KR20160059088A - A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component - Google Patents

A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component Download PDF

Info

Publication number
KR20160059088A
KR20160059088A KR1020140160317A KR20140160317A KR20160059088A KR 20160059088 A KR20160059088 A KR 20160059088A KR 1020140160317 A KR1020140160317 A KR 1020140160317A KR 20140160317 A KR20140160317 A KR 20140160317A KR 20160059088 A KR20160059088 A KR 20160059088A
Authority
KR
South Korea
Prior art keywords
amino acids
inflammatory
branched amino
amino acid
lps
Prior art date
Application number
KR1020140160317A
Other languages
Korean (ko)
Inventor
백현동
장판식
박은주
최승준
이규환
이재훈
진혜주
김다희
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020140160317A priority Critical patent/KR20160059088A/en
Publication of KR20160059088A publication Critical patent/KR20160059088A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Provided in the present invention are functional food, animal feed and a pharmaceutical composition comprising branched amino acid as an active component for anti-inflammation based on verification by measuring cytotoxicity and measuring an NO generation inhibiting effect and an inflammation controlling effect against cytokine.

Description

분지아미노산을 유효성분으로 함유하는 염증 개선 기능성 조성물{A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component} [0001] The present invention relates to an anti-inflammatory functional composition comprising branched amino acid as an active ingredient,

본 발명은 분지아미노산을 유효성분으로 함유하는 염증 개선 기능성 조성물에 관한 것으로 더욱 상세하게는 MTT assay를 통해 세포 생존율을 측정하고 NO 생성 억제 효과를 평가하며 항염증 관련 유전자 발현에 미치는 영향을 측정하여 염증 개선 기능성 식품, 동물성 사료 및 약학적 조성물을 제공한다.
The present invention relates to an inflammation-improving functional composition comprising a branched amino acid as an active ingredient. More particularly, the present invention relates to a composition for improving inflammation, which comprises measuring cell survival rate by MTT assay, evaluating the inhibitory effect on NO production, Improved functional food, animal feed, and pharmaceutical composition.

염증성 장애는 전 세계에서 가장 중요한 건강 문제 중 하나이다. 염증은 외부 물질 또는 자극 등 숙주 침입에 의한 생체 조직의 방어반응 중에 하나로써 그 원인은 박테리아, 바이러스 및 기생충과 같은 감염성 원인과 화상 또는 방사선 조사와 같은 물리적 원인이 있다. 또한 독소, 약물 및 산업적 제제와 같은 화학 약품 과 알레르기 및 자가면역 반응과 같은 면역적 반응 또한 산화적 스트레스와도 관련이 있다. 염증 반응이 일어나면 여러 가지 염증 인자들(pro-inflammatory mediators)이 만들어지는데 이로 인하여 임상적으로는 발열, 발적, 동통, 종창 및 기능 장애 등의 증상이 나타날 수 있다. LPS(lipopolysaccharide)와 같은 염증 유발인자 등의 유해한 자극은 인체 면역 체계를 과도하게 증진시켜 면역세포에서 프로스타글란딘 E2(prostaglandin E2, PGE2), IL-1(interleukin-1), IL-6(interleukin-6) 및 산화질소(nitric oxide, NO)와 같은 염증 인자들을 과도하게 유도하여 다양한 염증 질환과 면역 질환을 유발하는 것으로 알려져 있다(Lee et al., Methanol extracts of Stewartia koreana inhibit cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-kappa B transactivation in LPS-activated RAW 264.7 cells, Mol. Cells 30: 398-404, 2007; Nishida et al., Geranylacetone induces cyclooxygenase-2 expression in cultured rat gastric epithelial cells through NF-κB, Dig. Dis. Sci. 52: 1890-1896, 2007).Inflammatory disorders are one of the most important health problems in the world. Inflammation is one of the defense mechanisms of biological tissue caused by host invasion, such as foreign substances or stimuli. Its causes are infectious causes such as bacteria, viruses and parasites, and physical causes such as burns or radiation. In addition, chemical agents such as toxins, drugs and industrial agents, and immune responses such as allergies and autoimmune reactions are also associated with oxidative stress. When inflammatory reactions occur, various inflammatory mediators are formed, which can cause clinical symptoms such as fever, redness, pain, swelling and dysfunction. Harmful stimuli such as inflammatory factors such as LPS (lipopolysaccharide) overexpress the human immune system causing prostaglandin E2 (prostaglandin E 2 , PGE 2 ), IL-1 (interleukin-1), IL-6 6) and nitric oxide (NO), which are known to induce various inflammatory diseases and immune diseases (Lee et al., Methanol extracts of Stewartia koreana inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-kappa B transactivation in LPS-activated RAW 264.7 cells, Mol. Cells 30: 398-404, 2007; Nishida et al., Geranylacetone induces cyclooxygenase-2 expression in cultured rat gastric epithelial cells through NF-κB, Dig. Dis. Sci. 52: 1890-1896, 2007).

특히 NO는 정상 상태에서는 내피세포나 대식세포에서 생산되며 세포 살상과 살균작용 이외에도 다양한 생리활성을 나타내는데 혈관 내피세포의 이완작용에 있어 혈압의 항상성(homeostasis)을 유지하는 역할을 하는 것으로 알려져 있다. LPS와 염증 유발인자 및 방사선 조사 등의 자극은 특히 유도형 산화질소 합성효소인 iNOS(inducible nitric oxide synthetase)의 발현을 유도하여 많은 양의 NO를 지속적으로 생성시키는데 이와 같이 생성된 과도한 양의 NO는 다양한 염증 및 면역 질환들을 유발한다. 즉 iNOS의 발현에 따른 NO의 생산은 면역세포의 대표적인 염증 인자로써 작용한다(Guslandi, Nitric oxide and inflammatory bowel diseases, Eur. J. Clin. Invest. 28: 904-907, 1998). 따라서 염증 질환 치료제로서 iNOS 활성 억제제 개발은 그 개발 가능성이 높다고 할 수 있다. In particular, NO is produced in endothelial cells or macrophages in normal state, and it has various physiological activities besides cell killing and sterilization. It is known that NO acts to maintain homeostasis of blood pressure in relaxation of vascular endothelial cells. The stimulation of LPS, inflammation inducers and irradiation induces the induction of inducible nitric oxide synthetase (iNOS), which is an inducible nitric oxide synthase, to produce a large amount of NO continuously. Leading to a variety of inflammatory and immune diseases. That is, the production of NO by the expression of iNOS functions as a typical inflammatory factor of immune cells (Guslandi, Nitric Oxide and inflammatory bowel diseases, Eur. J. Clin. Invest. 28: 904-907, 1998). Therefore, the development of iNOS activity inhibitor as a therapeutic agent for inflammatory diseases is highly likely to be developed.

그 외 다른 염증 인자는 염증성 사이토카인인 종양괴사인자-α(tumor necrosis factor-α, TNF-α), 인터루킨-1β(interleukin-1β, IL-1β), 인터루킨-6(interleukin-6, IL-6), 단핵구 화학주성 단백질-1(monocyte chemoattractant protein-1, MCP-1) 등이 있다. 종양괴사인자로 발견된 TNF-α는 류마티스 관절염, 장기이식 거부반응 등의 자가 면역질환, 천식, 아토피성 피부염 등의 알러지성 염증 질환, 패혈증 및 급성 간질환 등의 급성 면역질환에 대한 관련성이 보고되어 있어 TNF-α의 합성을 억제하는 화합물에 대한 개발 연구가 활발하게 진행되고 있다(Zhong et al., Curcumin inhibits ox-LDL-induced MCP-1 expression by suppressing the p38MAPK and NF-κB pathways in rat vascular smooth muscle cells, Inflamm. Res. 61: 61-67, 2012; Kim et al., Gene expression profile predicting the response to anti-TNF treatment inpatients with rheumatoid arthritis; analysis of GEO datasets, Joint Bone Spine 81: 325-330, 2014). Other inflammatory factors are inflammatory cytokines such as tumor necrosis factor-α, TNF-α, interleukin-1β, interleukin-6, IL- 6), monocyte chemoattractant protein-1 (MCP-1), and the like. TNF-α, which is found as a tumor necrosis factor, is associated with autoimmune diseases such as rheumatoid arthritis, rejection of organ transplantation, allergic inflammatory diseases such as asthma and atopic dermatitis, acute immune diseases such as sepsis and acute liver disease (MCP-1 expression by suppressing the expression of p38 MAPK and NF-κB pathways in rat vasculature), and inhibiting the synthesis of TNF-α (Zhong et al. Analysis of GEO datasets, Joint Bone Spine 81: 325-330 (2001), pp. 167-160, 2012. Kim et al., Gene expression profile predicting response to anti-TNF treatment inhibitors with rheumatoid arthritis , 2014).

하지만 이러한 다양한 기작에 의해 일어나는 염증 질환을 치료할 수 있는 기존의 항염증제는 크게 스테로이드성 항염증제와 비스테로이드성 항염증제로 구분되며 이들 항염증제는 인체 내의 부작용을 수반하는 합성제제가 대부분이므로 체내 부작용이 없는 새로운 천연 항염증제의 개발이 필요한 실정이다. However, existing anti-inflammatory drugs that can treat inflammatory diseases caused by these various mechanisms are classified into steroidal anti-inflammatory agents and non-steroidal anti-inflammatory agents. These anti-inflammatory agents are synthetic agents with adverse effects in the human body. Is required.

분지아미노산(branched chain amino acids)은 류신, 발린, 이소류신으로 이루어져 있는 필수 아미노산으로 인체의 생명 유지에는 중요하지만 체내에서 합성이 되지 않기 때문에 식품으로 섭취해야하는 아미노산을 말한다. 분자아미노산은 근육 단백질의 구성 요소로서 1/3 가까이를 차지하고 있으며 포유류가 필요로 하는 아미노산의 40%를 차지하는 아미노산으로 알려져 있다(O'Connell, The complex role of branched chain amino acids in diabetes and cancer, Metabolites 3: 931-945, 2013). 분지아미노산은 가지가 달린 지방족 분쇄로 이루어진 기하학적인 구조를 하고 있으며(Simone et al., Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochimica, Biophysica. Acta 1832: 650-659, 2013) 다른 아미노산들과 다르게 특이한 화학 구조를 지닌 만큼 다양한 발명 또한 진행되어 왔다. 분지아미노산은 유전자 발현, 단백질 대사, 세포 자살 및 인슐린 저항성에 영향을 끼친다고 밝혀졌으며 뇌 기능에도 중요한 역할을 담당하고 있다고 알려져 있다(Tagiri et al., Branched-chain amino acids in liver diseases, World J. Gastroenterol. 19: 7620-7629, 2013). The branched-chain amino acids are essential amino acids composed of leucine, valine and isoleucine. They are amino acids that should be ingested as foods because they are not synthesized in the body but are important for the life maintenance of the human body. Molecular amino acids constitute about one-third of the constituents of muscle proteins and are known to be amino acids that account for 40% of the amino acids required by mammals (O'Connell, The complex role of branched chain amino acids in diabetes and cancer, Metabolites 3: 931-945, 2013). Branch amino acids have a geometric structure consisting of branched aliphatic chains (Simone et al., Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochimica, Biophysica. Acta 1832: 650-659, 2013) Unlike other amino acids, various inventions have been carried out as well as having a unique chemical structure. Branch amino acids have been shown to affect gene expression, protein metabolism, apoptosis, and insulin resistance, and have been shown to play an important role in brain function (Tagiri et al., Branched-chain amino acids in liver diseases, World J. Gastroenterol 19: 7620-7629, 2013).

본 발명의 선행기술로 본 발명자에 의해 선출원된 분지아미노산을 유효성분으로 함유하는 항산화 기능성 식품, 사료 및 약학적 조성물 이 출원번호 제10-2014-0123655호에 개시된 바 있으나 이는 주로 류신, 발린, 이소류신으로 구성된 분지아미노산 중 어느 하나 이상을 함유하는 지질 산화 억제활성 기전을 가지는 항산화 기능성 조성물에 관한 것이다. 또 분지아미노산을 함유하는 약제학적 조성물 및 그 제조방법이 대한민국 등록특허 제10-1458670호에 개시된 바 있으나 분지아미노산을 유효성분으로 함유하고 점증제 또는 점증제의 조합, 감미제, 향료 및 pH조절을 통한 약제학적 액상현탁 조성물 및 그 제조방법에 관한 것이다. 등골나물 추출물을 포함하는 항염증제가 대한민국 등록특허 제10-1185903호에 개시되어 있으나 이는 세포 독성이 없을 뿐만 아니라 NO 분비량, iNOS 및 COX-2의 발현여부, iNOS 및 COX-2의 mRNA의 전사 여부와 염증과 관련된 여러 사이토카인(cytokine)의 mRNA의 전사 여부를 확인하여 효과적인 염증을 저해하는 항염증제에 관한 것이다.An antioxidant functional food, feed, and pharmaceutical composition containing a branched amino acid as an active ingredient, which has been proposed by the present inventor as a prior art of the present invention, is disclosed in Application No. 10-2014-0123655, but mainly comprises leucine, valine, isoleucine And a branched amino acid composed of at least one branched amino acid. Also disclosed is a pharmaceutical composition containing a branched amino acid and a preparation method thereof, which is disclosed in Korean Patent No. 10-1458670. However, it is also possible to use a branched amino acid as an active ingredient, To pharmaceutical liquid suspension compositions and methods for their preparation. An anti-inflammatory agent including a spine herb extract is disclosed in Korean Patent No. 10-1185903. However, it is not cytotoxic, but also has NO secretion amount, iNOS and COX-2 expression, iNOS and COX-2 mRNA transcription, The present invention relates to an anti-inflammatory agent which inhibits effective inflammation by detecting the transcription of various cytokines related to inflammation.

한편 후박 추출물 또는 이로부터 분리된 4-O-메틸호노키올을 유효성분으로 함유하는 항염, 항알러지 및 주름 개선용 조성물이 대한민국 등록특허 제10-1116852호에 개시되어 있으나 이는 후박 추출물 및 이로부터 분리된 4-O-메틸호노키올(4-O-methylhonokiol)의 iNOS 활성 저해 효과, iNOS, COX2 유전자 발현 저해효과, PGE2, IL-6, IL-8 생성 억제 효과, 항히스타민 활성 증진, 엘라스타제 저해 효과 및 MMP-1 발현 저해 효과를 측정하여 항염, 항알러지 및 주름 개선용 피부외용 약학 조성물 및 화장료 조성물을 제공하는 방법에 관한 것이다.On the other hand, a composition for improving anti-inflammatory, anti-allergy and anti-wrinkle properties comprising an extract of Zucchini Leaves or 4-O-methyl Honokiol isolated therefrom is disclosed in Korean Patent No. 10-1116852, Inhibition of iNOS activity, inhibition of iNOS and COX2 gene expression, inhibition of PGE2, IL-6 and IL-8 production, enhancement of antihistamine activity, inhibition of elastase activity of 4-O-methylhonokiol An anti-inflammatory, anti-inflammatory, anti-inflammatory, anti-inflammatory, anti-inflammatory, anti-inflammatory and anti-wrinkle effect.

따라서, 상기 특허문헌 어디에도 leucine, valine 및 isoleucine 등 3종의 분지아미노산을 유효성분으로 함유하는 항염 개선 기능성 조성물에 관한 발명은 공지된 바 없다.
Therefore, no patent invention discloses an anti-inflammatory functional composition containing three branched amino acids such as leucine, valine and isoleucine as active ingredients.

따라서, 본 발명의 목적은 MTT assay를 통해 세포 생존율을 측정하고 NO 생성 억제 효과를 평가하며 항염증 관련 유전자 발현에 미치는 영향을 측정하므로 분지아미노산을 유효성분으로 함유하는 염증 개선 기능성 조성물을 제공하는 데 있다.
Accordingly, an object of the present invention is to provide an inflammation-improving functional composition containing a branched amino acid as an active ingredient, since the cell survival rate is measured by MTT assay, the inhibitory effect on NO production is evaluated, and the effect on expression of anti- have.

본 발명은 마우스의 대식세포 Raw 264.7 세포주를 배양하여 MTT assay를 통한 세포 생존율 측정하는 단계와; 상기 단계의 3종 분지아미노산이 NO 생성에 미치는 영향을 확인하여 세포 독성 확인 및 NO 생성 억제 정도를 확인하는 단계와; Real-time PCR을 통한 사이토카인(cytokine)을 측정하여 상기 3종의 분지아미노산이 항염증 관련 유전자 발현에 미치는 영향을 확인하는 단계를 통하여 달성하였다.
The present invention relates to a method for the treatment and prophylaxis of cancer, comprising: culturing a mouse macrophage Raw 264.7 cell line and measuring cell survival rate through MTT assay; Confirming the cytotoxicity and the inhibition of NO production by confirming the effect of the triplet branched amino acid in the above step on NO production; Cytokine was measured by real-time PCR to confirm the effect of the three branching amino acids on the expression of anti-inflammatory genes.

본 발명은 분지아미노산의 세포 독성 측정과 NO 생성 억제 효과 및 사이토카인에 대한 항염증 효과를 측정하여 분지아미노산을 유효성분으로 함유하는 염증 개선 기능성 조성물을 제공할 수 있는 뛰어난 효과가 있다.
The present invention has an excellent effect of providing an inflammation-improving functional composition containing a branched amino acid as an active ingredient by measuring the cytotoxicity of a branched amino acid, the inhibitory effect on NO production and the anti-inflammatory effect on cytokine.

도 1은 본 발명에 따른 3종의 분지아미노산 처리 시 대식세포인 Raw 264.7 세포주의 세포 생존율을 나타낸 그래프이다.
도 2는 본 발명에 따른 3종의 분지아미노산이 LPS로 활성화된 Raw 264.7 세포주의 NO 생성에 미치는 영향을 나타낸 그래프이다.
도 3은 본 발명에 따른 3종의 분지아미노산이 LPS로 활성화된 Raw 264.7 세포주에서 COX-2(A), IL-6(B), MCP-1(C), TNF-α(D), TLR-4(E), TLR-2(F), IL-10(G), IL-1β(H), IL-2(I), IL-4(J) 및 IFN-γ(K) 발현에 미치는 영향을 나타낸 그래프이다.
도 4는 본 발명에 따른 3종의 분지아미노산이 LPS로 활성화된 Raw 264.7 세포주에서 iNOS 발현에 미치는 영향을 나타낸 그래프이다.
FIG. 1 is a graph showing the cell survival rate of the Raw 264.7 cell line, which is a macrophage when treating three kinds of branched amino acids according to the present invention.
FIG. 2 is a graph showing the effect of three kinds of branched amino acids according to the present invention on NO production of Raw 264.7 cell line activated by LPS.
FIG. 3 is a graph showing the expression of COX-2 (A), IL-6 (B), MCP-1 (C), TNF-α (D), and TLR in Raw 264.7 cell line in which three kinds of branched amino acids according to the present invention are activated by LPS (E), TLR-2 (F), IL-10 (G), IL-1β (H), IL-2 The graph shows the effect.
FIG. 4 is a graph showing the effect of three kinds of branched amino acids according to the present invention on the expression of iNOS in LPS-activated Raw 264.7 cell line.

본 발명에 따른 분지아미노산은 Cremar(Gyeonggi-do, South Korea)에서 구입하여 사용하였다. 세포 생존율 측정을 위한 MTT(3-[4,5-dimethythiazol-2-yl]-2,5-dipheny l tetrazolium bromide) 시약은 Sigma Chemical Co. 제품을 구입하였다. 세포주 배양에 필요한 DMEM(Dulbecco's Modified Eagle Medium) 배지, FBS(fetal bovine serum), penicillin-streptomycin 등은 Hyclone Laboratories 제품을 사용하였으며 LPS(lipopolysaccharides from Escherichia coli O111:B4), sodium nitrite, sulfanilamide 및 N-(1-naphthyl) ethylenediamine dihydrochloride는 Sigma 제품을 구입하여 사용하였다. 그 외의 실험에 사용된 모든 시약은 일급 이상의 등급을 사용하였다.The branched amino acids according to the present invention were purchased from Cremar (Gyeonggi-do, South Korea). MTT (3- [4,5-dimethythiazol-2-yl] -2,5-dipheny l tetrazolium bromide) reagent for measuring cell viability was purchased from Sigma Chemical Co. The product was purchased. Hyclone Laboratories products such as DMEM (Dulbecco's Modified Eagle Medium) medium, FBS (fetal bovine serum) and penicillin-streptomycin were used for cell culture, and LPS (lipopolysaccharides from Escherichia coli O111: B4), sodium nitrite, sulfanilamide and N- (1-naphthyl) ethylenediamine dihydrochloride were purchased from Sigma. All reagents used in other experiments were of grade 1 or higher.

본 발명에서는 상기 3종의 분지 아미노산의 생리활성 검증을 위해 단독으로 사용하였으나 이를 하나 이상 혼합 사용하여도 무방하다.In the present invention, the above-mentioned three branched amino acids are used singly for the purpose of verifying the physiological activity, but they may be used by mixing one or more of them.

이하, 본 발명의 구체적인 내용을 실시예를 들어 상세하게 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 발명이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. The following examples are for illustrative purposes only and are not intended to limit the invention.

실시예Example 1. 세포주 및 배양 1. Cell line and culture

본 발명에 따른 마우스의 대식세포주인 Raw 264.7 세포주는 한국세포주은행(KCLB)으로부터 분양받아 사용하였다. The Raw 264.7 cell line, which is a macrophage cell line of the mouse according to the present invention, was used from Korean Cell Line Bank (KCLB).

본 발명의 세포 배양을 위해 DMEM(Dulbecco's Modified Eagle Medium) 배지에 10% FBS(fetal bovine serum), 100 unit/mL의 penicillin 및 100 μg/mL의 streptomycin을 첨가하여 사용하였고 95%의 습도가 유지되는 37℃ 및 5% CO2 incubator(MCO-18AIC, SANYO)에서 배양하였다.
For the cell culture of the present invention, 10% fetal bovine serum (FBS), 100 units / mL penicillin and 100 μg / mL streptomycin were added to DMEM (Dulbecco's Modified Eagle Medium) medium and 95% And cultured in a 5% CO 2 incubator (MCO-18AIC, SANYO) at 37 ° C.

실시예Example 2.  2. MTTMTT assayassay 를 통한 세포 생존율 측정Cell survival rate

본 발명에 따른 분지아미노산 3종의 Raw 264.7 세포주에 대한 세포 독성을 측정하기 위해서 MTT assay를 실시하였다. 활성화된 세포주를 2×105 cells/mL로 맞추고 96-well plate에 각각 100 μL씩 첨가하여 24시간 동안 37℃, 5% CO2 incubator에서 전 배양한 후 최종 농도 1 μg/mL의 LPS와 12.5 mM, 25 mM, 50 mM 및 100 mM 농도의 분지아미노산 valine, isoleucine 및 leucine을 각각 50 μL씩 처리하였다. 이후 44시간 동안 추가 배양한 후 PBS 완충액에 녹인 2.5 mg/mL MTT 용액을 50 μL씩 각 well에 첨가하여 4시간 추가 배양한 후 formazan 형성을 유도시켰다. 반응이 끝나면 well 바닥에 형성된 formazan이 흩어지지 않게 상등액을 제거하고 DMSO를 200 μL 첨가하여 녹이고 ELISA reader(Model 680, BioRad, USA)를 이용하여 570 nm에서 흡광도를 측정하였다.MTT assay was performed to measure the cytotoxicity of Raw 264.7 cell line of three kinds of branched amino acids according to the present invention. The activated cell line was adjusted to 2 × 10 5 cells / mL and 100 μL each was added to 96-well plates. The cells were preincubated for 24 hours at 37 ° C. in a 5% CO 2 incubator. The final concentration was 1 μg / mL of LPS and 12.5 mM , 25 mM, 50 mM and 100 mM of the branched amino acids valine, isoleucine and leucine, respectively. After further incubation for 44 hours, 50 μL of 2.5 mg / mL MTT solution dissolved in PBS buffer was added to each well and further incubated for 4 hours to induce formazan formation. After the reaction was completed, the supernatant was removed and 200 μL of DMSO was added to dissolve the formazan formed on the well bottom. Absorbance was measured at 570 nm using an ELISA reader (Model 680, BioRad, USA).

Figure pat00001
Figure pat00001

수학식 1을 계산하여 % 세포 생존율을 나타내었다.
Calculating Equation 1 yielded% cell viability.

실험예Experimental Example 1. 분지아미노산 3종의 세포 독성 측정 1. Cytotoxicity measurement of three amino acid bases

본 발명에 따른 3종의 분지아미노산 마우스 대식세포인 Raw 264.7 세포주에 대한 세포 독성을 확인하기 위하여 MTT assay를 실시하였다. 실험 결과 3종의 분지아미노산 12.5 mM, 25 mM, 50 mM, 100 mM 농도 모두에서 98%가 넘는 세포 생존율을 보여 대식세포에 대한 세포 독성이 없는 것을 확인하였다(도 1).
MTT assay was performed to confirm the cytotoxicity of Raw 264.7 cell line of three branched amino acid mouse macrophages according to the present invention. Experimental results showed that cell viability exceeding 98% was observed in all of the three kinds of branched amino acids at concentrations of 12.5 mM, 25 mM, 50 mM, and 100 mM, indicating no cytotoxicity against macrophages (FIG. 1).

실시예Example 3.  3. NONO 생성에 미치는 영향 확인 Identify the impact on production

LPS로 활성화 된 대식세포인 Raw 264.7 세포주의 NO 생성에 분지아미노산이 미치는 영향을 측정하였다. 먼저 2×105 cells/well의 농도로 24-well plate에 분주하여 2시간 동안 전 배양시키고 2시간 후 분지아미노산 12.5 mM, 25 mM, 50 mM, 100 mM과 염증 유발물질인 LPS 1 μg/mL를 함께 처리하여 24시간 동안 추가 배양시킨 후 배양액 100 μL와 같은 양의 1% sulfanilamide 및 5% phosphoric acid 내에 0.1% N-(1-naphthyl) ethylenediamine dihydrochloride를 첨가한 혼합물로 제조된 griess 시약을 10분 간 상온에서 반응시킨 후 ELISA reader(Model 680, BioRad)를 이용하여 540 nm에서 흡광도를 측정하였다. 아질산나트륨(NaNO2)의 농도별 표준곡선을 이용하여 배양액 내의 NO 농도를 결정하였다.
The effects of branching amino acids on NO production in Raw 264.7 cell line, a macrophage activated by LPS, were measured. The cells were preincubated in a 24-well plate at a concentration of 2 × 10 5 cells / well and preincubated for 2 hours. After 2 hours, the cells were treated with basal amino acids 12.5 mM, 25 mM, 50 mM and 100 mM and 1 μg / And then incubated for additional 24 hours. The griess reagent, prepared by adding 100 μL of the same amount of 1% sulfanilamide and 0.1% N- (1-naphthyl) ethylenediamine dihydrochloride in 5% phosphoric acid, After incubation at room temperature, the absorbance was measured at 540 nm using an ELISA reader (Model 680, BioRad). NO concentration in the culture medium was determined using a standard curve for the concentration of sodium nitrite (NaNO 2 ).

실험예Experimental Example 2. 3종 분지아미노산의  2. Three species of branched amino acids NONO 생성 억제 효과 측정 Measurement of production inhibition effect

대식세포인 Raw 264.7 세포주는 염증 반응에 관여하여 nitric oxide(NO)를 생성하는 세포이다. 생리학적으로 NO는 세균과 종양을 제거하고 혈압을 조절하거나 신경 전달을 매개하는 등 다양한 역할을 한다. 그러나 염증 반응이 일어나면 관련 세포에서 iNOS의 발현이 증가하여 많은 양의 NO가 생성이 되고 과도하게 생성된 NO는 조직의 손상, 유전자 변이 및 신경 손상 등을 유발하며 혈관 투과성을 증가시켜 부종 등의 염증 반응을 촉진시킨다. 따라서 이러한 NO의 생성을 저해하는 정도를 측정함으로써 항염증 효과를 측정할 수 있다.The Raw 264.7 cell line, a macrophage, is a cell that participates in the inflammatory response and produces nitric oxide (NO). Physiologically, NO plays a variety of roles such as removing bacteria and tumors, regulating blood pressure, or mediating neurotransmission. However, when the inflammatory reaction occurs, the expression of iNOS is increased in related cells to produce a large amount of NO. Excessively produced NO causes tissue damage, gene mutation and nerve damage, and increases vascular permeability, Promoting the reaction. Therefore, the anti-inflammatory effect can be measured by measuring the degree of inhibition of the production of NO.

3종의 분지아미노산이 대식세포의 NO 생성에 미치는 영향 결과는 도 2에 나타내었다. LPS를 처리하지 않은 음성대조군에서는 NO의 생성량이 2.28 μM로 측정되어 LPS로 염증이 유도되지 않은 상태임을 확인할 수 있었다. LPS를 1 μg/mL 농도로 처리한 군에서는 NO의 생성량이 45.63 μM로 급증하여 염증이 유도되었고 3종의 분지아미노산을 농도별로 처리한 경우에는 NO의 생성량이 줄어드는 것을 확인할 수 있었다. Leucine의 경우 12.5 mM을 처리한 군에서도 29.97 μM로 NO의 생성량이 15 μM 정도 줄어든 것을 확인할 수 있었고 25 mM, 50 mM, 100 mM로 처리하였을 때 그 생성량은 더 감소되어 각각 24.47 μM, 15.97 μM, 8.60 μM로 NO 생성이 저해되는 것을 확인하였다. 이를 저해율로 환산하였을 때 leucine 100 mM에서 81.14% 저해됨을 수 있었다. Valine과 isoleucine 의 경우 leucine보다는 저해율이 낮았지만 농도가 증가함에 따라 저해율도 증가하는 것을 확인하였고 최고 농도인 100 mM에서 valine 및 isoleucine 의 저해율은 각각 29.65%와 42.94%로 분지아미노산 모두 NO 생성 저해 효과가 있음을 확인할 수 있었다.
The effect of three kinds of branched amino acids on NO production of macrophages is shown in Fig. In the negative control group without LPS treatment, NO production was measured to be 2.28 μM, indicating that LPS did not induce inflammation. In the group treated with LPS at a concentration of 1 μg / mL, NO production was increased to 45.63 μM, and inflammation was induced. In the case of treatment with three kinds of branched amino acids, NO production was decreased. In the group treated with 12.5 mM of leucine, the amount of NO decreased by 15 μM was 29.97 μM. When treated with 25 mM, 50 mM, and 100 mM, the amount of NO was further reduced to 24.47 μM, 15.97 μM, 8.60 [mu] M inhibited NO production. The inhibition rate was 81.14% at 100 mM of leucine. The inhibition rate of valine and isoleucine was lower than that of leucine, but the inhibition rate was also increased with increasing concentration. The inhibition rates of valine and isoleucine at the highest concentration of 100 mM were 29.65% and 42.94%, respectively. .

실시예Example 4.  4. RealReal -- timetime PCRPCR 을 통한 사이토카인(Lt; RTI ID = 0.0 > ( cytokinecytokine ) 측정) Measure

분지아미노산의 항염증 효능을 분석하기 위해 염증관련 유전자로 알려진 COX-2, IL-6, MCP-1, TNF-α, TLR-4, TLR-2, IL-10, IL-1β, IL-2, IL-4, IFN-γ 및 iNOS의 유전자 발현에 분지아미노산이 미치는 영향을 real-time PCR을 이용하여 측정하였다.IL-2, IL-6, MCP-1, TNF-α, TLR-4, TLR-2, IL-10, IL-1β and IL-2 which are known as inflammation related genes to analyze the anti- , IL-4, IFN-γ, and iNOS were measured by real-time PCR.

실험의 조건은 2가지로 하였고 대식세포인 Raw 264.7 세포주를 24-well plate에 2×105 cells/well로 24시간 배양하는 과정은 동일하게 하고 첫번째 조건은 100 mM의 각각의 분지아미노산을 처리하여 24시간 배양한 후 1 μg/mL LPS를 처리하여 24시간 배양하는 방법과 두번째 조건은 100 mM의 각각의 분지아미노산과 1 μg/mL LPS를 동시에 처리하여 24시간 배양하는 방법을 사용하였다.The Raw 264.7 cell line was cultured in a 24-well plate at a concentration of 2 × 10 5 cells / well for 24 hours. The first step was to treat each branched amino acid at 100 mM After culturing for 24 hours, the cells were treated with 1 μg / mL LPS for 24 hours. The second condition was that the cells were treated with 100 mM of each branched amino acid and 1 μg / mL of LPS for 24 hours.

반응이 끝난 Raw 264.7 세포주에 배지를 제거한 후 Trizol reagent를 첨가하여 균질화 하였다. Chloroform을 넣은 후 10,000×g로 15분 간 원심분리하여 상층액을 RNA 분리에 이용하였으며 상층액에 RNase-free water와 isopropanol을 가하여 RNA를 추출하고 M-MLV reverse transcriptase를 이용하여 cDNA를 합성하였다. The medium was removed from the Raw 264.7 cell line after the reaction and homogenized by adding Trizol reagent. Chloroform was added and centrifuged at 10,000 × g for 15 min. The supernatant was used for RNA isolation. RNA was extracted by adding RNase-free water and isopropanol to the supernatant and cDNA was synthesized using M-MLV reverse transcriptase.

합성된 cDNA를 이용하여 2× SYBR Green master mix와 프라이머(primer)를 혼합한 후 Real-time DNA thermal cycler(iQTM5 multicolor real-time PCR detection system)를 이용하여 증폭하였다. Delta delta Ct 분석법으로 증폭 결과값을 구하고 PCR reaction의 melting curve를 확인하여 증폭 산물의 purity를 검증하였다. Real-time PCR을 수행한 염증관련 프라이머 서열은 표 1에 제시하였고 housekeeping gene으로는 β-actin을 사용하였다.
The synthesized cDNA was mixed with 2 × SYBR Green master mix and primer and amplified using a real-time DNA thermal cycler (iQTM5 multicolor real-time PCR detection system). The purity of the amplified product was verified by determining the melting curve of the PCR reaction using the Delta delta Ct method. The primers used for real-time PCR were shown in Table 1 and β-actin was used for the housekeeping gene.

Real-time PCR 분석에 사용한 primer sequencePrimer sequence used for real-time PCR analysis GeneGene DescriptionDescription Primer sequencePrimer sequence COX-2 COX-2 cyclooxygenase-2cyclooxygenase-2 forward: 5-tgggaagctttctccaacct-3
reverse: 5-gtgaagtgctgggcaaagaa-3
forward: 5-tgggaagctttctccaacct-3
reverse: 5-gtgaagtgctgggcaaagaa-3
IL-6 IL-6 interleukin-6interleukin-6 forward: 5-ccttcctaccccaatttcca-3
reverse: 5-cgcactaggtttgccgagta-3
forward: 5-ccttcctaccccaatttcca-3
reverse: 5-cgcactaggtttgccgagta-3
MCP-1 MCP-1 monocyte chemoattractant protein-1monocyte chemoattractant protein-1 forward: 5-catctgccctaaggtcttc-3
reverse: 5-cttgaggtggttgtggaa-3
forward: 5-catctgccctaaggtcttc-3
reverse: 5-cttgaggtggttgtggaa-3
TNF-αTNF-a tumor necrosis factor-α tumor necrosis factor-alpha forward: 5-atgagaagttcccaaatggc-3
reverse: 5-gaattttgagaagatgatctgagtg-3
forward: 5-atgagaagttcccaaatggc-3
reverse: 5-gaattttgagaagatgatctgagtg-3
TLR-4TLR-4 toll-like receptor-4toll-like receptor-4 forward: 5-atagcatggaccttaccggg-3
reverse: 5-ggcttgtattcaaaaggccc-3
forward: 5-atagcatggaccttaccggg-3
reverse: 5-ggcttgtattcaaaaggccc-3
TLR-2TLR-2 toll-like receptor-2toll-like receptor-2 forward: 5-tgatcttgctcgtaggtgcc-3
reverse: 5-ttaaagggcgggtcagagtt-3
forward: 5-tgatcttgctcgtaggtgcc-3
reverse: 5-ttaaagggcgggtcagagtt-3
IL-10IL-10 interleukin-10interleukin-10 forward: 5-taaggctggccacacttgag-3
reverse: 5-agttttcagggatgaagcgg-3
forward: 5-taaggctggccacacttgag-3
reverse: 5-agttttcagggatgaagcgg-3
IL-1βIL-1? interleukin-1interleukin-1 forward: 5-gttgacggacccaaccgat-3
reverse: 5-aaggtccacgggaaagacac-3
forward: 5-gttgacggacccaaccgat-3
reverse: 5-aaggtccacgggaaagacac-3
IL-2IL-2 interleukin-2interleukin-2 forward: 5-acctggagcagctgttgatg-3
reverse: 5-gtcaaatccagaacatgccg-3
forward: 5-acctggagcagctgttgatg-3
reverse: 5-gtcaaatccagaacatgccg-3
IL-4IL-4 interleukin-4interleukin-4 forward: 5-atcatcggcattttgaacga-3
reverse: 5-aagcccgaaagagtctctgc-3
forward: 5-atcatcggcattttgaacga-3
reverse: 5-aagcccgaaagagtctctgc-3
IFN-γIFN-y interferon-γinterferon-γ forward: 5-acactgcatcttggctttgc-3
reverse: 5-ctggctctcaggattttca-3
forward: 5-acactgcatcttggctttgc-3
reverse: 5-ctggctctcaggattttca-3
iNOSiNOS inducible nitric oxide synthaseinducible nitric oxide synthase forward: 5-cttggtgaggggactggact-3
reverse: 5-ggggttttctccacgttgtt-3
forward: 5-cttggtgaggggactggact-3
reverse: 5-ggggttttctccacgttgtt-3
β-Actin β-Actin forward: 5-gattactgctctggctccta-3
reverse: 5-atcgtactcctgcttgct-3
forward: 5-gattactgctctggctccta-3
reverse: 5-atcgtactcctgcttgct-3

실험예Experimental Example 3. 3종 분지아미노산의 항염증관련 유전자 발현 효과 측정 3. Measurement of anti-inflammatory gene expression effect of 3 kinds of branched amino acids

본 발명은 항염증관련 유전자로 알려진 COX-2, IL-6, MCP-1, TNF-α, TLR-4, TLR-2, IL-10, IL-1β, IL-2, IL-4, 및 IFN-γ의 유전자 발현에 미치는 영향에 대한 결과를 도 3과 표 2에 나타내었다. 상기 항염증관련 유전자를 분석할 때에는 실시예 4의 첫번째 조건을 따라 실험을 진행하였다. COX-2의 발현은 LPS 처리에 의해 유의적으로 증가하였으며 분지아미노산 valine, isoleucine 및 leucine의 처리에 의해 유의적으로 감소하였다. 또한 LPS를 처리하여 증가한 IL-6 유전자의 발현은 valine과 leucine 처리에 의해 감소효과를 나타내었다. MCP-1은 LPS 처리를 하여도 유의적인 변화는 나타나지 않았으나 valine과 isoleucine 을 처리했을 경우에 유의적인 감소효과를 나타내었다. TNF-α의 발현은 LPS를 처리한 경우 증가효과를 나타내었으며 valine을 처리한 경우 유의적인 감소효과를 나타내었다. TLR-4의 발현은 LPS 처리에 의해 유의적으로 증가하였으며 valine 및 leucine 처리에 의해 감소효과를 나타내었다. TLR-2와 IL-2의 발현은 LPS을 처리한 경우 유의적으로 증가하였으며 분지아미노산을 처리한 경우 유의적으로 감소하였다. 이 외의 다른 항염증 관련 유전자의 발현도 마찬가지로 LPS를 처리한 경우 유의적으로 증가하였으나 분지아미노산을 처리한 경우 유의적으로 감소하는 것을 확인하였다. 이를 통해 분지아미노산이 대식세포인 Raw 264.7 세포주의 항염증 관련 유전자 발현에 유의적인 영향을 미치는 것을 확인할 수 있었다.
The present invention relates to the use of the compounds of the present invention for the treatment and prophylaxis of COX-2, IL-6, MCP-1, TNF-α, TLR-4, TLR-2, IL-10, IL-1β, IL- The results of the effect on the gene expression of IFN-y are shown in FIG. 3 and Table 2. In analyzing the anti-inflammatory gene, the experiment was carried out according to the first condition of Example 4. The expression of COX-2 was significantly increased by LPS treatment and was significantly decreased by treatment with the branched amino acids valine, isoleucine and leucine. In addition, IL-6 gene expression increased by treatment with LPS was reduced by treatment with valine and leucine. MCP-1 did not show any significant change even after LPS treatment, but it showed a significant reduction effect when treated with valine and isoleucine. Expression of TNF-α was increased by treatment with LPS and decreased by valine treatment. Expression of TLR-4 was significantly increased by LPS treatment and decreased by treatment with valine and leucine. Expression of TLR-2 and IL-2 was significantly increased when LPS was treated and significantly decreased when treated with branched amino acid. The expression of other anti-inflammatory genes was also significantly increased in the LPS-treated group, but was significantly decreased in the group treated with the branched amino acid. This suggests that the branched amino acid has a significant effect on the expression of anti-inflammatory genes in the macrophage Raw 264.7 cell line.

분지아미노산이 LPS로 활성화된 Raw 264.7 세포주에서 항염증 관련 유전자 발현에 미치는 영향Effect of branched amino acid on the expression of anti-inflammatory genes in LPS-activated Raw 264.7 cell line LPS(-)LPS (-) LPS(+) LPS (+) -- ValineValine Isoleucine Isoleucine Leucine Leucine COX-2 COX-2 1.32±1.22 1.32 ± 1.22 52.96±11.18 52.96 + - 11.18 3.59±0.41 3.59 + - 0.41 0.01±0.01 0.01 ± 0.01 0.19±0.12 0.19 + - 0.12 IL-6 IL-6 1.03±0.37 1.03 + - 0.37 81.15±10.32 81.15 ± 10.32 21.65±3.38 21.65 ± 3.38 69.96±30.64 69.96 ± 30.64 12.14±4.86 12.14 + - 4.86 MCP-1 MCP-1 1.02±0.30 1.02 0.30 1.48±0.49 1.48 0.49 0.42±0.02 0.42 ± 0.02 0.34±0.03 0.34 + 0.03 1.37±0.12 1.37 ± 0.12 TNF-α TNF-a 1.02±0.30 1.02 0.30 32.10±4.45 32.10 + - 4.45 1.12±0.17 1.12 ± 0.17 52.73±35.99 52.73 ± 35.99 92.36±32.38 92.36 ± 32.38 TLR-4TLR-4 1.00±0.111.00 + - 0.11 5.68±3.42 5.68 ± 3.42 1.37±0.44 1.37 + - 0.44 2.02±0.44 2.02 + 0.44 1.85±0.05 1.85 ± 0.05 TLR-2TLR-2 1.00±0.06 1.00 + 0.06 4.26±0.46 4.26 ± 0.46 0.21±0.00 0.21 ± 0.00 0.62±0.560.62 ± 0.56 0.71±0.100.71 + - 0.10 IL-10IL-10 1.29±1.14 1.29 ± 1.14 47.04±20.12 47.04 ± 20.12 37.51±0.49 37.51 + - 0.49 9.95±6.209.95 ± 6.20 29.72±7.81 29.72 ± 7.81 IL-1βIL-1? 1.07±0.55 1.07 ± 0.55 259.16±6.86259.16 + - 6.86 6.33±1.58 6.33 ± 1.58 494.56±148.02 494.56 ± 148.02 301.13±15.66 301.13 ± 15.66 IL-2IL-2 1.00±0.06 1.00 + 0.06 1.88±0.021.88 + 0.02 0.24±0.020.24 + 0.02 0.28±0.220.28 0.22 0.47±0.11 0.47 + 0.11 IL-4IL-4 1.01±0.20 1.01 0.20 1.75±0.561.75 + - 0.56 7.66±0.67 7.66 ± 0.67 1.05±1.10 1.05 ± 1.10 1.17±0.021.17 + 0.02 IFN-γIFN-y 1.02±0.28 1.02 + - 0.28 1.29±0.32 1.29 + - 0.32 2.31±0.51 2.31 ± 0.51 0.47±0.29 0.47 + 0.29 0.42±0.01 0.42 ± 0.01

또한 세포 내 염증 인자인 산화질소(nitric oxide)를 생산하는 효소인 iNOS의 유전자 발현 정도에 분지아미노산이 미치는 영향에 대한 실험은 실시예 4의 두번째 조건에 따라 진행하였고 결과는 도 4에 나타내었다. 염증 유발인자인 LPS에 의해 iNOS의 발현 양이 증가되었고 3종의 분지아미노산을 100 mM 처리하였을 때 각각 34.82%(valine), 17.41%(isoleucine) 및 65.96%(leucine)의 발현 저해율을 보여 염증 억제 효과가 뛰어남을 알 수 있었다.
In addition, the effect of the branched amino acid on the degree of gene expression of iNOS, an enzyme producing nitric oxide, which is an intracellular inflammatory factor, was tested according to the second condition of Example 4, and the result is shown in FIG. The expression level of iNOS was increased by LPS, which is an inflammation inducer, and the inhibition rate of expression of 34.82% (valine), 17.41% (isoleucine) and 65.96% (leucine) The effect was excellent.

이상 설명한 바와 같이 본 발명은 세포 독성 측정과 NO 생성 억제 효과 및 사이토카인에 대한 항염증 효과를 측정하여 분지아미노산을 유효성분으로 함유하는 염증 개선 기능성 조성물을 제공할 수 있는 뛰어난 효과가 있으므로 염증 개선 기능성 식품 및 동물성 사료 외에도 염증예방 및 치료용 의약품 산업상 매우 유용한 발명인 것이다.
INDUSTRIAL APPLICABILITY As described above, the present invention provides an inflammation-improving functional composition containing a branched amino acid as an active ingredient by measuring the cytotoxicity measurement, the NO production inhibitory effect and the anti-inflammatory effect on the cytokine, In addition to food and animal feed, it is a very useful invention in the pharmaceutical industry for the prevention and treatment of inflammation.

Claims (4)

분지아미노산을 유효성분으로 함유하는 염증 예방 및 치료용 약학적 조성물Pharmaceutical composition for prevention and treatment of inflammation containing branched amino acid as an active ingredient 분지아미노산을 유효성분으로 함유하는 염증 예방 및 개선 기능성 식품 조성물An anti-inflammatory and improving functional food composition containing a branched amino acid as an active ingredient 분지아미노산을 유효성분으로 함유하는 염증 예방 및 개선 기능성 동물 사료 조성물Animal feed composition for prevention and improvement of inflammation containing branched amino acid as an active ingredient 제 1항 내지 3항 중 어느 한 항에 있어서, 상기 분지아미노산은 류신(Leucine), 발린(Valine) 및 이소류신(Isoleucine)으로 구성된 그룹에서 선택되는 어느 하나 이상인 것이 특징인 조성물






The composition according to any one of claims 1 to 3, wherein the branched amino acid is any one or more selected from the group consisting of leucine, valine and isoleucine.






KR1020140160317A 2014-11-17 2014-11-17 A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component KR20160059088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140160317A KR20160059088A (en) 2014-11-17 2014-11-17 A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140160317A KR20160059088A (en) 2014-11-17 2014-11-17 A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component

Publications (1)

Publication Number Publication Date
KR20160059088A true KR20160059088A (en) 2016-05-26

Family

ID=56104523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140160317A KR20160059088A (en) 2014-11-17 2014-11-17 A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component

Country Status (1)

Country Link
KR (1) KR20160059088A (en)

Similar Documents

Publication Publication Date Title
Aslan et al. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats
KR101746635B1 (en) Composition for metabolic diseases comprising Bacteroides acidifaciens
Xu et al. Phosphopeptides (PPPs) from hen egg yolk phosvitin exert anti-inflammatory activity via modulation of cytokine expression
Lee et al. Immune-enhancing activity of phosvitin by stimulating the production of pro-inflammatory mediator
CN112955539A (en) Probiotic strains against aging, muscle and bone, intestinal tract, hyperlipidemia, skin and brain
Wang et al. Effect of Lactobacillus acidophilus KLDS 1.0738 on miRNA expression in in vitro and in vivo models of β-lactoglobulin allergy
Feng et al. Polysaccharopeptide exerts immunoregulatory effects via MyD88-dependent signaling pathway
US10286021B2 (en) Composition for prevention or treatment of arthritis, containing Sargassum serratifolium extract as active ingredient
Sunarti et al. The influence of goat milk and soybean milk kefir on IL-6 and crp levels in diabetic rats
Mu et al. An update on the effects of food-derived active peptides on the intestinal microecology
Higa et al. Supplement of bamboo extract lowers serum monocyte chemoattractant protein-1 concentration in mice fed a diet containing a high level of saturated fat
KR102650558B1 (en) Probiotics composition for preventing, improving, or treating inflammatory disease containing Lactobacillus rhamnosus PL60 as an active ingredient
JP2008069126A (en) Modulator for adipocyte differentiation/lipid accumulation
KR20160059088A (en) A functional composition for improving inflammation consisting of branched chain amino acids as an efficient component
KR20180064103A (en) ANTI-INFAMMATORY COMPOSITION CONTAINING Codium fragile EXTRACTS AS AN ACTIVE INGREDIENT
Bai et al. Centipedegrass extracts regulate LPS-mediated aberrant immune responses by inhibiting Janus kinase
Huang et al. Ovotransferrin Inhibits TNF-α Induced Inflammatory Response in Gastric Epithelial Cells via MAPK and NF-κB Pathway
Shakoor et al. Immunomodulatory effects of dietary polyphenols. Nutrients. 2021. 13: 728
JP2021519273A (en) Methods for Elevating Lipid and Cholesterol Metabolism
KR102063779B1 (en) Pharmaceutical composition for preventing or treating inflammatory disease comprising dudleya brittonii extract
Yuan et al. Immunomodulatory Effects of Nervonic Acid in RAW264. 7 Macrophages
Pelissari et al. A crude methanolic extract from the parotoid gland secretion of Rhaebo guttatus stimulates the production of reactive species and pro‑inflammatory cytokines by peritoneal macrophages
JP2018104383A (en) TRPV4 activity inhibitor
JP2011144147A (en) Gaba-rich tomato-derived composition having anti-stress effect
TW202409268A (en) Novel lactic acid bacteria and compositions, food and drinks and pharmaceuticals containing lactic acid bacteria

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application