은 아니다.According to another aspect of the present invention, there is provided a piezoelectric device including a piezoelectric ceramic composition according to an embodiment of the present invention. Examples of the piezoelectric element include, but are not limited to, a piezoelectric actuator, a piezoelectric resonator, a piezoelectric filter, a piezoelectric sensor, an ultrasonic transducer, and a high-efficiency capacitor.
본 발명의 일 실시예에 따른 압전소자는 압전체층 및 내부전극층을 포함한다. 상기 압전체층은 본 발명의 일 실시예에 따른 압전 세라믹 조성물을 포함한다. 상기 압전체층은 상기 내부전극층에 의해 압전체층의 상면 또는 하면 중 적어도 하나에 전하가 인가되면 기계적 변위가 발생한다. 상기 내부전극층은 압전체층의 상면 및 하면 중 적어도 어느 하나에 형성되어 압전체층에 전하를 인가한다. 상기 내부전극층은 외부전극층과 연결되어 상기 압전체층에 전하를 인가한다.A piezoelectric element according to an embodiment of the present invention includes a piezoelectric layer and an internal electrode layer. The piezoelectric layer includes a piezoelectric ceramic composition according to an embodiment of the present invention. When an electric charge is applied to at least one of the upper surface and the lower surface of the piezoelectric layer by the internal electrode layer, mechanical displacement occurs in the piezoelectric layer. The internal electrode layer is formed on at least one of the upper surface and the lower surface of the piezoelectric layer, and charges are applied to the piezoelectric layer. The internal electrode layer is connected to an external electrode layer to apply charge to the piezoelectric layer.
상기 내부전극층은 은(Ag)-팔라듐(Pd) 합금을 포함할 수 있다. 적층형 압전소자에서 압전체층과 내부전극층을 동시에 소성하는 경우, 내부전극층이 압전체층의 일반적인 소성온도인 1100℃에서 산화되지 않아야 하기 때문에 상기 내부전극층은 녹는점이 1500℃ 이상인 팔라듐을 고함량으로 포함한다.The internal electrode layer may include a silver (Ag) -palladium (Pd) alloy. In the case of simultaneously firing the piezoelectric layer and the internal electrode layer in the stacked piezoelectric element, since the internal electrode layer should not be oxidized at 1100 DEG C, which is the general firing temperature of the piezoelectric layer, the internal electrode layer contains a high content of palladium having a melting point of 1500 DEG C or higher.
본 발명의 일 실시예에 따르면, 상기 내부전극층을 구성하는 은(Ag)-팔라듐(Pd) 합금에서 팔라듐의 함량이 0wt% 초과 10wt% 이하 일 수 있다. 상술한 본 발명의 일 실시예에 따른 압전 세라믹 조성물은 저온 소결(950℃ 이하)이 가능하므로 고가의 팔라듐을 상기의 범위로 제한하여도 동시 소성시에 변형이 일어나지 않는 내부전극층을 형성할 수 있다.According to an embodiment of the present invention, the content of palladium in the silver (Ag) -palladium (Pd) alloy constituting the internal electrode layer may be more than 0 wt% and less than 10 wt%. The piezoelectric ceramic composition according to an embodiment of the present invention can be sintered at a low temperature (950 DEG C or less), so that even when palladium of high price is limited to the above range, an internal electrode layer which is not deformed at the time of co- .
이렇게 함으로써, 본 발명의 일 실시예에 따른 압전소자는 저온 소결이 가능함에 따라 내부전극층을 구성하는 팔라듐의 함량을 줄일 수 있어 제조단가를 현저히 낮출 수 있다.
By doing so, since the piezoelectric element according to an embodiment of the present invention can be sintered at a low temperature, the content of palladium constituting the internal electrode layer can be reduced, and the manufacturing cost can be significantly reduced.
본 발명의 일 실시예에 따르면, 상기 압전소자는 압전 액츄에이터일 수 있다. 상기 액츄에이터는 본 발명의 일 실시예에 따른 저온 소결이 가능한 압전 세라믹 조성물을 포함하는 압전체층 및 상기 압전체층의 상면 및 하면 중 적어도 어느 하나에 형성되어 압전체층에 전하를 인가하는 내부전극층이 다층형으로 구성될 수 있다. 상기 액츄에이터는 상기 내부전극층을 통해 상기 압전체층에 전압이 인가될 경우 압전 세라믹 조성물에 의해 압전 변형이 야기된다. 상기 압전체층 및 상기 내부전극층의 구성에 대해서는 상기 압전소자에 대한 설명부분에서 상술하였으므로 상세한 설명을 생략한다. According to an embodiment of the present invention, the piezoelectric element may be a piezoelectric actuator. The actuator includes a piezoelectric layer including a piezoelectric ceramics composition capable of low temperature sintering according to an embodiment of the present invention and an internal electrode layer formed on at least one of an upper surface and a lower surface of the piezoelectric layer to apply charge to the piezoelectric layer, . The actuator causes piezoelectric deformation by the piezoelectric ceramic composition when a voltage is applied to the piezoelectric layer through the internal electrode layer. The configurations of the piezoelectric layer and the internal electrode layer have been described in detail in the description of the piezoelectric element, and detailed description thereof will be omitted.
이하, 본 발명의 실시예들을 첨부의 도면과 함께 상세히 설명한다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
시편의 제조방법 IPreparation method of specimen I
저온소결 압전 세라믹스를 개발하기 위하여 PMW-PNN-PZT 조성 세라믹스를 선택하고, 저온소결과 B site 각 성분의 반응성 차이에 의한 불균질성을 최소화 하기 위하여 콜럼바이트 전구체 방법을 이용하여 소결조제로 PbO, CuO, Fe2O3를 첨가하였다. 여기서 소결조제중 PbO, CuO를 일정하게 유지하고, Fe2O3의 함량에 변화를 주어, 900ºC~ 940ºC까지의 소결온도에 따른 유전 및 압전특성을 측정하여 체계적으로 조사하였다. In order to develop low temperature sintered piezoelectric ceramics, PMW-PNN-PZT composition ceramics were selected, and to minimize heterogeneity due to the difference in reactivity between low-temperature sintering and B site components, PbO, CuO, Fe 2 O 3 was added. Here, PbO and CuO were kept constant and the content of Fe 2 O 3 was varied to investigate the dielectric and piezoelectric properties according to the sintering temperature from 900 º C to 940 º C.
실험에 적용한 조성식은 다음 식 2와 같다.The composition formula used in the experiment is shown in
(1-x)Pb(Mg1 /2W1 /2)0.03(Ni1 /3Nb2 /3)0.09(ZryTi1 -y)0.88O3 + xBiFeO3 (x=0 또는 0.015, y=0.47~0.53) + 0.3wt%PbO + 0.3wt%CuO + zwt%Fe2O3 (Z=0~0.4wt%) (식 2)
(1-x) Pb (Mg 1/2 W 1/2) 0.03 (Ni 1/3
먼저, 99%이상의 순도를 갖는 B-site 원료들인 MgO, WO, NiO, Nb2O5, ZrO2, TiO2을 조성에 따라 10-4까지 칭량하였고, 아세톤을 분산매로 하여 3Φ 지르코니아 볼을 사용하여 24시간 혼합 및 분쇄하였다. 볼-밀링(Ball-milling)한 시료를 항온건조기에서 12시간 이상 완전히 건조한 뒤, 알루미나 도가니를 이용하여 1100℃에서 4시간 하소하였다. 페로브스카이트 PMW-PNN-PZT 시편을 제조하기 위해 미리 하소된 시료와, 상기의 식 2의 조성에 맞게 칭량된 PbO를 24시간 혼합 및 분쇄하였다. 혼합 및 분쇄된 시료는 건조 후 750℃에서 2시간 하소하였다. 2차 하소된 시료에 PbO와 CuO 그리고 Fe2O3를 소결조제로 첨가하여 24시간동안 다시 혼합 및 분쇄하였으며, 건조된 시료에 PVA(5wt% 수용액)를 혼합하여 17Φ의 몰더에서 15MPa의 성형압을 주어 성형하였고, 600℃에서 3시간동안 번아웃(Burn out)을 진행하였다. 제작된 시편은 승·하강온도 구배를 3℃/min로 하여 900℃~940℃의 소결온도에서 2시간 동안 소결하였다.
First, MgO, WO, NiO, Nb 2 O 5 , ZrO 2 and TiO 2 , which are B-site materials having a purity of 99% or more, were weighed to 10 -4 according to the composition and 3Φ zirconia balls And mixed and pulverized for 24 hours. The ball-milled sample was thoroughly dried for 12 hours or more in a constant-temperature drier and then calcined at 1100 ° C for 4 hours using an alumina crucible. To prepare the perovskite PMW-PNN-PZT specimen, the pre-calcined sample and the PbO weighed to the composition of the
1) 시편의 압전특성 및 유전특성의 측정1) Measurement of Piezoelectric and Dielectric Properties of Specimen
소성된 시편은 특성을 측정하기 위하여 1mm로 연마하여 스크린 프린트법으로 Ag전극을 양면으로 도포한 후, 600℃에서 열처리를 하였다. 그 후, 시편을 120℃의 실리콘 오일에서 3kV/mm의 직류전계를 30분 동안 인가하여 분극 처리를 하였다. The fired specimens were polished to 1 mm in order to measure the characteristics, and the Ag electrode was coated on both sides by screen printing method and then heat treated at 600 ° C. Thereafter, the specimen was subjected to polarization treatment by applying a DC electric field of 3 kV / mm for 30 minutes in silicone oil at 120 deg.
시편의 유전특성을 조사하기 위하여 LCR meter(ANDO AG-4304)로 1kHz에서의 정전용량을 측정하여 유전 상수를 산출하였고, 시편의 미세구조 및 결정구조는 각각 SEM(Scanning Electron Microscope)과 XRD(X-ray Diffraction)를 통해 분석하였다. 입자의 크기는 선형 간섭법(Linear Intercept Technical Method)을 사용하여 산출하였으며, 압전상수(d33)를 조사하기 위하여 전하측정기(8000 piezo d33 tester)로 측정하였다. 또한 IEEE 규정에 따라 Impedance Analyzer (Agilent 4294A)로 공진 및 반공진 주파수와 공진저항을 측정하여 전기기계결합계수(kP)와 기계적 품질계수(Qm)를 계산하였다.
The dielectric constant of the sample was measured by measuring the capacitance at 1 kHz with an LCR meter (ANDO AG-4304). The microstructure and crystal structure of the specimen were measured by scanning electron microscope (SEM) and XRD -ray Diffraction). The particle size was calculated using the Linear Intercept Technical Method and measured with a charge tester (8000 piezo d 33 tester) to investigate the piezoelectric constant (d 33 ). The electromechanical coupling coefficient (k P ) and the mechanical quality factor (Q m ) were calculated by measuring resonance and antiresonance frequency and resonance resistance with an Impedance Analyzer (Agilent 4294A) according to IEEE regulations.
2) 시편의 소결특성 및 구조적 특성2) Sintering characteristics and structural characteristics of specimen
도 1은 PMW-PNN-PZT 세라믹스 조성에 Fe2O3 첨가량 변화에 따른 X-선 회절 패턴 결과를 나타낸 것이다. 도 1에서 나타난 X-선 회절 패턴에서 모든 시편은 전형적인 순수한 페로브스카이트 구조를 보였으며, Fe2O3가 첨가되지 않은 시편에서는 2차상(Secondary phase)이 약간 나타났다. 반면에 Fe2O3의 첨가량이 증가함에 따라 2차상은 발견되지 않았다. 이러한 결과는 완전한 고상반응이 이루어진 것으로 사료된다. FIG. 1 shows the X-ray diffraction pattern of the PMW-PNN-PZT ceramics composition according to the amount of Fe 2 O 3 added. In the X-ray diffraction pattern shown in FIG. 1, all the specimens showed a typical pure perovskite structure, and the specimen without Fe 2 O 3 showed a slight secondary phase. On the other hand, as the amount of Fe 2 O 3 was increased, no secondary phase was found. These results suggest that complete solid phase reaction has been achieved.
도 1에서 나타나듯 Fe2O3의 첨가량이 증가함에 따라 (002)피크가 증가하는 것으로 보아 정방성(Tetragonality) 또한 커지는 것을 확인할 수 있었다.As shown in FIG. 1, the (002) peak is increased with an increase in the amount of Fe 2 O 3 added, and the tetragonality is also increased.
도 2는 소결온도 변화와 Fe2O3 첨가량의 변화에 따른 시편의 밀도를 나타낸 것이다. 소결온도가 900ºC 일 때, Fe2O3 첨가량의 증가에 따라 밀도는 서서히 감소하는 경향을 보였다. 이것은 완전한 액상소결이 이루어지기에는 900ºC의 소결온도가 낮았기 때문에 시편의 밀도가 감소하는 것으로 사료된다. 소결온도가 920ºC 일 때, Fe2O3 가 0.3wt% 첨가된 시편에서 밀도의 최댓값은 7.94 g/㎤로 나타났다. 그리고 940ºC 소결온도에서는 Fe2O3의 첨가량 변화에 따라 920ºC 와 마찬가지로 서서히 증가하는 특성을 나타내었다. 하지만, 920ºC에서의 밀도와 비교를 해보면 전체적으로 감소하였다. 따라서, 920℃가 최적의 소결온도이며, 940ºC에서는 920ºC보다 밀도가 떨어지는 것은 과소성에 의한 것으로 사료된다.2 shows the density of a specimen according to changes in sintering temperature and addition of Fe 2 O 3 . When the sintering temperature was 900 ° C, the density gradually decreased with increasing Fe 2 O 3 addition. It is considered that the density of the specimen is decreased because the sintering temperature of 900 º C is low for complete liquid sintering. When the sintering temperature was 920 ºC, the maximum density of the specimens with 0.3 wt% Fe 2 O 3 was found to be 7.94 g / ㎤. At 940 º C sintering temperature, it gradually increased as the addition of Fe 2 O 3 increased. However, when compared to the density at 920ºC, the overall density decreased. Therefore, it is considered that the sintering temperature of 920 ° C is the optimum sintering temperature, and that the density is lower than 920 ° C at 940 ° C.
도 3의 a~e는 PMW-PNN-PZT 세라믹스 조성에 Fe2O3를 첨가하여 920ºC에서 소성한 시편들의 미세구조를 관찰하기 위해 각 시편들의 표면을 나타낸 SEM 이미지이다. Fe2O3 첨가량이 x= 0(a), 0.1(b), 0.2(c), 0.3(d), 0.4(e)로 첨가되었을 때 시편의 입경은 3.21μm, 3.76μm, 5.34μm, 5.49μm, 4.55μm로 각각 나타났으며, 첨가량이 0.3wt% 일 때, 최댓값 5.49μm를 나타냈다. 이러한 결과는 소결조제로 첨가한 Fe2O3와 CuO가 PbO와의 반응으로 PbO-Fe2O3(730ºC), PbO-CuO(680ºC)의 공융점(eutectic point)을 갖는 물질로 쉽게 액상(liquid phase)을 형성하여 액상소결을 유도하며, 소결성의 개선으로 인해 치밀화되어 그레인 성장을 유도한 것으로 사료된다. Fe2O3의 첨가량이 0.3wt% 보다 더 첨가되었을 때 입경이 감소한 원인은 Fe2O3가 그레인 경계에 편석되어 그레인의 성장을 억제했기 때문으로 사료된다.
3 (a) to 3 (e) are SEM images showing the surface of each specimen to observe the microstructure of the PMW-PNN-PZT ceramics prepared by firing Fe 2 O 3 at 920 ° C. When the addition amount of Fe 2 O 3 was added at x = 0 (a), 0.1 (b), 0.2 (c), 0.3 (d), and 0.4 (e), the grain size of the specimen was 3.21 μm, 3.76 μm, 5.34 μm, μm and 4.55 μm, respectively, and the maximum value was 5.49 μm when the added amount was 0.3 wt%. These results indicate that Fe 2 O 3 and CuO added as sintering aids react with PbO to form eutectic points of PbO-Fe 2 O 3 (730 ° C) and PbO-CuO (680 ° C) phase, which leads to the liquid phase sintering, and it is believed that the grain growth is induced by densification due to the improvement of sinterability. The reason why the grain size decreased when Fe 2 O 3 was added in an amount more than 0.3 wt% was thought to be that Fe 2 O 3 was segregated at the grain boundary and suppressed grain growth.
3) 시편의 압전특성 및 유전특성3) Piezoelectric and dielectric properties of specimen
도 4 및 도 5는 소결온도 변화와 Fe2O3 첨가량 변화에 따른 시편의 전기기계결합 계수 k31 (도 4)와 kP(도 5)의 변화를 나타낸 것이다. Fe2O3 첨가량이 증가함에 따라, 전체적으로 kP와 k31변화의 양상은 일치하는 경향을 나타내고 있다. 전기기계결합계수 kP와 k31은 900ºC 소결온도에서 Fe2O3가 0.2wt% 첨가되었을 때, 0.39, 0.68로 각각 최댓값을 나타내었고, 920ºC와 940ºC 소결온도에서 kP와 k31은 Fe2O3의 첨가량이 증가함에 따라 서서히 증가하여 0.3wt% 첨가시에 0.4, 0.69 와 0.44, 0.69로 각각 최댓값을 나타낸 후에 그 이상 첨가 시에는 감소하는 특성을 보였다. 이러한 결과는 저 융점을 갖는 소결조제들이 소결시에 액상의 형성하여 액상소결에 의해 소결성이 개선되고 그에 따라 밀도의 증가와 그레인 크기가 증가하기 때문으로 사료된다. 그리고 도 3의 SEM이미지에서 보이듯이 Fe2O3 첨가량을 증가시킬수록 그레인이 성장하여 도메인 스위칭 및 분극효율이 용이해졌기 때문에 전기기계결합계수가 증가한 것으로 사료된다. 그 후, 감소하는 것은 그레인 성장이 감소하여 밀도가 떨어지므로 특성이 저하되는 것으로 사료된다.4 and 5 show changes in the electromechanical coupling coefficients k 31 (FIG. 4) and k P (FIG. 5) of the specimen with changes in the sintering temperature and the addition amount of Fe 2 O 3 . As the amount of Fe 2 O 3 added increases, the patterns of k P and k 31 changes tend to agree with each other. The electromechanical coefficient k and P k is 31 when the Fe 2 O 3 was added 0.2wt% at 900ºC sintering temperature, 0.39, to 0.68 exhibited a maximum value, respectively, k and P k 31 at 920ºC and 940ºC sintering temperature is Fe 2 As the content of O 3 increased, the content gradually increased, and the maximum value was 0.4, 0.69, 0.44 and 0.69, respectively, when 0.3 wt% was added. These results suggest that sintering aids with low melting point form liquid phase during sintering and sinterability is improved by liquid phase sintering, resulting in increased density and grain size. As shown in the SEM image of FIG. 3, it is believed that the electromechanical coupling coefficient is increased because the grain is grown and the domain switching and polarization efficiency becomes easier as the Fe 2 O 3 addition amount is increased. After that, it is considered that the decrease is due to a decrease in grain growth and a decrease in density.
도 6 및 도 7은 소결온도의 변화와 Fe2O3 첨가량의 변화에 따른 시편의 압전상수 d33 (도 6)와 d31(도 7)의 변화를 나타낸 것이다. 압전상수는 전계를 인가할 때 발생되는 변위의 크기를 나타내는 것으로, 압전상수 d33과 d31은 전기기계결합계수(kP)의 특성과 비슷한 경향을 나타내고 있다. 시편의 소성온도가 900ºC일 때, Fe2O3의 첨가량이 증가함에 따라 압전상수는 증가하는 특성을 보였으며, 0.2wt% 첨가시 압전상수 d33와 d31은 각각 592pC/N, 212pC/N으로 최댓값을 보였고, 그 이상 첨가 시 서서히 감소하는 경향을 나타내었다. 그리고 920ºC와 940ºC 소결온도에서 압전상수 d33와 d31은 Fe2O3의 첨가량이 증가함에 따라 증가하는 특성을 나타냈으며, 0.3wt% 첨가시에 압전상수 d33와 d31은 920ºC의 소결온도에서 632pC/N, 243pC/N과 940ºC의 소결온도에서 662pC/N, 280pC/N 으로 최댓값을 나타냈다. 이러한 결과는 900ºC에서는 낮은 온도 때문에 소결이 충분히 이루어지지 않아 압전상수 값이 높지 않는 것으로 사료된다. 반면에, 920ºC와 940ºC에서 높은 압전상수 값을 나타내는 것은 도 3에서의 결과와 마찬가지로, 액상소결에 의해 소결성이 개선되어 그레인의 성장이 증가하였고, 그로 인해서 분극 값이 증대되었기 때문에 특성이 향상된 것으로 사료된다. 또한, 압전상수와 전기기계결합계수의 값이 유전상수와 잔류분극의 값에 비례한다는 보고에 따라서 압전특성의 향상은 잔류분극의 값과 유전상수의 값의 증가하기 때문으로 사료된다.6 and 7 is the piezoelectric constant of the specimen according to the change of the change in Fe 2 O 3 addition amount of the sintering temperature d 33 (Fig. 6) and d 31 (Fig. 7). The piezoelectric constants represent the magnitude of the displacement generated when an electric field is applied, and the piezoelectric constants d 33 and d 31 are similar to those of the electromechanical coupling coefficient (k P ). The piezoelectric constants d 33 and d 31 were found to be 592 pC / N and 212 pC / N, respectively, when 0.2 wt% was added, when the firing temperature of the specimen was 900 ° C and the content of Fe 2 O 3 was increased. , And showed a tendency to decrease gradually when added more. And the piezoelectric constant d 33 and d 31 from 920ºC and 940ºC sintering temperature is Fe 2 O showed the increment for as the addition amount of the increase is 3, the piezoelectric constant d 33 and d 31 was added at 0.3wt%, the sintering temperature of 920ºC The maximum value was found to be 662pC / N and 280pC / N at sintering temperatures of 632pC / N, 243pC / N and 940ºC, respectively. These results indicate that the piezoelectric constant is not high because the sintering is not performed sufficiently at 900 ° C due to the low temperature. On the other hand, high piezoelectric constant values at 920 ° C and 940 ° C are similar to those shown in FIG. 3, because the sintering property is improved by the liquid phase sintering, and the grain growth is increased. As a result, do. Also, it is suggested that the improvement of the piezoelectric properties is due to the increase of the value of the residual polarization and the dielectric constant according to reports that the values of the piezoelectric constant and the electromechanical coupling coefficient are proportional to the dielectric constant and the value of the remanent polarization.
도 8은 소결온도의 변화와 Fe2O3 첨가량의 변화에 따른 상온에서의 유전상수(εr) 변화를 나타낸 것이다. 유전상수는 전기기계 결합계수(kP)와 압전상수(d33)의 결과와 동일한 경향을 나타내었다. Fe2O3의 첨가량을 증가시킬수록 유전상수 값은 증가하였으며, Fe2O3가 0.3wt% 첨가되었을 때, 900ºC 와 920ºC, 그리고 940ºC 소결된 시편에서 각각 2130, 2682, 2774의 최댓값을 나타내었다. 그 이상 Fe2O3를 첨가하였을 때에는 감소하는 특성을 보였다. 이러한 결과는 도 2 및 도 3에서 알 수 있듯이, Fe2O3 첨가량의 변화에 따라 밀도가 증가하고 저유전율층인 그레인 경계가 감소한 것과 소결밀도가 증가되면서 기공율이 감소되었기 때문에 유전상수가 증가한 것으로 사료된다. 유전상수가 감소하는 것은 고용한계에 의해서 결정립 경계에서 저유전율층인 그레인 경계에 고용하지 못한 액상소결조제가 존재하여 그레인 성장을 억제한 것의 결과로 보인다.
Figure 8 2 O 3 changes in the sintering temperature and Fe (Ε r ) at room temperature with changes in the addition amount. The dielectric constant showed the same tendency as the results of electromechanical coupling coefficient (k P ) and piezoelectric constant (d 33 ). The more increase the amount of addition of Fe 2 O 3 was increased, the dielectric constant, Fe 2 O 3 is exhibited, 900ºC and 920ºC, 940ºC and respectively 2130, 2682, 2774 from the maximum value of the sintered specimen when added 0.3wt% . And when Fe 2 O 3 was added more than that, it was decreased. As can be seen from FIGS. 2 and 3, the dielectric constant was increased due to the increase in the density of Fe 2 O 3 , the decrease of the grain boundary of the low dielectric constant layer, and the decrease of the porosity due to the increase of the sintered density . The decrease in the dielectric constant seems to result from suppression of grain growth due to the presence of a liquid phase sintering additive which can not be solved at the grain boundary, which is a low permittivity layer at the grain boundary due to the solubility limit.
본 발명의 표에서 단위가 표시되어 있지 않은 수치들은 비율을 나타낸다.
In the tables of the present invention, numerals for which units are not indicated represent ratios.
4) 4) FeFe 22 OO 33 첨가에 따른 저온소결 Low temperature sintering according to addition PMWPMW -- PNNPNN -- PZTPZT 세라믹스의 특성(소결) Characteristics of ceramics (sintering)
XRD 패턴의 결과 모든 시편은 순수한 페로브스카이트 구조를 나타내었으며, 920ºC에서 소결된 시편의 Fe2O3 첨가량에 따른 미세구조에서, 평균 입경크기는 0.3wt%의 Fe2O3가 첨가된 시편에서 최댓값인 5.49μm가 관찰되었으며, 그 이상의 첨가에서는 감소하는 경향을 나타내었다. Results of XRD patterns All specimens exhibited a pure perovskite structure, in the microstructure of the Fe 2 O 3 additive amount of the sintered specimens at 920ºC, the average particle diameter size of the 0.3wt% of Fe 2 O 3 added to the specimen , The highest value of 5.49 μm was observed, and the tendency of decreasing tendency was shown.
Fe2O3의 첨가량에 따른 밀도는 900ºC에서 소결했을 때 감소하는 경향을 나타낸 반면에 920ºC 및 940ºC에서 소결했을 때는 증가하는 경향을 나타냈다. 특히, 920ºC의 소결온도에서 Fe2O3가 0.3wt% 첨가되었을 때, 7.94g/cm3의 최댓값이 관찰되었다.The density of Fe 2 O 3 decreased with sintering at 900 ° C, but increased with sintering at 920 ° C and 940 ° C. In particular, when 0.3 wt% of Fe 2 O 3 was added at a sintering temperature of 920 ° C, a maximum value of 7.94 g / cm 3 was observed.
Fe2O3의 첨가량에 따른 전기기계 결합계수(kP, k31), 기계적 품질계수Qm, 압전상수(d33, d31), 유전상수(εr), 항전계(EC)는 940ºC에서 소결된 시편에서 각각 0.69, 0.44, 104.06, 662pC/N, 280pC/N, 2744, 10.42kV/cm로 0.3wt%가 첨가되었을 때 얻을 수 있었으며, Fe2O3가 0.3wt% 첨가되고 920ºC에서 소결된 시편에서는 각각 0.69, 0.40, 213.63, 632pC/N, 246pC/N, 2682, 10.80kV/cm을 나타내었다.
(K P , k 31 ), the mechanical quality factor Q m , the piezoelectric constants (d 33 , d 31 ), the dielectric constant (∈ r ) and the coercive field (E c ) depend on the addition amount of Fe 2 O 3 could be obtained when it is in the sintered specimens from 940ºC, respectively 0.69, 0.44, 104.06, 662pC / N, 280pC / N, 2744, 0.3wt% to 10.42kV / cm is added, the Fe 2 O 3 was added 0.3wt% 920ºC 0.69, 0.40, 213.63, 632pC / N, 246pC / N, 2682 and 10.80kV / cm respectively for the sintered specimens.
5) 하소 온도변화에 따른 5) Depending on the calcination temperature PMWPMW -- PNNPNN -- PZTPZT 세라믹스 특성변화 Changes in Ceramic Properties
콜럼바이트 전구체 방법을 이용하여 B-site 하소 온도와 2차 하소 온도를 각각 1070ºC~1100ºC, 720ºC ~780ºC로 변화를 주어 그에 따른 PMW-PNN-PZT 세라믹스의 유전 및 압전 특성을 조사하였으며, 관찰된 XRD 패턴으로부터, 모든 시편은 2차상(pyrochlore)상에 없는 순수한 페로브스카이트 구조를 나타냄을 알 수 있었으며, 하소 온도 변화에 따른 시편들의 평균 입경크기는 1130ºC에서 B-site 하소가 이루어진 후에 780ºC에서 2차 하소 온도를 증가함에 따라 증가하는 경향을 나타냈으며, 780ºC에서 진행한 시편에서 최댓값인 6.28μm를 나타냈다. 이것은 표준 조건인 B-site 하소 온도 1100ºC, 2차 하소 750ºC 시편의 평균 입경크기 4.88μm에 비해 크게 증가한 것이다. The dielectric and piezoelectric properties of the PMW-PNN-PZT ceramics were investigated by varying the B-site calcination temperature and the second calcination temperature from 1070 ºC to 1100 ºC and 720 ºC to 780 º C, respectively, using the columbite precursor method. From the pattern, it can be seen that all the specimens exhibit a pure perovskite structure that is not on the pyrochlore phase. The average particle size of the specimens with the calcination temperature changes is 780 ° C at 2 ° C after B-site calcination at 1130 ° C It showed the tendency to increase with increasing the secondary calcination temperature. It showed the maximum value of 6.28μm in the specimen proceeding at 780ºC. This is a large increase compared to the standard size of the B-site calcination temperature of 1100 ° C and the average particle size of the second calcined 750 ° C sample of 4.88 μm.
시편의 밀도 ρ, 전기기계 결합계수kp, 압전상수d33, 유전상수εr은 하소 온도 변화에 따라 비슷한 경향을 나타내었으며, k31, d31, S11 E는 B-site 하소 온도 증가에 따라 780ºC의 2차 하소 온도에서 증가하는 경향을 나타내었다. 최적의 하소 온도인 B-site 1130ºC, 2차 하소 온도 750ºC, 소결 온도 720ºC에서 각각의 특성값은 ρ=7.78g/cm3, kp=0.685, k31=0.41, d33=599pC/N, d31=248pC/N, 91.57, EC=11.025kV/cm로 나타났다.The densities ρ, the electromechanical coupling factor k p , the piezoelectric constant d 33 and the dielectric constant ε r of the specimens showed similar trends depending on the calcination temperature, while the k 31 , d 31 and S 11 E showed a tendency to increase the B-site calcination temperature And then increased at the second calcination temperature of 780 ° C. For the optimum calcination temperature of B-site 1130 ºC, secondary calcination temperature 750 ºC and sintering temperature 720 ºC, the characteristic values were ρ = 7.78 g / cm 3 , k p = 0.685, k 31 = 0.41, d 33 = 599 pC / d 31 = 248 pC / N, 91.57 and E C = 11.025 kV / cm.
하소 온도에 변화를 주고 900ºC와 920ºC에서 소결한 시편의 전체적인 압전 및 유전 특성은 소결 온도 증가에 따라 전체적으로 감소하는 경향을 나타내었다.
The overall piezoelectric and dielectric properties of specimens sintered at 900 ºC and 920 º C with varying calcination temperature tended to decrease with increasing sintering temperature.
시편의 제조방법 Method of preparing sample IIII
본 실험의 기본 조성식은 다음과 같으며 일반적인 산화물 혼합법으로 시편을 제조하였다.The basic composition formula of this experiment is as follows and specimens were prepared by general oxide mixing method.
0.985[Pb(Mg1 /2W1 /2)0.03(Ni1 /3Nb2 /3)0.09(Zr0 .5Ti0 .5)O3 + 0.015BiFeO3 0.985 [Pb (Mg 1/2 W 1/2) 0.03 (Ni 1/3
+ 0.2wt%Li2CO3 + 0.25wt%CaCO3 (식 3)+ 0.2 wt% Li 2 CO 3 + 0.25 wt% CaCO 3 (Equation 3)
PbO(99%), MgO(99%), WO3(99%) 등 99% 이상의 순도를 갖는 시료를 사용하여 조성식에 따라 10-4g까지 평량하여 아세톤을 분산매로 3mm 지르코니아 볼을 사용하여 24시간 혼합 및 분쇄 한 후, 80℃의 항온건조기에서 건조하였다. 건조된 시료를 850℃의 온도에서 2시간 하소하였으며, 하소된 시료와 750ºC에서 2시간동안 합성된 첨가제인 BiFeO3 와 소결조제인 Li2CO3, CaCO3를 조성식에 맞춰 평량한 후 재 혼합·분쇄를 하였다. 재 혼합·분쇄된 시료를 건조시키고, 시료에 폴리비닐 알코올(Polyvinyl alcohol, PVA aqueous solution) 수용액을 5wt% 첨가하고 17Φ몰더를 사용하여 15MPa의 성형압을 가하여 성형하였다. 성형된 시편은 600℃에서 3시간동안 PVA 결합제를 태워버리는 번아웃(Burn-out) 과정을 거친 후, 승·하강 온도구배를 3℃/mm로 하여 920℃에서 1시간 30분 소결하였다. 시편의 전기적 특성을 측정하기 위하여 소성된 시편을 1mm 두께로 연마한 후, Ag 전극을 스크린 프린트법으로 도포하였으며, 시편을 600℃에서 10분간 전극을 열처리 하였다. 120℃의 실리콘 오일에서 3kV/cm의 직류 전계를 30분간 인가하여 분극 하였다. 분극을 한 시편을 24시간이 지난 후에, IEEE 규정에 따라 임피던스 분석기(Impedence analyzer, Agilent 4294)를 이용하여 공진 및 반공진 주파수와 공진 저항을 측정하여 전기기계결합계수(kP)와 기계적 품질계수(Qm)를 산출하였다. 시편의 미세구조 및 결정구조는 각각 SEM(scanning electron microscope) 과 XRD(X-ray diffraction)를 이용하여 관찰하였다. 유전 특성을 조사하기 위해서 LCR meter(ANDO AG 4304)를 이용하여 1kHz 의 주파수에서 정전용량을 측정하여 유전상수를 산출하였고, 또한 압전 상수(d33)은 Piezo-d33 meter(APC, YE 2730A)로 측정하였다.
A sample having a purity of 99% or more such as PbO (99%), MgO (99%) and WO 3 (99%) was weighed to 10 -4 g according to the composition formula, and acetone was dispersed as a dispersion medium using a 3 mm zirconia ball And then dried in a constant-temperature dryer at 80 ° C. The dried sample was calcined at a temperature of 850 ° C for 2 hours. The calcined sample was mixed with BiFeO 3 And sintering additives such as Li 2 CO 3 and CaCO 3 were weighed according to the composition formula and re-mixed and pulverized. The re-mixed and pulverized sample was dried, and 5 wt% aqueous solution of polyvinyl alcohol (PVA aqueous solution) was added to the sample, and molding pressure of 15 MPa was applied using a 17Φ molder. The molded specimens were burned out at 600 ° C for 3 hours to burn the PVA binder, and sintered at 920 ° C for 1 hour and 30 minutes at a rate of 3 ° C / mm. In order to measure the electrical characteristics of the specimen, the fired specimen was polished to a thickness of 1 mm, and then the Ag electrode was applied by screen printing. The specimen was heat treated at 600 ° C. for 10 minutes. And a direct current electric field of 3 kV / cm was applied for 30 minutes in the silicone oil at 120 캜 for polarization. After 24 hours of polarization, the resonance and antiresonance frequency and resonance resistance were measured using an impedance analyzer (Impedence analyzer, Agilent 4294) according to IEEE regulations, and the electromechanical coupling coefficient (k P ) and the mechanical quality factor (Q m ) was calculated. The microstructure and crystal structure of the specimens were observed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The piezoelectric constant (d 33 ) was measured using a Piezo-d 33 meter (APC, YE 2730A). The dielectric constant was calculated by measuring the capacitance at a frequency of 1 kHz using an LCR meter (ANDO AG 4304) .
1) 유전 및 압전 특성1) Dielectric and piezoelectric properties
도 9는 제작된 PMW-PNN-PZT + BiFeO3조성 최종분말과 소결된 펠릿(pellet)의 X선 회절 패턴을 나타내고 있다. 측정된 샘플은 모두 일반적인 산화물 혼합법을 이용하여 920ºC에서 소결되어 제작되었다. 측정된 XRD 패턴으로부터, 능면체(Rhombohedral)상과 정방정(Tetragonal)상이 공존하는 MPB(Morphotrophic phase boundary)인 것으로 사료되며 소결된 펠릿의 경우에는, (200)피크의 강도가 강해지면서 정방정상을 나타내는 것으로 사료된다. 또한 두 가지 샘플 모두에서 2차상(pyrochlore)은 관찰되지 않았다.FIG. 9 shows an X-ray diffraction pattern of the final PMW-PNN-PZT + BiFeO 3 composition powder and a sintered pellet. All of the measured samples were sintered at 920ºC using general oxide mixing method. From the measured XRD pattern, it is assumed that the morphotrophic phase boundary (MPB) in which rhombohedral phase and tetragonal phase are coexisted. In the case of sintered pellet, the intensity of peak (200) Respectively. No pyrochlore was observed in both samples.
도 10은 PMW-PNN-PZT + BiFeO3 세라믹스의 SEM 이미지를 나타내고 있다. 측정된 시편은 일반적인 산화물 혼합법으로 920ºC의 소결온도에서 제작되었으며, 시편의 평균 입경크기는 3.69μm으로 나타났다.10 shows an SEM image of PMW-PNN-PZT + BiFeO 3 ceramics. The measured specimens were fabricated at the sintering temperature of 920 ºC by the general oxide mixing method, and the average grain size of the specimens was 3.69 ㎛.
도 11은 일반적인 산화물 혼합법을 이용해서 920ºC에서 소결된 PMW-PNN-PZT + BiFeO3 세라믹스의 유전상수 온도의존성을 나타내고 있다. 상전이온도(Temperature Curie)는 358ºC 부근에서 관찰되었다.
11 shows the dielectric constant temperature dependence of PMW-PNN-PZT + BiFeO 3 ceramics sintered at 920 ° C using a general oxide mixing method. Temperature Curie was observed around 358ºC.
표 2는 PMW-PNN-PZT + BiFeO3 세라믹스의 제작 방법에 따른 전반적인 물성값을 나타낸 것이다. 콜럼바이트 전구체 방법으로 B-site를 먼저 1100ºC에서 하소한 후에 2차 하소를 750ºC에서 진행하고, 920 ºC 에서 소결한 시편의 압전 및 유전 특성은 일반적인 소결법을 이용해 제작한 시편의 특성들 보다 전반적으로 증가하는 경향을 나타냈으며, 특히 전기기계 결합계수(kP), 유전상수(εr), 압전상수(d33)는 B-site물질을 먼저 하소함에 따라서 크게 증가하는 경향을 보였다. 이러한 결과는 NiO와 Nb2O5로 인해 생성된 NiNb2O6가 일반적인 소결법을 이용했을 때보다 B-site물질을 먼저 하소했을 때 보다 더 합성이 이루어졌기 때문에 전반적으로 특성이 증가한 것으로 사료된다.
Table 2 shows the overall physical properties of PMW-PNN-PZT + BiFeO 3 ceramics according to the manufacturing method. The piezoelectric and dielectric properties of the specimens sintered at 920 ºC were generally higher than those of the specimens prepared by the general sintering method, after calcining the B-site at 1100 ºC, (KP), dielectric constant (epsilon r), and piezoelectric constant (d 33 ) of the B-site material tended to increase with calcination first. These results suggest that NiNb 2 O 6 produced by NiO and Nb 2 O 5 is more synthesized than B-site material first calcined by the general sintering method.
시편의 제조방법 Method of preparing sample IIIIII
본 실험의 기본 조성식은 다음과 같으며 일반적인 산화물 혼합법으로 시편을 제조하였다. 조성식을 제외한 나머지 방법은 상기 '시편의 제조방법 II'와 동일하다.The basic composition formula of this experiment is as follows and specimens were prepared by general oxide mixing method. Except for the composition formula, the remaining method is the same as the above-mentioned " method of preparing specimen II ".
(1-x)Pb(Mg1 /2W1 /2)0.03(Ni1 /3Nb2 /3)0.09(ZryTi1 -y)0.88O3 + xBiFeO3 + 0.2wt% LiCO3 + 0.25wt% CaCO3 (식 3)
(1-x) Pb (Mg 1/2 W 1/2) 0.03 (Ni 1/3
1) 유전 및 압전특성1) Dielectric and piezoelectric properties
일반 액츄에이터용 압전조성은 d31 190 이상, k31 0.30 이상, Ec 9.0㎸/㎝ 정도면 충분한 성능을 발휘할 수 있는데 (1-x)Pb(Mg1 /2W1 /2)0.03(Ni1 /3Nb2 /3)0.09(ZryTi1 -y)0.88O3 + xBiFeO3 + 0.2wt% LiCO3 + 0.25wt% CaCO3 조성은 x, y의 넓은 범위에 걸쳐 우수한 특성을 보인다.The composition for the piezoelectric actuator is normal d 31 190 or more, k 31 0.30 over, Ec 9.0㎸ / ㎝ enough for there to exhibit sufficient performance (1-x) Pb (Mg 1/2 W 1/2) 0.03 (Ni 1 / 3 Nb 2/3) 0.09 ( Zr y Ti 1 -y) 0.88
소형 사이즈이면서 고진동을 요구하는 햅틱 액츄에이터의 경우 구동전계가 높아 압전특성도 우수하면서 항전계가 높은 재료가 요구되어 d31 220 이상, k31 0.35 이상, Ec 11.0㎸/㎝ 이상의 특성이 필요한데, 상기 표 3에서 확인할 수 있듯이 BiFeO3가 첨가되지 않은 조성의 경우 모든 조건을 만족하는 조성 영역을 얻을 수 없지만 Pb를 0.75, 1.5m/o BiFeO3로 치환한 경우 도 14와 같이 전 조성범위에서 Ec가 증가하여 모든 조건을 만족하는 조성 영역을 얻을 수 있다. (Zr/Ti 49/51 ~ 50/50) In the case of a haptic actuator requiring a small size and high vibration, a high dynamic range is required due to a high driving field, and a characteristic of d 31 220 or more, k 31 0.35 or more and Ec 11.0 kv / cm or more is required. , It is not possible to obtain a composition range satisfying all conditions in the case where BiFeO 3 is not added. However, when Pb is substituted by 0.75 and 1.5 m / o BiFeO 3 , Ec is increased in the total composition range as shown in FIG. 14 A composition region satisfying all conditions can be obtained. (Zr / Ti 49/51 to 50/50)
도 14는 Zr/Ti 비에 따른 비유전율, 도 15는 Zr/Ti 비에 따른 전기기계 결합계수, 도 16은 Zr/Ti 비에 따른 압전상수를 나타내며, 도 17은 Zr/Ti 비에 따른 항전계(coercive field)를 나타내는 그래프로서 상기 표 3을 뒷받침하고 있다.Fig. 14 shows the relative dielectric constant according to the Zr / Ti ratio, Fig. 15 shows the electromechanical coupling coefficient according to the Zr / Ti ratio, Fig. 16 shows the piezoelectric constant according to the Zr / Ti ratio, Which is a graph representing a coercive field, is supported by Table 3 above.
표 3을 참고하면, x=0인 경우에는 일반 액츄에이터의 특성을 만족하는 구간이 y=0.48, 0.49인 경우에 국한되는 반면, x=0.0075 인 경우 및 X=0.015인 경우에는 y=0.48~0.51의 범위에서 일반 액츄에이터의 특성을 만족시키는 것을 알 수 있으며, y=0.49 및 0.50인 조건에서는 보다 더 까다로운 조건인 햅틱 액츄에이터의 특성도 만족시키는 것을 알 수 있다.
Table 3 shows that when x = 0, the section satisfying the characteristics of the general actuator is limited to y = 0.48 and 0.49, whereas when x = 0.0075 and x = 0.015, y = 0.48 to 0.51 , And satisfies the characteristic of the haptic actuator, which is a more demanding condition under the condition of y = 0.49 and 0.50.
ABO3 타입 페로브스카이트 구조의 경우 A위치에 크기가 큰 2+ 이온이, B 위치에 크기가 작은 4+ 이온이 존재하며, 일반적으로 4+ 이온이 존재하는 B site에 3+ 이하의 이온을 치환하면 수용자(acceptor)로 작용하며, 결정구조 전체의 전기적 중성으로 유지하기 위해 산소 공공(oxygen vacancy)이 생성된다. 일반적으로 수용자(acceptor) 치환 시 항전계가 증가하고 유전, 압전특성이 감소하며, 고온, 고전계하에서 산소 공공의 이동에 의해 신뢰성이 저하되는 문제가 있다. 반면에 2+의 A site 원소를 3+ 이상의 원소로 치환하면 공여자(donor)로 작용하며, 결정구조 전체의 전기적 중성을 유지하기 위해 Pb 공공이 생성되고, 유전, 압전특성이 증가한다. 이러한 결함들이 존재할 경우 일반적으로 물질이동이 잘되기 때문에 소결성이 증진되고, 이로 인해 압전특성이 향상되는 효과도 있다. PMW-PNN-PZT에 수용자인 Fe2O3를 단독으로 첨가하는 경우에는 항전계는 개선되지만 결정격자의 변형에 의해 압전특성이 급격히 저하되는 문제가 있으나 Bi2O3를 동일 몰비로 첨가하게 되면 결정격자의 변형이 최소화되어 본 실험결과와 같이 압전특성이 저하되지 않고 항전계가 증가되는 것으로 사료된다.ABO 3 type perovskite when the bit structure is greater 2+ size in the A position ions, B location is the small 4 + ion sizes exist, and the, typically 4 + ions are present 3 + ions under the B site to Substituent acts as an acceptor and an oxygen vacancy is created to maintain the electrical neutrality of the entire crystal structure. Generally, there is a problem that an acceptor substitution increases the coercive field, decreases dielectric and piezoelectric characteristics, and lowers the reliability due to the movement of oxygen vacancies at high temperature and high electric field. On the other hand, when replacing the A site elements in 2 + a 3 + one element acting as a donor (donor), and the public Pb is generated to maintain the electrical neutrality of the entire crystal structure and increases the dielectric, piezoelectric properties. When such defects are present, the sinterability is improved because the material is generally moved well, and the piezoelectric properties are also improved. When Fe 2 O 3 , which is the acceptor, is added to PMW-PNN-PZT alone, the coercive field is improved, but the piezoelectric characteristics are sharply lowered due to the deformation of the crystal lattice. However, when Bi 2 O 3 is added at the same molar ratio It is considered that the deformation of the crystal lattice is minimized and the electromotive force is increased without deteriorating the piezoelectric characteristics as in the experimental results.
한편 BiFeO3로 합성하여 첨가하지 않고 Bi2O3 및 Fe2O3로 첨가할 경우 Ec 개선 효과가 낮고 2차상이 생기는 문제가 있는데 이는 A site와 B site의 결함수를 동일하게 제어하기 어렵다. 도 12 및 13은 PMW-PNN-PZT 세라믹스 조성에 다양한 소결조제 형태에 따른 X-선 회절 패턴 결과를 나타낸 것으로서, Bi2O3및 Fe2O3의 XRD 패턴에서 확인할 수 있듯이 결정구조가 압전체 PMW-PNN-PZT와 다른 반면, BiFeO3는 압전체와 동일한 페로브스카이트 구조임을 알 수 있으며, 이와 같이 구조의 변형이 최소화 되어 압전특성의 저하가 없는 것으로 사료된다.
On the other hand, when Bi 2 O 3 and Fe 2 O 3 are added without being synthesized with BiFeO 3 , there is a problem that the effect of improving Ec is low and a secondary phase is generated. It is difficult to control the number of defects of A site and B site equally. 12 and 13 show the results of X-ray diffraction patterns according to various sintering aids in PMW-PNN-PZT ceramics composition. As can be seen from the XRD patterns of Bi 2 O 3 and Fe 2 O 3 , -PNN-PZT, BiFeO 3 has the same perovskite structure as that of the piezoelectric body. Thus, it is considered that there is no reduction in the piezoelectric characteristics due to minimization of the strain of the structure.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit of the invention as set forth in the appended claims. The present invention can be variously modified and changed by those skilled in the art, and it is also within the scope of the present invention.
Claims (10)
상기 압전소자는,
제1항 내지 제3항 중 어느 한 항에 따른 압전 세라믹 조성물을 포함하는 압전체층; 및
상기 압전체층의 상면 및 하면 중 적어도 하나에 형성되는 내부전극층;
을 포함하는 압전소자.5. The method of claim 4,
The piezoelectric element includes:
A piezoelectric layer including the piezoelectric ceramic composition according to any one of claims 1 to 3; And
An internal electrode layer formed on at least one of an upper surface and a lower surface of the piezoelectric layer;
.
상기 내부 전극층은(Ag)-팔라듐(Pd) 합금을 포함하는 압전소자.6. The method of claim 5,
Wherein the internal electrode layer comprises a (Ag) -palladium (Pd) alloy.
상기 내부전극층은 은(Ag)-팔라듐(Pd) 합금에서 팔라듐의 함량이 0wt% 초과 10wt% 이하인 압전소자.The method according to claim 6,
Wherein the internal electrode layer has a content of palladium exceeding 0 wt% and equal to or less than 10 wt% in a silver (Ag) -palladium (Pd) alloy.
상기 압전소자는 압전 액츄에이터인 압전소자.5. The method of claim 4,
Wherein the piezoelectric element is a piezoelectric actuator.
상기에서 MgO, WO, NiO, Nb2O5, ZrO2, TiO2을 혼합하여 1차 하소하는 단계;
상기 1차 하소된 시료와 PbO를 상기 기본 조성에 맞도록 혼합 및 분쇄하여 2차 하소하는 단계;
상기 2차 하소된 시료에 0.3wt%PbO, 0.3wt%CuO 및 0.1~0.4wt%의 Fe2O3 , 또는0.2wt%LiCO3 및 0.25wt% CaCO3를 첨가하고 혼합 및 분쇄하는 단계; 및
상기 혼합물을 소결하는 단계
를 포함하는 압전 세라믹스의 제조방법.PbO, MgO, WO, NiO, Nb 2 O 5, ZrO 2, the TiO 2 (1-x) Pb (Mg 1/2 W 1/2) 0.03 (Ni 1/3 Nb 2/3) 0.09 (Zr y Ti 1- y ) 0.88 O 3 + xBiFeO 3 (x = 0 or 0.015, y = 0.47 to 0.53);
The first calcination is performed by mixing MgO, WO, NiO, Nb 2 O 5 , ZrO 2 , and TiO 2 ;
Mixing and crushing the first calcined sample and PbO so as to conform to the basic composition;
Adding 0.3 wt% PbO, 0.3 wt% CuO and 0.1 to 0.4 wt% Fe 2 O 3 , or 0.2 wt% LiCO 3 and 0.25 wt% CaCO 3 to the second calcined sample, mixing and grinding; And
Sintering the mixture
And a piezoelectric ceramic.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140163748A KR20160061175A (en) | 2014-11-21 | 2014-11-21 | Piezoelectric ceramics composition, piezoelectric element, and method for the same |
US14/945,340 US20160149119A1 (en) | 2014-11-21 | 2015-11-18 | Piezoelectric ceramic composition, piezoelectric element, and method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140163748A KR20160061175A (en) | 2014-11-21 | 2014-11-21 | Piezoelectric ceramics composition, piezoelectric element, and method for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20160061175A true KR20160061175A (en) | 2016-05-31 |
Family
ID=56011058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140163748A KR20160061175A (en) | 2014-11-21 | 2014-11-21 | Piezoelectric ceramics composition, piezoelectric element, and method for the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US20160149119A1 (en) |
KR (1) | KR20160061175A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107527991A (en) * | 2016-06-20 | 2017-12-29 | 柯尼卡美能达株式会社 | Piezoelectric element, ultrasonic probe and ultrasonic wave filming apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160060469A (en) * | 2014-11-20 | 2016-05-30 | 삼성전기주식회사 | Conductive paste for internal electrode, piezoelectric element and piezoelectric vibration module including the same |
US11812665B1 (en) * | 2018-05-10 | 2023-11-07 | Qortek, Inc. | Hard piezoelectric ceramic composition for multilayer piezoelectric transformers |
CN114560689A (en) * | 2022-02-22 | 2022-05-31 | 上海大学 | Novel quaternary piezoelectric ceramic and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5410209A (en) * | 1993-01-27 | 1995-04-25 | Kabushiki Kaisha Toshiba | Piezoelectric material and ultrasonic probe |
WO2013054432A1 (en) * | 2011-10-14 | 2013-04-18 | 株式会社ユーテック | Poling treatment method, magnetic field poling device and piezoelectric film |
-
2014
- 2014-11-21 KR KR1020140163748A patent/KR20160061175A/en not_active Application Discontinuation
-
2015
- 2015-11-18 US US14/945,340 patent/US20160149119A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107527991A (en) * | 2016-06-20 | 2017-12-29 | 柯尼卡美能达株式会社 | Piezoelectric element, ultrasonic probe and ultrasonic wave filming apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20160149119A1 (en) | 2016-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | (Bi1/2Na1/2) TiO3–Ba (Cu1/2W1/2) O3 Lead‐Free Piezoelectric Ceramics | |
Hayati et al. | Effects of Bi2O3 additive on sintering process and dielectric, ferroelectric, and piezoelectric properties of (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9) O3 lead-free piezoceramics | |
Du et al. | Influence of sintering temperature on piezoelectric properties of (K0. 5Na0. 5) NbO3–LiNbO3 lead-free piezoelectric ceramics | |
WO2006117990A1 (en) | Piezoelectric ceramic composition, process for producing said piezoelectric ceramic composition, and piezoelectric ceramic electronic component | |
Siddiqui et al. | Structural, piezoelectric, and dielectric properties of PZT-based ceramics without excess lead oxide | |
WO2010024140A1 (en) | Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device | |
KR20170062066A (en) | Method for preparing BiFeO3-BaTiO3 ceramics having improved piezoelectric and ferroelectric properties and lead-free piezoelectric ceramics prepared thereby | |
JP5929640B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP2013537513A (en) | ceramic | |
JP6175528B2 (en) | Piezoelectric device | |
KR20160061175A (en) | Piezoelectric ceramics composition, piezoelectric element, and method for the same | |
Yang et al. | Effects of modified-process on the microstructure, internal bias field, and activation energy in CuO-doped NKN ceramics | |
Ramam et al. | Dielectric, ferroelectric and piezoelectric studies of neodymium-modified PLZNT ceramics for sensor and actuator applications | |
Chang et al. | The effects of sintering temperature on the properties of lead-free (Na0. 5K0. 5) NbO3–SrTiO3 ceramics | |
KR20170042171A (en) | Lead-free piezoelectric ceramics, manufacturing method thereof and actuator comprising thereof | |
Wongsaenmai et al. | Improving ferroelectric properties of Pb (Zr0. 44Ti0. 56) O3 ceramics by Pb (Mg1/3Nb2/3) O3 addition | |
Zhang et al. | Low temperature sintering and properties of piezoelectric ceramics PSNT-Mn with LiBiO2 addition | |
KR100663971B1 (en) | Nio-doped pnn-pzt piezoelectric ceramics and method for producing the same | |
Ramam et al. | Dielectric and piezoelectric properties of combinatory effect of A-site isovalent and B-site acceptor doped PLZT ceramics | |
Donnelly et al. | Properties of (1− x) PZT–xSKN ceramics sintered at low temperature using Li2CO3 | |
KR100801477B1 (en) | Lead free ceramics and the manufacturing method thereof | |
KR101114424B1 (en) | Piezoelectric ceramics composition | |
Ramam et al. | Effect of acceptor and donor dopants on ferroelectric and piezoelectric properties of lead zirconate titanate ceramics | |
KR101454341B1 (en) | Piezoelectric ceramic composite and method of fabricating the same | |
Yue et al. | Preparation of PZT-based piezoceramics with transgranular fracture mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |