KR20160056665A - Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same - Google Patents

Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same Download PDF

Info

Publication number
KR20160056665A
KR20160056665A KR1020140157276A KR20140157276A KR20160056665A KR 20160056665 A KR20160056665 A KR 20160056665A KR 1020140157276 A KR1020140157276 A KR 1020140157276A KR 20140157276 A KR20140157276 A KR 20140157276A KR 20160056665 A KR20160056665 A KR 20160056665A
Authority
KR
South Korea
Prior art keywords
tracking
unmanned
cargo
information
line
Prior art date
Application number
KR1020140157276A
Other languages
Korean (ko)
Other versions
KR101682509B1 (en
Inventor
조백규
한화택
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Priority to KR1020140157276A priority Critical patent/KR101682509B1/en
Publication of KR20160056665A publication Critical patent/KR20160056665A/en
Application granted granted Critical
Publication of KR101682509B1 publication Critical patent/KR101682509B1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Abstract

Disclosed are a ceiling type line tracing-based unmanned transportation system and an unmanned transportation service method using the same. The ceiling type line tracing-based unmanned transportation system comprises: a tracking line (100) provided on the interior ceiling and consisting of a plurality of paths; an unmanned aerial vehicle (200) flying along the tracking line (100) and having a receiving unit provided on the bottom thereof to receive cargo; a mobile terminal (400) for providing a cargo delivery request signal including information about a receipt point desired by a user through a tracking interface; and a tracking server (300) for outputting path command information corresponding to the cargo delivery request signal provided from the mobile terminal (400) and providing the unmanned aerial vehicle (200) with the path command information. The ceiling type line tracing-based unmanned transportation system of the present invention can simply transport articles indoors by using the unmanned aerial vehicle.

Description

천장형 라인트레이싱 기반 무인 운송 시스템 및 이를 이용한 무인 운송 서비스 방법{Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same}Technical Field [0001] The present invention relates to a ceiling-type line tracing-based unmanned transportation system and an unmanned transportation service method using the same,

본 발명은 무인 비행체를 이용하여 물품을 배달하는 시스템에 관한 것으로, 보다 상세하게는 천장형 라인트레이싱 기반 무인 운송 시스템 및 이를 이용한 무인 운송 서비스 방법에 관한 것이다.
The present invention relates to a system for delivering goods using an unmanned aerial vehicle, and more particularly, to a ceiling-type line tracing-based unmanned transportation system and an unmanned transportation service method using the same.

현재 여러 개의 구획이 존재하는 백화점, 아파트, 연구소, 밀집상가와 같은 건물 내에서는 문서전달과 소포전달 등이 순전히 인력에 의해 전달되고 있다. 백화점을 예로 들어보자, 백화점 내에서 손님이 물건을 주문할 때 재고가 없다면 창고로 가서 물건을 가져와야 한다. In the buildings such as department stores, apartments, laboratories and shopping malls where there are several compartments, document delivery and parcel delivery are delivered by purely manpower. For example, in a department store, when a customer orders something in a department store, if they do not have it, they have to go to the warehouse and bring the goods.

한 매장당 점원이 많이 배치되지 않는 점을 고려한다면, 사실 물건의 배송을 전담하는 직원을 두는 방식이 가장 효율적일 것이다. 하지만 재고가 있는 곳이 여러 곳임에 따라 매장을 담당하는 직원이 해당 재고를 운반하는 역할까지를 전담하고 있다. 이렇게 사람이 물품을 운반하는 역할을 무인 시스템이 대체하는 국내외 시장의 현황을 보면, 아마존에서 무인비행체를 사용하여 주변 지역에 물품을 배송하는 시스템을 기획하고 있고, 도미노 피자도 무인비행체를 사용한 피자배달서비스를 계획하고 있다(도 1 참조). Considering that there are not many clerks per store, in fact, it would be most efficient to have staff dedicated to the delivery of the goods. However, depending on where the inventory is located, the store staff is dedicated to carrying the inventory. In the domestic and overseas markets where the unmanned system replaces the role of people in transporting goods, Amazon is planning a system for delivering goods to the surrounding area using unmanned vehicles, and Domino pizza is also used for pizza delivery using unmanned vehicles (See FIG. 1).

또한 MIT에서는 무인비행체를 이용하여 캠퍼스의 안내를 하고 있으며 아마존에서는 실내 물류 전달의 자동화를 위하여 물류처리 자동화 솔루션 기술을 보유한 KIVA Systems 사를 인수하였다. In addition, MIT is using the unmanned aerial vehicle to guide the campus, and Amazon acquired KIVA Systems, a company with automation solutions for logistics processing to automate the delivery of indoor logistics.

아마존, 도미노, MIT의 경우에는 실외환경에서 GPS를 사용하는 시스템이고, KIVA의 경우 실내 환경에서 바닥에 그어진 선을 주로 이용하는 시스템이다. For Amazon, Domino, and MIT, GPS is used in outdoor environment. KIVA is a system that mainly uses lines drawn on the floor in indoor environment.

이에 본 발명에서는 천장형 라인트레이싱 기반 무인 운송 시스템 및 이를 이용한 무인 운송 서비스 방법을 제공하고자 한다.
Accordingly, the present invention provides a ceiling-type line tracing-based unmanned transportation system and an unmanned transportation service method using the same.

대한민국 특허등록번호 제10-793301호(발명의 명칭: 알에프 아이디를 이용한 택배 보관 및 수령 시스템과 방법)Korean Patent Registration No. 10-793301 (title of invention: courier storage and reception system and method using RF ID)

본 발명이 해결하고자 하는 과제는 종래의 경우, 실내에서 물품배송은 대부분 인력에 의해 운반되었으며, 배송해야할 물품의 수가 많거나 이를 감당할 인력의 수가 적은 경우 배송이 지연되는 문제점 및 자잘한 문서의 경우에도 서류 한두장을 옮기기 위해 왕복해야 하는 등 인력소모가 발생한다는 문제점이 있었다. The problem to be solved by the present invention is that, in the case of the conventional art, the delivery of goods is carried out mostly by personnel, the delivery is delayed when the number of articles to be delivered is large, There is a problem that human resources are consumed such as returning to and from a couple of places.

이에 본 발명에서는 라인트레이싱 기반의 무인 비행체를 이용하여 실내에서 용이하게 물품을 배달할 수 있는 천장형 라인트레이싱 기반 무인 운송 시스템 및 이를 이용한 무인 운송 서비스 방법을 제공하고자 하는 것을 목적으로 한다.
Accordingly, it is an object of the present invention to provide a ceiling-type line tracing-based unmanned transportation system capable of easily delivering articles in a room using a line tracing based unmanned aerial vehicle, and an unmanned transportation service method using the same.

상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 천장형 라인 트레이싱 기반 무인 운송 시스템은 실내 천장에 구비되며, 적어도 하나 이상의 표지부들이 구비된 복수 개의 경로로 구성된 트래킹 라인(100); 상기 적어도 하나 이상의 표지부들을 따라 비행이동하며, 하부에 화물을 수용할 수 있는 수용체가 구비된 무인 비행체(200); 및 트래킹 인터페이스를 이용하여 사용자가 원하고자 하는 수령지점의 정보가 포함된 화물배송 요청신호를 제공하는 휴대단말(400); 및 상기 휴대단말(400)에서 제공된 상기 화물배송 요청신호에 상응하는 경로 명령 정보를 산출하여 상기 무인 비행체에 제공하는 트래킹 서버(300);를 포함하고, 상기 무인 비행체(200)는 상기 경로 명령 정보에 따라 상기 트래킹 라인(100)을 이동하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a ceiling-type line tracing-based unmanned transportation system comprising: a tracking line 100 provided on a ceiling of a room and having a plurality of paths including at least one markers; An unmanned flying object 200 flying along the at least one markers and having a receiver capable of receiving a cargo at a lower portion thereof; And a portable terminal (400) for providing a cargo dispatch request signal including information of a receipt point desired by the user using a tracking interface; And a tracking server (300) for calculating path command information corresponding to the cargo delivery request signal provided by the portable terminal (400) and providing the path command information to the unmanned air vehicle, wherein the unmanned air vehicle (200) And moves the tracking line 100 according to the position of the tracking line.

상기 휴대단말(400)은 상기 트래킹 인터페이스를 사용자에게 표시하며, 상기 트래킹 인터페이스는 화물 수령 및 화물 운송에 관련된 정보, 무인비행체(200)의 위치정보가 포함된 인터페이스인 것을 특징으로 한다.
The portable terminal 400 displays the tracking interface to a user, and the tracking interface is an interface including information related to cargo receipt and cargo transportation and position information of the unmanned aerial vehicle 200.

상기 트래킹 라인(100)은 접착제를 통해 상기 천장과 탈부착되는 테이핑 라인(110); 상기 테이핑 라인(110)에 형성된 복수 개의 경로들을 구분짖기 위하여 상기 테이핑 라인(110) 내에 형성된 복수 개의 표지부들 각각에 위치하고, 내부에 각 표지부들을 상기 무인 비행체가 인식하기 위한 고유 식별 번호(ID)가 부여된 RFID 태그가 내장된 태그 모듈(120)를 포함하고, 상기 복수 개의 표지부들은 적어도 하나 이상의 종단점들 및 적어도 하나 이상의 분기점들로 구성된 것을 특징으로 한다.
The tracking line (100) includes a taping line (110) detachably attached to the ceiling through an adhesive; A plurality of markers formed in the taping line 110 for discriminating a plurality of paths formed on the taping line 110 and each marking unit having a unique identification number ID for recognizing the unmanned aerial vehicle, And a tag module (120) having an embedded RFID tag, wherein the plurality of markers comprise at least one end point and at least one bifurcation point.

상기 무인 비행체(200)는 수직 이착륙이 가능한 멀티콥터인 것을 특징으로 한다.
The unmanned aerial vehicle 200 is a multi-copter capable of vertical takeoff and landing.

상기 무인 비행체(200)는 복수 개의 회전구동체(201) 및 방향조작부(202)를 구비한 몸체부(210); 상기 몸체부(210) 내에 구비되며, 상기 RFID 태그를 태깅하는 RFID 리더기(220); 상기 몸체부(210)의 상부에 높이방향으로 돌출되어 구비되며, 적외선을 이용하여 상기 테이핑 라인을 인식하는 라인트레이싱 센싱부(230); 상기 몸체부(210)의 기울기 변화에 따라 상기 라인트레이싱 센싱부(230)의 기울기를 가변시켜, 상기 라인트레이싱 센싱부를 천장에 수직되도록 조절하는 기울기 조절부(240); 비행이동에 따라 상기 몸체부(210)의 기울기 변화에 따른 기울기 정보를 실시간으로 감지하는 기울기 센싱모듈(250); 상기 기울기 센싱모듈(250)과 상기 천장과의 이격거리를 일정하게 유지하기 위하여 상기 천장에 초음파 신호를 출력한 후, 반송된 반송파를 수신하는 초음파 거리센서모듈(260); 및 상기 트래킹 서버(300)로부터 제공되는 경로명령정보를 수신한 후, 상기 경로 정보에 따라 상기 방향조작부(202)를 제어하는 MCU(270)를 포함하는 것을 특징으로 한다.
The unmanned flight vehicle (200) includes a body portion (210) having a plurality of rotary actuators (201) and a direction control portion (202); An RFID reader 220 provided in the body 210 for tagging the RFID tag; A line tracing sensing unit 230 protruding in the height direction above the body 210 and recognizing the taping line using infrared rays; A tilt adjusting unit 240 for varying the tilt of the line tracing sensing unit 230 according to the inclination of the body 210 to adjust the line tracing sensing unit to be perpendicular to the ceiling; A tilt sensing module 250 that senses tilt information according to a tilt change of the body 210 in real time in accordance with a flight movement; An ultrasonic distance sensor module 260 for outputting an ultrasonic signal to the ceiling and receiving a carrier wave to maintain a constant distance between the tilt sensing module 250 and the ceiling; And an MCU (270) for receiving the route command information from the tracking server (300) and controlling the direction control unit (202) according to the route information.

상기 기울기 센싱모듈(250)은 9축 자이로센서, 가속도 센서 및 자자기 센서 중 적어도 하나 이상을 이용하여 비행이동에 따라 상기 몸체부(210)의 기울기 변화를 감지하는 것을 특징으로 한다.
The inclination sensing module 250 detects at least one of a 9-axis gyro sensor, an acceleration sensor, and a magnetic sensor to detect a change in inclination of the body 210 according to a flight movement.

상기 MCU(270)는 트래킹 서버(300)로부터 전송된 경로명령정보 및 상기 트래킹 라인(100)에 형성된 복수 개의 표지부들 각각의 고유 ID를 저장하는 메모리(271); 및 상기 경로명령정보와 상기 RFID 리더기(220)로부터 태깅된 태그 정보가 동일할 경우, 상기 경로명령정보 내에 기록된 행동명령 코드에 따라 상기 방향조작부 및 상기 회전구동체(201)의 구동을 제어하는 경로 제어/처리부(272); 및 상기 경로명령정보와 상기 RFID 리더기(220)로부터 태깅된 태그 정보가 불일치 할 경우, 에러신호(Error)를 상기 트래킹 서버(300)로 제공하는 에러신호 생성부(273);를 포함하는 것을 특징으로 한다. The MCU 270 includes a memory 271 for storing path command information transmitted from the tracking server 300 and a unique ID of each of a plurality of markers formed on the tracking line 100; And controlling the driving of the directional control unit and the rotary actuator 201 according to the behavior command code recorded in the path command information when the path command information and the tag information tagged from the RFID reader 220 are the same A path control / processing unit 272; And an error signal generator 273 for providing an error signal to the tracking server 300 when the path command information and the tag information tagged from the RFID reader 220 do not coincide with each other .

상기 무인 비행체(200)는 외부 기기와의 출동을 방지하기 위한 보호 케이스(290)를 더 포함하며, 상기 보호 케이스(290)는 상기 무인비행체(200)를 수용하기 위한 중공이 형성된 원구형태로 형성되며, 재질은 아크릴, 탄소나노섬유, 탄소나노 플라스틱 중 어느 하나인 것을 특징으로 한다.
The unmanned air vehicle 200 further includes a protection case 290 for preventing movement of the unmanned air vehicle 200 with an external device and the protection case 290 is formed in a hollow shape having a hollow for accommodating the unmanned air vehicle 200 And the material is any one of acrylic, carbon nanofiber, and carbon nano plastic.

상기 트래킹 서버(300)는 상기 화물배송 요청신호 내에 포함된 수령지점까지, 상기 무인 비행체(200)가 상기 트래킹 라인(100)을 따라 이동하는데 필요한 경유명령정보를 생성한 후, 상기 무인 비행체(200)에 제공하며, 실시간으로 상기 무인 비행체(200)의 이동정보를 상기 무인 비행체(200)로부터 제공받는 관리자 서버(310); 및 상기 휴대단말(400) 및 상기 관리자 서버(310)와 연동하며, 상기 화물배송 요청신호를 수신하여 상기 관리자 서버(310)로 제공하며, 상기 관리자 서버(310)로부터 제공된 상기 무인 비행체(200)의 이동정보, 이동예상시간, 이동구간 정보를 상기 휴대단말로 제공하는 클라이언트 서버(320);를 포함하는 것을 특징으로 한다.
The tracking server 300 generates the duel command information necessary for the unmanned object 200 to travel along the tracking line 100 until the reception point included in the cargo dispatch request signal, An administrator server 310 providing movement information of the unmanned air vehicle 200 from the unmanned air vehicle 200 in real time; And provides the cargo dispatch request signal to the manager server 310 in cooperation with the portable terminal 400 and the manager server 310 and transmits the cargo dispatch request signal to the manless server 200 provided from the manager server 310, And a client server (320) for providing the mobile terminal with movement information, movement estimation time, and movement interval information of the mobile terminal.

상기 관리자 서버(310)는 상기 화물배송 요청신호를 수신한 후, 화물이 구비된 무인 비행체가 상기 화물배송 요청신호 내에 기록된 배송지점까지 경유가능한 경로들을 생성하는 경로 탐색부(311); 상기 경로 탐색부에서 제공한 경로들 중 최단거리 경로를 추출하는 경로 추출부(312); 및 상기 최단거리 내에 위치하는 연속되는 표지부점들 간에 상기 무인 비행체의 이동에 필요한 행동명령 코드가 기록된 경로명령 정보를 생성하는 경로명령 생성부;를 포함하며, 상기 최단거리 경로는 분기점들을 경유 순서에 따라 순차적으로 배열한 분기점 정보가 포함되며, 상기 경로 탐색부(311)는 무인 비행체로부터 전송된 에러신호를 제공받을 경우, 배송지점까지 경유가능한 경로들을 재탐색하는 것을 특징으로 한다.
The manager server 310 includes a route search unit 311 for receiving the cargo dispatch request signal and then generating routes to the delivery point where the unmannurized vehicle provided with the cargo is recorded in the cargo dispatch request signal; A path extracting unit (312) for extracting a shortest path among the paths provided by the path searching unit; And a route command generator for generating route command information in which a behavior command code necessary for movement of the unmanned aerial vehicle is recorded between successive marker points located within the shortest distance, And the route search unit 311 searches for available routes to the delivery point when receiving the error signal transmitted from the unmanned aerial vehicle.

상기 과제를 해결하기 위한 본 발명의 청구항 제1항 내지 청구항 제10항 중 어느 하나의 항에 기재된 천장형 라인 트레이싱 기반 무인 운송 시스템을 이용한 무인 운송 서비스 방법은 사용자의 휴대단말에서 트래킹 인터페이스를 이용하여 상기 사용자가 원하고자 하는 수령지점의 정보가 포함된 화물배송 요청신호를 트래킹 서버로 제공하는 화물 요청 단계(S110); 상기 트래킹 서버에서 화물 운송 요청 신호에 상응하는 경로명령정보를 산출하여 상기 휴대단말 및 화물이 구비된 무인비행체로 전송하는 경로명령정보 제공단계(S120); 상기 경로명령정보에 따라 상기 무인 비행체가 트래킹 라인을 따라 상기 수령지점까지 화물을 운송하는 화물 운송 단계(S130); 휴대단말에서 트래킹 인터페이스를 이용하여 무인 비행체의 위치정보를 요청하는 위치정보 요청단계(S140); 위치정보 요청신호를 수신하며, 트래킹 서버의 클라이언트 서버는 관리자 서버로부터 무인 비행체의 위치정보를 제공받아, 상기 휴대 단말로 제공하는 위치정보 제공단계(S150); 및 상기 무인 비행체가 상기 수령지점에 도착하면, 무인 비행체에서 트래킹 서버로 도착신호를 제공하며, 상기 트래킹 서버에서 휴대단말로 배송완료 메시지를 제공하는 배송 완료 단계(S160)를 포함하는 것을 특징으로 한다.
According to another aspect of the present invention, there is provided a method for providing an unmanned transportation service using a ceiling-type line tracing based unmanned transportation system, the method comprising the steps of: A cargo dispatch request signal (S110) for providing a cargo dispatch request signal including information of a receipt point desired by the user to a tracking server; Calculating a route command information corresponding to a cargo transportation request signal in the tracking server and transmitting the route command information to the unmanned air vehicle provided with the portable terminal and the cargo; A cargo transportation step (S130) in which the unmanned air vehicle carries the cargo along the tracking line to the reception point according to the route command information; A location information requesting step (S140) of requesting location information of the unmanned aerial vehicle using a tracking interface in a portable terminal; (S150) of receiving a position information request signal, the client server of the tracking server receiving location information of the unmanned aerial vehicle from the administrator server and providing the location information to the portable terminal; And a delivery completion step (S160) of providing an arrival signal to the tracking server in the unmanned aerial vehicle when the unmanned air vehicle arrives at the reception point and providing a delivery completion message from the tracking server to the portable terminal .

상기 경로명령정보 제공단계(S120)는 클라이언트 서버(320)에서 화물 운송 요청 신호를 수신하는 단계(S121); 수신된 정보를 관리자 서버(310)로 제공하는 단계(S122); 관리자 서버(310)에서 무인 비행체(200)가 위치한 지점부터 화물 운송 요청 신호 내의 배송지점까지의 무인 비행체가 트래킹 라인을 따라 경유되어야하는 최단경로를 추출하는 단계(S123); 상기 최단경로 내에 포함된 표지부점(수령지점 및 분기점)을 추출하는 단계(S124); 및 분기점 또는 수령지점 별로 무인 비행체를 이동시키기 위한 경로명령 정보를 생성한 후, 휴대단말 및 무인 비행체로 제공하는 단계(S125)를 포함하는 것을 특징으로 한다.
The path command information providing step (S120) comprises: receiving (S121) a cargo transportation request signal from the client server (320); Providing the received information to the administrator server 310 (S122); A step S123 of extracting a shortest path through which the unmanned air vehicle from the point where the unmanned air vehicle 200 is located to the delivery point in the cargo transportation request signal through the tracking line in the manager server 310; Extracting marking points (reception points and branching points) included in the shortest path (S124); And generating route command information for moving the unmanned aerial vehicle according to a branch point or a reception point, and then providing the route command information to the portable terminal and the unmanned aerial vehicle (S125).

따라서, 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템은 라인트레이서 기반으로 이동하는 무인 비행체를 이용함으로써 실내에서 간편하게 물건을 배송할 수 있다는 이점을 갖는다.Therefore, the ceiling-type line tracing-based unmanned transportation system according to the embodiment of the present invention has an advantage that the unmanned transportation system that moves based on the line tracer can be used to easily deliver the goods indoors.

또한, 본 발명의 무인 비행체의 경우, 복수 개의 라인트레이싱용 적외선 센서 및 기울기 조절부를 구비함으로써, 실내 천장이 굴곡지거나 또는 트래킹 라인의 폭이 협소하더다도 라인 인식 저하를 예방할 수 있으며, 무인 비행체의 기울기 변화에 따라 라인 인식 저하를 예방하도록 기울기 조절부를 통해 라인트레이싱 센싱부의 기울기를 조절함으로써 라인트레이싱 센싱부가 천장과 항상 수직을 유지할 수 있어, 라인 인식 저하를 예방할 수 있다. 또한, 초음파를 이용하여 기 설정된 거리를 유지함으로써 무인 비행체의 이동시 천장과의 충돌을 예방할 수 있다는 이점을 갖는다. In addition, in the case of the unmanned aerial vehicle of the present invention, since a plurality of infrared ray sensors for line tracing and the tilt adjusting unit are provided, it is possible to prevent degradation of line recognition even if the ceiling of a room is bent or the width of a tracking line is narrow, The inclination of the line tracing sensing unit can be adjusted through the inclination adjusting unit so as to prevent the line recognition from being deteriorated according to the change, so that the line tracing sensing unit can maintain the vertical alignment with the ceiling at all times. In addition, by maintaining ultrasonic waves at a predetermined distance, collision with the ceiling can be prevented when the unmanned aerial vehicle moves.

더불어, 트래킹 라인 내에 복수 개의 무인 비행체가 구동될 경우, 예기치 못한 충돌을 방지하도록, 구형상의 보호케이스가 구비되어, 충돌에 따른 무인 비행체의 파손을 억제할 수 있다는 이점을 갖는다.
In addition, when a plurality of unmanned aerial vehicles are driven in the tracking line, a spherical protective case is provided so as to prevent unexpected collision, and damage to the unmanned aerial vehicle due to collision can be suppressed.

도 1은 종래의 무인배송 장치의 일예를 나타낸 예시도이다.
도 2는 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템을 나타낸 예시도이다.
도 3은 도 2에 도시된 트래킹 라인의 일 예를 설명하기 위한 예시도이다.
도 4는 도 2에 도시된 무인 비행체의 구성을 설명하기 위한 블록도이다.
도 5는 도 4에 도시된 MCU의 블록도이다.
도 6은 도 4에 도시된 라인트레이싱 센싱부의 일 예를 나타낸 예시도이다.
도 7은 트래킹 라인을 따라 이동하는 라인트레이싱 센싱부의 모습을 나타낸 예시도이다.
도 8은 보호 케이스를 나타낸 예시도이다.
도 9는 도 2에 도시된 트래킹 서버(300)의 블록도이다.
도 10은 트래킹 인터페이스를 제공하는 휴대단말을 나타낸 예시도이다.
도 11은 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템을 이용한 무인 배송 서비스 방법을 설명하기 위한 흐름도이다.
도 12는 도 11에 도시된 S120의 흐름도이다.
1 is an exemplary view showing an example of a conventional unmanned delivery device.
FIG. 2 is an exemplary view illustrating a ceiling-type line tracing-based unmanned transportation system according to an embodiment of the present invention.
FIG. 3 is an exemplary view for explaining an example of the tracking line shown in FIG. 2. FIG.
4 is a block diagram for explaining the configuration of the unmanned aerial vehicle shown in FIG.
5 is a block diagram of the MCU shown in FIG.
6 is an exemplary view showing an example of the line tracing sensing unit shown in FIG.
7 is an exemplary view showing a state of a line tracing sensing unit moving along a tracking line.
8 is an exemplary view showing a protective case.
9 is a block diagram of the tracking server 300 shown in FIG.
10 is an exemplary view showing a portable terminal providing a tracking interface.
11 is a flowchart illustrating an unmanned shipping service method using a ceiling-type line tracing based unmanned transportation system according to an embodiment of the present invention.
12 is a flowchart of S120 shown in FIG.

이하, 본 발명의 바람직한 실시 예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a detailed description of preferred embodiments of the present invention will be given with reference to the accompanying drawings. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
Embodiments in accordance with the concepts of the present invention can make various changes and have various forms, so that specific embodiments are illustrated in the drawings and described in detail in this specification or application. It is to be understood, however, that it is not intended to limit the embodiments according to the concepts of the present invention to the particular forms of disclosure, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between. Other expressions that describe the relationship between components, such as "between" and "between" or "neighboring to" and "directly adjacent to" should be interpreted as well.

본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises ",or" having ", or the like, specify that there is a stated feature, number, step, operation, , Steps, operations, components, parts, or combinations thereof, as a matter of principle.

이하에서는 도면을 참조하여 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템 및 이를 이용한 무인 운송 서비스 방법을 보다 상세하게 설명하도록 한다.Hereinafter, a ceiling-line tracing-based unmanned transportation system according to an embodiment of the present invention and an unmanned transportation service method using the same will be described in detail with reference to the drawings.

도 2는 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템을 나타낸 예시도이다.FIG. 2 is an exemplary view illustrating a ceiling-type line tracing-based unmanned transportation system according to an embodiment of the present invention.

도 3은 도 2에 도시된 트래킹 라인의 일 예를 설명하기 위한 예시도이다.FIG. 3 is an exemplary view for explaining an example of the tracking line shown in FIG. 2. FIG.

도 4는 도 2에 도시된 무인 비행체의 구성을 설명하기 위한 블록도이다. 4 is a block diagram for explaining the configuration of the unmanned aerial vehicle shown in FIG.

도 5는 도 4에 도시된 MCU의 블록도이다.5 is a block diagram of the MCU shown in FIG.

도 6은 도 4에 도시된 라인트레이싱 센싱부의 일 예를 나타낸 예시도이다.6 is an exemplary view showing an example of the line tracing sensing unit shown in FIG.

도 7은 트래킹 라인을 따라 이동하는 라인트레이싱 센싱부의 모습을 나타낸 예시도이다.7 is an exemplary view showing a state of a line tracing sensing unit moving along a tracking line.

도 8은 보호 케이스를 나타낸 예시도이다.8 is an exemplary view showing a protective case.

도 9는 도 2에 도시된 트래킹 서버(300)의 블록도이다.9 is a block diagram of the tracking server 300 shown in FIG.

도 10은 트래킹 인터페이스를 제공하는 휴대단말을 나타낸 예시도이다. 10 is an exemplary view showing a portable terminal providing a tracking interface.

먼저, 도 2에 도시된 바와 같이, 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반의 무인 운송 시스템(1000)은 트래킹 라인(100), 무인 비행체(200), 트래킹 서버(300) 및 휴대단말(400)을 포함한다.2, a ceiling-line tracing-based unmanned transportation system 1000 according to an embodiment of the present invention includes a tracking line 100, an unmanned aerial vehicle 200, a tracking server 300, (400).

상기 트래킹 라인(100)은 실내 천장에 설치되며, 복수 개의 경로들로 구성된다.The tracking line 100 is installed on the ceiling of the room, and comprises a plurality of paths.

보다 구체적으로, 상기 트래킹 라인(100)은 테이핑 라인(110) 및 태그모듈(120)을 포함한다.More specifically, the tracking line 100 includes a taping line 110 and a tag module 120.

상기 테이핑 라인(110)은 접착제를 통해 상기 천장과 결속되는 검은색의 테이프일 수 있으며, 재질에 한정되는 것은 아니다. 따라서, 천장과 용이하게 탈착이 가능한 재질이라면 모두 가능할 것이다.The taping line 110 may be a black tape bonded to the ceiling through an adhesive, and is not limited to a material. Therefore, it is possible to use a material which can be easily detached from the ceiling.

상기 태그모듈(120)은 상기 테이핑 라인에 형성된 복수 개의 경로들을 구분짖기 위하여, 상기 테이핑 라인(110) 내에 형성된 복수 개의 표지부들 각각에 위치하여, 내부에 각 분기점들을 상기 무인 비행체가 인식하기 위한 고유 식별 번호가 부여된 RFID 태그가 내장되어 있다.The tag module 120 is located in each of a plurality of markers formed in the taping line 110 to discriminate a plurality of paths formed on the taping line, And an RFID tag to which an identification number is assigned.

여기서, 상기 복수 개의 표지부들은 적어도 하나 이상의 분기점들 및 적어도 하나 이상의 종단점들로 구성될 수 있으며, 분기점은 경유 가능한 지점을 의미하며, 종단점들은 상기 무인 비행체의 도착지점을 의미한다. 보다 상세한 설명은 아래에 후술하도록 한다.Here, the plurality of markers may include at least one bifurcation point and at least one or more endpoints, the bifurcation point means a point that can be passed through, and the end points means an arrival point of the unmanned air vehicle. A more detailed description will be given below.

다음으로, 상기 무인 비행체(200)는 상기 트래킹 서버에서 제공하는 경로 명령 신호에 기반하여 상기 트래킹 라인(100)을 따라 비행하며, 하부에 화물을 수용할 수 있는 수용체가 구비된다.Next, the UAV 200 travels along the tracking line 100 on the basis of a route command signal provided by the tracking server, and is provided with a receiver for receiving cargo.

또한, 상기 무인 비행체는 외부 기기와의 출동을 방지하기 위한 보호 케이스를 더 포함하며, 상기 보호 케이스는 상기 무인비행체를 수용하기 위한 중공이 형성된 원구형태로 형성되며, 재질은 아크릴, 유리섬유, 플라스틱 중 어느 하나일 수 있다.In addition, the unmanned aerial vehicle further includes a protective case for preventing movement of the unmanned air vehicle with an external device, wherein the protective case is formed in the shape of a hollow having a hollow for accommodating the unmanned air vehicle, . ≪ / RTI >

보다 구체적으로, 상기 무인 비행체(200)는 수직 이착륙이 가능한 멀티콥터일 수 있으며, 몸체부(210), RFID 리더기(220), 라인트레이싱 센싱부(230), 기울기 조절부(240), 기울기 센싱모듈(250), 초음파거리센서모듈(260) 및 MCU(270)을 포함한다. The RFID reader 220, the line tracing sensing unit 230, the tilt adjusting unit 240, the tilt sensing unit 240, and the tilt sensing unit 240. [ A module 250, an ultrasonic distance sensor module 260 and an MCU 270. [

상기 몸체부(210)는 복수 개의 회전구동체(201) 및 방향조작부(202)를 구비한다.The body 210 has a plurality of rotary actuators 201 and a direction control unit 202.

상기 RFID 리더기(220)는 상기 몸체부(210) 내에 구비되며, 상기 테이핑 라인에 위치한 복수 개의 표지부들 각각에 구비된 태그 모듈 내에 장착된 RFID 태그를 태깅하는 하여, 태깅된 정보를 상기 MCU로 제공하는 기능을 수행한다.
The RFID reader 220 is provided in the body 210 and tagged RFID tags mounted in the tag modules provided in the plurality of markers located on the taping line to provide tagged information to the MCU .

상기 라인트레이싱 센싱부(230)는 상기 몸체부(210)의 상부에 높이방향으로 돌출되어 구비되며, 트래킹 라인으로 적외선을 송출하는 적외선 발광부 및 트래킹 라인에 반사되는 적외선을 수신하는 적외선 센서(231)가 한쌍으로 형성된 상태로 복수 개가 배치된다.The line tracing sensing unit 230 includes an infrared ray emitting unit for emitting infrared rays to a tracking line and an infrared ray sensor 231 for receiving infrared rays reflected from the tracking line, Are arranged in a pair.

복수 개의 적외선 센서(231)를 구비하는 이유는, 트래킹 라인의 인식률을 향상시키기 위한 것으로, 트래킹 라인의 한쪽 단면만이 아닌 양쪽 단면을 이용한 강인한 라인 인식을 구현하기 위함일 수 있다. The reason for including the plurality of infrared sensors 231 is to improve the recognition rate of the tracking line and to realize robust line recognition using both cross sections rather than only one side of the tracking line.

이렇게 복수 개의 적외선 센서들을 통해 읽혀진 라인을 따라 움직일 때에 천장이 곡선형태이거나 곡선형태에 구비된 분기점을 만나더라도 자연스럽게 빠른 속도로 움직일 수 있다.
Thus, when moving along a line read through a plurality of infrared sensors, the ceiling can move at a high speed naturally even if it meets a curve point or a curve point.

다음으로, 상기 기울기 센싱모듈(250)는 비행이동에 따라 상기 몸체부(210)의 기울기 변화에 따른 기울기 정보를 실시간으로 감지하는 기능을 수행하기 위하여, 9축 자이로센서, 가속도 센서 및 자자기 센서 중 적어도 하나 이상을 이용하여 비행이동에 따라 상기 몸체부(210)의 기울기 변화를 감지한 후, 기울기 정보를 상기 MCU(270)로 제공하는 기능을 수행하게 되면, 상기 MCU(270)는 기울기 정보에 따라 상기 라인트레이싱 센싱부(230)와 상기 트래킹 라인이 항상 수직을 유지하기 위하여 라인트레이싱 센싱부(230)의 기울기를 제어하는 기울기 조절부(240)로 제어신호를 제공하게 된다.The tilt sensing module 250 may include a 9-axis gyro sensor, an acceleration sensor, and a magnetic sensor (not shown) so as to perform a function of detecting tilt information according to a tilt change of the body 210 in real time according to a flight movement. The MCU 270 senses a slope change of the body 210 according to the flight movement and then provides the slant information to the MCU 270. The MCU 270 then calculates slope information The tilt controller 240 controls the tilt of the line tracing sensing unit 230 so that the line tracing sensing unit 230 and the tracking line are always kept vertical.

상기 기울기 조절부(240)는 상기 MCU로부터 제공된 제어신호에 따라 상기상기 몸체부(210)의 기울기 변화와 반대방향으로 상기 라인트레이싱 센싱부(230)의 기울기를 가변시키는 기능을 수행한다.The tilt adjusting unit 240 varies the tilt of the line tracing sensing unit 230 in a direction opposite to a tilt change of the body 210 according to a control signal provided from the MCU.

만약, 무인 비행체(200)의 이동에 따라 상기 라인트레이싱 센싱부(230)가 상기 천장과 수직을 유지하지 못할 경우, 트래킹 라인의 인식률이 저하되며, 이로 인하여, 트래킹 라인을 이탈하게 될 수가 있다. 이러한 문제점을 해결하기 위하여 본 발명에서는 기울기 조절부(240) 및 기울기 센싱모듈(250)을 통해 항시 라인트레이싱 센싱부(230)가 천장과 수직을 유지할 수 있어, 라인 인식률이 저하되는 문제점을 해결할 수 있다.
If the line tracing sensing unit 230 can not maintain a vertical position with respect to the ceiling in accordance with the movement of the unmanned air vehicle 200, the recognition rate of the tracking line may deteriorate, thereby detaching the tracking line. In order to solve such a problem, according to the present invention, the line-tracing sensing unit 230 can always maintain a vertical alignment with the ceiling through the tilt adjusting unit 240 and the tilt sensing module 250, have.

다음으로, 상기 초음파 거리센서모듈(260)는 상기 라인트레이싱 센싱부와 상기 천장과 충돌을 방지하기 위하여, 상기 라인트레이싱 센싱부와 상기 천장과의 수직 이격거리를 일정하게 유지하기 위하여 상기 천장에 초음파 신호를 출력한 후, 반송된 반송파를 수신하는 기능을 수행하며, 가령, 반송파가 내부에 설정도니 임계치의 범위를 벗어날 경우, 상기 MCU(270)로 상황에 맞는 이탈신호를 출력하게 되며, 상기 MCU(270)는 이탈신호에 따라 방향조작부를 제어함으로써, 상기 라인트레이싱 센싱부(230)는 상기 천장과 기 설정된 거리를 유지할 수 있다.
The ultrasound distance sensor module 260 may include an ultrasound sensor module 260 installed on the ceiling to maintain a constant vertical distance between the line tracing sensing part and the ceiling in order to prevent collision between the line tracing sensing part and the ceiling, For example, when the carrier wave is out of the range of the threshold value set in the MCU 270, the MCU 270 outputs a release signal suitable for the situation, The line tracing sensing unit 230 can maintain a predetermined distance from the ceiling by controlling the direction control unit according to the departure signal.

상기 MCU(270)는 상기 트래킹 서버(300)로부터 제공되는 경로명령정보를 수신한 후, 상기 경로 정보에 따라 상기 방향조작부를 제어하는 기능을 수행하며, 상기 MCU(270)는 메모리(271), 경로 제어/처리부(272), 에러신호 생성부(273) 및 통신모듈(274)을 포함한다.The MCU 270 receives the path command information from the tracking server 300 and controls the direction control unit according to the path information. The MCU 270 includes a memory 271, A path control / processing unit 272, an error signal generating unit 273, and a communication module 274.

상기 메모리(271)는 트래킹 서버(300)로부터 전송된 경로명령정보 및 상기 트래킹 라인에 형성된 복수 개의 분기점들 고유 ID를 저장하는 기능을 수행한다.The memory 271 stores path command information transmitted from the tracking server 300 and a unique ID of a plurality of bifurcated points formed on the tracking line.

여기서, 상기 메모리(271)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(ReadOnly Memory, ROM), EEPROM(Electrically Erasable Programmable ReadOnly Memory), PROM(Programmable ReadOnly Memory) 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체일 수 있다.Here, the memory 271 may be a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (for example, SD or XD memory, etc.) ), A random access memory (SRAM), a read only memory (ROM), an electrically erasable programmable read-only memory (EEPROM), a programmable read-only memory (PROM) At least one type of storage medium.

상기 경로 제어/처리부(272)는 트래킹 서버(300)로부터 제공된 경로명령정보 및 RFID 리더기로부터 태깅된 태그 정보가 동일할 경우, 상기 경로명령정보 내에 기록된 행동명령 코드에 따라 상기 방향조작부 및 상기 회전구동체의 구동을 제어하며, 또한, 상기 초음파 거리센서모듈(260)에서 출력된 이탈신호를 수신하여 방향조작부를 제어하거나 또한, 무인 비행체의 기울기 정보에 따라 상기 라인트레이싱 센싱부와 상기 트래킹 라인이 항상 수직을 유지하기 위하여 기울기 조절부를 제어하는 기능을 수행한다.The path control / processing unit 272 determines whether the path control / processing unit 272 determines that the path control / processing unit 272 has received the path command information from the tracking server 300, The ultrasonic distance sensor module 260 receives the departure signal outputted from the ultrasonic distance sensor module 260 and controls the direction control unit or controls the line tracing sensing unit and the tracking line according to the tilt information of the unmanned aerial vehicle And controls the tilt adjusting unit to always maintain the vertical position.

상기 에러신호 생성부(273)는 상기 경로명령정보와 상기 RFID 리더기(220)로부터 태깅된 태그 정보가 불일치 할 경우, 에러신호(Error)를 상기 트래킹 서버(300)로 제공한다.The error signal generator 273 provides an error signal to the tracking server 300 when the path command information and the tag information tagged from the RFID reader 220 do not match.

상기 통신모듈(274)은 WLAN(Wireless Local Area Network), WiFi(Wireless Fidelity), WiMAX(Worldwide Interoperability for Microwave Access) 중 어느 하나의 통신 방식이 적용된다.The communication module 274 is applied to any one of WLAN (Wireless Local Area Network), WiFi (Wireless Fidelity), and WiMAX (Worldwide Interoperability for Microwave Access).

다음으로, 상기 휴대단말(400)은 트래킹 인터페이스를 이용하여 사용자가 원하고자 하는 수령지점의 정보가 포함된 화물배송 요청신호를 제공하는 기능을 수행한다.Next, the portable terminal 400 performs a function of providing a cargo delivery request signal including information of a reception point desired by the user by using a tracking interface.

상기 트래킹 인터페이스는 상기 트래킹 인터페이스는 화물 수령 및 화물 운송에 관련된 정보(예컨대, 배송요청, 수령확인), 무인비행체(200)의 위치정보를 실시간으로 제공하는 인터페이스일 수 있다.The tracking interface may be an interface for providing information related to cargo receipt and cargo transportation (for example, a delivery request, receipt confirmation) and location information of the unmanned air vehicle 200 in real time.

여기서, 상기 휴대단말(400)은 PDC(Personal Digital Cellular)폰, PCS(Personal Communication Service)폰, PHS(Personal Handyphone System)폰, CDMA-2000(1X, 3X)폰, WCDMA(Wideband CDMA)폰, 듀얼 밴드/듀얼 모드(Dual Band/Dual Mode)폰, GSM(Global Standard for Mobile)폰, MBS(Mobile Broadband System)폰, DMB(Digital Multimedia Broadcasting)폰, 스마트(Smart) 폰, 핸드폰 등과 같은 통신 기능이 포함될 수 있는 휴대용 기기, PDA(Personal Digital Assistant), 핸드 헬드 PC(Hand-Held PC), 노트북 컴퓨터, 랩탑 컴퓨터, 와이브로(WiBro) 단말기, MP3 플레이어, MD 플레이어 등과 같은 휴대 단말기, 그리고 국제 로밍(Roaming) 서비스와 확장된 이동 통신 서비스를 제공하는 IMT-2000(International Mobile Telecommunication-2000) 단말기 등을 포함하는 모든 종류의 핸드 헬드 기반의 무선 통신 장치를 의미하는 휴대용 전기전자장치로서, CDMA(Code Division Multiplexing Access) 모듈, 블루투스(Bluetooth) 모듈, 적외선 통신 모듈(Infrared Data Association), 유무선 랜 카드 및 GPS(Global Positioning System)를 통한 위치 추적이 가능하도록 하기 위해 GPS 칩이 탑재된 무선 통신 장치와 같은 소정의 통신 모듈을 구비할 수 있으며, 마이크로프로세서를 탑재함으로써 일정한 연산 동작을 수행할 수 있는 단말기를 통칭하는 개념으로 해석될 수 있다.The portable terminal 400 may be a personal digital cellular (PDC) phone, a personal communication service (PCS) phone, a personal handyphone system (PHS) phone, a CDMA-2000 (1X or 3X) phone, a WCDMA Communication functions such as a dual band / dual mode phone, a global standard for mobile (GSM) phone, a mobile broadband system (MBS) phone, a digital multimedia broadcasting (DMB) phone, a smart phone, Portable terminals such as a PDA (Personal Digital Assistant), a hand-held PC, a notebook computer, a laptop computer, a WiBro terminal, an MP3 player, an MD player, (International Mobile Telecommunication-2000) terminal that provides a mobile communication service and an IMT-2000 (International Mobile Telecommunication-2000) terminal that provides an extended mobile communication service. The portable electronic device includes a CDMA Multiplexing Access In order to enable position tracking through a Bluetooth module, an Infrared Data Association, a wired and wireless LAN card, and a GPS (Global Positioning System), a predetermined communication module such as a wireless communication device equipped with a GPS chip And can be interpreted as a concept collectively referred to as a terminal capable of performing a certain calculation operation by mounting a microprocessor.

다음으로, 상기 트래킹 서버(300)는 상기 휴대단말(400)에서 제공된 상기 화물배송 요청신호에 상응하는 경로 명령 정보를 산출하여 상기 무인 비행체에 제공하는 기능을 수행한다.Next, the tracking server 300 calculates path command information corresponding to the cargo delivery request signal provided from the portable terminal 400, and provides the path command information to the unmanned aerial vehicle.

보다 구체적으로, 상기 트래킹 서버(300)는 관리자 서버(310) 및 클라이언트 서버(320)로 구성될 수 있다. 상기 관리자 서버(310)는 휴대단말에서 제공된 화물배송 요청신호 내에 포함된 수령지점까지, 상기 무인 비행체(200)가 상기 트래킹 라인을 따라 이동하는데 필요한 경유 명령 정보를 생성한 후, 상기 무인 비행체(200)에 제공하며, 실시간으로 상기 무인 비행체(200)의 이동정보를 상기 무인 비행체(200)로부터 제공받아 상기 클라이언트 서버(320)로 제공하는 기능 및 무인 비행체(200)에서 발생된 에러신호를 수신한 후, 경로탐색을 재설정한 경로 명령 정보를 제공하는 기능을 수행한다.More specifically, the tracking server 300 may include an administrator server 310 and a client server 320. The manager server 310 generates via command information necessary for the unmanned object 200 to move along the tracking line to the reception point included in the cargo dispatch request signal provided by the portable terminal, And a function of providing the movement information of the unmanned air vehicle 200 to the client server 320 in a real time from the unmanned air vehicle 200 and receiving the error signal generated from the unmanned air vehicle 200 And then provides the path command information to which the path search is reset.

보다 구체적으로, 상기 관리자 서버(310)는 경로 탐색부(311), 경로 추출부(312) 및 경로명령 생성부(313)를 포함한다.More specifically, the administrator server 310 includes a path search unit 311, a path extraction unit 312, and a path command generation unit 313.

상기 경로 탐색부(311)는 상기 화물배송 요청신호를 수신한 후, 화물이 구비된 무인 비행체가 상기 화물배송 요청신호 내에 기록된 배송지점까지 경유가능한 경로들을 생성하는 기능을 수행한다. 또한, 상기 경로 탐색부(311)는 무인 비행체(200)로부터 전송된 에러신호를 제공받을 경우, 배송지점까지 경유 가능한 경로들을 재탐색하는 기능을 수행한다.After receiving the cargo dispatch request signal, the route searching unit 311 performs a function of generating routes that can pass through to the delivery point where the unmanned air vehicle provided with the cargo is recorded in the cargo dispatch request signal. When the error signal transmitted from the unmanned aerial vehicle 200 is received, the path searching unit 311 searches for routes that can be passed to the delivery point.

상기 경로 추출부(312)는 상기 경로 탐색부(311)에서 제공한 경로들 중 최단거리 경로를 추출하며, 이때, 상기 최단거리 경로는 위치하는 분기점들을 경유 순서에 따라 순차적으로 배열한 분기점 정보가 포함된다.The path extracting unit 312 extracts the shortest path among the paths provided by the path searching unit 311. At this time, the branch point information obtained by sequentially arranging the branch points located in the shortest path, .

상기 경로명령 생성부(313)는 상기 분기점 정보 내에 연속되는 분기점 예컨대, 제1 분기점에서 제2 분기점까지 상기 무인 비행체의 이동에 필요한 행동명령 코드를 기록하여 최종적으로 경로명령 정보를 제공하는 기능을 수행한다. 여기서, 경로명령 정보를 아래에 기재된 표 1을 참조하여 보다 상세하게 설명하도록 한다.The path command generation unit 313 records a behavior command code necessary for movement of the unmanned air vehicle from the first branch point to the second branch point, which is continuous within the branch point information, and finally provides path command information do. Here, the path command information will be described in more detail with reference to Table 1 described below.

[표 1][Table 1]

Figure pat00001
Figure pat00001

예를 들어, 표 1을 참조하면, 무인 비행체가 A 지점에서 G 지점까지 이동할 경우, 트래킹 서버는 A 지점부터 G 지점까지의 분기점(B, F)를 추출하게 되며, 추출된 정보에 상기 무인 비행체가 각 분기점에 행동되어야하는 행동명령 코드가 기록된 적어도 하나 이상의 경로명령 정보를 생성하게 된다.For example, referring to Table 1, when the unmanned aerial vehicle moves from point A to point G, the tracking server extracts bifurcation points (B, F) from point A to point G, Generates at least one path command information in which behavior command codes to be acted at each branch point are recorded.

이때, 무인 비행체에 제공되는 경로명령 정보는 분기점별로 제공될 수 있다.At this time, the path command information provided to the unmanned aerial vehicle may be provided for each branch point.

예를 들어, 분기점 별로 제공되는 경우는 다음과 같이, 제1 경로명령정보(AB001F), 제2 경로명령 정보(BF002L), 제3 경로명령 정보(FG003R)로 제공될 수 있다.For example, when provided for each branch point, it may be provided as first path command information AB001F, second path command information BF002L, and third path command information FG003R as follows.

상기 제1 경로명령 정보(AB001F)는 무인 비행체가 B지점까지 이동하기 위한 정보로서, A는 시작점, B는 도착점, 001은 표지부 넘버링, F는 전지(front)를 의미한다.The first path command information AB001F is information for moving the unmanned aerial vehicle to the point B, where A is a starting point, B is a destination, 001 is a cover numbering, and F is front.

상기 제2 경로명령 정보(BF002L)는 B지점에 이동한 무인 비행체가 F 지점까지 이동하기 위한 정보로서, B는 시작점, F는 도착점, 002는 표지부 넘버링, L은 왼쪽(Left)를 의미한다.The second path command information (BF002L) is information for moving the unmanned aerial vehicle moving to the point B to the point F, where B denotes a starting point, F denotes an arrival point, 002 denotes a cover part numbering, and L denotes a left .

상기 제3 경로명령 정보(FG003R)는 F지점에 이동한 무인 비행체가 G 지점까지 이동하기 위한 정보로서, F는 시작점, G는 도작첨, 003은 표지부 넘버링, R은 오른쪽(Right)를 의미한다.The third route command information (FG003R) is information for moving the unmanned aerial vehicle moving to point F to the point G, where F denotes a starting point, G denotes a drawing point, 003 denotes a cover numbering, and R denotes a right do.

만약, 무인 비행체(200)가 A 지점에서 D지점까지 이동할 경우, 트래킹 서버는 A 지점부터 G 지점까지의 분기점(B, C)를 추출하게 되며, 추출된 분기점들이 동일 선상에 위치할 경우, 도착점을 기준으로 한 행동명령 코드가 기록된 경로명령 정보를 생성할 수 있다.If the unmanned air vehicle 200 moves from point A to point D, the tracking server extracts the points B and C from points A to G. If the extracted points are located on the same line, Can generate path command information in which a behavior command code based on the motion command code is recorded.

예컨대, 트래킹 서버(300)는 AD001F와 같은 경로명령 정보를 제공할 수 있다.For example, the tracking server 300 may provide path command information such as AD001F.

이와 같은 방식으로, 트래킹 서버(300)는 휴대단말(400)에서 요청한 화물배송 요청신호 내에 포함된 수령지점까지의 최단 경로를 생성함으로써, 무인 비행체가 능동적으로 수령지점까지 이동가능할 수가 있다.In this way, the tracking server 300 can generate the shortest path to the reception point included in the cargo dispatch request signal requested by the portable terminal 400, so that the unmanned aerial vehicle can be actively moved to the reception point.

다음으로, 상기 클라이언트 서버(320)는 무선 인터페이스를 통해 상기 휴대단말 및 상기 관리자 서버와 연동하며, 상기 화물배송 요청신호를 수신하여 상기 관리자 서버로 제공하며, 상기 관리자 서버로부터 제공된 상기 무인 비행체의 이동정보( 이동예상시간, 이동구간 정보)를 상기 휴대단말(400)로 제공하는 기능을 수행한다. 또한, 상기 클라이언트 서버는 트래킹 인터페이스를 상기 휴대단말(400)로 제공하는 기능을 수행한다.Next, the client server 320 interlocks with the portable terminal and the manager server through a wireless interface, receives the cargo dispatch request signal and provides the cargo dispatch request signal to the manager server, And provides the mobile terminal 400 with information (estimated travel time, moving interval information). The client server also provides a tracking interface to the mobile terminal 400.

이하에서는 본 발명의 실시 예에 따른 천장형 라인 트레이싱 기반 무인 운송 시스템을 이용한 무인 운송 서비스 방법을 보다 상세하게 설명하도록 한다.Hereinafter, an unmanned transportation service method using the ceiling-type line tracing based unmanned transportation system according to an embodiment of the present invention will be described in more detail.

도 11은 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템을 이용한 무인 배송 서비스 방법을 설명하기 위한 흐름도이며, 도 12는 도 11에 도시된 S120의 흐름도이다.FIG. 11 is a flowchart illustrating an unmanned shipping service method using a ceiling-type line tracing based unmanned transportation system according to an embodiment of the present invention, and FIG. 12 is a flowchart of S120 shown in FIG.

도 11 및 도 12를 참조하면, 본 발명의 실시 예에 따른 천장형 라인 트레이싱 기반 무인 운송 시스템을 이용한 무인 운송 서비스 방법(S100)은 화물 요청 단계(S110), 경로명령 제공단계(S120), 화물운송단계(S130), 위치정보 제공단계(S140) 및 배송 완료 단계(S150)를 포함한다.Referring to FIGS. 11 and 12, an unmanned transportation service method (S100) using a ceiling-based line tracing based unmanned transportation system according to an exemplary embodiment of the present invention includes a cargo request step S110, a route command providing step S120, A transportation step S130, a position information providing step S140, and a delivery completion step S150.

상기 화물 요청 단계(S110)는 사용자의 휴대단말에서 트래킹 인터페이스를 이용하여 상기 사용자가 원하고자 하는 수령지점의 정보가 포함된 화물배송 요청신호를 트래킹 서버로 제공하는 단계일 수 있다.The cargo request step S110 may be a step of providing the cargo delivery request signal including the information of the reception point that the user desires to the tracking server by using the tracking interface in the mobile terminal of the user.

상기 경로명령정보 제공단계(S120)는 상기 트래킹 서버에서 화물 운송 요청 신호에 상응하는 경로명령정보를 산출하여 상기 휴대단말 및 화물이 구비된 무인비행체로 전송하는 단계로서, 클라이언트 서버에서 화물 운송 요청 신호를 수신(S121)한 후, 수신된 정보를 관리자 서버로 제공(S121)한다.The path command information providing step (S120) of calculating the route command information corresponding to the cargo transportation request signal in the tracking server and transmitting the information to the unmanned air vehicle provided with the portable terminal and the cargo, (S121), and provides the received information to the administrator server (S121).

관리자 서버에서는 무인 비행체가 위치한 지점부터 화물 운송 요청 신호 내의 배송지점까지의 무인 비행체가 트래킹 라인을 따라 경유되어야하는 경로를 추출(S122)한 후, 경로 내에 포함된 표지부점(수령지점 및 분기점)을 추출(S123)하게 된다.The manager server extracts a route through which the unmanned aerial vehicle from the point where the unmanned air vehicle is located to the delivery point in the cargo transportation request signal through the tracking line (S122), and then displays the marker points (reception point and branch point) (S123).

이후, 분기점 또는 수령지점 별로 무인 비행체를 이동시키기 위한 경로명령 정보를 생성한 후, 휴대단말 및 무인 비행체로 제공(S124)하게 된다.Thereafter, the route command information for moving the unmanned aerial vehicle is generated according to the turning point or the receiving point, and then provided to the portable terminal and the unmanned aerial vehicle (S124).

상기 화물 운송 단계(S130)는 상기 경로명령정보에 따라 상기 무인 비행체가 트래킹 라인을 따라 상기 수령지점까지 화물을 운송하는 단계일 수 있다.The cargo transportation step (S130) may be a step of transporting the cargo to the reception point along the tracking line by the unmanned aerial vehicle according to the route command information.

상기 위치정보 요청단계(S140)는 휴대단말에서 트래킹 인터페이스를 이용하여 무인 비행체의 위치정보를 요청하는 단계일 수 있다.The location information request step (S140) may be a step of requesting location information of the unmanned aerial vehicle using a tracking interface in the portable terminal.

상기 위치정보 제공단계(S150)는 위치정보 요청신호를 수신하며, 트래킹 서버의 클라이언트 서버는 관리자 서버로부터 무인 비행체의 위치정보를 제공받아, 상기 휴대 단말로 제공하는 단계일 수 있다.The location information providing step (S150) receives the location information request signal, and the client server of the tracking server receives the location information of the unmanned aerial vehicle from the administrator server and provides the information to the portable terminal.

상기 배송 완료 단계(S160)는 상기 무인 비행체가 상기 수령지점에 도착하면, 무인 비행체는 트래킹 서버로 도착신호를 제공하며, 상기 트래킹 서버는 휴대단말로 배송완료 메시지를 제공하는 단계일 수 있다.When the unmanned aerial vehicle arrives at the reception point, the unmanned aerial vehicle provides an arrival signal to the tracking server, and the tracking server provides a delivery completion message to the portable terminal in the delivery completion step S160.

따라서, 본 발명의 실시 예에 따른 천장형 라인트레이싱 기반 무인 운송 시스템은 라인트레이서 기반으로 이동하는 무인 비행체를 이용함으로써 실내에서 간편하게 물건을 배송할 수 있다는 이점을 갖는다.Therefore, the ceiling-type line tracing-based unmanned transportation system according to the embodiment of the present invention has an advantage that the unmanned transportation system that moves based on the line tracer can be used to easily deliver the goods indoors.

또한, 본 발명의 무인 비행체의 경우, 복수 개의 라인트레이싱용 적외선 센서 및 기울기 조절부를 구비함으로써, 실내 천장이 굴곡지거나 또는 트래킹 라인의 폭이 협소하더다도 라인 인식 저하를 예방할 수 있으며, 무인 비행체의 기울기 변화에 따라 라인 인식 저하를 예방하도록 기울기 조절부를 통해 라인트레이싱 센싱부의 기울기를 조절함으로써 라인트레이싱 센싱부가 천장과 항상 수직을 유지할 수 있어, 라인 인식 저하를 예방할 수 있다. 또한, 초음파를 이용하여 기 설정된 거리를 유지함으로써 무인 비행체의 이동시 천장과의 충돌을 예방할 수 있다는 이점을 갖는다.In addition, in the case of the unmanned aerial vehicle of the present invention, since a plurality of infrared ray sensors for line tracing and the tilt adjusting unit are provided, it is possible to prevent degradation of line recognition even if the ceiling of a room is bent or the width of a tracking line is narrow, The inclination of the line tracing sensing unit can be adjusted through the inclination adjusting unit so as to prevent the line recognition from being deteriorated according to the change, so that the line tracing sensing unit can maintain the vertical alignment with the ceiling at all times. In addition, by maintaining ultrasonic waves at a predetermined distance, collision with the ceiling can be prevented when the unmanned aerial vehicle moves.

더불어, 트래킹 라인 내에 복수 개의 무인 비행체가 구동될 경우, 예기치 못한 충돌을 방지하도록, 구형상의 보호케이스가 구비되어, 충돌에 따른 무인 비행체의 파손을 억제할 수 있다는 이점을 갖는다.In addition, when a plurality of unmanned aerial vehicles are driven in the tracking line, a spherical protective case is provided so as to prevent unexpected collision, and damage to the unmanned aerial vehicle due to collision can be suppressed.

이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내고 설명하는 것에 불과하며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 그리고, 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. The foregoing detailed description is illustrative of the present invention. It is also to be understood that the foregoing is illustrative and explanatory of preferred embodiments of the invention only, and that the invention may be used in various other combinations, modifications and environments. It is to be understood that changes and variations may be made without departing from the scope of the inventive concept disclosed herein, the disclosure of which is equally applicable to the disclosure, and / or the skill or knowledge of the art.

전술한 실시 예들은 본 발명을 실시하는데 있어 최선의 상태를 설명하기 위한 것이며, 본 발명과 같은 다른 발명을 이용하는 데 당업 계에 알려진 다른 상태로의 실시, 그리고 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서, 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.
The foregoing embodiments are intended to illustrate the best mode contemplated for carrying out the invention and are not intended to limit the scope of the invention to those skilled in the art that are intended to encompass other embodiments of the invention, Various changes are possible. Accordingly, the foregoing description of the invention is not intended to limit the invention to the precise embodiments disclosed. It is also to be understood that the appended claims are intended to cover such other embodiments.

100: 트래킹 라인 110: 테이핑 라인
120: 태그 모듈 200: 무인 비행체
201: 회전구동체 202: 방향조작부
210: 몸체부 220: RFID 리더기
230: 라인트레이싱 센싱부 240: 기울기 조절부
250: 기울기 센싱모듈 260: 초음파 거리센서모듈
270: MCU 271: 메모리
272: 경로 제어/처리부 273: 에러신호 생성부
274: 통신모듈 290: 보호 케이스
300: 트래킹 서버 310: 관리자 서버
311: 경로 탐색부 312: 경로 추출부
313: 경로명령 생성부 320: 클라이언트 서버
311: 경로 탐색부 312: 경로 추출부
313: 경로명령 생성부 400: 휴대단말
A ~ H: 표지부점
100: tracking line 110: taping line
120: tag module 200: unmanned vehicle
201: rotary drive body 202:
210: Body part 220: RFID reader
230: line tracing sensing unit 240: tilt adjusting unit
250: tilt sensing module 260: ultrasonic distance sensor module
270: MCU 271: Memory
272: Path control / processor 273: Error signal generator
274: Communication module 290: Protective case
300: tracking server 310: manager server
311: Path searching unit 312: Path extracting unit
313: Path command generation unit 320:
311: Path searching unit 312: Path extracting unit
313: Path command generation unit 400:
A to H: Marking point

Claims (12)

실내 천장에 구비되며, 적어도 하나 이상의 표지부들이 구비된 복수 개의 경로로 구성된 트래킹 라인(100);
상기 적어도 하나 이상의 표지부들을 따라 비행이동하며, 하부에 화물을 수용할 수 있는 수용체가 구비된 무인 비행체(200); 및
트래킹 인터페이스를 이용하여 사용자가 원하고자 하는 수령지점의 정보가 포함된 화물배송 요청신호를 제공하는 휴대단말(400); 및
상기 휴대단말(400)에서 제공된 상기 화물배송 요청신호에 상응하는 경로 명령 정보를 산출하여 상기 무인 비행체에 제공하는 트래킹 서버(300);를 포함하고,
상기 무인 비행체(200)는,
상기 경로 명령 정보에 따라 상기 트래킹 라인(100)을 이동하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
A tracking line (100) provided on the ceiling of the vehicle and having a plurality of paths provided with at least one markers;
An unmanned flying object 200 flying along the at least one markers and having a receiver capable of receiving a cargo at a lower portion thereof; And
A portable terminal (400) for providing a cargo dispatch request signal including information of a receipt point desired by the user using a tracking interface; And
And a tracking server (300) for calculating route command information corresponding to the cargo delivery request signal provided from the portable terminal (400) and providing the route command information to the unmanned air vehicle,
The unmanned air vehicle (200)
And moves the tracking line (100) in accordance with the path command information.
제1항에 있어서,
상기 휴대단말(400)은,
상기 트래킹 인터페이스를 사용자에게 표시하며, 상기 트래킹 인터페이스는 화물 수령 및 화물 운송에 관련된 정보, 무인비행체(200)의 위치정보가 포함된 인터페이스인 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
The method according to claim 1,
The mobile terminal (400)
Wherein the tracking interface displays the tracking interface to a user and the tracking interface is an interface including information related to cargo receipt and cargo transportation and location information of the unmanned aerial vehicle.
제1항에 있어서,
상기 트래킹 라인(100)은,
접착제를 통해 상기 천장과 탈부착되는 테이핑 라인(110);
상기 테이핑 라인(110)에 형성된 복수 개의 경로들을 구분짖기 위하여 상기 테이핑 라인(110) 내에 형성된 복수 개의 표지부들 각각에 위치하고, 내부에 각 표지부들을 상기 무인 비행체가 인식하기 위한 고유 식별 번호(ID)가 부여된 RFID 태그가 내장된 태그 모듈(120)를 포함하고,
상기 복수 개의 표지부들은,
적어도 하나 이상의 종단점들 및 적어도 하나 이상의 분기점들로 구성된 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
The method according to claim 1,
The tracking line (100)
A taping line (110) detachable from the ceiling through an adhesive;
A plurality of markers formed in the taping line 110 for discriminating a plurality of paths formed on the taping line 110 and each marking unit having a unique identification number ID for recognizing the unmanned aerial vehicle, And a tag module (120) having an embedded RFID tag,
The plurality of markers include:
At least one or more endpoints and at least one bifurcation point.
제1항에 있어서,
상기 무인 비행체(200)는,
수직 이착륙이 가능한 멀티콥터인 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
The method according to claim 1,
The unmanned air vehicle (200)
Wherein the multi-copter is a multi-copter capable of vertical landing and landing.
제4항에 있어서,
상기 무인 비행체(200)는,
복수 개의 회전구동체(201) 및 방향조작부(202)를 구비한 몸체부(210);
상기 몸체부(210) 내에 구비되며, 상기 RFID 태그를 태깅하는 RFID 리더기(220);
상기 몸체부(210)의 상부에 높이방향으로 돌출되어 구비되며, 적외선을 이용하여 상기 테이핑 라인을 인식하는 라인트레이싱 센싱부(230);
상기 몸체부(210)의 기울기 변화에 따라 상기 라인트레이싱 센싱부(230)의 기울기를 가변시켜, 상기 라인트레이싱 센싱부(230)를12 천장에 수직되도록 조절하는 기울기 조절부(240);
비행이동에 따라 상기 몸체부(210)의 기울기 변화에 따른 기울기 정보를 실시간으로 감지하는 기울기 센싱모듈(250);
상기 기울기 센싱모듈(250)과 상기 천장과의 이격거리를 일정하게 유지하기 위하여 상기 천장에 초음파 신호를 출력한 후, 반송된 반송파를 수신하는 초음파 거리센서모듈(260); 및
상기 트래킹 서버(300)로부터 제공되는 경로명령정보를 수신한 후, 상기 경로 정보에 따라 상기 방향조작부(202)를 제어하는 MCU(270)를 포함하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
5. The method of claim 4,
The unmanned air vehicle (200)
A body portion 210 having a plurality of rotary actuators 201 and a direction control portion 202;
An RFID reader 220 provided in the body 210 for tagging the RFID tag;
A line tracing sensing unit 230 protruding in the height direction above the body 210 and recognizing the taping line using infrared rays;
A tilt adjusting unit 240 that varies the inclination of the line tracing sensing unit 230 according to the inclination of the body 210 and adjusts the line tracing sensing unit 230 to be vertical to 12 ceilings;
A tilt sensing module 250 that senses tilt information according to a tilt change of the body 210 in real time in accordance with a flight movement;
An ultrasonic distance sensor module 260 for outputting an ultrasonic signal to the ceiling and receiving a carrier wave to maintain a constant distance between the tilt sensing module 250 and the ceiling; And
And an MCU (270) for receiving the route command information from the tracking server (300) and controlling the direction control unit (202) according to the route information. .
제5항에 있어서,
상기 기울기 센싱모듈(250)은,
9축 자이로센서, 가속도 센서 및 자자기 센서 중 적어도 하나 이상을 이용하여 비행이동에 따라 상기 몸체부(210)의 기울기 변화를 감지하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
6. The method of claim 5,
The tilt sensing module (250)
Wherein the tilting of the body part (210) is detected by at least one of a 9-axis gyro sensor, an acceleration sensor and a magnetic sensor.
제5항에 있어서,
상기 MCU(270)는,
트래킹 서버(300)로부터 전송된 경로명령정보 및 상기 트래킹 라인(100)에 형성된 복수 개의 표지부들 각각의 고유 ID를 저장하는 메모리(271); 및
상기 경로명령정보와 상기 RFID 리더기(220)로부터 태깅된 태그 정보가 동일할 경우, 상기 경로명령정보 내에 기록된 행동명령 코드에 따라 상기 방향조작부 및 상기 회전구동체(201)의 구동을 제어하는 경로 제어/처리부(272); 및
상기 경로명령정보와 상기 RFID 리더기(220)로부터 태깅된 태그 정보가 불일치 할 경우, 에러신호(Error)를 상기 트래킹 서버(300)로 제공하는 에러신호 생성부(273);를 포함하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
6. The method of claim 5,
The MCU 270,
A memory (271) for storing path command information transmitted from the tracking server (300) and a unique ID of each of a plurality of markers formed on the tracking line (100); And
A path for controlling the driving of the direction control unit and the rotary actuator 201 according to the behavior command code recorded in the path command information when the path command information is identical to the tag information tagged from the RFID reader 220 A control / processing unit 272; And
And an error signal generator 273 for providing an error signal to the tracking server 300 when the path command information and the tag information tagged from the RFID reader 220 are inconsistent. Based line tracing based unmanned transportation system.
제5항에 있어서,
상기 무인 비행체(200)는,
외부 기기와의 출동을 방지하기 위한 보호 케이스(290)를 더 포함하며, 상기 보호 케이스(290)는 상기 무인비행체(200)를 수용하기 위한 중공이 형성된 원구형태로 형성되며, 재질은 아크릴, 탄소나노섬유, 탄소나노 플라스틱 중 어느 하나인 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
6. The method of claim 5,
The unmanned air vehicle (200)
The protection case 290 is formed in the shape of a hollow having a hollow for accommodating the unmanned air vehicle 200, and the material of the protection case 290 is acrylic, carbon Nano fiber, and carbon nano plastic.
제1항에 있어서,
상기 트래킹 서버(300)는,
상기 화물배송 요청신호 내에 포함된 수령지점까지, 상기 무인 비행체(200)가 상기 트래킹 라인(100)을 따라 이동하는데 필요한 경유명령정보를 생성한 후, 상기 무인 비행체(200)에 제공하며, 실시간으로 상기 무인 비행체(200)의 이동정보를 상기 무인 비행체(200)로부터 제공받는 관리자 서버(310); 및
상기 휴대단말(400) 및 상기 관리자 서버(310)와 연동하며, 상기 화물배송 요청신호를 수신하여 상기 관리자 서버(310)로 제공하며, 상기 관리자 서버(310)로부터 제공된 상기 무인 비행체(200)의 이동정보(이동예상시간, 이동구간 정보)를 상기 휴대단말로 제공하는 클라이언트 서버(320);를 포함하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
The method according to claim 1,
The tracking server (300)
The control unit 200 generates the cruise command information required for the unmanned object 200 to travel along the tracking line 100 until the point of receipt included in the cargo dispatch request signal and provides the same to the unmanned air vehicle 200, An administrator server 310 receiving movement information of the unmanned air vehicle 200 from the unmanned air vehicle 200; And
The management server 310 receives the cargo dispatch request signal and provides the cargo dispatch request signal to the manager server 310 and transmits the cargo dispatch request signal to the manager server 310, And a client server (320) for providing the mobile information (movement estimated time, moving interval information) to the mobile terminal.
제9항에 있어서,
상기 관리자 서버(310)는,
상기 화물배송 요청신호를 수신한 후, 화물이 구비된 무인 비행체가 상기 화물배송 요청신호 내에 기록된 배송지점까지 경유가능한 경로들을 생성하는 경로 탐색부(311);
상기 경로 탐색부에서 제공한 경로들 중 최단거리 경로를 추출하는 경로 추출부(312); 및
상기 최단거리 내에 위치하는 연속되는 표지부점들 간에 상기 무인 비행체의 이동에 필요한 행동명령 코드가 기록된 경로명령 정보를 생성하는 경로명령 생성부;를 포함하며,
상기 최단거리 경로는 분기점들을 경유 순서에 따라 순차적으로 배열한 분기점 정보가 포함되며, 상기 경로 탐색부(311)는 무인 비행체로부터 전송된 에러신호를 제공받을 경우, 배송지점까지 경유가능한 경로들을 재탐색하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템.
10. The method of claim 9,
The manager server 310,
A route search unit (311) for receiving the cargo dispatch request signal and generating routes that can be passed to the delivery point where the unmannurized vehicle provided with the cargo is recorded in the cargo dispatch request signal;
A path extracting unit (312) for extracting a shortest path among the paths provided by the path searching unit; And
And a route command generator for generating route command information in which a behavior command code necessary for movement of the unmanned air vehicle is recorded between successive marker points located within the shortest distance,
The shortest path includes branch point information in which the branch points are sequentially arranged in the order of passing through. When the error signal transmitted from the unmanned air vehicle is provided, the path searching unit 311 searches for routes The line-tracing-based unattended transportation system.
청구항 제1항 내지 청구항 제10항 중 어느 하나의 항에 기재된 천장형 라인 트레이싱 기반 무인 운송 시스템을 이용한 무인 운송 서비스 방법에 있어서,
사용자의 휴대단말에서 트래킹 인터페이스를 이용하여 상기 사용자가 원하고자 하는 수령지점의 정보가 포함된 화물배송 요청신호를 트래킹 서버로 제공하는 화물 요청 단계(S110);
상기 트래킹 서버에서 화물 운송 요청 신호에 상응하는 경로명령정보를 산출하여 상기 휴대단말 및 화물이 구비된 무인비행체로 전송하는 경로명령정보 제공단계(S120);
상기 경로명령정보에 따라 상기 무인 비행체가 트래킹 라인을 따라 상기 수령지점까지 화물을 운송하는 화물 운송 단계(S130);
휴대단말에서 트래킹 인터페이스를 이용하여 무인 비행체의 위치정보를 요청하는 위치정보 요청단계(S140);
위치정보 요청신호를 수신하며, 트래킹 서버의 클라이언트 서버는 관리자 서버로부터 무인 비행체의 위치정보를 제공받아, 상기 휴대 단말로 제공하는 위치정보 제공단계(S150); 및
상기 무인 비행체가 상기 수령지점에 도착하면, 무인 비행체에서 트래킹 서버로 도착신호를 제공하며, 상기 트래킹 서버에서 휴대단말로 배송완료 메시지를 제공하는 배송 완료 단계(S160)를 포함하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템을 이용한 무인 운송 서비스 방법.
A method for unattended transportation service using the ceiling-line tracing based unmanned transportation system according to any one of claims 1 to 10,
A cargo request step (S110) of providing a cargo delivery request signal including information of a receipt point desired by the user to a tracking server using a tracking interface in a user's portable terminal;
Calculating a route command information corresponding to a cargo transportation request signal in the tracking server and transmitting the route command information to the unmanned air vehicle provided with the portable terminal and the cargo;
A cargo transportation step (S130) in which the unmanned air vehicle carries the cargo along the tracking line to the reception point according to the route command information;
A location information requesting step (S140) of requesting location information of the unmanned aerial vehicle using a tracking interface in a portable terminal;
(S150) of receiving a position information request signal, the client server of the tracking server receiving location information of the unmanned aerial vehicle from the administrator server and providing the location information to the portable terminal; And
And a delivery completion step (S160) of providing an arrival signal from the unmanned air vehicle to the tracking server when the unmanned air vehicle arrives at the reception point and providing a delivery completion message from the tracking server to the portable terminal, A method of unmanned transportation service using a line tracing based unmanned transportation system.
제11항에 있어서,
상기 경로명령정보 제공단계(S120)는,
클라이언트 서버(320)에서 화물 운송 요청 신호를 수신하는 단계(S121)
수신된 정보를 관리자 서버(310)로 제공하는 단계(S122);
관리자 서버(310)에서 무인 비행체(200)가 위치한 지점부터 화물 운송 요청 신호 내의 배송지점까지의 무인 비행체가 트래킹 라인을 따라 경유되어야하는 최단경로를 추출하는 단계(S123);
상기 최단경로 내에 포함된 표지부점(수령지점 및 분기점)을 추출하는 단계(S124); 및
분기점 또는 수령지점 별로 무인 비행체를 이동시키기 위한 경로명령 정보를 생성한 후, 휴대단말 및 무인 비행체로 제공하는 단계(S125)를 포함하는 것을 특징으로 하는 천장형 라인 트레이싱 기반 무인 운송 시스템을 이용한 무인 운송 서비스 방법.
12. The method of claim 11,
The path command information providing step (S120)
In step S121, the client server 320 receives a cargo transportation request signal,
Providing the received information to the administrator server 310 (S122);
A step S123 of extracting a shortest path through which the unmanned air vehicle from the point where the unmanned air vehicle 200 is located to the delivery point in the cargo transportation request signal through the tracking line in the manager server 310;
Extracting marking points (reception points and branching points) included in the shortest path (S124); And
And providing the route command information to the mobile terminal and the unmanned aerial vehicle after moving the unmanned aerial vehicle at the fork point or at the receiving point (S125). Service method.
KR1020140157276A 2014-11-12 2014-11-12 Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same KR101682509B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140157276A KR101682509B1 (en) 2014-11-12 2014-11-12 Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140157276A KR101682509B1 (en) 2014-11-12 2014-11-12 Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same

Publications (2)

Publication Number Publication Date
KR20160056665A true KR20160056665A (en) 2016-05-20
KR101682509B1 KR101682509B1 (en) 2016-12-05

Family

ID=56103791

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140157276A KR101682509B1 (en) 2014-11-12 2014-11-12 Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same

Country Status (1)

Country Link
KR (1) KR101682509B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079355A (en) * 2001-07-09 2001-08-22 추후제출 Web based cargo tracking management system and operation method thereof
KR100793301B1 (en) 2006-06-29 2008-01-10 삼성전자주식회사 System and method of keeping and receiving a parcel using RFID without receptionist
KR20110118427A (en) * 2010-04-23 2011-10-31 주식회사 아이씨디엘씨엔에스 Traveling device and swarm robot system having the same
KR20130040270A (en) * 2011-10-14 2013-04-24 동국대학교 산학협력단 Unmanned auto cart collecting system
US20140254896A1 (en) * 2011-07-18 2014-09-11 Tiger T G Zhou Unmanned drone, robot system for delivering mail, goods, humanoid security, crisis negotiation, mobile payments, smart humanoid mailbox and wearable personal exoskeleton heavy load flying machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079355A (en) * 2001-07-09 2001-08-22 추후제출 Web based cargo tracking management system and operation method thereof
KR100793301B1 (en) 2006-06-29 2008-01-10 삼성전자주식회사 System and method of keeping and receiving a parcel using RFID without receptionist
KR20110118427A (en) * 2010-04-23 2011-10-31 주식회사 아이씨디엘씨엔에스 Traveling device and swarm robot system having the same
US20140254896A1 (en) * 2011-07-18 2014-09-11 Tiger T G Zhou Unmanned drone, robot system for delivering mail, goods, humanoid security, crisis negotiation, mobile payments, smart humanoid mailbox and wearable personal exoskeleton heavy load flying machine
KR20130040270A (en) * 2011-10-14 2013-04-24 동국대학교 산학협력단 Unmanned auto cart collecting system

Also Published As

Publication number Publication date
KR101682509B1 (en) 2016-12-05

Similar Documents

Publication Publication Date Title
KR101680051B1 (en) Unmanned Transportation System based on linetracing of Ceiling type for interlocking with unmanned drone and Unmanned transportation service method using the same
US9533759B2 (en) Modular drone and methods for use
US10403156B2 (en) Automated package delivery to a delivery receptacle
US9922306B1 (en) Mobile RFID reading systems
US9613338B1 (en) Reading station structures
US20180033315A1 (en) Systems and methods for transporting products via unmanned aerial vehicles and mobile relay stations
US10748106B2 (en) Mobile delivery receptacle
US11290842B2 (en) Systems and methods for locating devices in venues
US10997544B1 (en) Delivery location identifiers
KR101831908B1 (en) System for tracking real time location of cargo using forklift
ES2545131T3 (en) Equipment and method to energize a transceiver tag
US10598507B1 (en) Systems, methods, and apparatus for locating objects
KR20150103048A (en) Active rfid tag with passive interrogator
EP3516607A1 (en) Autonomous vehicles performing inventory management
KR101682509B1 (en) Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same
JP6184356B2 (en) Movement control device, movement control method, and movement control system
US9949080B2 (en) Arrangement for, and method of, finding and recovering lost mobile devices in a venue
US20240040539A1 (en) System and Method for Automated and Dynamic Location Tracking
Seth et al. Vertical Trajectory Analysis Using QR Code Detection for Drone Delivery Application
US20230055289A1 (en) Systems and methods for guided item delivery operations
CN215006710U (en) Order system

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 4