KR20160057659A - RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same - Google Patents

RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same Download PDF

Info

Publication number
KR20160057659A
KR20160057659A KR1020140158537A KR20140158537A KR20160057659A KR 20160057659 A KR20160057659 A KR 20160057659A KR 1020140158537 A KR1020140158537 A KR 1020140158537A KR 20140158537 A KR20140158537 A KR 20140158537A KR 20160057659 A KR20160057659 A KR 20160057659A
Authority
KR
South Korea
Prior art keywords
gene
brgi
rnai
vector
plant
Prior art date
Application number
KR1020140158537A
Other languages
Korean (ko)
Other versions
KR101677064B1 (en
Inventor
김진아
정미정
이수인
이연희
홍준기
김주열
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020140158537A priority Critical patent/KR101677064B1/en
Priority to PCT/KR2015/011187 priority patent/WO2016076548A1/en
Publication of KR20160057659A publication Critical patent/KR20160057659A/en
Application granted granted Critical
Publication of KR101677064B1 publication Critical patent/KR101677064B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • A01H6/204Brassica rapa
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a RNA interference (RNAi) recombinant vector including a Brassica rapa GIGANTEA (BrGI) gene or a fragment thereof. The present invention further relates to a transgenic plant which has increase salinity stress resistance and is prepared by transforming the plant using the vector, and to a method for producing the transgenic plant with increased salinity stress resistance. The use of the RNAi recombinant vector of the present invention allows the plant to have salinity resistance by regulating the expression of genes associated with biorhythms. The plant becomes adaptable to various environmental changes due to the climate change, enabling the cultivation of the plants. Thus, it is possible to develop crops capable of sustaining productivity.

Description

BrGI 유전자를 포함하는 RNAi 재조합 벡터 및 이를 이용하여 형질전환된 염 스트레스 저항성이 증진된 식물체{RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same}[0001] The present invention relates to an RNAi recombinant vector containing a BrGI gene and a plant having enhanced salt stress resistance transformed using the same,

본 발명은 BrGI (Brassica rapa GIGANTEA) 유전자 또는 그 단편을 포함하는 RNAi(RNA interference) 재조합 벡터, 상기 벡터를 식물체에 형질전환시켜 제조된 염 스트레스 저항성이 증진된 형질전환 식물체 및 염 스트레스 저항성이 증진된 형질전환 식물체의 제조 방법에 관한 것이다.
The present invention relates to an RNAi (RNA interference) recombinant vector comprising a Brgi (Brassica rapa GIGANTEA) gene or a fragment thereof, a transformed plant having enhanced salt stress resistance produced by transforming the vector into a plant, To a method for producing a transgenic plant.

RNA 간섭(RNA interference; RNAi)은 특정부위의 유전자의 발현을 짧은 이중가닥 RNA(double-strand RNA; ds RNA)에 의해 억제하는 현상으로, 식물과 동물, 인간에서 모두 발생한다. 상기 짧은 이중가닥 RNA를 간섭 RNA(interfering RNA) 또는 siRNA라고 하는데, 이 짧은 이중 나선 RNA가 유전정보를 전달하는 메신저 RNA(messenger RNA; mRNA)를 분해하여 특정 유전자가 발현되지 못하게 한다. DNA에 들어있는 유전정보는 mRNA에 복사되어 단백질을 만드는 세포 내 소기관으로 전달되는데, 이 과정에서 이중나선 RNA가 자신과 같은 염기서열을 가진 mRNA를 파괴함으로써 유전자가 발현되지 못하게 하는 것이다.RNA interference (RNAi) is a phenomenon in which the expression of genes at specific sites is inhibited by short double-stranded RNA (ds RNA), which occurs in plants, animals, and humans. The short double-stranded RNA is referred to as interfering RNA or siRNA, and this short double-stranded RNA breaks messenger RNA (mRNA) that carries the genetic information to prevent specific genes from being expressed. The genetic information contained in the DNA is transferred to the organelle, which is copied to the mRNA and made into a protein. In this process, the double-stranded RNA disrupts the mRNA with the same nucleotide sequence as its own to prevent the gene from being expressed.

한국 등록특허공보 제1258079호에는 배추(Brassica rapa) 유래의 비생물적 스트레스 내성 관련 BrCIPK3 (Brassica rapa CBL-calcium interacting protein kinase 3) 단백질을 이용하여 식물의 비생물적 스트레스 내성을 증가시키는 방법을 개시하고 있다. BrCIPK3 유전자를 과발현하는 벡터로 식물체를 형질전환하여 염, 알루미늄, 저온 또는 산화적 스트레스에 대한 내성이 증가된 형질전환 식물체를 제작한 것이다.In Korean Patent Registration No. 1258079, Chinese cabbage discloses a method for increasing the abiotic stress tolerance of a plant using BrcIPK3 (Brassica rapa CBL-calcium interacting protein kinase 3) protein derived from rapa -related abiotic stress tolerance. Transgenic plants with increased resistance to salt, aluminum, low temperature or oxidative stress were produced by transforming plants with a vector overexpressing the BrCIPK3 gene.

이에 본 발명자들은 발현을 억제하면 식물의 염 스트레스 저항이 증진되는 배추 유래의 유전자를 발견함으로써, 상기 유전자를 포함하는 RNAi 벡터를 이용하여 염 스트레스 저항성이 증진된 식물체를 제조할 수 있음을 연구하여 본 발명을 완성하였다.
Therefore, the inventors of the present invention discovered that a plant derived from Chinese cabbage, in which salt stress resistance of a plant is enhanced by inhibiting its expression, can be produced by using an RNAi vector containing the gene, Thereby completing the invention.

한국 등록특허공보 제1258079호Korean Patent Registration No. 1258079

본 발명의 목적은 BrGI (Brassica rapa GIGANTEA) 유전자 또는 그 단편을 포함하는 RNAi(RNA interference) 재조합 벡터를 제공하는 것이다.An object of the present invention is to provide an RNAi (RNA interference) recombinant vector comprising BrGI (Brassica rapa GIGANTEA) gene or a fragment thereof.

본 발명의 또 다른 목적은 염 스트레스 저항성이 증진된 형질전환 식물체를 제공하는 것이다.It is another object of the present invention to provide a transgenic plant with enhanced salt stress resistance.

본 발명의 또 다른 목적은 염 스트레스 저항성이 증진된 형질전환 식물체의 종자를 제공하는 것이다.Another object of the present invention is to provide a seed of a transgenic plant having enhanced salt stress resistance.

본 발명의 또 다른 목적은 염 스트레스 저항성이 증진된 형질전환 식물체의 제조 방법을 제공하는 것이다.
It is another object of the present invention to provide a method for producing transgenic plants with enhanced salt stress resistance.

본 발명은 서열번호 1의 염기서열로 이루어진 BrGI (Brassica rapa GIGANTEA) 유전자 또는 그 단편을 포함하는 RNAi(RNA interference) 재조합 벡터를 제공한다.The present invention provides an RNAi (RNA interference) recombinant vector comprising BrGI (Brassica rapa GIGANTEA) gene or a fragment thereof comprising the nucleotide sequence of SEQ ID NO: 1.

상기 단편은 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 1711 내지 2289 번째 서열로 구성되는 단편일 수 있다. 본 발명의 일 구체예에서, 상기 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 1711 내지 2289 번째 서열로 구성되는 단편은 서열번호 4 및 서열번호 5로 이루어지는 염기서열로 구성되는 프라이머 세트를 이용하여 증폭할 수 있다. 본 발명의 일 구체예에서, 상기 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 1711 내지 2289 번째 서열로 구성되는 단편을 포함하는 RNAi 재조합 벡터는 본 발명에서 명명한 GK4 벡터를 의미한다.The fragment may be a fragment consisting of the 1711 to 2289th sequence of the BrGI gene consisting of the nucleotide sequence of SEQ ID NO: In one embodiment of the present invention, a fragment consisting of the 1711 to 2289th sequence of the BrGI gene consisting of the nucleotide sequence of SEQ ID NO: 1 is amplified using a primer set consisting of the nucleotide sequence of SEQ ID NO: 4 and SEQ ID NO: 5 can do. In one embodiment of the present invention, the RNAi recombinant vector comprising a fragment consisting of the 1711 to 2289th sequence of the BrGI gene consisting of the nucleotide sequence of SEQ ID NO: 1 means the GK4 vector named in the present invention.

상기 단편은 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 3081 내지 3461 번째 서열로 구성되는 단편일 수 있다. 본 발명의 일 구체예에서, 상기 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 3081 내지 3461 번째 서열로 구성되는 단편은 서열번호 2 및 서열번호 3으로 이루어지는 염기서열로 구성되는 프라이머 세트를 이용하여 증폭할 수 있다. 본 발명의 일 구체예에서, 상기 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 3081 내지 3461 번째 서열로 구성되는 단편을 포함하는 RNAi 재조합 벡터는 본 발명에서 명명한 GK1 벡터를 의미한다.The fragment may be a fragment consisting of the 3081 to 3461 sequence of the BrGI gene consisting of the nucleotide sequence of SEQ ID NO: In one embodiment of the present invention, the fragment consisting of the 3081 to 3461th sequence of the BrGI gene consisting of the nucleotide sequence of SEQ ID NO: 1 is amplified using a primer set consisting of the nucleotide sequence of SEQ ID NO: 2 and SEQ ID NO: can do. In one embodiment of the present invention, the RNAi recombinant vector comprising the fragment consisting of the 3081 to 3461th sequence of the BrGI gene consisting of the nucleotide sequence of SEQ ID NO: 1 means the GK1 vector named in the present invention.

상기 BrGI 유전자는 생체리듬 유전자일 수 있다.The BrGI gene may be a biorhythm gene.

본 명세서에서 사용된 용어, "생체리듬 유전자"란 일정한 주기에 따라 발현의 정도가 변화하는 유전자를 말하며, 일주기성 생체리듬 유전자의 경우 24시간을 주기로 유전자의 발현이 일정하게 변화한다.As used herein, the term "biorhythm gene" refers to a gene whose expression level varies according to a certain period. In the case of a periodic biorhythm gene, the expression of the gene changes with a period of 24 hours.

본 발명의 일 구체예에서, 상기 BrGI 유전자는 애기장대(Arabidopsis) GI(GIGANTEA) 유전자의 상동 유전자를 배추(Brassica rapa)에서 동정한 것이며, 이를 BrGI (Brassica rapa GIGANTEA)로 명명하였다. 따라서 BrGI 유전자는 배추(Brassica rapa)로부터 유래한 것이나, 이에 한정하지 않는다. 또한, 본 발명의 일 구체예에서, BrGI 유전자의 일일주기 발현을 확인하여 BrGI 유전자가 생체리듬 유전자임을 알 수 있었다.In one embodiment of the present invention, the BrGI gene is homologous to the Arabidopsis GI (GIGANTEA) gene homologous to Brassica rapa ) and named it BrGI (Brassica rapa GIGANTEA). Therefore, the BrGI gene is expressed in Brassica rapa , but is not limited thereto. In addition, in one embodiment of the present invention, the Brgi gene was confirmed to be a biorhythm gene by confirming the daily cycle expression of the BrGI gene.

본 발명에서 사용된 용어 "RNAi"는 RNA 간섭(RNA inteference)의 약어이고, 이중나선 RNA(dsRNA로도 불림)과 같은 RNAi를 유발하는 작용제가 세포 내로 도입시 이에 대해 상동적인 mRNA가 특이적으로 분해되어 유전자 생성물의 합성이 억제되는 현상을 나타낸다. 여기에 사용된 RNAi는 RNAi를 유발하는 작용제와 동일한 의미를 지닌다. 상기 RNAi는 짧은 이중가닥 RNA가 자신의 염기서열에 해당하는 표적 mRNA를 선택적으로 분해하여 표적 유전자의 전사와 단백질 합성을 중단시키는 과정이며, 이러한 RNAi 현상을 특이적으로 유도하는데 사용되는 siRNA(small interfering RNA)을 제조하기 위한 방법은, in vitro에서 siRNA를 직접 합성한 후 transfection을 통해 세포 안으로 도입시키는 방법 및 세포 내에서 siRNA를 발현할 수 있도록 제작된 shRNA(short hairpin RNA) 발현벡터를 활용하는 방법이 있다. 발현벡터를 활용하는 방법을 이용하여 shRNA 발현벡터를 형질전환을 통해 세포 내에서 발현시키면 프로모터로부터 표적 염기서열의 센스(sense) 및 안티센스(anti-sense) 서열이 gus 링커(linker)를 사이에 두고 위치하며 발현되게 되고, 이를 통해 small hairpin 구조의 shRNA가 합성된다. 이렇게 합성된 shRNA는 세포 안에 존재하는 Dicer라는 RNase Ⅲ 효소에 의해 분해되어 정확한 구조를 갖는 약 21 내지 23개의 뉴클레오티드의 siRNA로 전환되고, RISC(RNA-induced Silencing Complex)라는 단백질 복합체와 결합하여 표적 mRNA를 분해시키는 것은 통상의 기술자에게 자명하다 (Plant Cell Physiol. "Simple RNAi Vectors for Stable and Transient Suppression of Gene Function in Rice" 45(4): 490-95 (2004)).As used herein, the term "RNAi" is an abbreviation for RNA interference, and when an agent that induces RNAi such as double helical RNA (also referred to as dsRNA) And the synthesis of the gene product is inhibited. The RNAi used here has the same meaning as the agonist inducing RNAi. The RNAi is a process in which a short double-stranded RNA selectively degrades a target mRNA corresponding to its own base sequence to stop transcription and protein synthesis of a target gene, and siRNA (small interfering RNA) can be prepared by directly synthesizing siRNA in vitro and then introducing the siRNA into a cell through transfection, and using a shRNA (short hairpin RNA) expression vector designed to express siRNA in the cell . Expression of an shRNA expression vector in a cell by transformation using a method of utilizing an expression vector allows the sense and antisense sequence of the target sequence from the promoter to be inserted between the gus linker , And thus, a small hairpin shRNA is synthesized. The thus synthesized shRNA is degraded by an RNase III enzyme called Dicer existing in the cell, converted into an siRNA of about 21 to 23 nucleotides having an accurate structure, and is bound to a protein complex called RISC (RNA-induced Silencing Complex) (Plant Cell Physiol. "Simple RNAi Vectors for Stable and Transient Suppression of Gene Function in Rice" 45 (4): 490-95 (2004)).

본 명세서에서 사용된 용어, "벡터"란 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 보유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 특히 "식물 형질전환용 벡터"는 목적한 코딩 서열과, 특정 식물 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 식물세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 이 기술분야의 통상의 기술자에게 공지되어 있다. 본 발명의 벡터는 식물 형질전환용 벡터인 것이 가장 바람직하나, 이에 한정하지 않는다.As used herein, the term "vector" means a DNA construct that retains a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in the appropriate host. The vector may be a plasmid, phage particle, or simply a potential genome insert. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. In particular, "vector for plant transformation" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked to a particular plant host organism. Promoters, enhancers, termination signals and polyadenylation signals available in plant cells are known to those of ordinary skill in the art. The vector of the present invention is most preferably a plant transformation vector, but is not limited thereto.

본 발명의 벡터는 전형적으로 클로닝 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 본 발명의 재조합 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 리보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다.The vector of the present invention can typically be constructed as a vector for cloning or expression. In addition, the vector of the present invention can be constructed by using prokaryotic cells or eukaryotic cells as hosts. For example, when the recombinant vector of the present invention is an expression vector and a prokaryotic cell is used as a host, a strong promoter (for example, pL? Promoter, trp promoter, lac promoter, T7 promoter, tac promoter, etc.) , Ribosome binding sites for initiation of detoxification, and transcription / translation termination sequences.

한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.The vectors that can be used in the present invention include plasmids such as pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pGEX series, pET series and pUC19 which are frequently used in the art, phages such as λgt4 · λB ,? -charon,?? z1, and M13), or a virus (e.g., SV40, etc.).

본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, 아그로박테리움-매개 형질 감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.Methods of delivering the vector of the present invention into a host cell include, but are not limited to, microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, Agrobacterium-mediated transfection, DEAE-dextran, The vector can be injected into host cells by bedding or the like.

발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate), 글루포시네이트암모늄(glufosinate ammonium) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include herbicide resistance genes such as glyphosate, glufosinate ammonium or phosphinothricin, kanamycin, G418, Bleomycin, hygromycin, ), Chloramphenicol (chloramphenicol), but are not limited thereto.

본 발명의 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the vector of the present invention, the promoter may be CaMV 35S, actin, ubiquitin, pEMU, MAS, or histone promoter, but is not limited thereto. The term "promoter " refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constructive promoters may be preferred in the present invention because the choice of transformants can be made by various tissues at various stages. Thus, constitutive promoters do not limit selectivity.

본 발명의 일 구체예에서, RNAi 재조합 벡터의 제작은 Gateway RNAi 벡터 시스템을 이용하였다. 구체적으로, 발현을 억제하고자 하는 유전자 특정 부위 서열 양쪽에 att sites를 삽입한 후 BP Clonase II Enzyme Mix를 이용하여 Entry clone 벡터에 목적 유전자를 삽입하였다. 그리고 이를 다시 Gateway RNAi 벡터시스템에 LR Clonase II Enzyme Mix를 이용하여 목적 유전자를 재조합하는 방법으로 삽입하였다. 이러한 방식으로 목적 유전자의 발현을 억제하는 RNAi 벡터를 제작하였다. att라 불리는 특이한 서열을 통한 위치 특이적 재조합(SSR, Site-specific recombination)을 이용한 것이다.In one embodiment of the invention, the RNAi recombinant vector was constructed using the Gateway RNAi vector system. Specifically, a tt sites were inserted in both the gene specific region sequences to be inhibited in expression, and the desired gene was inserted into the entry clone vector using the BP Clonase II Enzyme Mix. Then, the target gene was inserted into Gateway RNAi vector system using LR Clonase II Enzyme Mix. In this manner, an RNAi vector that suppresses the expression of the target gene was prepared. site-specific recombination (SSR) through a unique sequence called att .

상기 RNAi 재조합 벡터는 BrGI 유전자의 발현을 억제할 수 있다.The RNAi recombinant vector can inhibit the expression of the BrGI gene.

상기 RNAi 재조합 벡터는 GK1 또는 GK4인 것이 바람직하며, GK4인 것이 가장 바람직하나, 이에 한정하지 않는다.
The RNAi recombinant vector is preferably GK1 or GK4, most preferably GK4, but is not limited thereto.

또한, 본 발명은 상기 RNAi 재조합 벡터를 식물체에 형질전환시켜 제조된 형질전환 식물체를 제공한다.The present invention also provides a transgenic plant produced by transforming the RNAi recombinant vector into a plant.

상기 형질전환 식물체는 BrGI 유전자의 발현이 억제되어 염 스트레스 저항성이 증진된 것일 수 있다. 따라서, 본 발명은 상기 RNAi 재조합 벡터를 식물체에 형질전환시켜 제조된, 염 스트레스 저항성이 증진된 형질전환 식물체를 제공한다.The transgenic plants may be those in which the expression of BrGI gene is inhibited and the salt stress resistance is enhanced. Accordingly, the present invention provides a transgenic plant having enhanced salt stress resistance, which is produced by transforming the RNAi recombinant vector into a plant.

상기 식물체는 애기장대(Arabidopsis) 또는 배추(Brassica rapa)일 수 있으나, 이에 한정하지 않는다. The plants are either Arabidopsis or Chinese cabbage rapa ), but is not limited thereto.

본 발명에 따른 형질전환 식물체는 이 기술분야의 통상적인 방법인 유성번식 방법 또는 무성번식 방법을 통해 수득할 수 있다. 보다 구체적으로 본 발명의 식물은 꽃의 수분과정을 통하여 종자를 생산하고 상기 종자로부터 번식하는 과정인 유성번식을 통해 수득할 수 있다. 또한, 본 발명에 따른 재조합 발현 벡터로 식물체를 형질전환 한 다음 통상적인 방법에 따라 캘러스의 유도, 발근 및 토양 순화의 과정인 무성번식 방법을 통해 수득할 수 있다. 즉, 본 발명의 재조합 발현 벡터로 형질전환된 식물의 절편체를 이 기술분야에 공지된 적합한 배지에 치상한 다음 적정 조건으로 배양하여 캘러스의 형성을 유도하고, 신초가 형성되면 호르몬 무첨가 배지로 옮겨 배양한다. 약 2주 후 상기 신초를 발근용 배지에 옮겨서 뿌리를 유도한다. 뿌리가 유도된 다음 이를 토양에 이식하여 순화시킴으로써 본 발명에 따른 형질전환된 식물을 수득할 수 있다. 본 발명에서 형질전환 식물체는 전체 식물체 뿐만 아니라 그로부터 수득될 수 있는 조직, 세포 또는 종자를 포함할 수 있다.The transgenic plants according to the present invention can be obtained through the ovine reproduction method or the non-reproductive propagation method which is a conventional method in this technical field. More specifically, the plant of the present invention can be obtained through reproductive process, which is a process of producing seeds through the moisture process of flowers and propagating from the seeds. Also, the plant can be transformed with the recombinant expression vector according to the present invention, and then obtained by a conventional method, such as induction, rooting and soil purification of the callus. That is, a fragment of a plant transformed with the recombinant expression vector of the present invention is pelleted in a suitable medium known in the art, and cultured under appropriate conditions to induce callus formation. When shoots are formed, the plant is transferred to a hormone-free medium Lt; / RTI > After about two weeks, the shoots are transferred to rooting medium to induce roots. The transformed plants according to the invention can be obtained by roots being induced and then transplanted into the soil for purification. Transgenic plants in the present invention may include whole plants as well as tissues, cells or seeds obtainable therefrom.

본 발명의 일 구체예에서, 상기 RNAi 재조합 벡터, 특히 GK4, GK5, GK7 벡터로 형질전환된 애기장대 형질전환체가 염 저항성을 획득하였음을 확인하였으며, GK1 또는 GK4 벡터로 형질전환된 배추 형질전환체가 염 저항성을 획득하였음을 확인하였다. 특히, GK4 벡터는 도입되었을 때 애기장대 및 배추 두 작물에서 염 저항성을 획득하게 하였음을 확인할 수 있었다.
In one embodiment of the present invention, it has been confirmed that the Arabidopsis transformants transformed with the above RNAi recombinant vectors, particularly the GK4, GK5, and GK7 vectors, have obtained salt resistance, and a Chinese cabbage transformant transformed with the GK1 or GK4 vector It was confirmed that the salt resistance was obtained. Especially, when the GK4 vector was introduced, it was confirmed that salt resistance was obtained in Arabidopsis and Chinese cabbage crops.

또한, 본 발명은 상기 형질전환 식물체의 종자를 제공한다.The present invention also provides a seed of the transgenic plant.

본 발명의 일 구체예에서, 본 발명의 RNAi 재조합 벡터로 형질전환된 애기장대 및 배추의 T3 종자를 토양에 파종하여 염 저항성 검정 시험을 한 결과, 각 형질전환체가 염 저항성을 획득하였음을 확인할 수 있었다.
In one embodiment of the present invention, the T3 seeds of Arabidopsis and Chinese cabbage transformed with the RNAi recombinant vector of the present invention were inoculated on the soil and subjected to a salt resistance assay. As a result, it was confirmed that each transformant obtained salt resistance there was.

또한, 본 발명은 In addition,

1) 상기 RNAi 재조합 벡터를 제조하는 단계; 및1) preparing the RNAi recombinant vector; And

2) 상기 재조합 벡터를 식물체에 형질전환시켜 BrGI 유전자 발현을 억제시키는 단계를 포함하는, 염 스트레스 저항성이 증진된 형질전환 식물체의 제조 방법을 제공한다.
2) transforming the recombinant vector into a plant to inhibit the expression of BrGI gene, thereby producing a transformed plant having enhanced salt stress resistance.

본 발명의 생체리듬 유전자인 BrGI 유전자를 포함하는 RNAi 재조합 벡터를 이용하면, 생체리듬 유전자의 발현 조절을 통해 식물체에 염 저항성을 부여할 수 있으므로, 기후변화로 인한 다양한 환경변화에 적응하여 재배가 가능하면서 생산성을 유지할 수 있는 작물의 개발이 가능하다. 따라서, 애기장대와 배추뿐만 아니라 다양한 작물에 직접적으로 벡터를 적용하거나 환경 저항성 기작에 영향을 주는 다양한 유전자를 활용하여 환경 맞춤형 작물을 개발하고 생산성을 향상시킬 수 있다.
Using the RNAi recombinant vector containing the Brgi gene of the present invention as a biorhythm gene, it is possible to regulate the expression of the biorhythm gene, thereby imparting salt resistance to the plant. Thus, it can be cultivated in accordance with various environmental changes due to climate change It is possible to develop crops that can sustain productivity. Therefore, it is possible to apply vectors directly to various crops as well as Arabidopsis and Chinese cabbage, or to develop environmentally customized crops and improve productivity by utilizing various genes that affect the environmental resistance mechanism.

도 1은 BrGI 유전자의 mRNA 서열(3552 bp) 및 GK1과 GK4 벡터의 프라이머 위치를 나타낸 도이다:
빨간색, GK4 벡터의 프라이머 위치; 및
파란색, GK1 벡터의 프라이머 위치.
도 2는 애기장대 GIGANTEA (AtGI) 유전자와 본 발명의 BrGI (Brassica rapa GIGANTEA) 유전자의 구조를 나타낸 도이다.
도 3은 BrGI 유전자의 일일 주기 발현을 나타낸 도이다:
LD, 16시간 낮/8시간 밤;
LD_LL, 1주간 LD 조건 후 계속 광 조건;
SD, 8시간 낮/16시간 밤; 및
SD_LL, 1주간 SD 조건 후 계속 광 조건.
도 4는 BrGI 유전자 단편을 삽입한 pBrGI-RNAi 벡터를 나타낸 도이다.
도 5는 본 발명의 RNAi 벡터를 애기장대에 형질 전환하여 형질전환체의 GI(GIGANTEA) 유전자 발현량을 나타낸 도이다.
도 6은 본 발명의 RNAi 벡터를 도입한 애기장대 형질전환체에 250mM NaCl 용액을 2주간 처리하여 염 저항성을 검정한 결과를 나타낸 도이다.
도 7은 본 발명의 RNAi 벡터를 도입한 배추 형질전환체에 NaCl을 농도별로 처리하여 염 저항성을 검정한 결과를 나타낸 도이다.
도 8은 본 발명의 RNAi 벡터를 도입한 배추 형질전환체를 토양에 파종하고 본엽이 3개 전개한 후, 250mM NaCl로 2주간 관수하여 염 저항성을 검정한 결과를 나타낸 도이다.
Figure 1 shows the mRNA sequence of the BrGI gene (3552 bp) and the primer positions of the GK1 and GK4 vectors:
Primer position of the red, GK4 vector; And
Blue, the primer position of the GK1 vector.
FIG. 2 is a diagram showing the structure of Arabidopsis GIGANTEA (AtGI) gene and BrGI (Brassica rapa GIGANTEA) gene of the present invention.
Figure 3 is a diagram showing daily cycle expression of the BrGI gene:
LD, 16 hours day / 8 hours night;
LD_LL, continuous light condition after 1 week LD condition;
SD, 8 hours day / 16 hours night; And
SD_LL, continuous light condition after one week SD condition.
Fig. 4 is a diagram showing a pBrGI-RNAi vector into which a BrGI gene fragment is inserted.
FIG. 5 is a graph showing the expression level of GI (GIGANTEA) gene in the transformant by transforming the RNAi vector of the present invention into Arabidopsis.
FIG. 6 is a graph showing the results of assaying salt resistance by treating 250 mM NaCl solution for 2 weeks with Arabidopsis transfected with the RNAi vector of the present invention.
FIG. 7 is a graph showing the results of assaying salt resistance by treating NaCl in different concentrations of a Chinese cabbage transformant into which an RNAi vector of the present invention has been introduced.
FIG. 8 is a graph showing the results of assaying salt resistance by draining a Chinese cabbage transformant into which the RNAi vector of the present invention has been introduced, draining three trunks, and watering with 250 mM NaCl for 2 weeks.

이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.
Hereinafter, the present invention will be described in more detail in the following Examples. It should be noted, however, that the following examples are illustrative only and do not limit or limit the scope of the present invention. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

<< 실시예Example 1> 배추에서 생체리듬 유전자  1> Biological Rhythm Genes in Chinese Cabbage GIGANTEAGIGANTEA 의 상동 유전자 Homologous gene of BrGIBrGI 동정 Sympathy

비교 제놈을 통해 애기장대(Arabidopsis) GI(GIGANTEA) 유전자의 상동 유전자를 배추(Brassica rapa)에서 동정하였다. The homologous gene of the Arabidopsis GI (GIGANTEA) gene was isolated from the Chinese cabbage ( Brassica rapa ).

구체적으로, GI 유전자는 애기장대 염색체 1번 8061844 내지 8067716에 위치하는 유전자로(AT1G22770) 해당 서열을 배추 제놈 서열 데이터베이스(http://brassicadb.org/brad/)를 이용하여 상동서열을 찾았다. Specifically, the GI gene is a gene located at Arabidopsis chromosome 1, 8061844 to 8067716 (AT1G22770), and the corresponding sequence was searched using the Chinese cabbage genome sequence database (http://brassicadb.org/brad/).

찾은 서열이 배추에서 발현되는지 확인하기 위하여 BrGI_pcr_L (5'-ATCTGAGAGGTGGACCGATG-3', 정방향 프라이머; 서열번호 6) 및 BrGI_pcr_R (5'-GTTATGCCGCTTTGGTTCAT-3', 역방향 프라이머; 서열번호 7) 프라이머 세트(BrGI 유전자 3552 bp 중 18 내지 3323 번째 서열을 증폭함)를 제작하였다. 그리고 배추(Brassica rapa, L. ssp. pekinensis, Chiifu-401) cDNA를 분리하고 제작한 프라이머 세트(BrGI_pcr_L 및 BrGI_pcr_R)를 이용하여 PCR 분석을 한 결과, 배추 제놈 내에서 유전자가 증폭됨을 확인하였다.(5'-ATCTGAGAGGTGGACCGATG-3 ', forward primer; SEQ ID NO: 6) and BrGI_pcr_R (5'-GTTATGCCGCTTTGGTTCAT-3', reverse primer; SEQ ID NO: 7) primer set (BrGI 3552 bp) was prepared. And Chinese cabbage rapa , L. ssp. (Brgi_pcr_L and BrGI_pcr_R) were isolated and confirmed that the gene was amplified in Chinese cabbage genome.

그리고 유전자의 구조를 예측하는 프로그램(FGENESH)을 이용하여 엑손 영역을 예측하여 상기 유전자를 애기장대와 비교한 결과 애기장대 GI 유전자와 상동유전자임을 확인하였다(도 2). 이렇게 하여 동정한 배추 유전자를 BrGI (Brassica rapa GIGANTEA)로 명명하였다(서열번호 1).The exon region was predicted using a program for predicting the structure of the gene (FGENESH), and the gene was compared with the Arabidopsis thaliana to confirm that it is a homologous gene of the Arabidopsis GI gene (Fig. 2). The thus-identified Chinese cabbage gene was named BrGI (Brassica rapa GIGANTEA) (SEQ ID NO: 1).

또한, BrGI 유전자의 일일주기 발현을 확인하였다. 도 3에서 LD는 16시간 낮/8시간 밤인 조건, LD_LL은 1주일간 LD 조건 후 계속해서 광 조건, SD는 8시간 낮/16시간 밤인 조건, SD_LL은 1주일간 SD 조건 후 계속해서 광 조건인 경우이며, 각 조건에 따른 BrGI 유전자의 일일 주기 발현 패턴을 나타낸 것이다. 도 3의 결과로부터 BrGI는 24시간을 주기로 하는 발현 패턴을 가지는 생체리듬 유전자임을 확인하였다(도 3).
In addition, the expression of the BrGI gene in the daily cycle was confirmed. In FIG. 3, the LD is 16 hours / 8 hours at night, the LD_LL is 1 day light condition, the SD is 8 hours / 16 hours night condition, the SD_LL is 1 day SD condition, , And the daily cycle expression pattern of BrGI gene according to each condition is shown. From the results shown in Fig. 3, it was confirmed that BrGI is a biorhythm gene having an expression pattern with a cycle of 24 hours (Fig. 3).

<< 실시예Example 2>  2> BrGIBrGI 발현 조절용  For modulation of expression RNAiRNAi 벡터 제작 Vector production

BrGI 유전자의 발현 억제와 식물의 염 저항성과의 관계를 확인하기 위하여, 본 발명에서는 BrGI 유전자 발현을 억제하기 위한 시스템으로 RNAi(RNA interference) 벡터, 특히 Gateway RNAi 벡터 시스템을 이용하였다.In order to confirm the relationship between inhibition of BrGI gene expression and salt resistance of plants, RNAi (RNA interference) vector, in particular Gateway RNAi vector system, was used as a system for suppressing BrGI gene expression in the present invention.

BrGI 유전자의 발현을 억제할 수 있는 RNAi 벡터를 제작하기 위하여 프라이머를 준비하였다. BrGI 유전자 전체 mRNA 3552bp와 3'-UTR(bp) 영역 내에서 약 500bp 단위의 RNAi 디스크(disc)를 만들 수 있는 프라이머를 고안하였다.A primer was prepared to construct an RNAi vector capable of inhibiting the expression of the BrGI gene. A primer was designed to produce an RNAi disc of approximately 500 bp in the region of the 3552 bp total mRNA of the BrGI gene and the 3'-UTR (bp) region.

상기 프라이머를 이용하여 증폭된 PCR 산물을 3'-UTR 영역부터 순차적으로 블록(block)0, 블록1, 블록2, 블록3, 블록4, 블록5, 블록6, 블록7, 블록8, 블록9로 명명하였다. 블록0 내지 블록9의 BrGI 유전자 내 위치는 도 4에 나타내었다.The PCR products amplified using the primers are sequentially sequenced from the 3'-UTR region into block 0, block 1, block 2, block 3, block 4, block 5, block 6, block 7, block 8, block 9 Respectively. The positions in the BrGI gene of blocks 0 to 9 are shown in FIG.

그 다음, 유전자의 크기가 큰 BrGI 유전자의 특정 영역인 블록0 내지 블록9를 각각 삽입한 RNAi 벡터 10종을 제작하였다(도 4).Next, 10 kinds of RNAi vectors into which the blocks 0 to 9, which are specific regions of the Brgi gene having a large gene size, were inserted, respectively (FIG. 4).

구체적으로, 블록0 내지 블록9의 서열 양쪽에 att sites를 삽입하여 DONR221벡터(Invitrogen, cat. No. 12536-017)에 BP Clonase II Enzyme Mix(Invitrogen cat. No. 11789-020)를 이용하여 삽입하였다. 그리고 이를 다시 Gateway RNAi 벡터시스템 pB7GWIWG2(II)에 LR Clonase II Enzyme Mix(Invitrogen, cat. No.11791-100)를 이용하여 각 블록별로 삽입하였다. att라 불리는 특이한 서열을 통한 위치 특이적 재조합(SSR, Site-specific recombination)을 이용한 것이다. 블록1이 삽입된 벡터는 pBrGI1-RNAi, 블록2가 삽입된 벡터를 pBrGI2-RNAi로 하여 순차적으로 벡터를 제작하였다(도 4). 그리고 pBrGI0-RNAi 부터 pBRGI9-RNAi 까지의 벡터를 순차적으로 GK(GI-knockout)0 부터 GK9 벡터로 명명하였다. 이렇게 제작한 RNAi 벡터는 프로모터로부터 표적 염기서열의 센스(sense) 및 안티센스(anti-sense) 서열이 링커(linker)를 사이에 두고 위치하며 발현하게 되어 표적 mRNA를 분해하게 된다.More specifically, by inserting the att sites on the sequence on both sides of the block 0 to block 9 inserted using BP Clonase II Enzyme Mix (Invitrogen cat . No. 11789-020) in DONR221 vector (Invitrogen, cat. No. 12536-017) Respectively. Then, each block was inserted into the Gateway RNAi vector system pB7GWIWG2 (II) using the LR Clonase II Enzyme Mix (Invitrogen, cat. No.11791-100). site-specific recombination (SSR) through a unique sequence called att . The vector into which the block 1 was inserted was pBrGI1-RNAi, and the vector into which the block 2 was inserted was pBrGI2-RNAi, and the vector was sequentially prepared (FIG. 4). Then, the vector from pBrGI0-RNAi to pBRGI9-RNAi was sequentially named GK (GI-knockout) 0 to GK9 vector. The RNAi vector thus constructed is expressed from the promoter, with the sense and anti-sense sequences of the target base sequence located between the linkers, thereby degrading the target mRNA.

GK1 및 GK4 벡터를 제작하기 위해 사용된 프라이머 정보를 표 1에 나타내었다.Table 1 shows the primer information used to construct the GK1 and GK4 vectors.

벡터vector 서열번호SEQ ID NO: 프라이머primer 명칭 designation 프라이머primer 방향 direction 프라이머primer 서열(5'→3') The sequence (5 '- &gt; 3') PCRPCR 산물 크기 ( Product size ( bpbp )) GK1
GK1
22 GK1_FGK1_F 정방향Forward tggaatgcttgttgatggagtggaatgcttgttgatggag 554
554
33 GK1_RGK1_R 역방향Reverse cgcttcccagttcaaacactcgcttcccagttcaaacact GK4
GK4
44 GK4_FGK4_F 정방향Forward atggctgagcttcgtgctatatggctgagcttcgtgctat 579
579
55 GK4_RGK4_R 역방향Reverse agacaaggcatgcgtcaagagacaaggcatgcgtcaag

<< 실시예Example 3> 애기장대 형질전환체 제작 및  3> Production of Arabidopsis transformants 염저항성Salt resistance 검정 black

먼저 <실시예 2>에서 제작한 각 벡터를 모델식물인 애기장대에 형질전환하였다.First, each vector prepared in Example 2 was transformed into Arabidopsis thaliana, a model plant.

구체적으로, 국립농업과학원에서 보유하고 있는 애기장대 Columbia(Col-0) 종자와 경상대학교에서 분양받은 gi T-DNA allele, gi-201 종자(Plant Physiology, May 2007, Vol. 144, pp. 495502)에 아그로박테리움(agrobacterium) 형질전환 방법을 이용하여 벡터를 애기장대에 도입하여 애기장대 형질전환체를 제작하였다.(Plant Physiology, May 2007, Vol. 144, pp. 495502), which has been distributed from Gyeongsang National University and Gy-T-DNA allele, The vector was introduced into the Arabidopsis thaliana using the agrobacterium transformation method to construct Arabidopsis transformants.

각 벡터로 형질전환된 애기장대 형질전환체를 제작하여 애기장대 GI(GIGANTEA) 유전자의 발현 변화를 확인하였다. 애기장대 Col-0 2개체를 대조구로하고 형질전환체 4개체씩을 선택하여 총 RNA를 분리(Qiagen, RNeasy Plant Mini Kit, Cat. No. 74904)하고 cDNA를 합성(Clontech, RNA to cDNA EcoDry, Cat. No. 639541)하였다. 그 다음, 애기장대 GI 유전자의 일부를 증폭할 수 있는 특이 프라이머를 두 가지로 제작하였다. 애기장대 GI 유전자의 NCBI Accesssion number는 NM_102124.2이다. AtGI_exp1_L(5-TGGAATGCTTGTTGATGGAG-3, 정방향 프라이머; 서열번호 8) 및 AtGI_exp1_R (5-TTGGGACAAGGATATAGTACAGC-3, 역방향 프라이머; 서열번호 9) 프라이머(애기장대 GI 내 3066 내지 3519 증폭) 또는 AtGI_exp2_L(5-TGGCTAGTTCATCTTCATCTGAG-3, 정방향 프라이머; 서열번호 10) 및 AtGI_exp2_R(5-GCGGAAAAGTTCTACTGAGTATTG-3, 역방향 프라이머; 서열번호 11) 프라이머(애기장대 GI 내 2 내지 1614 증폭)를 이용하여 PCR 증폭 후 전기영동하였다(도 5). The transgenic Arabidopsis transformants transformed with each vector were constructed to confirm the expression of Arabidopsis GI (GIGANTEA) gene. Total RNA was isolated (Qiagen, RNeasy Plant Mini Kit, Cat. No. 74904) by selecting four Arabidopsis thaliana colonies and four transformants (Clontech, RNA to cDNA EcoDry, Cat No. 639541). Next, two specific primers capable of amplifying a part of the Arabidopsis GI gene were prepared. The NCBI Accession number of the Arabidopsis GI gene is NM_102124.2. Primer (amplification 3066 to 3519 in Arabidopsis GI) or AtGI_exp2_L (5-TGGCTAGTTCATCTTCATCTGAG-3, forward primer; SEQ ID NO: 8) and AtGI_exp1_R (5-TTGGGACAAGGATATAGTACAGC-3, reverse primer; SEQ ID NO: (Forward primer: SEQ ID NO: 10) and AtGI_exp2_R (5-GCGGAAAAGTTCTACTGAGTATTG-3, reverse primer: SEQ ID NO: 11) primers (amplified from 2 to 1614 in Arabidopsis GI).

도 5에 나타난 결과에서, 액틴(Actin)은 애기장대에 항시 발현하는 안정된 유전자로 유전자 발현량을 분석하는 실험에서 주형(template)으로 사용한 cDNA의 양이 일정하며 식물체에 문제가 없음을 의미한다. 또한, 상기 프라이머(AtGI_exp1_L 및 AtGI_exp1_R 프라이머, 또는 AtGI_exp2_L 및 AtGI_exp2_R 프라이머)에 의하여 증폭된 산물의 전기영동 결과로부터 형질전환체의 GI 유전자 발현량이 대조구보다 적었음을 확인할 수 있었다. 이로부터 상기 애기장대가 성공적으로 형질전환되었음을 알 수 있었다.In the results shown in Fig. 5, actin is a stable gene constantly expressed in Arabidopsis thaliana, meaning that the amount of cDNA used as a template is constant in the experiment of analyzing the gene expression amount, and there is no problem in the plant. Also, it was confirmed that the amount of GI gene expression of the transformant was lower than that of the control from the results of electrophoresis of the products amplified by the primers (AtGI_exp1_L and AtGI_exp1_R primers, or AtGI_exp2_L and AtGI_exp2_R primers). From this, it was found that the Arabidopsis thaliana was successfully transformed.

상기 제작한 애기장대 형질전환체의 염 저항성을 검정하기 위한 실험을 하였다. 구체적으로, 상기 애기장대 형질전환체 T3 종자를 토양에 파종하여 발아 후, 250mM NaCl을 처리한 물로 관수하고 2주 후 생장을 관찰한 결과, GK4, GK5, GK7 벡터로 형질전환된 애기장대 형질전환체가 갈변하지 않고 잘 생장하였음을 확인하였다(도 6).Experiments were carried out to test the salt resistance of the Arabidopsis thaliana transformants prepared above. Specifically, the Arabidopsis thaliana transformant T3 seed was inoculated on the soil, germinated, and then watered with 250 mM NaCl. After 2 weeks of growth, the growth was observed, and the results showed that the transformed Arabidopsis thaliana transformed with the GK4, GK5 and GK7 vectors It was confirmed that the body did not browse but grew well (Fig. 6).

따라서 GK4, GK5, GK7 벡터로 형질전환된 애기장대 형질전환체가 고염도에서 생존이 가능함을 확인하였다.
Therefore, it was confirmed that the Arabidopsis transformants transformed with the GK4, GK5, and GK7 vectors were able to survive at high salt tolerance.

<< 실시예Example 4> 배추 형질전환체 제작 및  4> Production of Chinese cabbage transformants 염저항성Salt resistance 검정 black

<실시예 2>에서 제작한 각 벡터를 배추에 형질전환하였다.Each vector prepared in Example 2 was transformed into Chinese cabbage.

구체적으로, 배추(Brassica rapa, ssp. pekinensis DH03(2007년 Plant Cell Rep. 26:327-336))의 하배축(下胚軸)에 아그로박테리움(agrobacterium)을 이용하여 벡터를 접종하고 이를 재분화시키는 조직배양을 이용하여, 상기 제작한 GK0 내지 GK9 벡터를 각각 형질전환하고 T3 세대 진전시켰다. 그 후, 0 mM, 75 mM, 125 mM, 250 mM NaCl을 첨가한 MS 배지에 파종하여 관찰하였다.Specifically, a vector is inoculated into the hypocotyl of the Chinese cabbage ( Brassica rapa , ssp. Pekinensis DH03 (2007 Plant Cell Rep. 26: 327-336)) using Agrobacterium, Tissue culture was used to transform each of the above-produced GK0 to GK9 vectors and to develop T3 generation. Then, seeds were sown on MS medium supplemented with 0 mM, 75 mM, 125 mM, and 250 mM NaCl.

그 결과 125 mM 배지에서 GK1과 GK4 벡터가 형질전환된 배추의 뿌리 생장이 잘 되었으나 반면 형질전환되지 않은 식물체의 뿌리는 잘 자라지 못함을 확인하였다(도 7).As a result, it was confirmed that the roots of the Chinese cabbage transformed with the GK1 and GK4 vectors were well grown in the 125 mM medium while the roots of the untransformed plants did not grow well (FIG. 7).

상기 배추 형질전환체를 토양에 파종하고 본엽이 3개 전개한 후에 250 mM NaCl을 2주간 관수한 결과, GK1 및 GK4 벡터로 형질전환된 배추 형질전환체에서 새로 나온 잎은 잘 펴져 있는 반면 대조구의 새잎은 심하게 말려있음을 확인하였다(도 8).When the Chinese cabbage transgenic plants were sown on the soil and three main leaves were developed and 250 mM NaCl was applied for 2 weeks, the leaves of the Chinese cabbage transformants transformed with the GK1 and GK4 vectors were well spread, whereas the leaves of the control It was confirmed that the young leaves were severely curled (Fig. 8).

따라서, GK1 및 GK4 벡터로 형질전환된 배추는 염 저항성이 증진되며, 특히 GK4 벡터는 애기장대와 배추 두 작물에서 염 저항성을 획득하게 했음을 확인할 수 있었다.Therefore, it was confirmed that the salt resistance of the Chinese cabbage transformed with the GK1 and GK4 vectors was enhanced, and in particular, the GK4 vector attained the salt resistance in the Arabidopsis and Chinese cabbage crops.

<110> Republic of korea <120> RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same <130> P14R12D1370 <160> 11 <170> KopatentIn 2.0 <210> 1 <211> 3552 <212> DNA <213> Brassica rapa <400> 1 atgacatcgc ctacttcatc tgagaggtgg accgatggtc ttcagttctc ttccttgtta 60 tggtctcccc cacgtgaccc tcaacaacat aaggatcaag tcgttgctta tgtcgaatac 120 tttggtcagt tcacatcaga gcaattccct gatgatattg ctgagttggt ccgtaatcag 180 tatccctcaa ctgagaagcg acttttggat gatgtgttgg ctatgtttgt actccatcat 240 cctgagcatg gtcatgctgt catccttccg attatctcat gtctcatcga tggcactcta 300 gtgtacagca aggaagctca tcccttcgcc tctttcattt ctttagtttc cccaaatagt 360 gagaatgact attcagagca atgggctttg gcgtgcggag aaatcctacg catcttgact 420 cattacaacc gtcccattta caagacggag cagcaaaatg gagaaacgga gagcaaagct 480 tctactagtg ggtctcctac gctttcagag gctaaggctg tatcaccagg acagcatgaa 540 aggaaaccgc taaggccttt gtctccatgg atcagtgata tactactcgc tgctcccctt 600 ggtattagaa gtgactactt tcgttggtgt agtggtgtta tgggtaaata tgctgctgga 660 gagctcaagc cacctaccat tggtgagtgt ccatcacctc tggctactac aatgggttct 720 actcgaggat ctggtaaaca tcctcaatat atgccttcga caccaagatg ggcggttgct 780 aatggagctg gtgtcatact gagtgtttgt gatgatgaag tcgctcggta tgagactgct 840 acgttaacag cggttgctgt ccctgcactt ctgcttcctc ccccaacgac atccttagat 900 gagcatttag ttgctggcct tccagctctt gagccttatg cacgtttgtt tcacagatat 960 tatgcgattg caactccaag tgctactcag agacttcttc ttggactctt ggaagcacca 1020 ccgtcgtggg ctccagatgc acttgatgct gccgtacagc ttgtggagct tctccgagct 1080 gctgaagatt atgcatctgg tgtaaggcta ccaaggaact ggatgcattt gcacttcttg 1140 cgtgcaatag gaatcgccat gtctatgagg gcaggcgttg ctgctgacgc tgcagctgct 1200 ttacttttcc gcatactgtc gcagccggca ctgctttttc ctccgctaag ccaagctgag 1260 ggagtagaaa tcaaacacgc tcctattggt ggctacggtt caaattacag aaagcagata 1320 gaagttcctg cagcagaagc aaccattgaa gccactgcac aaggaatagc ctcaatgctt 1380 tgtgctcacg gacctgaagt ggagtggagg atctgcacta tatgggaagc tgcctatgga 1440 ttgatccctt taaactcctc agccgttgat ctccctgaga tcattgtcgc caccccactg 1500 cagcctccca tcttgtcatg gaacctatac atcccactcc tcaaagtact cgagtatctt 1560 ccacgtggga gtccttccga agcatgcttg atgaagatat tcgtcgccac ggtggaaaca 1620 atcctcagca ggactttccc gccagagact tctatcagga aagctagagc gagtttagcc 1680 acgagatcat cagcgaccaa aaacctagct atggctgagc ttcgtgctat ggtccatgct 1740 ctcttcttgg aatcatgcgc tggcgtggag atagcgtcgc gcctgctttt cgttgtgttg 1800 actgtgtgtg ttagccatga agcgcagtct agtgggagca agagacggag aagcgaagaa 1860 gatgctactg cagaggagaa tcaagacaat caaactagta accgtaaaag taggaacgtc 1920 aagggacaag gacctgtggc ggcgtttgat tcgtacgttc tcgctgctgt ctgtgctctc 1980 gcctgtgagg ttcagctgta tcctatgatc tccggaggag ggaacttctc caactctgca 2040 gtggctgcaa ccattacaaa gtctgtgaag ataaacggtt catctaacga gtacggagct 2100 gggattgact ctgcaatcaa gcacacacgc cgcatcttag cgattctcga ggcgctcttt 2160 tcgttgaagc catcttctgt ggggactccg tggagttaca gctctagcga gatagttgct 2220 gcggccatgg tcgcagctca catctccgaa ctgttcagac gctcaaaggc cttgacgcat 2280 gccttgtctg gtttgatgag atgcaaatgg gacaaggaga ttcataagag agcgtcgtct 2340 ttgtataacc tcatcgatgt tcatagcaaa gttgtagcat ccatcgtcga caaagctgaa 2400 cccttagaag cgtaccttaa gaacgccccg gtccagaagg attcgctggc ttgtgttaac 2460 tggaaacaac agaacaacac atcatcagca gcagggtttg gtacagcggc ggtgacgtcc 2520 acgtcacgta atgaaatggc tccgagagga ggtaaccata agtatgctag gcattcagat 2580 gaaggctcag ggagtagatc gtcatcagat aagggcatca aagatctgct gttggatgct 2640 tctgatctag cgaatttcct cacggctgat aggctagcag ggttttaccg tggtacgcaa 2700 gttcttttga ggtcgatact tgctgagaaa ccggagcttt ctttctccgt tgtttcgctg 2760 ttgtggcaca aactgatcgc ttctcctgag atccagccca cagccgaaag cacctctgct 2820 cagcaaggat ggagacaggt agttgatgca ctatgcaatg tggtatctgc aacgccagca 2880 aaagcagctg cagccgttgt tcttcaggct gagagagagt tgcagccttg gatagccaaa 2940 gatgatgaag aaggtcagaa aatgtggaaa ataaaccaaa ggatagtgaa agtgatggtg 3000 gaactcatga ggaatcatga caggcctgag tcactggtga ttctggcaag tgcatctgat 3060 ctccttctga gagcaactga tggaatgctt gttgatggag aagcttgtac attacctcaa 3120 cttgagctac ttgaagctac agcaagagca atacagccag tgttagcttg gggaccatct 3180 ggactagcag tagttgacgg cttatcaaat ctattgaagt gtcgtctgcc ggcaacaata 3240 cggtgcctct cacacccaag tgcacacgta cgtgccttga gcacatcagt actacgagac 3300 atcatgaacc aaagcggcat aaccaccacc aaggcaactc caaaaccgcc gccaacaata 3360 acaaccgaga agaacggaac ggacagcccg tcgtacaggt tcttcaacgc ggcggcaata 3420 gactggaaag cagacataca aaagtgtttg aactgggaag cgcacagctt gctgtcgacg 3480 acaatgccga cacagtttct tgacacggcg gctcgggaat taggatgtac catatcaatg 3540 tcgtcccaat aa 3552 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GK1_F <400> 2 tggaatgctt gttgatggag 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GK1_R <400> 3 cgcttcccag ttcaaacact 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GK4_F <400> 4 atggctgagc ttcgtgctat 20 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GK4_R <400> 5 agacaaggca tgcgtcaag 19 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGI_pcr_L <400> 6 atctgagagg tggaccgatg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGI_pcr_R <400> 7 gttatgccgc tttggttcat 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp1_L <400> 8 tggaatgctt gttgatggag 20 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp1_R <400> 9 ttgggacaag gatatagtac agc 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp2_L <400> 10 tggctagttc atcttcatct gag 23 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp2_R <400> 11 gcggaaaagt tctactgagt attg 24 <110> Republic of korea <120> RNAi recombinant vector including BrGI gene and transgenic plant          with enhanced stress tolerance using the same <130> P14R12D1370 <160> 11 <170> Kopatentin 2.0 <210> 1 <211> 3552 <212> DNA <213> Brassica rapa <400> 1 atgacatcgc ctacttcatc tgagaggtgg accgatggtc ttcagttctc ttccttgtta 60 tggtctcccc cacgtgaccc tcaacaacat aaggatcaag tcgttgctta tgtcgaatac 120 tttggtcagt tcacatcaga gcaattccct gatgatattg ctgagttggt ccgtaatcag 180 tatccctcaa ctgagaagcg acttttggat gatgtgttgg ctatgtttgt actccatcat 240 cctgagcatg gtcatgctgt catccttccg attatctcat gtctcatcga tggcactcta 300 gtgtacagca aggaagctca tcccttcgcc tctttcattt ctttagtttc cccaaatagt 360 gagaatgact attcagagca atgggctttg gcgtgcggag aaatcctacg catcttgact 420 cattacaacc gtcccattta caagacggag cagcaaaatg gagaaacgga gagcaaagct 480 tctactagtg ggtctcctac gctttcagag gctaaggctg tatcaccagg acagcatgaa 540 aggaaaccgc taaggccttt gtctccatgg atcagtgata tactactcgc tgctcccctt 600 ggtattagaa gtgactactt tcgttggtgt agtggtgtta tgggtaaata tgctgctgga 660 gagctcaagc cacctaccat tggtgagtgt ccatcacctc tggctactac aatgggttct 720 actcgaggat ctggtaaaca tcctcaatat atgccttcga caccaagatg ggcggttgct 780 aatggagctg gtgtcatact gagtgtttgt gatgatgaag tcgctcggta tgagactgct 840 acgttaacag cggttgctgt ccctgcactt ctgcttcctc ccccaacgac atccttagat 900 gagcatttag ttgctggcct tccagctctt gagccttatg cacgtttgtt tcacagatat 960 tatgcgattg caactccaag tgctactcag agacttcttc ttggactctt ggaagcacca 1020 ccgtcgtggg ctccagatgc acttgatgct gccgtacagc ttgtggagct tctccgagct 1080 gctgaagatt atgcatctgg tgtaaggcta ccaaggaact ggatgcattt gcacttcttg 1140 cgtgcaatag gaatcgccat gtctatgagg gcaggcgttg ctgctgacgc tgcagctgct 1200 ttacttttcc gcatactgtc gcagccggca ctgctttttc ctccgctaag ccaagctgag 1260 ggagtagaaa tcaaacacgc tcctattggt ggctacggtt caaattacag aaagcagata 1320 gaagttcctg cagcagaagc aaccattgaa gccactgcac aaggaatagc ctcaatgctt 1380 tgtgctcacg gacctgaagt ggagtggagg atctgcacta tatgggaagc tgcctatgga 1440 ttgatccctt taaactcctc agccgttgat ctccctgaga tcattgtcgc caccccactg 1500 cagcctccca tcttgtcatg gaacctatac atcccactcc tcaaagtact cgagtatctt 1560 ccacgtggga gtccttccga agcatgcttg atgaagatat tcgtcgccac ggtggaaaca 1620 atcctcagca ggactttccc gccagagact tctatcagga aagctagagc gagtttagcc 1680 acgagatcat cagcgaccaa aaacctagct atggctgagc ttcgtgctat ggtccatgct 1740 ctcttcttgg aatcatgcgc tggcgtggag atagcgtcgc gcctgctttt cgttgtgttg 1800 actgtgtgtg ttagccatga agcgcagtct agtgggagag agagacggag aagcgaagaa 1860 gatgctactg cagaggagaa tcaagacaat caaactagta accgtaaaag taggaacgtc 1920 aagggacaag gacctgtggc ggcgtttgat tcgtacgttc tcgctgctgt ctgtgctctc 1980 gcctgtgagg ttcagctgta tcctatgatc tccggaggag ggaacttctc caactctgca 2040 gtggctgcaa ccattacaaa gtctgtgaag ataaacggtt catctaacga gtacggagct 2100 gggattgact ctgcaatcaa gcacacacgc cgcatcttag cgattctcga ggcgctcttt 2160 tcgttgaagc catcttctgt ggggactccg tggagttaca gctctagcga gatagttgct 2220 gcggccatgg tcgcagctca catctccgaa ctgttcagac gctcaaaggc cttgacgcat 2280 gccttgtctg gtttgatgag atgcaaatgg gacaaggaga ttcataagag agcgtcgtct 2340 ttgtataacc tcatcgatgt tcatagcaaa gttgtagcat ccatcgtcga caaagctgaa 2400 cccttagaag cgtaccttaa gaacgccccg gtccagaagg attcgctggc ttgtgttaac 2460 tggaaacaac agaacaacac atcatcagca gcagggtttg gtacagcggc ggtgacgtcc 2520 acgtcacgta atgaaatggc tccgagagga ggtaaccata agtatgctag gcattcagat 2580 gaaggctcag ggagtagatc gtcatcagat aagggcatca aagatctgct gttggatgct 2640 tctgatctag cgaatttcct cacggctgat aggctagcag ggttttaccg tggtacgcaa 2700 gttcttttga ggtcgatact tgctgagaaa ccggagcttt ctttctccgt tgtttcgctg 2760 ttgtggcaca aactgatcgc ttctcctgag atccagccca cagccgaaag cacctctgct 2820 cagcaaggat ggagacaggt agttgatgca ctatgcaatg tggtatctgc aacgccagca 2880 aaagcagctg cagccgttgt tcttcaggct gagagagagt tgcagccttg gatagccaaa 2940 gatgatgaag aaggtcagaa aatgtggaaa ataaaccaaa ggatagtgaa agtgatggtg 3000 gaactcatga ggaatcatga caggcctgag tcactggtga ttctggcaag tgcatctgat 3060 ctccttctga gagcaactga tggaatgctt gttgatggag aagcttgtac attacctcaa 3120 cttgagctac ttgaagctac agcaagagca atacagccag tgttagcttg gggaccatct 3180 ggactagcag tagttgacgg cttatcaaat ctattgaagt gtcgtctgcc ggcaacaata 3240 cggtgcctct cacacccaag tgcacacgta cgtgccttga gcacatcagt actacgagac 3300 atcatgaacc aaagcggcat aaccaccacc aaggcaactc caaaaccgcc gccaacaata 3360 acaaccgaga agaacggaac ggacagcccg tcgtacaggt tcttcaacgc ggcggcaata 3420 gactggaaag cagacataca aaagtgtttg aactgggaag cgcacagctt gctgtcgacg 3480 acaatgccga cacagtttct tgacacggcg gctcgggaat taggatgtac catatcaatg 3540 tcgtcccaat aa 3552 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GK1_F <400> 2 tggaatgctt gttgatggag 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GK1_R <400> 3 cgcttcccag ttcaaacact 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GK4_F <400> 4 atggctgagc ttcgtgctat 20 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GK4_R <400> 5 agacaaggca tgcgtcaag 19 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGI_pcr_L <400> 6 atctgagagg tggaccgatg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGI_pcr_R <400> 7 gttatgccgc tttggttcat 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp1_L <400> 8 tggaatgctt gttgatggag 20 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp1_R <400> 9 ttgggacaag gatatagtac agc 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp2_L <400> 10 tggctagttc atcttcatct gag 23 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> AtGI_exp2_R <400> 11 gcggaaaagt tctactgagt attg 24

Claims (7)

서열번호 1의 염기서열로 이루어진 BrGI (Brassica rapa GIGANTEA) 유전자 또는 그 단편을 포함하는 RNAi(RNA interference) 재조합 벡터.
An RNAi (RNA interference) recombinant vector comprising BrGI (Brassica rapa GIGANTEA) gene consisting of the nucleotide sequence of SEQ ID NO: 1 or a fragment thereof.
제 1항에 있어서,
상기 단편은 서열번호 1의 염기서열로 이루어진 BrGI 유전자의 1711 내지 2289 번째 서열 또는 3081 내지 3461 번째 서열로 구성되는 단편인 것을 특징으로 하는 RNAi 재조합 벡터.
The method according to claim 1,
Wherein the fragment is a fragment consisting of the 1711 to 2289th sequence or the 3081 to 3461th sequence of the BrGI gene comprising the nucleotide sequence of SEQ ID NO: 1.
제 1항에 있어서,
상기 BrGI 유전자는 생체리듬 유전자인 것을 특징으로 하는 RNAi 재조합 벡터.
The method according to claim 1,
Wherein the BrGI gene is a biorhythm gene.
제 1항 내지 제 3항 중 어느 한 항의 RNAi 재조합 벡터를 식물체에 형질전환시켜 제조된, 염 스트레스 저항성이 증진된 형질전환 식물체.
A transformed plant having enhanced salt stress resistance, which is produced by transforming the RNAi recombinant vector of any one of claims 1 to 3 into a plant.
제 4항에 있어서,
상기 식물체는 애기장대(Arabidopsis) 또는 배추(Brassica rapa)인 것을 특징으로 하는, 염 스트레스 저항성이 증진된 형질전환 식물체.
5. The method of claim 4,
The plants are either Arabidopsis or Chinese cabbage rapa ). &lt; / RTI &gt;
제 4항에 따른 형질전환 식물체의 종자.
A seed of a transgenic plant according to claim 4.
1) 제 1항 내지 제 3항 중 어느 한 항의 RNAi 재조합 벡터를 제조하는 단계; 및
2) 상기 재조합 벡터를 식물체에 형질전환시켜 BrGI 유전자 발현을 억제시키는 단계를 포함하는, 염 스트레스 저항성이 증진된 형질전환 식물체의 제조 방법.
1) preparing an RNAi recombinant vector according to any one of claims 1 to 3; And
2) transforming the recombinant vector into a plant to inhibit the expression of BrGI gene, thereby enhancing the salt stress resistance of the transgenic plant.
KR1020140158537A 2014-11-14 2014-11-14 RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same KR101677064B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140158537A KR101677064B1 (en) 2014-11-14 2014-11-14 RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same
PCT/KR2015/011187 WO2016076548A1 (en) 2014-11-14 2015-10-22 RNAi RECOMBINANT VECTOR INCLUDING BrGI GENE AND TRANSGENIC PLANT WITH ENHANCED SALT STRESS TOLERANCE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140158537A KR101677064B1 (en) 2014-11-14 2014-11-14 RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same

Publications (2)

Publication Number Publication Date
KR20160057659A true KR20160057659A (en) 2016-05-24
KR101677064B1 KR101677064B1 (en) 2016-11-17

Family

ID=55954590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140158537A KR101677064B1 (en) 2014-11-14 2014-11-14 RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same

Country Status (2)

Country Link
KR (1) KR101677064B1 (en)
WO (1) WO2016076548A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152264A (en) * 2020-06-08 2021-12-15 대한민국(농촌진흥청장) Guide RNA for editing gigantea gene and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934165B2 (en) * 2017-03-30 2021-09-15 公立大学法人大阪 How to make stress-tolerant plants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120052156A (en) * 2010-11-15 2012-05-23 충북대학교 산학협력단 Brcipk3 gene from brassica rapa and uses thereof
KR20130113035A (en) * 2012-04-05 2013-10-15 경희대학교 산학협력단 Salt overly sensitive 3 involved in salt tolerance of brassica rapa ssp. pekinensis and a gene encoding the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120052156A (en) * 2010-11-15 2012-05-23 충북대학교 산학협력단 Brcipk3 gene from brassica rapa and uses thereof
KR101258079B1 (en) 2010-11-15 2013-04-25 충북대학교 산학협력단 BrCIPK3 gene from Brassica rapa and uses thereof
KR20130113035A (en) * 2012-04-05 2013-10-15 경희대학교 산학협력단 Salt overly sensitive 3 involved in salt tolerance of brassica rapa ssp. pekinensis and a gene encoding the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152264A (en) * 2020-06-08 2021-12-15 대한민국(농촌진흥청장) Guide RNA for editing gigantea gene and use thereof
KR20220024382A (en) * 2020-06-08 2022-03-03 대한민국(농촌진흥청장) Guide RNA for editing gigantea gene and use thereof

Also Published As

Publication number Publication date
WO2016076548A1 (en) 2016-05-19
KR101677064B1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
EP2292773B1 (en) Genes and uses for plant improvement
CN111511198A (en) Modified plants with enhanced traits
KR101677064B1 (en) RNAi recombinant vector including BrGI gene and transgenic plant with enhanced salt stress tolerance using the same
KR20130141261A (en) Method for controlling tillering and root-growth using a gene
US10889828B2 (en) Transgenic plants with enhanced traits
KR101812409B1 (en) Mutation of LeBZR1 or LeBZR2 gene inducing biomass increase of plant and uses thereof
KR101651940B1 (en) DHD1 gene for regulating heading date and growth of rice, and uses thereof
KR101281072B1 (en) Method for producing transgenic plant with increased resistance to various environmental stresses using osfkbp16-3 gene and the plant thereof
KR101664206B1 (en) OsWOX13 gene from rice for increasing environmental stress resistance of plant and uses thereof
KR101341932B1 (en) Gene encoding pepper transcription factor CaWRKY1 having resistance to frost damage and drought disaster, and use thereof
KR102081963B1 (en) Promoter specific for plant seed embryo and uses thereof
KR101965971B1 (en) Phosphate starvation inducible promoter and use thereof
KR101820095B1 (en) Promoter specific for plant seed aleurone layer or embryo and uses thereof
KR101779875B1 (en) FLC gene modulating flowering time of plant from Raphanus sativus and uses thereof
KR101680281B1 (en) Promoter expressing specifically in root tissue
KR101512974B1 (en) Method for controlling polyploidy of plant using AtTIO TFARM1 mutant and the plant thereof
KR101510252B1 (en) Specific light wavelength BrEXPA1 promoter from brassica rapa and uses thereof
KR101512973B1 (en) Method for controlling polyploidy of plant using AtTIO TFARM2 mutant and the plant thereof
KR101512970B1 (en) TFC Method for controlling polyploidy of plant using AtTIO TFC mutant and the plant thereof
KR101512976B1 (en) Method for controlling polyploidy of plant using AtTIO KA mutant and the plant thereof
KR101512969B1 (en) Method for controlling polyploidy of plant using AtTIO TFNR mutant and the plant thereof
KR101512979B1 (en) Method for controlling polyploidy of plant using AtTIO TFFR mutant and the plant thereof
KR101512983B1 (en) Method for controlling polyploidy of plant using AtTIO CL mutant and the plant thereof
KR101512977B1 (en) Method for controlling polyploidy of plant using AtTIO DANA mutant and the plant thereof
KR101512972B1 (en) Method for controlling polyploidy of plant using AtTIO TFARM3 mutant and the plant thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant