KR20160047693A - Method of Preparing Unit Electrodes - Google Patents

Method of Preparing Unit Electrodes Download PDF

Info

Publication number
KR20160047693A
KR20160047693A KR1020140143890A KR20140143890A KR20160047693A KR 20160047693 A KR20160047693 A KR 20160047693A KR 1020140143890 A KR1020140143890 A KR 1020140143890A KR 20140143890 A KR20140143890 A KR 20140143890A KR 20160047693 A KR20160047693 A KR 20160047693A
Authority
KR
South Korea
Prior art keywords
electrode
unit
coated
sheet
electrode sheet
Prior art date
Application number
KR1020140143890A
Other languages
Korean (ko)
Other versions
KR101754132B1 (en
Inventor
심정아
오세운
이은주
김현민
김석구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020140143890A priority Critical patent/KR101754132B1/en
Publication of KR20160047693A publication Critical patent/KR20160047693A/en
Application granted granted Critical
Publication of KR101754132B1 publication Critical patent/KR101754132B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for producing an unit electrode, comprising: a coating layer where an electrode mixture is applied on a surface of a current collector; and a blank unit where an electrode mixture is not applied. The method for producing an unit electrode comprises the steps of: (a) forming a coating layer by applying an electrode mixture including an electrode active material for positioning a blank unit on one side end unit of the electrode sheet for a current collector, on a surface of an electrode sheet; (b) heating the blank unit to a transformation point of the electrode sheet; (c) cooling the heated blank unit; and (d) forming an electrode tab by cutting the cooled blank unit.

Description

단위전극의 제조 방법 {Method of Preparing Unit Electrodes}[0001] The present invention relates to a method of manufacturing a unit electrode,

본 발명은 안전성이 향상된 단위전극 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a unit electrode with improved safety.

최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 주목받고 있다. 따라서, 이차전지를 사용하는 어플리케이션의 종류는 이차전지의 장점으로 인해 매우 다양화되어 가고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 이차전지가 적용될 것으로 예상된다. BACKGROUND ART [0002] In recent years, rechargeable secondary batteries have been widely used as energy sources for wireless mobile devices. The secondary battery is also attracting attention as an energy source for electric vehicles and hybrid electric vehicles, which are proposed to solve air pollution of existing gasoline vehicles and diesel vehicles using fossil fuels. Accordingly, the types of applications using secondary batteries are diversifying due to the advantages of secondary batteries, and it is expected that secondary batteries will be applied to many fields and products in the future.

이와 같이 이차전지의 적용 분야와 제품들이 다양화됨에 따라, 휴대폰, PDA, 디지털 카메라, 웨어러블 전자기기, 노트북 컴퓨터 등과 같은 소형 모바일 기기들에는 해당 제품들의 소형 경박화 경향에 따라 그에 상응하도록 디바이스 1 대당 하나 또는 두서너 개의 소형 경량의 전지셀들이 사용되고 있다. 반면에, 전기자전거, 전기오토바이, 전기자동차, 하이브리드 전기자동차 등과 같은 중대형 디바이스들에는 고출력 대용량의 필요성으로 인해, 다수의 전지셀들을 전기적으로 연결한 중대형 전지모듈 또는 중대형 전지팩이 사용되고 있다. As the application fields and the products of the secondary battery are diversified, small mobile devices such as mobile phones, PDAs, digital cameras, wearable electronic devices, and notebook computers can be classified into small mobile devices One or a few small and lightweight battery cells are used. On the other hand, middle- or large-sized devices such as electric bicycles, electric motorcycles, electric vehicles, hybrid electric vehicles and the like are required to have high power and large capacity, so that a middle- or large-sized battery pack or a middle- or large-sized battery pack in which a plurality of battery cells are electrically connected is used.

또한, 전기자전거, 전기자동차 등과 같이 외부로부터 많은 충격, 진동 등을 받는 디바이스들은 전지모듈을 구성하는 소자들간의 전기적 연결상태와 물리적 결합상태가 안정적이어야 하며, 다수의 전지를 사용하여 고출력 및 대용량을 구현하여야 하기 때문에 안전성 측면도 중요시 되고 있다.Devices that receive a lot of shocks and vibrations from the outside, such as electric bicycles and electric vehicles, should have a stable electrical connection and physical connection between the elements constituting the battery module, and use a large number of batteries for high output and large capacity The safety aspect is also important because it must be implemented.

이러한 전지모듈 또는 전지팩의 단위전지로는 그것의 형상에 따라 원통형 전지셀, 각형 전지셀, 파우치형 전지셀 등이 사용되고 있으며, 그 중에서도 높은 집적도로 적층될 수 있고 중량당 에너지 밀도가 높으며 변형이 용이한 파우치형 전지셀이 많은 관심을 모으고 있다.As a unit battery of such a battery module or a battery pack, a cylindrical battery cell, a prismatic battery cell, a pouch-shaped battery cell, or the like is used depending on its shape. Among them, the unit cell can be stacked with a high degree of integration, Easy pouch type battery cells are attracting much attention.

전지셀은 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있으며, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 사용되기도 한다.The battery cell is classified according to the structure of the electrode assembly having the anode, the cathode, and the separator interposed between the anode and the cathode. Typically, the separator includes a long sheet- A stacked (laminated) electrode assembly in which a plurality of positive electrodes and negative electrodes cut in a predetermined size unit are sequentially stacked with a separator interposed therebetween, and the like, The electrode assembly of the present invention has a structure in which a positive electrode and a negative electrode of a predetermined unit are stacked on a separation film with a separator interposed therebetween, A stacked / folded type electrode assembly having a structure in which the electrode assembly is wound with the electrode assembly may be used.

그러나, 이러한 전극조립체에 사용되는 전극들의 제조 과정에서, 집전체의 박막화와 전극 활물질의 고로딩화에 의해 전극 무지부(집전체의 노출부로서 추후 전극 리드와 연결됨)에 주름이 생성되어 전극 리드 연결 시 용접불량이 발생하며, 저항이 증가하여 추후 전지셀의 안전성에 영향을 미치는 문제점이 있다.However, in the process of manufacturing the electrodes used in such an electrode assembly, wrinkles are generated in the electrode uncoated portion (connected to the electrode lead later as an exposed portion of the current collector) by thinning of the current collector and high loading of the electrode active material, There is a problem that a welding defect occurs at the time of connection, and the resistance increases, thereby affecting the safety of the battery cell in the future.

따라서, 보다 효과적으로 전지의 안전성을 향상시킬 수 있는 이차전지용 전극의 제조 방법에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a method of manufacturing an electrode for a secondary battery that can improve the safety of the battery more effectively.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past.

본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 집전체의 표면에 전극 합제가 도포된 코팅층과 전극 합제가 도포되지 않은 무지부를 포함하는 단위전극을 제조하는 방법에서, 무지부에 레이저 등을 조사하여 급속 가열하여 저속 냉각하는 경우, 예상치 못하게 우수한 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments and have found that a method of manufacturing a unit electrode including a coating layer coated with an electrode mixture on the surface of a current collector and a non- , It has been found that an unexpectedly excellent effect can be achieved when a non-coated portion is irradiated with a laser or the like and rapidly heated to perform low-speed cooling, thereby completing the present invention.

따라서, 본 발명은 집전체의 표면에 전극 합제가 도포된 코팅층과 전극 합제가 도포되지 않은 무지부를 포함하는 단위전극을 제조하는 방법으로서,Accordingly, the present invention provides a method for manufacturing a unit electrode including a coating layer coated with an electrode mixture on a surface of a current collector and an uncoated portion coated with an electrode mixture,

(a) 집전체용 전극 시트의 일측 단부에 무지부가 위치하도록 전극 활물질을 포함하는 전극 합제를 전극 시트의 표면에 도포하여 코팅층을 형성하는 과정;(a) forming a coating layer by applying an electrode mixture containing an electrode active material on the surface of an electrode sheet so that the unoccupied portion is located at one end of the current collector electrode sheet;

(b) 상기 무지부를 전극 시트의 변태점까지 가열하는 과정;(b) heating the non-coated portion to the transformation point of the electrode sheet;

(c) 상기 가열된 무지부를 냉각하는 과정; 및(c) cooling the heated uncoated portion; And

(d) 상기 냉각된 무지부를 절취하여 전극 탭을 형성하는 과정;(d) cutting the cooled uncoated portion to form an electrode tab;

을 포함하는 것으로 구성되어 있다. As shown in Fig.

본 발명에 따르면, 상기 과정(b)에서 무지부를 가열하고 과정(c)에서 무지부를 냉각함으로써, 금속 풀림(annealing) 현상에 의해 무지부에 잔류된 국소 응력이 해소되어, 무지부에 주름 생성뿐만 아니라 강도 저하를 방지하여, 추후 전지셀의 안정성을 향상시키는 효과가 있다.According to the present invention, by heating the non-coated portion in the process (b) and cooling the non-coated portion in the process (c), the local stress remaining in the non-coated portion due to the metal annealing phenomenon is eliminated, But the strength is prevented from lowering, and the stability of the battery cell is improved later.

상기 과정(a)에서 무지부는 전극 시트의 길이방향에 수직인 폭방향에서 전극 시트의 일측 단부 또는 양측 단부들에 위치할 수 있으며, 구체적인 예로서, 전극 시트의 폭을 기준으로 3% 내지 30%의 크기로 형성될 수 있다. 그러나, 무지부의 위치 및 크기는 소망하는 전지의 전극 탭의 형상 및 크기에 따라 가변될 수 있으므로, 반드시 강기 범위로 한정되는 것은 아니다.In the step (a), the non-coated portion may be located at one end or both ends of the electrode sheet in the width direction perpendicular to the longitudinal direction of the electrode sheet, and may be 3% to 30% . ≪ / RTI > However, the position and size of the non-coated portion can be varied depending on the shape and size of the electrode tab of a desired battery, and therefore, it is not necessarily limited to the range of the hardness.

상기 전극 시트는, 양극 집전체용 시트의 경우, 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.In the case of the sheet for a positive electrode current collector, the electrode sheet is generally made to have a thickness of 3 to 500 μm. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.

또한, 음극 집전체용 시트의 경우, 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In the case of a sheet for an anode current collector, the thickness is generally 3 to 500 μm. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.

상기 전극 활물질은 양극 활물질 또는 음극 활물질일 수 있고, 상기 양극 활물질은 리튬 전이금속 산화물로서, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga 이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물; Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1 임, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 화학식 Li1+xM1-yM'yPO4-zXz(여기서, M = 전이금속, 바람직하게는 Fe, Mn, Co 또는 Ni 이고, M' = Al, Mg 또는 Ti 이고, X = F, S 또는 N 이며, -0.5≤x≤+0.5, 0≤y≤0.5, 0≤z≤0.1 임)로 표현되는 올리빈계 리튬 금속 포스페이트 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The cathode active material may be a cathode active material or a cathode active material. The cathode active material may be a lithium transition metal oxide, for example, lithium cobalt oxide (LiCoO 2 ) substituted with one or more transition metals, lithium nickel oxide (LiNiO 2 ); Lithium manganese oxide substituted with one or more transition metals; Formula LiNi 1-y M y O 2 ( where, M = Co, Mn, Al , Cu, Fe, Mg, B, Cr, Zn or Ga and Lim, 0.01≤y≤0.7 include one or more elements of the element) A lithium nickel-based oxide represented by the following formula: Li 1 + z Ni 1/3 Co 1/3 Mn 1/3 O 2, Li 1 + z Ni 0.4 Mn 0.4 Co 0.2 O 2 , such as Li 1 + z Ni b Mn c Co 1- (b + c + d ) M d O (2-e ) A e ( where, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2 , 0≤e≤0.2, b + c + d <1, M = Al, Mg, Cr, Ti, Si or Y, and A = F, P or Cl; lithium nickel cobalt manganese composite oxide; And the formula Li 1 + x M 1-y M 'y PO 4-z X z ( wherein, M = a transition metal, preferably Fe, Mn, Co or Ni, M' = Al, Mg or Ti, X = F, S or N, and -0.5? X? +0.5, 0? Y? 0.5, and 0? Z? 0.1), but the present invention is not limited thereto.

또한, 상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.The negative electrode active material may be carbon such as, for example, non-graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 &lt; x &lt; Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.

하나의 구체적인 예에서, 상기 과정(b)는 무지부에 레이저를 조사하여 급속 가열하는 방식일 수 있다.In one specific example, the step (b) may be a method of irradiating the non-coated portion with a laser to rapidly heat the non-coated portion.

가열 방식으로는, 고주파 유도가열(High Frequency Induction Heating) 방식을 고려할 수도 있으나, 고주파 가열 처리된 무지부는 주름이 제거되는 대신 변형이 발생하여 강도가 약해지고, 외부 충격에 의해 쉽게 파단되는 단점이 있으므로, 바람직하지 않다.As a heating method, a high frequency induction heating method may be considered. However, since the uncoated portion subjected to the high-frequency heating treatment is deformed instead of removing wrinkles, its strength is weakened and it is easily broken by an external impact, It is not preferable.

상기 레이저 조사에 의한 급속 가열은, 상세하게는, 10 초 미만 동안 수행하고, 이때 사용되는 레이저의 파장은, 상세하게는, 0.6 내지 11 ㎛ 범위일 수 있다.Specifically, rapid heating by laser irradiation is performed for less than 10 seconds, and the wavelength of the laser used may be in the range of 0.6 to 11 mu m.

가열 시간이 지나치게 짧거나 사용되는 레이저의 파장이 너무 긴 경우에는 소망하는 효과를 발휘하기 어렵고, 반면에 가열 시간이 지나치게 레이저의 파장이 너무 짧은 경우에는 무지부의 과도한 변형이 유발될 수 있으므로, 바람직하지 않다.If the heating time is too short or the wavelength of the used laser is too long, it is difficult to exert the desired effect. On the other hand, if the wavelength of the laser is too short, excessive deformation of the non- not.

이러한 가열 과정에서, 무지부는 전극 시트의 변태점까지 가열되는 바, 변태점은 전극 시트의 종류에 따라 달라질 수 있지만, 예를 들어, 섭씨 350 내지 550 도의 범위일 수 있다.In this heating process, the uncoated portion is heated up to the transformation point of the electrode sheet. The transformation point may vary depending on the type of the electrode sheet, but may range, for example, from 350 to 550 degrees centigrade.

상기 과정(c)에서 무지부는 상온까지 냉각되도록 설정될 수 있다. 이러한 냉각을 통해, 앞서 설명한 바와 같이, 금속 풀림 현상에 의해 무지부에 잔류된 국소 응력이 해소된다.In the step (c), the non-coated portion may be set to cool to room temperature. Through this cooling, as described above, the local stresses remaining in the plain portion due to the metal unwinding phenomenon are eliminated.

하나의 구체적인 예에서, 상기 과정(c)는 과정(b)와 과정(d) 사이에서 공냉으로 진행될 수 있는 바, 이러한 작업간 공냉식의 수행에 의해, 제조 공정 상에 비용 절감이 가능하다. In one specific example, the process (c) can be performed by air cooling between the process (b) and the process (d).

상기 과정(c)의 공정은 Self Quenching 방식으로 작업시간 동안 수행되도록 설정될 수 있다.The process of step (c) may be set to be performed during a work time in a self-quenching manner.

본 발명은 또한, 상기 단위전극을 둘 이상 포함하는 전극조립체를 제공한다. 상기 전극조립체는 둘 이상의 단위전극들이 분리막이 개재된 상태로 접합되어 있는 단위셀을 둘 이상 포함할 수 있다. The present invention also provides an electrode assembly including at least two unit electrodes. The electrode assembly may include two or more unit cells in which two or more unit electrodes are bonded together with a separator interposed therebetween.

상기 단위셀들은 동일한 극성의 전극이 단위셀의 양단에 위치한 바이셀(bicell), 및/또는 상이한 극성의 전극이 단위셀의 양단에 위치한 풀셀(full cell)일 수 있다. The unit cells may be a bicell having electrodes of the same polarity positioned at both ends of the unit cell, and / or a full cell having electrodes of different polarity located at both ends of the unit cell.

이러한 단위셀들은 분리막이 개재된 상태로 적층되어 있는 구조(라미네이션 & 스택 구조)일 수 있으며, 경우에 따라서는 상기 단위셀들은 분리 시트에 의해 권취되어 있는 구조(스택 & 폴딩 구조)일 수 있다. Such a unit cell may be a laminated structure (lamination & stack structure) in which a separator is interposed, and in some cases, the unit cells may be a structure (stack &amp; folding structure) wound by a separator sheet.

상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛ 이고, 두께는 일반적으로 5 ~ 30 ㎛ 이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 30 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.

본 발명은 또한 전극조립체가 전지케이스에 내장되어 있는 전지셀을 제공한다. The present invention also provides a battery cell in which an electrode assembly is embedded in a battery case.

상기 전지케이스는 각형 케이스일 수 있고, 또는 내후성 고분자로 이루어진 외부 피복층, 열융착성 고분자로 이루어진 내부 실란트층, 및 상기 외부 피복층과 내부 실란트 층의 사이에 개재되는 베리어층을 포함하는 라미네이트 시트로 이루어진 파우치형 전지케이스일 수 있다. 상세하게는 베리어층이 Al인 알루미늄 라미네이트 시트로 이루어진 파우치형 전지케이스일 수 있다. The battery case may be a rectangular case or a laminate sheet comprising an outer coating layer made of a weather resistant polymer, an inner sealant layer made of a heat sealable polymer, and a barrier layer interposed between the outer coating layer and the inner sealant layer It may be a pouch-type battery case. Specifically, a pouch-shaped battery case made of an aluminum laminate sheet having a barrier layer made of Al.

본 발명은 또한, 상기 전지셀을 단위셀로 포함하는 전지팩을 제공하고, 상기 전지팩을 포함하는 디바이스를 제공한다. The present invention also provides a battery pack including the battery cell as a unit cell, and a device including the battery pack.

이러한 상기 디바이스의 구체적인 예로는, 휴대폰, 태블릿 컴퓨터, 노트북 컴퓨터, 웨어러블 전자기기 등의 소형 디바이스와, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등의 중대형 디바이스를 들 수 있으나, 이에 한정되는 것은 아니다.Specific examples of such a device include a small device such as a mobile phone, a tablet computer, a notebook computer, and a wearable electronic device; a power tool powered by an electric motor; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; Power storage systems, and the like, but are not limited thereto.

전지팩과 디바이스의 구조 등은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.The structure of the battery pack and the device are well known in the art, so a detailed description thereof will be omitted herein.

상기에서 설명한 바와 같이, 본 발명에 따른 전극조립체는, 무지부를 가열한 후 냉각 함으로써, 무지부에 주름 생성뿐만 아니라 강도 저하를 방지하여, 추후 전지셀의 안정성을 향상시키는 효과가 있다.As described above, the electrode assembly according to the present invention has the effect of improving the stability of the battery cell in the future by preventing the generation of wrinkles as well as the strength of the uncoated portion by cooling the uncoated portion after heating.

도 1은 본 발명의 하나의 실시예에 따른 단위 전극의 제조과정을 나타내는 흐름도(flow chart)이다.
도 2은 도 1의 10 과정에서 전극 시트의 표면에 활물질을 포함하는 전극 합제가 도포된 코팅층과 전극 합제가 도포되지 않은 무지부를 나타낸 모식도이다;
도 3는 도 1의 20 과정에서 무지부를 급속 가열하는 방법을 나타낸 모식도이다.
1 is a flow chart illustrating a process of manufacturing a unit electrode according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a coating layer coated with an electrode material mixture containing an active material on the surface of an electrode sheet in FIG. 1, and an uncoated portion coated with an electrode material mixture;
FIG. 3 is a schematic view showing a method of rapidly heating the non-coated portion in the process of FIG.

이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited by the scope of the present invention.

도 1은 본 발명의 하나의 실시예에 따른 단위 전극의 제조과정을 나타내는 흐름도(flow chart)이고, 도 2은 도 1의 10 과정에서 전극 시트(100)의 표면에 활물질을 포함하는 전극 합제가 도포된 코팅층(110)과 전극 합제가 도포되지 않은 무지부(120)를 나타낸 모식도이다.FIG. 1 is a flow chart showing a manufacturing process of a unit electrode according to one embodiment of the present invention. FIG. 2 is a cross-sectional view of the electrode assembly 100 including an electrode assembly 100 including an active material And a non-coated portion 120 to which an electrode mixture is not applied.

우선, 도 1을 참조하면, 전극 시트(100)의 표면에 전극 합제가 도포된 코팅층(110)과 전극 합제가 도포되지 않은 무지부(120)가 존재한다. 무지부(120)는 전극 시트(100)의 길이방향에 수직인 폭방향에서 전극 시트(100)의 일측 단부에 위치한다. 무지부(120)는 전극 시트(100)의 폭(W)을 기준으로 3% 내지 30%의 크기로 형성되어 있다.Referring to FIG. 1, a coating layer 110 coated with an electrode mixture and an uncoated portion 120 coated with an electrode mixture are present on the surface of the electrode sheet 100. The non-coated portion 120 is positioned at one end of the electrode sheet 100 in the width direction perpendicular to the longitudinal direction of the electrode sheet 100. [ The non-coated portion 120 is formed to have a size of 3% to 30% based on the width W of the electrode sheet 100.

도 3는 도 1의 20 과정에서 무지부(120)를 전극 시트의 변태점까지 가열하는 방법을 나타낸 모식도이다.3 is a schematic view showing a method of heating the non-coated portion 120 to the transformation point of the electrode sheet in the process of FIG.

도 3를 참조하면, 도 1의 10 과정을 마친 전극 시트(100)는 롤러(300)를 포함하는 이송장치(도시하지 않음)의해 도 2의 20과정으로 이송되고, 무지부(120)의 상면과 하면이 레이저(210, 211)에 조사되어 급속 가열된다. 3, the electrode sheet 100 having been subjected to the process 10 of FIG. 1 is transferred to the process 20 of FIG. 2 by a transfer device (not shown) including the roller 300, And the lower surface thereof are irradiated to the laser 210 and 211 and rapidly heated.

이때, 급속 가열은 약 10 초 미만 동안 수행되고, 사용된 레이저는 파장이 약 0.6 내지 11 ㎛ 인 레이저이다. 이러한 가열에 의해, 무지부는 약 섭씨 550 도까지 가열된다.At this time, the rapid heating is performed for less than about 10 seconds, and the laser used is a laser having a wavelength of about 0.6 to 11 mu m. By this heating, the solid portion is heated to about 550 degrees centigrade.

도 1의 20 과정을 마친 전극 시트(100)는 금속 풀림 현상에 의해 무지부(120)에 잔류된 국소 응력이 해소되도록 저속으로 냉각된다. 이러한 저속 냉각은 40 과정으로 이송되는 사이에 약 10 초 동안 공냉식으로 수행된다. The electrode sheet 100 having been subjected to the process 20 of FIG. 1 is cooled at a low speed so as to eliminate the local stress remaining in the non-coated portion 120 by the metal releasing phenomenon. This slow cooling is performed air-cooled for about 10 seconds between deliveries to the 40 process.

도 1의 30 과정을 마친 전극 시트(100)은 무지부를 절취하여 전극 탭을 형성하게 된다.
The electrode sheet 100 after step 30 of FIG. 1 is cut to form an electrode tab.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (22)

집전체의 표면에 전극 합제가 도포된 코팅층과 전극 합제가 도포되지 않은 무지부를 포함하는 단위전극을 제조하는 방법으로서,
(a) 집전체용 전극 시트의 일측 단부에 무지부가 위치하도록 전극 활물질을 포함하는 전극 합제를 전극 시트의 표면에 도포하여 코팅층을 형성하는 과정;
(b) 상기 무지부를 전극 시트의 변태점까지 가열하는 과정;
(c) 상기 가열된 무지부를 냉각하는 과정; 및
(d) 상기 냉각된 무지부를 절취하여 전극 탭을 형성하는 과정;
을 포함하는 것을 특징으로 하는 단위전극의 제조방법.
A method for manufacturing a unit electrode comprising a coating layer coated with an electrode mixture on a surface of a current collector and an uncoated portion coated with an electrode mixture,
(a) forming a coating layer by applying an electrode mixture containing an electrode active material on the surface of an electrode sheet so that the unoccupied portion is located at one end of the current collector electrode sheet;
(b) heating the non-coated portion to the transformation point of the electrode sheet;
(c) cooling the heated uncoated portion; And
(d) cutting the cooled uncoated portion to form an electrode tab;
And forming a unit electrode on the substrate.
제 1 항에 있어서, 상기 전극 시트는 알루미늄 또는 구리로 이루어진 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein the electrode sheet is made of aluminum or copper. 제 1 항에 있어서, 상기 전극 활물질은 양극 활물질 또는 음극 활물질인 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein the electrode active material is a cathode active material or a cathode active material. 제 1 항에 있어서, 상기 과정(a)에서 무지부는 전극 시트의 길이방향에 수직인 폭방향에서 전극 시트의 일측 단부 또는 양측 단부들에 위치하는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein in the step (a), the non-coated portion is located at one end or both ends of the electrode sheet in the width direction perpendicular to the longitudinal direction of the electrode sheet. 제 4 항에 있어서, 상기 무지부는 전극 시트의 폭을 기준으로 3% 내지 30%의 크기로 형성되어 있는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 4, wherein the non-coated portion is formed to have a size of 3% to 30% based on the width of the electrode sheet. 제 1 항에 있어서, 상기 과정(b)에서 무지부에 레이저를 조사하여 급속 가열하는 것을 특징으로 하는 단위전극의 제조방법.The method of manufacturing a unit electrode according to claim 1, wherein in step (b), a laser is irradiated to the non-coated area to rapidly heat the uncoated area. 제 6 항에 있어서, 상기 급속 가열은 0.1 내지 10 초 동안 수행되는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 6, wherein the rapid heating is performed for 0.1 to 10 seconds. 제 6 항에 있어서, 상기 레이저의 파장은 0.6 내지 11 ㎛ 인 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 6, wherein a wavelength of the laser is 0.6 to 11 탆. 제 1 항에 있어서, 상기 과정(b)에서 무지부는 350 내지 550도까지 가열되는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein in the step (b), the non-coated portion is heated to 350 to 550 degrees. 제 1 항에 있어서, 상기 과정(c)에서 무지부는 섭씨20 내지 40도까지 냉각되는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein in step (c), the non-coated part is cooled to 20 to 40 degrees Celsius. 제 1 항에 있어서, 상기 과정(c)에서 금속 풀림(annealing) 현상에 의해 무지부에 잔류된 국소 응력이 해소되는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein the local stress remaining in the uncoated portion is removed by metal annealing in the step (c). 제 1 항에 있어서, 상기 과정(c)는 과정(b)와 과정(d) 사이에서 공냉으로 진행되는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein the step (c) is performed by air cooling between steps (b) and (d). 제 1 항에 있어서, 상기 과정(c)은 10 내지 60 초 동안 수행되는 것을 특징으로 하는 단위전극의 제조방법.The method according to claim 1, wherein the step (c) is performed for 10 to 60 seconds. 제 1 항 내지 제 13 항 중 어느 하나에 따른 단위전극을 둘 이상 포함하는 것을 특징으로 하는 전극조립체.An electrode assembly comprising at least two unit electrodes according to any one of claims 1 to 13. 제 14 항에 있어서, 상기 전극조립체는 둘 이상의 단위전극들이 분리막이 개재된 상태로 접합되어 있는 단위셀을 둘 이상 포함하고 있는 것을 특징으로 하는 전극조립체.15. The electrode assembly according to claim 14, wherein the electrode assembly includes two or more unit cells each having two or more unit electrodes joined together with a separator interposed therebetween. 제 15 항에 있어서, 상기 단위셀들은 동일한 극성의 전극이 단위셀의 양단에 위치한 바이셀(bicell), 및/또는 상이한 극성의 전극이 단위셀의 양단에 위치한 풀셀(full cell)인 것을 특징으로 하는 전극조립체.[16] The method of claim 15, wherein the unit cells are bicells having electrodes of the same polarity positioned at both ends of the unit cells, and / or full cells having electrodes of different polarity located at both ends of the unit cells. . 제 15 항에 있어서, 상기 단위셀들은 분리막이 개재된 상태로 적층되어 있는 것을 특징으로 하는 전극조립체.The electrode assembly according to claim 15, wherein the unit cells are stacked with a separator interposed therebetween. 제 15 항에 있어서, 상기 단위셀들은 분리 시트에 의해 권취되어 있는 것을 특징으로 하는 전극조립체.The electrode assembly according to claim 15, wherein the unit cells are wound by a separation sheet. 제 14 항에 따른 전극조립체가 전지케이스에 내장되어 있는 것을 특징으로 하는 전지셀.The battery cell according to claim 14, wherein the electrode assembly is embedded in a battery case. 제 19 항에 있어서, 상기 전지케이스는 파우치형 케이스 또는 각형 케이스인 것을 특징으로 하는 전지셀.The battery cell according to claim 19, wherein the battery case is a pouch type case or a rectangular case. 제 19 항에 따른 전지셀를 포함하는 것을 특징으로 하는 디바이스.A device comprising a battery cell according to claim 19. 제 21 항에 있어서, 상기 디바이스는 휴대폰, 태블릿 컴퓨터, 노트북 컴퓨터, 파워 툴, 웨어러블 전자기기, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장 장치로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 디바이스.22. The device of claim 21, wherein the device is any one selected from the group consisting of a cell phone, a tablet computer, a notebook computer, a power tool, a wearable electronic device, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, . &Lt; / RTI &gt;
KR1020140143890A 2014-10-23 2014-10-23 Method of Preparing Unit Electrodes KR101754132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140143890A KR101754132B1 (en) 2014-10-23 2014-10-23 Method of Preparing Unit Electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140143890A KR101754132B1 (en) 2014-10-23 2014-10-23 Method of Preparing Unit Electrodes

Publications (2)

Publication Number Publication Date
KR20160047693A true KR20160047693A (en) 2016-05-03
KR101754132B1 KR101754132B1 (en) 2017-07-05

Family

ID=56022402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140143890A KR101754132B1 (en) 2014-10-23 2014-10-23 Method of Preparing Unit Electrodes

Country Status (1)

Country Link
KR (1) KR101754132B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025185A (en) * 2016-07-06 2016-10-12 广东亿鑫丰智能装备股份有限公司 Battery pole piece coating method
DE102016224487A1 (en) 2016-04-19 2017-10-19 Hyundai Motor Company Ladestationsleitvorrichtung and method
US20200156128A1 (en) * 2018-11-20 2020-05-21 Lg Chem, Ltd. Electrode Rolling Apparatus Having Heating Unit for Heating Non-Coated Portion and Electrode Manufacturing System Comprising the Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041717A (en) * 2011-08-12 2013-02-28 Honda Motor Co Ltd Manufacturing method and apparatus of metal support electrolyte/electrode assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224487A1 (en) 2016-04-19 2017-10-19 Hyundai Motor Company Ladestationsleitvorrichtung and method
CN106025185A (en) * 2016-07-06 2016-10-12 广东亿鑫丰智能装备股份有限公司 Battery pole piece coating method
US20200156128A1 (en) * 2018-11-20 2020-05-21 Lg Chem, Ltd. Electrode Rolling Apparatus Having Heating Unit for Heating Non-Coated Portion and Electrode Manufacturing System Comprising the Same
US11103905B2 (en) * 2018-11-20 2021-08-31 Lg Chem, Ltd. Electrode rolling apparatus having heating unit for heating non-coated portion and electrode manufacturing system comprising the same

Also Published As

Publication number Publication date
KR101754132B1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US11081682B2 (en) Fabricating method of electrode assembly and electrochemical cell containing the same
US10516185B2 (en) Electrode assembly and electrochemical cell containing the same
EP3154114B1 (en) Electrode assembly, fabricating method of the electrode assembly and electrochemical cell containing the electrode assembly
EP2757625B1 (en) Method for manufacturing electrode assembly and electrochemical device
KR101431278B1 (en) Secondary battery having enhanced uniformity of temperature distribution
KR102143558B1 (en) Electrode assembly and the manufacturing method
US20180205043A1 (en) Cable-type secondary battery and method for manufacturing the same
US20220149422A1 (en) Folding type electrode assembly and method of manufacturing the same
KR101754132B1 (en) Method of Preparing Unit Electrodes
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
KR20140012601A (en) Secondary battery and electrochemical cell having the same
CN108335915B (en) Method of manufacturing electrode assembly and electrochemical cell including the same
KR100995544B1 (en) Battery case and pouch type secondary battery using the same
KR102025564B1 (en) Electrode Assembly Comprising Unit Cell Sandwiched between Battery Elements
KR20140022531A (en) Electrode assembly and fabricating method of electrochemical cell containing the electrode assembly, electrochemical cell
KR101420060B1 (en) Sealing tool for pouch case and manufacturing methode of pouch-type secondary battery
KR102197360B1 (en) Electrode Assembly Comprising One-sided Coating Electrode of Improved Mechanical Strength
CN108370057B (en) Electrode assembly manufacturing method and electrochemical device using electrode assembly manufactured by the manufacturing method
KR102021766B1 (en) Electrode Assembly Comprising Separators Having Different Thicknesses
KR101717643B1 (en) Electrode Assembly for Secondary Battery and Secondary Battery having the same
KR101551999B1 (en) Secondary battery and fabricating method of the same, and cell moudle with the same
KR20140034340A (en) Electrode assembly and electrochemical cell containing the same, and cell moudle with the same
EP4216329A1 (en) Method for manufacturing electrode assembly and apparatus for manufacturing same
WO2023127726A1 (en) Secondary battery
KR102373583B1 (en) Pouch type secondary cell

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)