KR20160044695A - Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same - Google Patents

Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same Download PDF

Info

Publication number
KR20160044695A
KR20160044695A KR1020140139248A KR20140139248A KR20160044695A KR 20160044695 A KR20160044695 A KR 20160044695A KR 1020140139248 A KR1020140139248 A KR 1020140139248A KR 20140139248 A KR20140139248 A KR 20140139248A KR 20160044695 A KR20160044695 A KR 20160044695A
Authority
KR
South Korea
Prior art keywords
coli
seq
genetic information
carrying
acyl
Prior art date
Application number
KR1020140139248A
Other languages
Korean (ko)
Other versions
KR101701820B1 (en
Inventor
윤현식
박혜민
김세경
도경희
정수연
이선희
이진원
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020140139248A priority Critical patent/KR101701820B1/en
Publication of KR20160044695A publication Critical patent/KR20160044695A/en
Application granted granted Critical
Publication of KR101701820B1 publication Critical patent/KR101701820B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to recombinant E. coli producing, among unsaturated fatty acids, cis-vaccenic acid; and to a method for producing unsaturated fatty acids using the same. The recombinant E. coli producing unsaturated fatty acids according to the present invention constructs a system co-expressing 5 genes, i.e., accA, accB, accC, accD, fabD, and fabD located in one plasmid; 3 genes, i.e., fabB, fabF, and fabA, located in one plasmid; and tesA located in one plasmid. Also, the four recombinant plasmids are introduced into the recombinant E. coli (BL21(DE3) ΔfadD), which is a host strain having alleviated fatty acid reduction by removing fadD in a beta-oxidation step of fatty acid synthesis, and causes simultaneous transformation leading to a co-expression of 13 genes. In addition, when fatty acids are prepared by culturing the recombinant E. coli at a low temperature, the ratio and quantity of vaccenic acid, among unsaturated fatty acids, are greatly increased, so the unsaturated fatty acids can be effectively produced.

Description

불포화 지방산을 생산하는 재조합 대장균, 및 이를 이용한 불포화 지방산의 제조방법{Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same}TECHNICAL FIELD The present invention relates to a recombinant E. coli producing an unsaturated fatty acid and a method for producing the unsaturated fatty acid using the same,

본 발명은 불포화 지방산 중 cis-박센산(cis-vaccenic acid)을 생산하는 재조합 대장균, 및 이를 이용한 불포화 지방산의 제조방법에 관한 것이다.
The invention of the unsaturated fatty acid cis - relates to a recombinant Escherichia coli, and a method for producing unsaturated fatty acids using the same to produce a foil sensan (cis -vaccenic acid).

현재 세계 시장의 고성장은 에너지의 사용 증가를 바탕으로 이루어지고 있다. 석유 에너지의 고갈로 인한 유가 상승의 고공행진이 이루어지면서, 이를 대체할 에너지의 개발이 시급한 실정이다. 이를 위해 태양력이나 풍력 같은 자연 에너지 개발에 관심이 모아지고 있지만, 에너지 밀도가 낮고 간헐적으로 밖에 사용할 수 없다는 등의 단점이 있어 보급에 많은 제약이 따르고 있다. 또한, 연료의 대부분을 수입에 의존하고 있는 국내 에너지 시장의 유가는 2011년에 전년대비 36% 상승으로 분석되었으며(한국석유공사 보도자료 참고), 신흥국의 지속적인 수요증대에 따라 고유가 수준을 유지할 전망이라고 분석하였다. 특히, 국제 유가는 서민 생활물가에 바로 영향을 주기 때문에 석유 의존도가 낮은 새로운 대체에너지 생산이 필수적이다.At present, the rapid growth of the global market is based on increased use of energy. It is urgent to develop energy to replace oil as energy prices are rising due to the depletion of oil energy. For this purpose, interest in development of natural energy such as solar power or wind power is gaining attention. However, there are disadvantages such as low energy density and intermittent use, and thus there are many restrictions on the supply. In addition, oil prices in the domestic energy market, which relies heavily on imports of fuels, are expected to rise by 36% YoY in 2011 (see KNOC's press release). Respectively. In particular, since international oil prices directly affect the price of ordinary people's lives, it is essential to produce new alternative energy with low dependence on oil.

대체에너지로서 가장 각광받는 것이 바이오연료(biofuel)인데, 이는 살아있는 바이오매스(biomass)로부터 유기체뿐만 아니라 대사활동에 의한 부산물을 포함하는 생산물을 이용한 신재생에너지의 종류이다. 바이오연료의 대표적인 예로는 현재 수송연료로 사용이 되고 있는 바이오에탄올(bioethanol), 바이오디젤(biodiesel), 메탄올(methanol), 바이오가스(biogas) 및 고형연료 등이 있으며, 이들 모두 전력생산이나 수송연료로서의 가능성이 있다.One of the most popular alternative energy sources is biofuel, a kind of renewable energy that uses biomass to produce not only organisms but also by-products from metabolism. Typical examples of biofuels are bioethanol, biodiesel, methanol, biogas, and solid fuels, which are currently used as transportation fuels. As shown in FIG.

바이오디젤은 하기와 같은 구조로 표시되는 화학적으로 긴 지방산 고리를 가진 단일 알킬에스터(alkyl ester) 혼합물이다. 바이오디젤은 경유와 매우 비슷한 물리적 특성 때문에, 현재 사용되는 내연기관의 교체없이 사용할 수 있는 장점이 있다. 또한 기존시설을 통해 운반, 판매가 가능하여 운송연료의 대표적인 대체에너지로 꼽히고 있다. 바이오디젤의 품질은 원료에 따라 결정이 되는데, 포화지방산이 많이 함유된 경우에는 상대적인 산화안정성은 우수하지만 겨울철에 저온유동성이 나쁜 단점이 있다. 반면 불포화지방산이 많은 경우에는 저온유동성이 좋지만 이중결합의 수가 많을 경우 산화안정성이 떨어지는 단점이 있다. 따라서, 가장 안정적인 원료는 올레인산(oleic acid, octadecenoic acid, C18 : 1Δ9)의 함량이 60%가 넘는 바이오디젤로 알려져 있다.Biodiesel is a single alkyl ester mixture with a chemically long fatty acid ring represented by the structure: Because biodiesel is very similar to light oil, it has the advantage of being able to be used without replacing the current internal combustion engine. It can be transported and sold through existing facilities and is considered as a representative alternative energy for transportation fuel. The quality of biodiesel is determined according to the raw material. In the case of containing a large amount of saturated fatty acid, the oxidation stability of the biodiesel is excellent, but the low temperature fluidity is poor in winter. On the other hand, when there are many unsaturated fatty acids, the low temperature fluidity is good, but when the number of double bonds is large, the oxidation stability is low. Accordingly, the most stable raw materials are oleic acid: is known as biodiesel content is more than 60% of the (oleic acid, octadecenoic acid, C18 1Δ 9).

Figure pat00001
Figure pat00001

식물성 바이오디젤의 지방산 조성비율 및 식물유지로부터 제조한 바이오디젤의 물리적 특성에 대해 각각 하기 표 1 및 표 2에 나타내었다.The fatty acid composition ratios of the plant biodiesel and the physical properties of the biodiesel produced from the plant fat are shown in Tables 1 and 2, respectively.

바이오디젤 조성Biodiesel composition 원료Raw material C16:0C16: 0 C16:1C16: 1 C18:0C18: 0 C18:1C18: 1 C18:2C18: 2 C18:3C18: 3 팜유palm oil 42.642.6 0.30.3 4.44.4 40.540.5 10.110.1 0.20.2 대두유Soybean oil 13.913.9 0.30.3 2.12.1 23.223.2 56.256.2 4.34.3 유채씨유Rapeseed oil 3.53.5 00 0.90.9 64.164.1 22.322.3 8.28.2

동점도
(40, mm2/s)
Kinematic viscosity
(40, mm 2 / s)
세탄가Cetanean 저위발열량Low calorific value 구름점
(℃)
Cloud point
(° C)
저온필터
막힘점(℃)
Low temperature filter
Clogging point (℃)
인화점
(℃)
flash point
(° C)
산화안정도 (h), 110℃Oxidation stability (h), 110 ° C
팜유palm oil 5.75.7 6262 33.533.5 1313 1212 164164 4.04.0 대두유Soybean oil 4.04.0 4545 33.533.5 1One -4-4 178178 2.12.1 유채씨유Rapeseed oil 4.44.4 54.454.4 -- -3.3-3.3 -13-13 -- 7.67.6

한편, 대장균(Escherichia coli)은 포유류들과는 다른 지방산 합성 타입(Type 2)을 이용하기 때문에 이를 통한 연구가 많이 진행되어 왔다. 지방산 합성 타입 2시스템은 개시단계와 아실기의 신장단계에서 기본적인 효소들을 가지고 있으며, 이러한 효소의 지방산 합성 단계는 도 1에 나타내었다. 대장균에 필요한 지방산은 이러한 반복적인 합성으로 생산되며, 주로 생산되는 포화지방산으로는 탄소수 16개인 팔미트 산(palmitic acid, hexadecanoic acid)과 불포화지방산으로는 탄소수 18개에 이중결합이 하나 존재하는 시스-박센산(cis-vaccenic acid, cis-11-octadecanoic acid, C18:1△11)과 팔미톨레익산 (palmitoleic acid, 9-cis-hexadecenoic acid)이 있다.On the other hand, Escherichia coli uses a different type of fatty acid synthesis (Type 2) than that of mammals, and research has been carried out through this. The fatty acid synthesis type 2 system has basic enzymes in the initiation step and the elongation step of the acyl group, and the step of synthesizing the fatty acid of such enzyme is shown in Fig. The fatty acids required for E. coli are produced by this repetitive synthesis, and the saturated fatty acids produced mainly include palmitic acid (hexadecanoic acid) having 16 carbon atoms and the cis-unsaturated fatty acid having a double bond at the carbon number of 18, there are Toledo and palmitoleic acid (palmitoleic acid, 9- cis -hexadecenoic acid ): sensan foil (1 △ 11 cis -vaccenic acid, cis -11-octadecanoic acid, C18).

대장균에 존재하는 fab(fatty acid biosynthesis) 유전자들은 지방산 합성 단계에 관여하는 효소 생산 유전자들이다. 지방산 생합성 경로는 크게 개시단계 (initiation step), 신장단계 (elongation step), 종결단계 (termination step), 베타-옥시데이션 단계 (β-oxidation step)로 구성된다. 지방산은 아세틸-CoA를 선구물질로 합성이 시작되는데 accA, accB, accC, accD(acetyl-CoA carboxylase)가 아세틸-CoA를 말로닐-CoA로 반응시키는 역할을 한다. 이 반응은 accA, accB, accC, accD가 모여 반응이 되는데, 지방산 합성이 느려 율속제한(rate-limiting)이 일어난다. 말로닐-CoA는 fabD를 거쳐 말로닐-ACP(acyl-carrier protein)가 되어 탄소수가 길어지는 신장단계에 쓰이게 된다. 특히, fabB, fabF, fabA 유전자는 신장단계에 관여하는데 β-Hydroxydecanoyl ACP dehydrase/isomerase의 정보를 가지고 있는 유전자 fabA와 KASI(β-ketoacyl-ACP(acyl-carrier-protein) synthaseI)의 정보를 가지고 있는 유전자 fabB는 불포화지방산 합성에 필수적 유전자이다. fabB와 함께 KASII(β-ketoacyl-ACP synthaseII)의 정보를 가지고 있는 유전자 fabF는 지방산 신장단계에 위치하며 지방산-ACP에 말로닐-ACP를 결합시킴으로써 지방산의 탄소수를 2개씩 늘려 지방산의 길이를 신장시키는 역할을 한다. 이 세 가지 효소는 대장균의 세포막의 주요 성분인 팔미트산, 팔미톨레익산, 박센산을 생합성하는데 직접적인 경로에 관여하는 유전자이며, 특히, 시스-박센산 생성에 핵심적인 역할을 하는 효소로서 KASII의 경우 낮은 온도에서 발현이 잘 된다는 특징이 있다. Fab (fatty acid biosynthesis) genes present in Escherichia coli are enzyme-producing genes involved in fatty acid synthesis. The fatty acid biosynthetic pathway consists largely of an initiation step, an elongation step, a termination step, and a beta-oxidation step. Acid-CoA is a precursor of fatty acids , and accA, accB, accC, and accD (acetyl-CoA carboxylase) play a role in reacting acetyl-CoA with malonyl-CoA. This reaction occurs when accA, accB, accC, accD are gathered together, resulting in slower fatty acid synthesis and rate-limiting. Malonyl -CoA is converted to maldonyl -ACP via fabD and used for the elongation step where the carbon number is increased. In particular, the fabB, fabF, and fabA genes are involved in the elongation stage and contain information on the genes fabA and KASI (β-ketoacyl-ACP (acyl-carrier-protein) synthaseI) that contain information on β-Hydroxydecanoyl ACP dehydrase / isomerase The gene fabB is an essential gene for the synthesis of unsaturated fatty acids. fabF gene that has information of the KASII (β-ketoacyl-ACP synthaseII ) with fabB is increased two by two the number of carbon atoms of the fatty acid by placing the fatty acid elongation steps, a carbonyl bond -ACP words, the fatty acid -ACP of extending the length of the fatty acid It plays a role. These three enzymes are involved in the direct pathway to biosynthesis of palmitoic acid, palmitoleic acid, and pepsic acid, which are the major constituents of E. coli cell membrane. Especially, KASII is an enzyme that plays a key role in the production of cis- And the expression is good at low temperature.

그 외에 지방산 합성 신장단계에서 관여하는 효소들(KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl-acyl carrier protein dehydratase)의 정보를 가진 유전자 fabG, fabH, fabI, fabZ이 있다.In addition, there are the genes fabG, fabH, fabI, and fabZ which have information on enzymes (KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl-acyl carrier protein dehydratase)

또한, 지방산 합성 종결단계에서 tesA 유전자는 티오에스터라아제(thioesterase I) 효소를 만들어 지방 아실-ACP를 자유지방산(free fatty acid)으로 전환하는 역할을 한다. 하지만 tesA의 경우 대장균의 주변세포질(periplasm)에 존재하여 아실-ACP가 자유지방산(free fatty acid)으로 전환하는 속도에 한계가 생긴다. In addition, at the end of fatty acid synthesis, tesA gene makes thioesterase I enzyme and converts fatty acyl-ACP to free fatty acid. However, in the case of tesA , it is present in the periplasm of E. coli and there is a limit to the rate of conversion of acyl-ACP to free fatty acid.

또한, 지방산 합성 베타-옥시데이션 (β-oxidation) 단계에서 지방산을 긴 사슬 아실-ACP로 전환하여 지방산 감소에 관여하는 효소(long-chain acyl-Coenzyme A synthetase)의 유전정보를 가진 유전자 fadD가 있다. In addition, there is a gene fadD having a genetic information of an enzyme (long-chain acyl-Coenzyme A synthetase) involved in fatty acid reduction by converting a fatty acid into long chain acyl-ACP in a fatty acid synthesis beta-oxidation step .

표 3에 대장균의 지방산 생합성 관여 효소 및 유전자 정보를 나타내었다.Table 3 shows the enzymes involved in the fatty acid biosynthesis of Escherichia coli and gene information.

유전자gene 발현 단백질Expression protein 돌연변이 경우 나타나는 표현형(phenotype) 변화Change of phenotype in case of mutation aasaas Acyl-ACP synthetaseAcyl-ACP synthetase lysophosphatidyl
ethanolamine 축적
lysophosphatidyl
ethanolamine accumulation
accAaccA Acetyl-CoA carboxylaseAcetyl-CoA carboxylase carboxyltransferase α subunitcarboxyltransferase α subunit accBaccB Acetyl-CoA carboxylaseAcetyl-CoA carboxylase BCCP subunitBCCP subunit accCaccC Acetyl-CoA carboxylaseAcetyl-CoA carboxylase biotin carboxylase subunitbiotin carboxylase subunit accDaccD Acetyl-CoA carboxylaseAcetyl-CoA carboxylase carboxyltransferase β subunitcarboxyltransferase β subunit acpPacpP ACPACP ACP structural geneACP structural gene acpSacpS ACP synthetaseACP synthetase apo-ACP 축적apo-ACP accumulation cfacfa Cyclopropane fatty acid synthaseCyclopropane fatty acid synthase cells lack cyclopropane fatty acidscells lack cyclopropane fatty acids fabAfabA β-Hydroxydecanoyl ACP
dehydrase/isomerase
β-Hydroxydecanoyl ACP
dehydrase / isomerase
불포화지방산 자가영양 (unsaturated fatty acid auxotroph)Unsaturated fatty acid auxotroph
fabAupfabAup -- 포화지방산(saturated fatty acid) 과생산Saturated fatty acid and production fabBfabB β-Ketoacyl-ACP synthase Ⅰβ-Ketoacyl-ACP synthase I 불포화지방산 자가영양(unsaturated fatty acid auxotroph)Unsaturated fatty acid auxotroph fabDfabD Malonyl-CoA:ACP transacylaseMalonyl-CoA: ACP transacylase 온도에 따라 포화지방산, 불포화지방산의 자가영양(auxotroph) 필요Saturated fatty acids and auxotrophs of unsaturated fatty acids are required depending on temperature fabEfabE Acetyl-CoA carboxylaseAcetyl-CoA carboxylase -- fabFfabF β-Ketoacyl-ACP synthase Ⅱβ-Ketoacyl-ACP synthase II 온도에 따라 조절Controlled by temperature fabGfabG β-Ketoacyl-ACP synthaseβ-Ketoacyl-ACP synthase -- fabHfabH β-Ketoacyl-ACP synthase Ⅲβ-Ketoacyl-ACP synthase Ⅲ -- fabIfabi Enoyl-ACP reductaseEnoyl-ACP reductase -- fabZfabZ 3-hydroxyacyl-ACP dehydratase3-hydroxyacyl-ACP dehydratase -- fadDfadD Long-chain acyl-CoA synthetaseLong-chain acyl-CoA synthetase -- fadRfadR Transcriptional regulator of fabA Transcriptional regulator of fabA -- fatAfatA trans불포화지방산의 이용Use of trans unsaturated fatty acids lpxAlpxA UDP-Glc-NAc acyltransferaseUDP-Glc-NAc acyltransferase 지질 A(lipid A) 축적Lipid A accumulation orf-17orf-17 Putative dehydrasePutative dehydrase -- plsBplsB sn-Glycerol-3-phosphate acyltransferase sn -Glycerol-3-phosphate acyltransferase glycerol-3-phosphate 자가영양glycerol-3-phosphate self-nutrition plsCplsC 1-Acylglycerol phosphaste acyltransferase1-Acylglycerol phosphaste acyltransferase -- plsXplsX UnknownUnknown PlsB- 표현형에 필요PlsB - required for phenotype tesAtesA Thioesterase ⅠThioesterase I 효소활성 결핍Enzymatic deficiency tesBtesB Thioesterase ⅡThioesterase II 효소활성 결핍Enzymatic deficiency

상기와 같이, 화석연료의 대체 에너지로서 바이오디젤로 변환이 가능한 지방산에 대한 관심이 점점 증대되고 있으며, 이로 인해 지방산을 생합성하는 대장균에 대한 관심도 증대되고 있다. 현재의 바이오디젤은 식물성 유지를 이용하여 만들어지고 있다. 불포화지방산 함유량이 많은 바이오디젤의 경우, 낮은 온도에서도 잘 얼지 않는다는 장점이 있다. 예로 유채씨유를 이용한 바이오디젤의 경우, 64%가 넘는 올레익산 함유를 가지고 있어 다른 바이오디젤보다 더 낮은 온도에서 언다. 하지만, 식물성 유지의 경우 식량과 관계하여 곡물가 상승과 농경지 부족, 토지가격 상승 등의 문제가 있어 미생물을 이용한 에너지 생성이 주목받고 있다. 미생물의 경우 세포막을 구성하는 지방 형태로 지방산을 생합성 하고 있으며, 이에 따라 유전자 조작이 가능한 대장균에 대한 관심도 증대하여, 이에 관한 연구가 진행되고 있다. As described above, interest in fatty acids that can be converted into biodiesel as alternative energy for fossil fuels is increasing, and interest in E. coli biosynthesizing fatty acids is also increasing. The current biodiesel is made using vegetable oil. In the case of biodiesel containing a large amount of unsaturated fatty acids, it has the advantage of not freezing at low temperatures. For example, in the case of biodiesel using rapeseed oil, it has an oleic acid content of more than 64%, which is lower than other biodiesel. However, in the case of vegetable oil, energy production using microorganisms has been attracting attention due to problems such as a rise in grain prices, a shortage of agricultural land, and an increase in land price. In the case of microorganisms, the fatty acid is biosynthesized as a fat form constituting the cell membrane. Accordingly, interest in E. coli that can be genetically manipulated has been increased, and studies on this have been made.

따라서, 신재생에너지 개발의 일환으로 바이오디젤로 전환하였을 때 물리적 특성이 유리한 불포화 지방산의 조성을 높일 수 있는 균주의 개발의 필요성이 절실히 요구되고 있다.Therefore, there is an urgent need to develop a strain capable of increasing the composition of unsaturated fatty acid, which is advantageous in physical properties when converted to biodiesel as part of the development of new and renewable energy.

이러한 요구에 따라, 본 발명자들은 불포화 지방산의 생산성을 향상시킨 신규한 균주를 개발하고자 하였다.In accordance with this demand, the present inventors have sought to develop a novel strain that improves the productivity of unsaturated fatty acids.

앞서 본 발명자들은 불포화 지방산 중 박센산(cis-vaccenic acid)을 생산하는 신규한 재조합 대장균을 개발한 바 있다.
The present inventors have previously developed a novel recombinant Escherichia coli which produces cis- vicenic acid among unsaturated fatty acids.

본 발명의 배경이 되는 기술로, 본 발명자들은 대한민국 등록특허 제10-1402108호(2014년05월26일)에서 불포화 지방산 중 박센산(cis-vaccenic acid)을 생산하는 재조합 대장균 및 이를 이용한 지방산의 제조방법에 대해 개시한 바가 있고, 대한민국 등록특허 제10-1275090호(2013년06월10일)에서 지방산을 생산하는 재조합 대장균, 및 이를 이용한 지방산의 제조방법에 대해 개시한 바 있다.As a background of the present invention, the present inventors have found that recombinant Escherichia coli producing cis- valencenic acid among unsaturated fatty acids and fatty acids using the same in Korean Patent No. 10-1402108 (May 26, 2014) And Korean Patent No. 10-1275090 (Jun. 10, 2013) discloses a recombinant Escherichia coli producing a fatty acid and a method for producing a fatty acid using the recombinant Escherichia coli.

또한, 본 발명은 대한민국 등록특허 제10-1390327 호(2014년04월23일) 및 대한민국 공개특허 제10-2014-0010475호(2014년01월27일)의 제조방법에 개시된 벡터를 이용하였다.
In addition, the present invention uses the vector disclosed in Korean Patent No. 10-1390327 (Apr. 23, 2014) and Korean Patent Publication No. 10-2014-0010475 (Jan. 27, 2014).

본 명세서 전체에 걸쳐 다수의 인용문헌 및 특허 문헌이 참조되고 그 인용이 표시되어 있다. 인용된 문헌 및 특허의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous cited documents and patent documents are referred to and cited throughout this specification. The disclosures of the cited documents and patents are incorporated herein by reference in their entirety to more clearly describe the state of the art to which the present invention pertains and the content of the present invention.

대한민국 등록특허 제10-1402108호(2014년05월26일)Korean Patent No. 10-1402108 (May 26, 2014) 대한민국 등록특허 제10-1275090호(2013년06월10일)Korean Patent No. 10-1275090 (June 10, 2013) 대한민국 등록특허 제10-1390327호(2014년04월23일)Korean Patent No. 10-1390327 (Apr. 23, 2014) 대한민국 공개특허 제10-2014-0010475호(2014년01월27일)Korean Patent Publication No. 10-2014-0010475 (Jan. 27, 2014)

본 발명자들은 불포화 지방산의 조성을 높일 수 있는 균주를 개발하고자 예의 노력하였다. 그 결과, 지방산 합성 개시단계에 위치하여 아세틸-CoA를 말로닐-CoA로 반응시키는 효소(ACC, Acetyl-CoA carboxylase)의 정보를 가진 accA, accB, accC, accD, 말로닐-CoA를 말로닐-ACP로 합성하는 효소 (FabD)의 정보를 가진 fabD와 지방산 신장단계에서 탄소 사슬의 신장과 지방산 생성 마지막 단계에 작용하는 효소(KASI, KASII)의 정보를 가진 두 개의 유전자 fabB, fabF와 KASI와 함께 불포화지방산 생성 단계에 관여하는 효소(β-Hydroxydecanoyl ACP dehydrase/isomerase)의 정보를 가진 유전자 fabA, 그 외 지방산 합성 신장단계에서 관여하는 효소(KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl-acyl carrier protein dehydratase)의 정보를 가진 유전자 fabG, fabH, fabI, fabZ와 지방산 합성 종결단계에서 티오에스터라제I(thioesteraseI) 정보를 가지며 선도서열을 제거하여 주변세포질(periplasm)이 아닌 세포질에 존재하게 변형시킨 유전자 `tesA의 염기서열을 포함하는 재조합 플라스미드를 제조하였다. 또한, 지방산 합성 베타-옥시데이션(β-oxidation) 단계에서 지방산 감소에 관여하는 효소(FadD)의 정보를 가진 유전자 fadD를 제거한 숙주 대장균을 제조하여, 상기 재조합 플라스미드를 숙주 대장균에 형질도입시켜 형질전환된 재조합 대장균을 제조하였다. 상기 재조합 대장균을 저온에서 배양하고 이로부터 지방산 추출하여 불포화지방산 중 시스-박센산(cis-vaccenic acid)의 비율이 크게 늘어남을 확인함으로써 본 발명을 완성하였다.The present inventors have made efforts to develop a strain capable of increasing the composition of unsaturated fatty acids. As a result, accA, accB, accC, accD , malonyl-CoA having the information of an enzyme (ACC, Acetyl-CoA carboxylase) which is located at the beginning of fatty acid synthesis and reacted with malonyl- FabD with information of enzyme (FabD) synthesized by ACP and two genes fabB , fabF and KASI with information of enzymes (KASI, KASII) acting at the last stage of carbon chain elongation and fatty acid production in fatty acid elongation step The enzymes involved in the production of unsaturated fatty acids (β-Hydroxydecanoyl ACP dehydrase / isomerase), fabA , and other enzymes involved in fatty acid synthesis (KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl gene with the information of -acyl carrier protein dehydratase) fabG, fabH , fabI, fabZ thio S. atmospheres in the fatty acid synthesis terminating stage having a first I (thioesteraseI) information to remove the leader sequence and not the periplasmic (periplasm) Gene was present on the modified pojil prepare a recombinant plasmid containing the nucleotide sequence of `tesA. In addition, a host E. coli having the gene fadD having the information of the enzyme (FadD) involved in fatty acid reduction in the fatty acid synthesis beta-oxidation step is prepared, and the recombinant plasmid is introduced into the host E. coli, To prepare recombinant E. coli. The recombinant Escherichia coli was cultured at a low temperature and fatty acid extraction was performed to confirm that the ratio of cis- valencenic acid in unsaturated fatty acids was greatly increased, thereby completing the present invention.

따라서, 본 발명의 목적은 불포화 지방산 중 시스-박센산(cis-vaccenic acid)을 생산하는 재조합 대장균을 제공하는 데 있다Accordingly, an object of the present invention is to provide a recombinant Escherichia coli which produces cis- vulcanic acid in unsaturated fatty acids

또한, 본 발명의 다른 목적은 불포화 지방산의 제조방법을 제공하는 데 있다.
Another object of the present invention is to provide a process for producing an unsaturated fatty acid.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 양태에 따르면, 본 발명은 E. coli K-12 MG1655의 카복실트렌스퍼라제 알파-유닛(CT-α, carboxyltransferase α-unit)의 유전정보를 보유한 뉴클레오티드(accA, 서열번호 1); E. coli K-12 MG1655의 비오틴 카복실 캐리어 단백질(BCCP, biotin carboxyl carrier protein)의 유전정보를 보유한 뉴클레오티드(accB, 서열번호 2); E. coli K-12 MG1655의 비오틴 카복실라제(BC, biotin carboxylase)의 유전정보를 보유한 뉴클레오티드(accC, 서열번호 3); E. coli K-12 MG1655의 카복실트랜스퍼라제 베타-유닛(CT-β, carboxyltransferase β-unit)의 유전정보를 보유한 뉴클레오티드(accD, 서열번호 4); E. coli K-12 MG1655의 말로닐-코엔자임에이:아실 운반 단백질 트랜스아실레이즈 (Malonyl-Coenzyme A:acyl carrier protein transacylase)의 유전정보를 보유한 뉴클레오티드 (fabD, 서열번호 5); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소II (KASII, β-keto acyl-acyl carrier protein synthaseII)의 유전정보를 보유한 뉴클레오티드 (fabF, 서열번호 6); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소I (KASI, β-keto acyl-acyl carrier protein synthaseI)의 유전정보를 보유한 뉴클레오티드 (fabB, 서열번호 7); E. coli K-12 MG1655의 베타-하이드록시 데카노일 사이오에스터 디하이드레이즈/아이소머레이즈 (β-hydroxy decanoyl thioester dehydrase/isomerase)의 유전정보를 보유한 뉴클레오티드 (fabA, 서열번호 8); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소 (KAS, β-keto acyl-acyl carrier protein synthase)의 유전정보를 보유한 뉴클레오티드 (fabG, 서열번호 9); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소III (KASIII, β-keto acyl-acyl carrier protein synthaseIII)의 유전정보를 보유한 뉴클레오티드 (fabH, 서열번호 10); E. coli K-12 MG1655의 엔오일-아실 운반 단백질 환원효소 (enoyl-acyl carrier protein reductase)의 유전정보를 보유한 뉴클레오티드 (fabI, 서열번호 11); E. coli K-12 MG1655의 3-하이드록시 아실-아실 운반 단백질 탈수효소 (3-hydroxy acyl-acyl carrier protein dehydratase)의 유전정보를 보유한 뉴클레오티드 (fabZ, 서열번호 12); 및 E. coli K-12 MG1655의 티오에스터라제I (thioesteraseI)에서 선도서열을 제거하여 주변세포질 (periplasm)이 아닌 세포질에 존재하게 변형시킨 유전정보를 보유한 뉴클레오티드 ('tesA, 서열번호 13);로 이루어진 군으로부터 선택되는 1종 이상의 뉴클레오티드를 포함하는 재조합 플라스미드로 숙주 대장균을 형질전환시킨 형질전환체인, 불포화 지방산을 생산하는 재조합 대장균을 제공한다.According to one aspect of the present invention, the present invention provides a nucleotide ( accA , SEQ ID NO: 1) carrying the genetic information of a carboxyl-transferase alpha-unit (CT-alpha) of E. coli K-12 MG1655; A nucleotide ( accB , SEQ ID NO: 2) carrying the genetic information of the biotin carboxyl carrier protein (BCCP) of E. coli K-12 MG1655; A nucleotide ( accC , SEQ ID NO: 3) carrying the genetic information of biotin carboxylase of E. coli K-12 MG1655; A nucleotide ( accD , SEQ ID NO: 4) carrying the genetic information of a carboxyl-transferase beta-unit (CT-beta) of E. coli K-12 MG1655; Of E. coli K-12 MG1655 Nucleotides ( fabD , SEQ ID NO: 5) carrying the genetic information of malonyl-coenzyme A: malonyl-Coenzyme A (acyl carrier protein transacylase); Nucleotides ( fabF , SEQ ID NO: 6) carrying the genetic information of beta-ketoacyl-acyl carrier protein synthase II (KASII, β-keto acyl-acyl carrier protein synthase II) of E. coli K-12 MG1655; Nucleotides ( fabB , SEQ ID NO: 7) carrying the genetic information of beta-ketoacyl-acyl carrier protein synthase I (KASI, β-keto acyl-acyl carrier protein synthase I) of E. coli K-12 MG1655; Nucleotides ( fabA , SEQ ID NO: 8) carrying the genetic information of β-hydroxy decanoyl thioester dehydrase / isomerase of β-hydroxydecanoyl thioesterase / isomerase of E. coli K-12 MG1655; Nucleotides ( fabG , SEQ ID NO: 9) carrying the genetic information of the beta-keto acyl-acyl carrier protein synthase (KAS) of E. coli K-12 MG1655; Nucleotides ( fabH , SEQ ID NO: 10) carrying the genetic information of beta-ketoacyl-acyl transferase protein synthetase III (KASIII, β-keto acyl-acyl carrier protein synthase III) of E. coli K-12 MG1655; A nucleotide having a genetic information of an enoyl-acyl carrier protein reductase of E. coli K-12 MG1655 ( fabI , SEQ ID NO: 11); Nucleotides ( fabZ , SEQ ID NO: 12) carrying the genetic information of 3-hydroxyacyl-acyl carrier protein dehydratase of E. coli K-12 MG1655; And a nucleotide ( 'tesA, SEQ ID NO: 13) with genetic information modified to exist in the cytoplasm rather than the periplasm by removing the leader sequence from the thioesterase I of E. coli K-12 MG1655; , Which is a transformant obtained by transforming a host E. coli with a recombinant plasmid comprising at least one nucleotide selected from the group consisting of:

본 발명의 바람직한 구현예에 있어서, 상기 숙주 대장균은 E. coli BL21(DE3)의 긴-사슬 아실-코엔자임에이 합성효소 (long-chain acyl-Coenzyme A synthetase)의 유전정보를 보유한 뉴클레오티드 (fadD, 서열번호 14)가 제거된 E. coli BL21(DE3) △fadD이다.In a preferred embodiment of the present invention, the host E. coli is a nucleotide ( fadD ) having genetic information of a long-chain acyl-Coenzyme A synthetase of E. coli BL21 (DE3) No. 14) is deleted. E. coli BL21 (DE3)? FadD .

본 발명의 바람직한 구현예에 있어서, 상기 재조합 플라스미드는 pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA이다. In a preferred embodiment, the recombinant plasmid is pCOLADuet TM -1 :: accA, accB, accC, accD, fabD + pACYCDuet TM -1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI, fabZ + pCDF-1b :: ` tesA .

본 발명의 바람직한 구현예에 있어서, 상기 재조합 대장균은 E. coli BL21(DE3) △fadD::pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA(수탁번호 : KCTC18325P)이다.In a preferred embodiment of the present invention, the recombinant E. coli is E. coli BL21 (DE3) ΔfadD :: pCOLADuet -1 :: accA, accB, accC, accD, fabD + pACYCDuet -1 :: fabF, fabA + pTrc99A :: fabG , fabH , fabI , fabZ + pCDF-1b :: ` tesA (accession number: KCTC18325P).

본 발명에 따른 지방산을 생산하는 재조합 대장균은, 대장균 BL21(DE3)의 긴-사슬 아실-코엔자임에이 합성효소 (long-chain acyl-Coenzyme A synthetase)의 유전정보를 보유한 뉴클레오티드 (fadD, 서열번호 14)가 제거가 되었고(BL21(DE3) △fadD), 대장균 K-12 MG1655의 카복실트렌스퍼레이즈 알파-유닛 (CT-α, carboxyltransferase α-unit)의 유전정보를 보유한 뉴클레오티드 (accA, 서열번호 1), 대장균 K-12 MG1655의 비오틴 카복실 캐리어 단백질 (BCCP, biotin carboxyl carrier protein)의 유전정보를 보유한 뉴클레오티드 (accB, 서열번호 2), 대장균 K-12 MG1655의 비오틴 카복실레이즈 (BC, biotin carboxylase)의 유전정보를 보유한 뉴클레오티드 (accC, 서열번호 3), 대장균 K-12 MG1655의 카복실트랜스퍼레이즈 베타-유닛 (CT-β, carboxyltransferase β-unit)의 유전정보를 보유한 뉴클레오티드 (accD, 서열번호 4), 대장균 K-12 MG1655의 말로닐-코엔자임에이:아실 운반 단백질 트랜스아실레이즈 (Malonyl-Coenzyme A:acyl carrier protein transacylase)의 유전정보를 보유한 뉴클레오티드 (fabD, 서열번호 5), 대장균 K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소II (KASII, β-keto acyl-acyl carrier protein synthaseII)의 유전정보를 보유한 뉴클레오티드 (fabF, 서열번호 6), 대장균 K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소I (KASI, β-keto acyl-acyl carrier protein synthaseI)의 유전정보를 보유한 뉴클레오티드 (fabB, 서열번호 7), 대장균 K-12 MG1655의 베타-하이드록시 데카노일 사이오에스터 디하이드레이즈/아이소머레이즈 (β-hydroxy decanoyl thioester dehydrase/isomerase)의 유전정보를 보유한 뉴클레오티드 (fabA, 서열번호 8), 대장균 K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소 (KAS, β-keto acyl-acyl carrier protein synthase)의 유전정보를 보유한 뉴클레오티드 (fabG, 서열번호 9), 대장균 K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소III (KASIII, β-keto acyl-acyl carrier protein synthaseIII)의 유전정보를 보유한 뉴클레오티드 (fabH, 서열번호 10), 대장균 K-12 MG1655의 엔오일-아실 운반 단백질 환원효소 (enoyl-acyl carrier protein reductase)의 유전정보를 보유한 뉴클레오티드 (fabI, 서열번호 11). 대장균 K-12 MG1655의 3-하이드록시 아실-아실 운반 단백질 탈수효소 (3-hydroxy acyl-acyl carrier protein dehydratase)의 유전정보를 보유한 뉴클레오티드 (fabZ, 서열번호 12), 대장균 K-12 MG1655의 티오에스터라제I (thioesteraseI)에서 선도서열을 제거하여 주변세포질 (periplasm)이 아닌 세포질에 존재하게 변형시킨 유전정보를 보유한 뉴클레오티드 (`tesA, 서열번호 13)로 이루어진 군으로부터 선택되는 1종 이상의 뉴클레오티드를 포함하는 재조합 플라스미드에 의해 형질전환된 것을 특징으로 한다.The recombinant Escherichia coli producing the fatty acid according to the present invention comprises a nucleotide ( fadD , SEQ ID NO: 14) having genetic information of a long-chain acyl-Coenzyme A synthetase of Escherichia coli BL21 (DE3) was being removed (BL21 (DE3) △ fadD) , E. coli K-12 of the MG1655 carboxyl transmitter buffer raise the alpha-unit (CT-α, carboxyltransferase α-unit) nucleotides have a genetic information of (accA, SEQ ID NO: 1), ( AccB , SEQ ID NO: 2) carrying the genetic information of biotin carboxyl carrier protein (BCCP) of E. coli K-12 MG1655, genetic information of biotin carboxylase (BC) of E. coli K-12 MG1655 have the nucleotide (accC, SEQ ID NO: 3), E. coli K-12 MG1655 of carboxyl transferase raised beta-unit (CT-β, β-carboxyltransferase unit) nucleotides have a genetic information of (accD, SEQ ID NO: 4), for Jang-Kyun K-12 of MG1655 Nucleotides ( fabD , SEQ ID NO: 5) carrying the genomic information of Malonyl-Coenzyme A: acyl carrier protein transacylase, beta- ketoacyl -acyl transferase of E. coli K-12 MG1655 Nucleotides ( fabF , SEQ ID NO: 6) carrying the genetic information of the protein synthetase II (KASII, β-keto acyl-acyl carrier protein synthaseII), beta- ketoacyl- acyl transfer protein synthetase I (KASI ( FabB , SEQ ID NO: 7) carrying the genetic information of β-keto acyl-acyl carrier protein synthase I, β- hydroxydecanoyl thioester hydrolase / isomerase (β- (KAS, β-keto acyl-acyl carrier protein (KAS)) of E. coli K-12 MG1655, a nucleotide ( FabA , SEQ ID NO: ( FabG , SEQ ID NO: 9), which contains the genetic information of the β-ketoacyl-acyl carrier protein synthase III (KASIII), and the beta-ketoacyl-acyl carrier protein synthase III of E. coli K-12 MG1655 ( FabH , SEQ ID NO: 10) carrying the genetic information of the enoyl-acyl carrier protein reductase of E. coli K-12 MG1655 ( fabI , SEQ ID NO: 11). Nucleotides ( fabZ , SEQ ID NO: 12) carrying the genetic information of 3-hydroxyacyl-acyl carrier protein dehydratase of E. coli K-12 MG1655, thioses of E. coli K-12 MG1655 (&Quot; tesA, SEQ ID NO: 13) " having genetic information modified to exist in the cytoplasm, not in the periplasm, by removing the leader sequence from the thioesterase I Lt; RTI ID = 0.0 > plasmid. ≪ / RTI >

본 발명에 사용된 유전자 정보는 대장균 E. coli K-12 MG1655의 유전 정보를 바탕으로 하여, 지방산 합성 개시단계에 위치하여 아세틸-CoA를 말로닐-CoA로 반응시키는 효소(ACC)의 유전정보를 가진 accA, accB, accC, accD와 말로닐-CoA를 신장단계에 쓰이게 되는 말로닐-ACP로 만드는 효소 (FadD)의 유전정보를 가진 fabD, 지방산 신장단계에서 탄소 사슬의 신장과 지방산 생성 마지막 단계에 작용하는 효소(KASI, KASII)의 정보를 가진 두 개의 유전자 fabB, fabF와 KASI와 함께 불포화지방산 생성 단계에 관여하는 효소 (β-Hydroxydecanoyl ACP dehydrase/isomerase)의 유전정보를 가진 유전자 fabA, 그 외에 지방산 합성 신장단계에서 관여하는 효소 (KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl-acyl carrier protein dehydratase)의 정보를 가진 유전자 fabG, fabH, fabI, fabZ 및 지방 아실-ACP (fatty acyl-ACP)를 유리 지방산 (free fatty acid)으로 전환하는 효소인 티오에스터라제I (thioesteraseI) 정보를 가지며 선도서열이 제거된 정보를 가진 유전자 `tesA의 염기서열을 이용한다.The gene information used in the present invention is based on the genetic information of E. coli K-12 MG1655, and is located at the initiation stage of fatty acid synthesis, and genetic information of an enzyme (ACC) which reacts acetyl- CoA with malonyl- with accA, accB, accC, fabD the accD and malonyl -CoA with the genetic information of the enzyme (FadD) making a carbonyl -ACP sseuyige words that the stretching step, In addition to the two genes fabB , fabF and KASI, which have information on enzymes (KASI, KASII) acting at the last stage of carbon chain elongation and fatty acid elongation at the fatty acid elongation stage, enzymes involved in the unsaturated fatty acid production step (β-Hydroxydecanoyl ACP dehydrase / isomerase) gene with the genetic information of fabA, that in addition to a gene having information of an enzyme (KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl-acyl carrier protein dehydratase) which is involved in fatty acid synthesis elongation fabG, fabH, fabI, fabZ and fatty acyl -ACP (fatty acyl-ACP) to free fatty acid (free fatty acid) to a conversion enzyme, thio esterase I (thioesteraseI) information with a gene having a leader sequence that is removed information ' The base sequence of tesA is used.

tesA는 대장균의 주변세포질(periplasm)에 존재하기 때문에 아실-ACP가 자유지방산(free fatty acid)으로 전환하는 속도에 한계가 생긴다. 이에 본 발명에서는 tesA의 선도서열을 제거하여 세포질에 존재하도록 함으로써 전환되는 속도를 증가시킬 수 있다. Since tesA is present in the periplasm of E. coli, there is a limit to the rate at which acyl-ACP converts to free fatty acid. Thus, in the present invention, it is possible to increase the conversion speed by eliminating the lead sequence of tesA and making it exist in the cytoplasm.

또한, 본 발명에 사용된 유전자 정보는 대장균 E. coli BL21(DE3)의 유전 정보를 바탕으로 하여, 지방산 합성 베타-옥시데이션 (β-oxidation) 단계에서 지방산을 긴 사슬 아실-ACP로 전환하여 지방산 감소에 관여하는 효소(long-chain acyl-Coenzyme A synthetase)의 유전정보를 가진 유전자 fadD를 숙주(host) 대장균에서 제거하여 지방산 감소를 완화시킬 수 있다.The gene information used in the present invention is based on the genetic information of Escherichia coli BL21 (DE3), which converts fatty acids to long-chain acyl-ACP in the fatty acid synthesis beta-oxidation step, It is possible to remove the fadD gene having the genetic information of the enzyme involved in the reduction (long-chain acyl-Coenzyme A synthetase) from the host E. coli to alleviate the decrease of the fatty acid.

구체적으로는, 중합효소연쇄반응(PCR)에 의해 대장균의 주형 유전자를 얻기 위해, 대장균(E. coli K-12 MG1655)을 배양하고 원심분리하여 DNA를 분리한다. Specifically, E. coli K-12 MG1655 is cultured to obtain a template gene of E. coli by polymerase chain reaction (PCR), and the DNA is isolated by centrifugation.

분리된 DNA를 주형으로 하여 각각의 유전자 (accA, accB, accC, accD, fabD, fabB, fabF, fabA, fabG, fabH, fabI, fabZ, tesA)의 프라이머를 이용하여 중합효소연쇄반응을 수행하여 목적 유전자를 확보한다. 특히, accBaccCE. coli K-12 MG1655상에서 연속으로 함께 있는 유전자이어서 동시에 뉴클레오티드를 얻었고 확보한 유전자 뉴클레오티드 (accA, accB, accC, accD, fabD, fabB, fabF, fabA, fabG, fabH, fabI, fabZ, tesA)와 단백질 발현을 위한 플라스미드 (pCOLADuetTM-1, pACYCDuetTM-1, pTrc99A, pCDF-1b)를 제한효소 반응과 라이게이션 (ligation) 반응을 수행하여 재조합 플라스미드를 제조한다[pCOLADuetTM pCOLADuetTM-1::accA, accB, accC, accD, fabD, pACYCDuetTM-1::fabF, fabB, fabA, pTrc99A::fabG, fabH, fabI, fabZ, pCDF-1b::tesA]. The polymerase chain reaction was performed using primers of respective genes ( accA, accB, accC, accD, fabD, fabB , fabF , fabA , fabG, fabH , fabI, fabZ , and tesA ) Securing the gene. In particular, accB and accC are genes that are consecutively present on E. coli K-12 MG1655, resulting in nucleotides at the same time and retaining the acquired nucleotides ( accA, accB, accC, accD, fabD, fabB , fabF , fabA , fabG, fabH , fabI , fabZ, tesA) and performs a plasmid (pCOLADuet TM -1, pACYCDuet TM -1 , pTrc99A, pCDF-1b) of a restriction enzyme reaction and ligation (ligation) reaction for protein expression to produce a recombinant plasmid [pCOLADuet TM pCOLADuet TM -1 :: accA, accB, accC, accD, fabD, pACYCDuet TM -1 :: fabF, fabB, fabA, pTrc99A :: fabG, fabH, fabI, fabZ, pCDF-1b :: tesA].

tesA의 경우, 선도서열을 제거하기 위해서 75번째 염기서열이 C에서 T로 바꾼 프라이머를 제작하였고, 위치 선택적 돌연변이 방법을 이용한 PCR 방법을 통해 증폭시켜 재조합 플라스미드를 제조하였다[pCDF-1b::`tesA]. In order to remove the leader sequence, a primer was constructed in which the 75th nucleotide sequence was changed from C to T, and a recombinant plasmid was prepared by amplifying the PCR product using a site-directed mutagenesis method [pCDF-1b :: ` tesA ].

단백질 발현을 위한 플라스미드의 복제분기점의 경우, pCOLADuetTM-1은 ColA, pACYCDuetTM-1은 pACYC, pTrc99A는 pBR322, pCDF-1b는 CDF을 포함하며 pCOLADuetTM-1의 경우 카나마이신 내성 유전자, pACYCDuetTM-1의 경우 클로르암피니콜 내성 유전자, pTrc99A의 경우 암피실린 내성 유전자, pCDF-1b는 스트렙토마이신 내성 유전자를 가지고, 염기서열 분석을 위한 T7 프로모터와 trc 프로모터를 보유하며, 유전자 발현 조절을 목적으로 하는 lac operator를 보유한다.For the replication fork of a plasmid for protein expression, pCOLADuet TM -1 is ColA, pACYCDuet TM -1 is pACYC, pTrc99A are pBR322, pCDF-1b comprises the CDF, and the kanamycin resistance gene For the pCOLADuet TM -1, pACYCDuet TM - 1, the ampicillin-resistant gene for pTrc99A, the pCF-1b gene for streptomycin resistance, the T7 promoter and the trc promoter for base sequence analysis, and the lac operator Lt; / RTI >

상기 제조된 재조합 플라스미드를 이용하여 열충격 형질전환방법을 통해 재조합 대장균을 제조한다[E. coli XL-1 blue::pCOLADuetTM-1::accA, accB, accC, accD, E. coli XL-1 blue::pACYCDuetTM-1 fabF, fabB, fabA, E. coli XL-1 blue::pTrc99A::fabG, fabH, fabI, fabZ, E. coli XL-1 blue::pCDF-1b::`tesA]. 상기 제조된 재조합 대장균은 항생제가 포함된 고체 LB 배지에서 원형 콜로니 형태로 자라는 것을 확인하였으며, 이 콜로니를 카나마이신, 클로르암피니콜, 암피실린, 스트렙토마이신이 포함된 액체 LB 배지에서 배양하고 플라스미드를 추출한 후 제한효소로 처리한 플라스미드의 유전자 (accA, accB, accC, accD, fabD, fabB, fabF, fabA, fabG, fabH, fabI, fabZ, 및 `tesA)와 E. coli K-12 MG1655의 유전자 염기서열과 오류가 없음을 확인하였다. E. coli XL-1 blue :: pCOLADuet TM -1 :: accA, accB, accC, accD, E. coli XL-1 blue :: pCOLADuet TM -1 :: accA, accB, accC, accD were prepared by heat shock transformation using the recombinant plasmid :: pACYCDuet TM -1 fabF , fabB , fabA, E. coli XL-1 blue :: pTrc99A :: fabG , fabH, fabI , fabZ, E. coli XL-1 blue :: pCDF-1b :: ` tesA ]. The recombinant E. coli thus produced was found to grow in the form of a circular colony in a solid LB medium containing an antibiotic. The colonies were cultured in a liquid LB medium containing kanamycin, chloramphenicol, ampicillin, and streptomycin, The gene sequences and errors of the plasmid genes ( accA, accB, accC, accD, fabD, fabB , fabF , fabA , fabG, fabH , fabI, fabZ and tesA ) and E. coli K-12 MG1655 Respectively.

상기 제조된 재조합 대장균(E. coli BL21(DE3) △fadD::pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA)을 2014년 09월 17일자로 한국생명공학연구원 생물자원센터 유전자은행(KCTC)에 기탁하였으며, KCTC18325P의 수탁번호를 부여받았다.
The prepared recombinant Escherichia coli (E. coli BL21 (DE3) △ fadD :: pCOLADuet TM -1 :: accA, accB, accC, accD, fabD + pACYCDuet TM -1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI , fabZ + pCF -1b :: ` tesA ) was donated to KCTC (Korea Research Institute of Bioscience and Biotechnology) on September 17, 2014, and received the accession number of KCTC18325P.

본 발명의 다른 양태에 따르면, 본 발명은 다음 단계를 포함하는 불포화 지방산의 제조 방법을 제공한다:According to another aspect of the present invention, the present invention provides a process for preparing an unsaturated fatty acid comprising the steps of:

(a) 상기 재조합 대장균을 1차 배양하는 단계;(a) primary culturing the recombinant E. coli;

(b) 상기 (a) 단계의 1차 배양한 재조합 대장균을 2차 배양하는 단계;(b) secondary culturing the first-cultured recombinant E. coli of step (a);

(c) 상기 (b) 단계에서 얻은 배양액을 원심분리하여 균체와 배지를 분리하는 단계;(c) separating the culture medium and the culture medium by centrifuging the culture solution obtained in the step (b);

(d) 상기 (c) 단계에서 분리된 균체에 황산과 메탄올의 혼합용액을 첨가하고, 질소를 충전한 다음, 에스테르화 반응을 수행하는 단계; 및(d) adding a mixed solution of sulfuric acid and methanol to the cells separated in the step (c), filling the mixture with nitrogen, and performing an esterification reaction; And

(e) 상기 (d) 단계의 반응액에 헥산과 증류수를 첨가하여 층을 분리하는 단계.(e) adding hexane and distilled water to the reaction solution of step (d) to separate the layers.

본 발명의 바람직한 구현예에 있어서, 상기 (b) 단계의 2차 배양은 10℃ 내지 20℃의 저온에서 배양하는 것이며, 가장 바람직하게는 15℃ 내지 18℃의 저온이다.In a preferred embodiment of the present invention, the secondary culture of step (b) is cultured at a low temperature of 10 캜 to 20 캜, and most preferably at a low temperature of 15 캜 to 18 캜.

본 발명의 바람직한 구현예에 있어서, 상기 (e) 단계에서 분리된 층의 불포화 지방산 조성을 분석하는 단계를 추가적으로 포함한다.In a preferred embodiment of the present invention, the method further comprises analyzing the unsaturated fatty acid composition of the layer separated in step (e).

상기 분석은 지방산의 조성을 분석할 수 있는 한, 당업계에 공지된 어떠한 방법도 이용할 수 있다.Any of the methods known in the art can be used as long as the above analysis can analyze the composition of the fatty acid.

본 발명의 바람직한 구현예에 있어서, 상기 불포화 지방산은 시스-박센산(cis-vaccenic acid)이다.In a preferred embodiment, the unsaturated fatty acid is cis-a foil sensan (cis -vaccenic acid).

예컨대, 상기 제조된 재조합 대장균(E. coli BL21(DE3)::pCOLADuetTM-1::accA, accB, accC, accD + pEcoliNterm 6xHN:: fabF, fabB, fabA + pCDF-1b::`tesA)을 37℃에서 1차 배양하여 중간 지수기까지 자라게 하여 IPTG로 유도시킨 후에 낮은 온도인 17℃에 옮겨 2차로 배양하고, 원심분리하여 균체와 배지를 분리한 후, 분리된 균체에 황산과 메탄올의 혼합용액을 첨가하고 질소를 충전한 다음, 에스테르화 반응을 수행하고, 반응액에 헥산과 증류수를 첨가하여 층을 분리하여 헥산층을 가스크로마토그래피를 수행하여 불포화 지방산의 조성을 확인한다.For example, the prepared recombinant E. coli BL21 (DE3) :: pCOLADuet -1 :: accA, accB, accC, accD + pEcoliNterm 6xHN :: fabF, fabB, fabA + pCDF-1b :: `tesA a) primary culture in 37 ℃ to grow until mid-exponential group to move to the low temperature of 17 ℃ after induction with IPTG 2 culture drive, and centrifuged After separating the microbial cells and the medium, a mixed solution of sulfuric acid and methanol was added to the separated microbial cells, and the microbial cells were filled with nitrogen. Then, the esterification reaction was carried out, and hexane and distilled water were added to the reaction mixture. The layer is subjected to gas chromatography to determine the composition of the unsaturated fatty acid.

본 발명의 방법에 따르면, 불포화 지방산인 박센산(vaccenic acid)의 비율과 양이 월등하게 증가하였다.According to the method of the present invention, the ratio and amount of the unsaturated fatty acid vaccenic acid has increased remarkably.

본 발명의 방법은 상술한 재조합 대장균을 이용하여 불포화 지방산을 제조하므로, 이와 중복된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
The method of the present invention produces an unsaturated fatty acid using the above-mentioned recombinant E. coli, and redundant description thereof is omitted in order to avoid the excessive complexity of the present specification.

상술한 바와 같이, 본 발명에 따른 재조합 대장균은 불포화 지방산을 효과적으로 생산함으로써, 바이오 연료로 유용하게 사용될 수 있다.
As described above, the recombinant E. coli according to the present invention can be effectively used as a biofuel by effectively producing an unsaturated fatty acid.

본 발명에 따른 지방산을 생산하는 재조합 대장균은, (1) 지방산 합성 개시단계의 다섯 종류의 유전자 accA, accB, accC, accD, fabD가 동시 발현되는 하나의 재조합 플라스미드; (2) 지방산 합성 신장단계의 세 종류의 유전자 fabB, fabF, fabA가 동시 발현되는 하나의 재조합 플라스미드; (3) 지방산 합성 신장단계의 네 종류의 유전자 fabG, fabH, fabI, fabZ가 동시 발현되는 하나의 재조합 플라스미드; 및 (4) 지방산 합성 종결단계의 `tesA가 발현되는 재조합 플라스미드가 동시에 발현되는 시스템을 구축하였고, 지방산 합성 베타-옥시데이션 단계의 fadD을 제거하여 지방산 감소가 완화된 숙주 균주인 재조합 대장균 (E. coli BL21(DE3) △fadD)에 상기 네 개의 재조합 플라스미드가 들어가 공동으로 형질전환을 일으킴으로써, 열 세 개의 유전자를 동시에 발현시키는 효과가 있다. 또한, 상기 재조합 대장균을 이용하여 지방산을 제조한 경우, 불포화지방산 중 하나인 시스-박센산 (cis-vaccenic acid)의 비율이, 유전적 조작을 하지 않은 대장균뿐만 아니라 박센산을 생성하는 대장균에 비해서도 크게 늘어나, 불포화 지방산을 효과적으로 생산할 수 있다.
The recombinant Escherichia coli producing the fatty acid according to the present invention comprises (1) one recombinant plasmid in which the five kinds of genes accA, accB, accC, accD and fabD in the starting stage of fatty acid synthesis are simultaneously expressed; (2) a recombinant plasmid in which three kinds of genes fabB , fabF and fabA in the fatty acid synthesis elongation stage are expressed simultaneously; (3) a recombinant plasmid in which four kinds of genes fabG, fabH , fabI and fabZ in the synthetic elongation stage of fatty acid are simultaneously expressed; And (4) a recombinant plasmid expressing `tesA 'in the termination step of fatty acid synthesis was constructed at the same time, and recombinant E. coli, which is a host strain in which fatty acid reduction is alleviated by eliminating fadD in the fatty acid synthesis beta- oxidation step ( E. The four recombinant plasmids are introduced into E. coli BL21 (DE3) [Delta] fadD and co-transformed to thereby express the three genes at the same time. In addition, when a fatty acid was prepared using the above recombinant E. coli, the ratio of cis- vicenic acid, one of the unsaturated fatty acids, was higher than that of Escherichia coli that did not undergo genetic manipulation, And the unsaturated fatty acid can be effectively produced.

도 1은 대장균의 지방산 생합성 과정을 나타낸 도이다.
도 2는 대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1의 구조 및 클로닝 사이트를 나타낸 도이다.
도 3은 대장균 내 단백질 발현을 위한 플라스미드 pACYCDuetTM-1의 구조 및 클로닝 사이트를 나타낸 도이다.
도 4는 대장균 내 단백질 발현을 위한 플라스미드 pTrc99A의 구조 및 클로닝 사이트를 나타낸 도이다.
도 5는 대장균 내 단백질 발현을 위한 플라스미드 pCDF-1b의 구조 및 클로닝 사이트를 나타낸 도이다.
도 6은 대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1와 accA, accB, accC, accD, fabD의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기변화를 나타낸 도이다.
도 7은 대장균 내 단백질 발현을 위한 플라스미드 pACYCDuetTM-1와 fabB, fabF, fabA의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화를 나타낸 도이다.
도 8은 대장균 내 단백질 발현을 위한 플라스미드 pTrc99A와 fabG, fabH, fabI, fabZ 의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화를 나타낸 도이다.
도 9는 대장균 내 단백질 발현을 위한 플라스미드 대장균 내 단백질 발현을 위한 플라스미드 pCDF-1b와 `tesA 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드 (pCDF-1b::`tesA)의 구조 및 크기 변화를 나타낸 도이다.
도 10은 fabB, fabF, fabA의 유전정보에 대한 주형으로 이용하기 위한 플라스미드 pEcoli-Nterm 6xHN와 유전자 fabF, fabB, fabA의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화를 나타낸 도이다.
도 11은 대장균 E. coli::BL21(DE3)에서의 fadD 유전자 상류 서열과 하류 서열을 나타낸 도이다.
도 12는 숙주 대장균 E. coli::BL21(DE3)에서의 fadD 유전자 제거에 사용된 재조합 플라스미드(pKOV::fadD upstream, fadD downstream; fadD fusion-pKOV)의 제작과정을 나타낸 도이다.
도 13은 대장균 E. coli::BL21(DE3)에서의 fadD 유전자 제거 과정 중 최종 선별과정 후 존재하는 2가지 종류의 E. coli BL21(DE3) 유전체(genomic DNA)에서의 fadD 유전자의 여부를 나타낸 도이다.
도 14는 대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1에 결합시킨 accA 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 15는 대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1에 결합시킨 accB, accC 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 16은 대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1에 결합시킨 accD 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 17은 대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1에 결합시킨 fabD 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 18은 대장균 내 단백질 발현을 위한 플라스미드 pACYCDuetTM-1에 결합시킨 fabF, fabB, fabA 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 19는 대장균 내 단백질 발현을 위한 플라스미드 pTrc99A에 결합시킨 fabG 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 20은 대장균 내 단백질 발현을 위한 플라스미드 pTrc99A에 결합시킨 fabH 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 21은 대장균 내 단백질 발현을 위한 플라스미드 pTrc99A에 결합시킨 fabI 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 22는 대장균 내 단백질 발현을 위한 플라스미드 pTrc99A에 결합시킨 fabZ 유전자의 염기서열 분석 결과를 나타낸 도이다.
도 23은 대장균 내 단백질 발현을 위한 플라스미드 pCDF-1b에 결합시킨 `tesA 유전자의 염기서열 분석 결과를 나타낸 도이다.
1 is a view showing a process of fatty acid biosynthesis of E. coli.
Fig. 2 shows the structure and cloning site of the plasmid pCOLADuet TM- 1 for expression of the protein in E. coli.
3 shows the structure and cloning site of the plasmid pACYCDuet TM- 1 for expression of the protein in E. coli.
4 is a diagram showing the structure and cloning site of the plasmid pTrc99A for expression of the protein in E. coli.
5 is a diagram showing the structure and cloning site of plasmid pCDF-1b for protein expression in E. coli.
FIG. 6 is a diagram showing the structure and size of a plasmid pCOLADuet TM -1 for expression of the protein in E. coli , and a recombinant plasmid in which nucleotides including accA, accB, accC, accD, and fabD are combined.
7 is a diagram showing the structure and size change of a recombinant plasmid in which a nucleotide including the gene information of the plasmid pACYCDuet TM- 1 and the fabB, fabF, and fabA for the protein expression in E. coli is combined.
FIG. 8 is a diagram showing the structure and size change of a recombinant plasmid in which a nucleotide including the gene information of the plasmid pTrc99A and the fabG, fabH, fabI and fabZ for the expression of the protein in E. coli is combined.
9 is a graph showing the structure and size change of a plasmid pCDF-1b for protein expression in plasmid E. coli for expression of a protein in E. coli and a recombinant plasmid (pCDF-1b :: ` tesA ) in which nucleotides including tesA gene information are combined to be.
10 is a diagram showing a structure and size change of a plasmid pEcoli-Nterm 6xHN for use as a template for the genetic information of fabB, fabF and fabA , and a recombinant plasmid in which nucleotides including gene information of genes fabF, fabB and fabA are combined .
11 is a diagram showing the upstream sequence and the downstream sequence of the fadD gene in E. coli :: BL21 (DE3).
12 is a diagram showing a process for producing a recombinant plasmid (pKOV :: fadD upstream, fadD downstream; fadD fusion-pKOV) used for the removal of fadD gene in the host E. coli :: BL21 (DE3).
13 is shown whether or not the fadD gene from E. coli E. coli :: BL21 (DE3) fadD gene removed after the final selection process, there are two types of E. coli BL21 (DE3) genome (genomic DNA), which in the course of the .
14 is a diagram showing the nucleotide sequence analysis result of the accA gene bound to the plasmid pCOLADuet TM -1 for expression of the protein in E. coli.
15 is a diagram showing the nucleotide sequence analysis results of the accB and accC genes bound to the plasmid pCOLADuet TM -1 for expression of the protein in E. coli.
16 is a diagram showing the nucleotide sequence analysis result of the accD gene bound to the plasmid pCOLADuet TM -1 for expression of the protein in E. coli.
17 is a diagram showing the nucleotide sequence analysis result of the fab D gene bound to the plasmid pCOLADuet TM -1 for expression of the protein in E. coli.
18 is a diagram showing the nucleotide sequence analysis results of the fabF, fabB and fabA genes bound to the plasmid pACYCDuet TM -1 for expression of the protein in E. coli.
19 is a diagram showing the result of base sequence analysis of the fabG gene bound to the plasmid pTrc99A for expression of the protein in E. coli.
20 is a diagram showing the nucleotide sequence analysis result of the fabH gene bound to the plasmid pTrc99A for expression of the protein in E. coli.
FIG. 21 is a diagram showing a nucleotide sequence analysis result of a fabI gene bound to a plasmid pTrc99A for expression of a protein in E. coli.
22 is a diagram showing the nucleotide sequence analysis result of the fabZ gene bound to the plasmid pTrc99A for expression of the protein in E. coli.
23 is a diagram showing a nucleotide sequence analysis result of the 'tesA gene bound to the plasmid pCDF-1b for expression of the protein in E. coli.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

실시예Example 1 : 목적 유전자의 정보를 보유한 뉴클레오티드를 포함하는 재조합 플라스미드의 제조 1: Preparation of recombinant plasmid containing nucleotide having information of target gene

1. One. PCRPCR 을 이용한 유전자 증폭Gene amplification using

본 발명에 사용된 유전자 정보는 대장균(E. coli K-12 MG1655)의 유전 정보를 바탕으로 하여, 지방산 합성 개시단계에 위치하여 아세틸-CoA를 말로닐-CoA로 반응시키는 효소(ACC)의 정보를 가진 accA(서열번호 1), accB(서열번호 2), accC(서열번호 3), accD(서열번호 4), 말로닐-CoA를 신장단계에 쓰이게 되는 말로닐-ACP로 만드는 효소(FadD)의 유전정보를 가진 fabD(서열번호 5), 및 지방산 신장단계에서 탄소 사슬의 신장과 지방산 생성 마지막 단계에 작용하는 효소(KASI, KASII)의 정보를 가진 두 개의 유전자 fabF(서열번호 6), fabB(서열번호 7)와 KASI와 함께 불포화지방산 생성 단계에 관여하는 효소(β-Hydroxydecanoyl ACP dehydrase/isomerase)의 유전정보를 가진 유전자 fabA(서열번호 8), 그 외에 지방산 합성 신장단계에서 관여하는 효소 (KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy acyl-acyl carrier protein dehydratase)의 정보를 가진 유전자 fabG(서열번호 9), fabH(서열번호 10), fabI(서열번호 11), fabZ(서열번호 12) 및 지방 아실-ACP(fatty acyl-ACP)를 유리 지방산 (free fatty acid)으로 전환하는 효소인 티오에스터라제I(thioesteraseI) 정보를 가지며 선도서열이 제거된 정보를 가진 유전자 `tesA(서열번호 13)의 염기서열을 사용하였다. 염기서열 정보는 KEGG(Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/)에서 참고하였으며, 제작한 프라이머를 이용하여 중합효소연쇄반응(PCR, polymerase chain reaction)을 수행하여 목적 유전자를 확보하였다. 목적 유전자의 증폭반응을 위한 프라이머 제작 및 제한효소는 표 4에 나타내었다.The gene information used in the present invention is based on the genetic information of E. coli K-12 MG1655, and is located at the beginning of fatty acid synthesis, and information of an enzyme (ACC) that reacts acetyl- CoA with malonyl- accA (SEQ ID NO: 1), accB (SEQ ID NO: 2), accC (SEQ ID NO: 3), accD (SEQ ID NO: 4), making the words enzyme carbonyl -CoA as carbonyl -ACP sseuyige words that the stretching step (FadD) with of fabD with genetic information (SEQ ID NO: 5), and a fatty acid of two genes in the stretching step having information of an enzyme (KASI, KASII) acting on the kidney and the fatty acid generated final step in the carbon chain, fabF (SEQ ID NO: 6), fabB (SEQ ID NO: 7), a gene FabA having the genetic information of the enzyme (β-Hydroxydecanoyl ACP dehydrase / isomerase) participating in the unsaturated fatty acid production step together with KASI, and enzymes involved in the fatty acid synthesis elongation step KAS, KASIII, enoyl-acyl carrier protein reductase, 3-hydroxy gene with the information of the acyl-acyl carrier protein dehydratase) fabG ( SEQ ID NO: 9), fabH (SEQ ID NO: 10), fabI (SEQ ID NO: 11), fabZ (SEQ ID NO: 12) And the gene `tesA (SEQ ID NO: 13) which has information of thioesterase I, which is an enzyme that converts fatty acyl-ACP to free fatty acid, ) Was used. The nucleotide sequence information was referenced from KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/ ), and PCR was carried out using the prepared primers to obtain the desired gene Respectively. Primer preparation and restriction enzymes for amplification of the target gene are shown in Table 4.

목적 유전자Target gene 발현 효소Expression enzyme 플라스미드Plasmid 프라이머primer 제한효소Restriction enzyme accAaccA carboxyltransferase α subunitcarboxyltransferase α subunit pCOLADuetTM-1pCOLADuet TM -1 5'-CGG ATC CGA TGA ATT TCC TTG ATT TTG AAC AGC-3'5'-CGG ATC CGA TGA ATT TCC TTG ATT TTG AAC AGC-3 ' BamHI, SalIBamHI, SalI 5'-GCG TCG ACG TCT TAC GCG TAA CCG TAG-3'5'-GCG TCG ACG TCT TAC GCG TAA CCG TAG-3 ' accB, accCaccB, accC BCCP unit, biotin carboxylase subunitBCCP unit, biotin carboxylase subunit pCOLADuetTM-1pCOLADuet TM -1 5'-GAA GAT CTT CGG ATG GAT ATT CGT AAG ATT AAA AAA CTG ATC G-3'5'-GAA GAT CTT CGG ATG GAT ATT CGT AAG ATT AAA AAA CTG ATC G-3 ' BglII, PacIBglII, PacI 5'-CCT TAA TTA AGG TTA TTT TTC CTG AAG ACC GAG TTT TTT CTC-3'5'-CCT TAA TTA AGG TTA TTT TTC CTG AAG ACC GAG TTT CTC-3 ' accDaccD carboxyltransferase β unitcarboxyltransferase β unit pCOLADuetTM-1pCOLADuet TM -1 5'-GCG TCG ACG TCA AGG AGA TAT ACA TGA GCT GGA TTG AAC-3'5'-GCG TCG ACG TCA AGG AGA TAT ACA TGA GCT GGA TTG AAC-3 ' SalI, NotISalI, NotI 5'-ATA AGA ATG CGG CCG CTC AGG CCT CAG GTT C-3'5'-ATA AGA ATG CGG CCG CTC AGG CCT CAG GTT C-3 ' fabDfabD malonyl-CoA:ACP transacylasemalonyl-CoA: ACP transacylase pCOLADuetTM-1pCOLADuet TM -1 5'- GGA ATT CCA TAT GGA ATT CCA TGA CGC AAT TTG CAT T -3'5'-GGA ATT CCA TAT GGA ATT CCA TGA CGC AAT TTG CAT T -3 ' NdeINdeI 5'- GAA GAT CTT CCT CCT TTT AAA GCT CGA GCG CC -3'5'-GAA GAT CTT CCT CCT TTT AAA GCT CGA GCG CC-3 ' BglIIBglII fabBfabB KASI
(β-keto acyl-acyl carrier protein synthaseI)
KASI
(β-keto acyl-acyl carrier protein synthase I)
pEcoli-Nterm 6xHNpEcoli-Nterm 6xHN 5'-GGA AGA TCT GAA GGA GAT ATA CCA TGA AAC GTG CAG TGA TTA CTG GCC-3'5'-GGA AGA TCT GAA GGA GAT ATA CCA TGA AAC GTG CAG TGA TTA CTG GCC-3 ' BglII, NotIBglII, NotI
5'-ATA AGA ATG CGG CCG CTT AAT CTT TCA GCT TGC GCA TTA CCA-3'5'-ATA AGA ATG CGG CCG CTT AAT CTT TCA GCT TGC GCA TTA CCA-3 ' fabFfabF KASII
(β-keto acyl-acyl carrier protein synthaseII)
KASII
(β-keto acyl-acyl carrier protein synthaseII)
pEcoli-Nterm 6xHNpEcoli-Nterm 6xHN 5'-AAA ACT GCA GGT GTG TCT AAG CGT CGT GTA GTT GTG A-3'5'-AAA ACT GCA GGT GTG TCT AAG CGT CGT GTA GTT GTGA-3 ' PstI, SalIPstI, SalI
5'-ACG CGT CGA CTT AGA TCT TTT TAA AGA TCA AAG AAC C-3'5'-ACG CGT CGA CTT AGA TCT TTT TAA AGA TCA AAG AAC C-3 ' fabAfabA β-Hydroxydecanoyl ACP dehydrase/isomeraseβ-Hydroxydecanoyl ACP dehydrase / isomerase pEcoli-Nterm 6xHNpEcoli-Nterm 6xHN 5'-CCT TAA TTA AGG AAG GAG GGA TGG TAG ATA AAC GCG AAT CC-3'5'-CCT TAA TTA AGG AAG GAG GGA TGG TAG ATA AAC GCG AAT CC-3 ' PacI, XbaIPacI, XbaI 5'-GCT CTA GAG CTC AGA AGG CAG ACG TAT CCT G-3'5'-GCT CTA GAG CTC AGA AGG CAG ACG TAT CCT G-3 ' fabF, fabB, fabAfabF, fabB, fabA pACYCDuetTM-1pACYCDuet TM -1 5'-AAA AGG ATC CGG TGT CTA AGC GTC GTG TAG-3'5'-AAA AGG ATC CGG TGT CTA AGC GTC GTG TAG-3 ' BamHI, PstIBamHI, PstI 5'-AAA ACT GCA GTC AGA AGG CAG ACG TAT CCT G-3'5'-AAA ACT GCA GTC AGA AGG CAG ACG TAT CCT G-3 ' fabGfabG KAS
(β-keto acyl-acyl carrier protein synthase)
KAS
(β-keto acyl-acyl carrier protein synthase)
pTrc99ApTrc99A 5'- GAA TTC GGA AAA TCA TGA ATT TTG AAG GAA -3'5'-GAA TTC GGA AAA TCA TGA ATT TTG AAG GAA -3 ' EcoRI, SacIEcoRI, SacI
5'- GAG CTC TTA DGD GTA ACC GTA GCT CAT C -3'5'-GAG CTC TTA DGD GTA ACC GTA GCT CAT C -3 ' fabHfabH KASIII
(β-keto acyl-acyl carrier protein synthaseIII)
KASIII
(β-keto acyl-acyl carrier protein synthaseIII)
pTrc99ApTrc99A 5'- GGA TCC CCG AAA AGT GAC TGA GCG TAC A -3'5'-GGA TCC CCG AAA AGT GAC TGA GCG TACE -3 ' BamHI, XbaIBamHI, XbaI
5'- TCT AGA CTA GAA ACG AAC CAG CGC GGA G -3'5'-TCT AGA CTA GAA ACG AAC CAG CGC GGA G -3 ' fabIfabi enoyl-acyl carrier protein reductaseenoyl-acyl carrier protein reductase pTrc99ApTrc99A 5'- TCT AGA AAG GAT TAA AGC TAT GGG TTT TCT -3'5'-TCT AGA AAG GAT TAA AGC TAT GGG TTT TCT -3 ' XbaI, SalIXbaI, SalI 5'- TCT AGA TTA TTT CAG TTC GAG TTC GTT CAT -3'5'-TCT AGA TTA TTT CAG TTC GAG TTC GTT CAT -3 ' fabZfabZ 3-hydroxy acyl-acyl carrier protein dehydratase3-hydroxy acyl-acyl carrier protein dehydratase pTrc99ApTrc99A 5'- GAG CTC GGA AGA GTA TCT TGA CTA CTA AC -3'5'-GAG CTC GGA AGA GTA TCT TGA CTA CTA AC -3 ' SacI, BamHISacI, BamHI 5'- GGA TCC TCA GGC CTC CCG GCT ACG AGC -3'5'-GGA TCC TCA GGC CTC CCG GCT ACG AGC -3 ' tesAtesA thioesterase Athioesterase A pCDF-1bpCDF-1b 5'-CGG GAT CCC ATG ATG AAC TTC AAC AAT GTT TTC CG-3'5'-CGG GAT CCC ATG ATG AAC TTC AAC AAT GTT TTC CG-3 ' BamHI, PstIBamHI, PstI 5'-GGA AGA TCT GAA GGA GAT ATA CCA TGA AAC GTG CAG TGA TTA CTG GCC-3'5'-GGA AGA TCT GAA GGA GAT ATA CCA TGA AAC GTG CAG TGA TTA CTG GCC-3 ' `tesA`tesA modified thioesterase Amodified thioesterase A pCDF-1bpCDF-1b 5'-GTT AAC CTT CCG TGC CGC TGC AGC GGA CAC GTT ATT G-3'5'-GTT AAC CTT CCG TGC CGC TGC AGC GGA CAC GTT ATT G-3 ' 5'-CAA TAA CGT GTC CGC TGC AGC GGC ACG GAA GGT TAA C-3'5'-CAA TAA CGT GTC CGC TGC AGC GGC ACG GAA GGT TAA C-3 '

중합효소연쇄반응을 위한 대장균의 주형 유전자는 하기와 같은 방법으로 획득하였다. 먼저, E. coli K12 MG1655를 배양한 후, 대장균 배양액을 원심분리하고 상등액을 취하였다. 상등액에 5㎖의 리소자임 용액을 첨가하여 혼합한 후, 투명한 점성이 나타날 때까지 섞어주었다. 점성이 나타나면 2㎖의 10% SDS(sodium dodecyl sulfate) 용액을 첨가하고 30분 동안 반응하였다. 혼합물을 0.7㎖씩 마이크로튜브에 분주하고, PCI용액(페놀, 클로로포름, 이소아밀 알콜)을 넣어 층 분리가 일어나지 않을 때까지 혼합하였다. 이 후 원심분리하고 상등액을 모아 같은 방법으로 원심분리 하였다. 모아진 상등액 부피의 1/10 만큼 pH 6으로 적정한 3M 아세테이트와 두 배의 에탄올을 첨가하여 DNA를 분리하였다. 분리한 DNA를 주형으로 하여, 각각의 유전자들(accA, accB, accC, accD, fabD, fabF, fabB, fabA, fabG, fabH, fabI, fabZ, tesA)의 프라이머와 함께 중합효소연쇄반응에 이용하여 유전자를 증폭하였다. 중합효소연쇄반응의 조건은 통상적인 조건으로 변성온도(denaturing temperature) 94℃, 결합온도(annealing temperature) 65℃, 신장온도(extension temperature) 72℃에서 진행되었으며, 총 30회 반응을 수행하였다. 반응에 사용한 중합효소(polymerase)는 NEB(New England Biolabs Inc.) 사의 제품을 사용하였다. 증폭된 유전자 물질은 정제과정을 거치고, 0.7% 아가로오스 겔에서 확인하였다.
The template gene of E. coli for the polymerase chain reaction was obtained by the following method. First, after E. coli K12 MG1655 was cultured, the E. coli culture was centrifuged and the supernatant was taken. 5 ml of lysozyme solution was added to the supernatant, mixed and mixed until a clear viscous appeared. When viscosity appeared, 2 ml of 10% SDS (sodium dodecyl sulfate) solution was added and reacted for 30 minutes. The mixture was dispensed in 0.7 ml portions into microtube, and PCI solution (phenol, chloroform, isoamyl alcohol) was added thereto and mixed until no layer separation occurred. Then, the supernatant was collected and centrifuged in the same manner. DNA was separated by addition of 3M acetate and twice the volume of ethanol, adjusted to pH 6 by 1/10 of the collected supernatant volume. The isolated DNA was used as a template and used for polymerase chain reaction with the primers of the respective genes ( accA, accB, accC, accD, fabD, fabF, fabB, fabA, fabG, fabH, The gene was amplified. The polymerase chain reaction was carried out under denaturation temperature of 94 ° C., annealing temperature of 65 ° C. and extension temperature of 72 ° C. under the usual conditions, and the reaction was performed 30 times in total. The polymerase used in the reaction was NEB (New England Biolabs Inc.). The amplified genetic material was purified and identified on 0.7% agarose gel.

2. 목적 유전자의 정보를 보유한 뉴클레오티드를 포함하는 재조합 플라스미드의 제조2. Preparation of recombinant plasmids containing nucleotides with information of the gene of interest

확보한 유전자 뉴클레오티드와 단백질 발현 벡터를 말단부위를 제외한 다른 부위를 절단하지 않는 공통된 제한효소를 사용하여 절단하고, 전기영동으로 확인하였다. 확인된 아가로오스 겔의 밴드(band)를 절단하여 50℃에서 녹인 후, 정제 과정을 거쳐 라이게이션(ligation)을 4℃에서 수행하여 선형의 pCOLADuetTM-1의 MCS1에 결합시킨 accA, accD와 MCS2에 accB, accCfabD를 결합시킨 원형 플라스미드(pCOLADuetTM-1::accA, accB, accC, accD, fabD)와, pACYCDuetTM-1에 fabF, fabB, fabA을 순서대로 결합시킨 원형 플라스미드(pACYCDuetTM-1::fabF, fabB, fabA), pTrc99A에 fabG, fabH, fabI, fabZ을 결합시킨 원형 플라스미드 (pTrc99A::fabG, fabH, fabI, fabZ), 선형의 pCDF-1b에 tesA를 결합시킨 1종류의 원형 플라스미드(pCDF-1b::tesA)를 제조하였다. tesA의 경우 시퀀스의 75번째 염기인 C를 T로 바꾸기 위해서 서열을 바꾼 프라이머를 다시 제조하였고, 재조합된 플라스미드 (pCDF-1b::tesA)을 가지고 PCR을 통해 염기가 바뀐 `tesA을 포함하는 플라스미드를 제조하였다. 이 과정에서 중합효소는 Stratagene 제품인 pfu Ultra HF DNA polymerase를 사용하였고, pCDF-1b::tesA는 DpnI으로 제거하여 site-directed mutation 된 pCDF-1b::`tesA를 선별하였다. The obtained gene nucleotide and protein expression vector were cleaved using a common restriction enzyme that did not cleave other regions except the terminal region and confirmed by electrophoresis. The band of the confirmed agarose gel was cut and dissolved at 50 캜 and subjected to purification and ligation at 4 캜 to obtain accA and accD which were bound to MCS1 of linear pCOLADuet TM -1 A circular plasmid (pACYCduet TM- 1 :: accA, accB, accC, accD, fabD ) in which accB , accC and fabD were combined with MCS2 and pACYCDuet TM -1 with fabF, TM -1 :: fabF, fabB, fabA ), pTrc99A the fabG, fabH, fabI, in which circular plasmid combining fabZ (pTrc99A :: fabG, fabH, fabI, fabZ), 1 that combines a linear tesA the pCDF-1b Circular plasmid (pCDF-1b :: tesA ) was prepared. In the case of tesA , a sequence-altered primer was prepared to change the 75th base of the sequence C to T, and a plasmid containing the mutated 'tesA' was prepared by PCR using the recombinant plasmid (pCDF-1b :: tesA ) . In this process, Stratagene product pfu Ultra HF DNA polymerase was used and pCDF-1b :: tesA was removed with DpnI to select site-directed mutated pCDF-1b :: `tesA .

대장균 내 단백질 발현을 위한 플라스미드 pCOLADuetTM-1, pACYCDuetTM-1, pCDF-1b와 pTrc99A의 구조 및 클로닝 사이트는 각각 도 2, 도 3, 도 4 및 도 5에 나타냈으며, 플라스미드 pCOLADuetTM-1와 accA, accB, accC, accD, fabD의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기변화는 도 6에 나타내었고, pACYCDuetTM-1와 fabB, fabF, fabA의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화는 도 7에 나타냈으며, pTrc99A와 fabG, fabH, fabI, fabZ 의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화는 도 8에 나타냈고, 플라스미드 pCDF-1b와 `tesA (75번째 염기가 C에서 T로 바뀐 tesA 유전자) 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화는 도 9에 나타내었다. 그리고 fabB, fabF, fabA의 유전정보에 대한 주형으로 이용된 플라스미드 pEcoli-Nterm 6xHN와 유전자 fabF, fabB, fabA의 유전자 정보를 포함한 뉴클레오티드를 결합시킨 재조합 플라스미드의 구조 및 크기 변화는 도 10에 나타내었다.
The structures and cloning sites of the plasmids pCOLADuet TM- 1, pACYCDuet TM- 1, pCDF-1b and pTrc99A for expression of the protein in E. coli were shown in FIGS. 2, 3, 4 and 5, respectively. Plasmid pCOLADuet TM -1 The structural and size changes of the recombinant plasmids in which the nucleotides including the gene information of accA, accB, accC, accD and fabD are combined are shown in FIG. 6, and the nucleotides including the gene information of pACYCDuet TM -1 and fabB, fabF and fabA The structure and size of the recombinant plasmid were shown in FIG. 7, and the structure and size of the recombinant plasmid in which nucleotides including pTrc99A and fabG, fabH, fabI, and fabZ were incorporated are shown in FIG. 8, and the plasmid pCDF- structure, and size change of 1b and `tesA recombinant plasmid combining a nucleotide, including genetic information (the 75th base is tes a gene replaced by T in C) It is shown in Fig 9. And fabB, are shown in the structure and size variation is 10 of fabF, the use as a template for the genetic information of fabA plasmid pEcoli-Nterm 6xHN gene fabF, fabB, recombinant plasmid combining a nucleotide including a gene information of fabA.

실시예 2 : 재조합 대장균의 제조에 이용할 숙주 대장균의 유전자 제거Example 2: Genetic deletion of host E. coli used for the production of recombinant E. coli

1. pKOV 벡터를 이용한 유전자 제거1. Gene removal using pKOV vector

본 발명에서 지방산 생산을 하는데 사용한 대장균은 단백질 발현용 대장균 (E. coli BL21(DE3))을 사용하였다. 지방산 감소를 완화시키기 위해 지방산 합성 베타-옥시데이션 (β-oxidation) 단계에서 지방산을 긴 사슬 아실-ACP로 전환하여 지방산 감소에 관여하는 효소(long-chain acyl-Coenzyme A synthetase)의 유전정보를 가진 유전자 fadD(서열번호 14)을 숙주(host) 대장균에서 제거하였다. fadD를 제거 (deletion)하기 위해 본 발명에서는 유전자 교환 (gene replacement) 벡터인 pKOV을 사용하였다. 방법은 하기에 나타내었다. In the present invention, Escherichia coli ( E. coli BL21 (DE3)) for protein expression was used as E. coli used for fatty acid production. (Long-chain acyl-Coenzyme A synthetase), which converts fatty acids to long-chain acyl-ACP at the fatty acid synthesis beta-oxidation stage to alleviate fatty acid degradation The gene fadD (SEQ ID NO: 14) was removed from the host E. coli. In order to delete fadD , pKOV , a gene replacement vector, was used in the present invention. The method is shown below.

pKOV 벡터는 클로르암피니콜 항생제 내성 유전자를 가지고 있으며, 온도에 민감한 pSC101 복제 오리진 (origin)을 가지고 있다. 그래서 30℃에서 안정적으로 숙주가 벡터를 가지고 성장할 수 있고, 42℃에서는 벡터가 유실된다. 그리고 pKOV 벡터는 sacB 유전자를 가지고 있는데 수크로즈 (sucrose)가 들어간 배지에서 자라지 않는 특성이 있다. 이 특성을 이용하여 유전자 제거를 수행할 수 있다. 먼저 MCS에 제거하고자 하는 유전자의 상류 서열(upstream)과 하류 서열(downstream)의 유전자 서열을 클로닝 (cloning)한다. 염기서열 정보는 KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/)에서 참고하였다. 제조된 재조합 벡터(pKOV::fadD upstream, fadD downstream, fadD fusion-pKOV)를 대장균 E. coli BL21(DE3)에 형질전환을 하고 항생제 배지에서 배양을 하면서 30℃에서 42℃로 온도변화를 준다. 이때 재조합 벡터가 대장균 E. coli BL21(DE3)의 fadD의 유전체에 합쳐(integration)지게 된다. 다시 항생제가 없는 배지에서 온도를 30℃로 변화를 주면 재조합 벡터가 다시 세포질 (cytoplasm)으로 나오게 된다. 이때 42℃에서 수크로즈가 있는 배지에서 배양을 하면 최종적으로 유전자 교환이 되고 재조합 벡터는 유실되어 유전자 제거가 일어난 균주와 유전자 제거가 일어나지 않은 두 종류의 균을 얻을 수 있다. PCR을 통한 유전자의 여부를 확인하여 fadD 유전자가 제거된 대장균 (E. coli BL21(DE3) △fadD)을 제조하였다. The pKOV vector contains the chloramphenicol antibiotic resistance gene and has a temperature-sensitive pSC101 origin of replication. Thus, the host can grow with the vector stably at 30 ° C, and the vector is lost at 42 ° C. And the pKOV vector has a sacB gene, which does not grow on a medium containing sucrose. Using this property, gene removal can be performed. First, the gene sequence of upstream and downstream of the gene to be deleted is cloned into MCS. The nucleotide sequence information was referenced from KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/ ). The resulting recombinant vector (pKOV :: fadD upstream, fadD downstream, fadD fusion-pKOV) is transformed into E. coli BL21 (DE3) and the temperature is changed from 30 to 42 ° C while culturing in an antibiotic medium. At this time, the recombinant vector is integrated with the genome of fadD of E. coli BL21 (DE3). When the temperature is changed to 30 ° C in a medium without antibiotics, the recombinant vector is cytoplasm again. At this time, culturing in a medium with sucrose at 42 ° C finally results in genetic exchange and loss of the recombinant vector, resulting in the removal of the gene and the removal of the gene. E. coli BL21 (DE3) [Delta] fadD ) in which the fadD gene was deleted was prepared by confirming the presence of the gene through PCR.

재조합 벡터(pKOV::fadD upstream, fadD downstream)를 이용한 fadD 제거에서 사용된 프라이머와 상류 서열(upstream)과 하류 서열(downstream)의 크기는 표 5와 같다. 대장균 E. coli::BL21(DE3)에서의 fadD 유전자 상류 서열과 하류 서열은 도 11에 나타냈다. 또한, fadD fusion-pKOV의 제작과정은 도 12에 최종 선별과정 후 존재하는 2가지 종류의 E. coli BL21(DE3) 유전체(genomic DNA)에서의 fadD 유전자의 여부는 도 13에 나타냈다.
The sizes of the primers and the upstream and downstream sequences used in the fadD removal using the recombinant vector (pKOV :: fadD upstream, fadD downstream) are shown in Table 5. The upstream sequence and the downstream sequence of the fadD gene in E. coli :: BL21 (DE3) are shown in Fig. In addition, the production process of fadD fusion-pKOV is shown in Fig. 13 as to whether the fadD gene is present in two types of E. coli BL21 (DE3) genomes (genomic DNA) existing after the final screening process.

-- 프라이머primer Upstream
(1217bp)
Upstream
(1217bp)
FF 5'-GTCCGGCTTCGGAAGATTT-3'5'-GTCCGGCTTCGGAAGATTT-3 '
RR 5'-CGATATCTGTGTTAAGTCAGTCGTCAGAC-3'5'-CGATATCTGTGTTAAGTCAGTCGTCAGAC-3 ' Downstream
(1523bp)
Downstream
(1523 bp)
FF 5'-CGGATATCTTCTTCACCTCTAAAATGCGTG-3'5'-CGGATATCTTCTTCACCTCTAAAATGCGTG-3 '
RR 5'-CGGAACTTCCCTGACTGATATT-3'5'-CGGAACTTCCCTGACTGATATT-3 '

실시예 3 : 재조합 플라스미드에 의해 형질전환된 재조합 대장균의 제조Example 3: Preparation of recombinant Escherichia coli transformed with a recombinant plasmid

1. 재조합 플라스미드의 합성오류 확인1. Confirmation of synthesis error of recombinant plasmid

목적 유전자의 운반을 목적으로 하는 각 플라스미드들 (pCOLADuetTM-1::accA, accB, accC, accD, fabD, pACYCDuetTM-1::fabF, fabB, fabA, pTrc99A::fabG, fabH, fabI, fabZ, pCDF-1b::`tesA)을 숙주세포에 넣기 전, 재조합 플라스미드의 합성오류 확인 및 벡터의 안정성과 숙주 균주로의 형질전환 시 효율 향상을 위해 대장균 E. coli XL1-Blue (E. coli XL1-B)를 이용하여 컴피턴트 세포 (competent cell)를 제조하여 일차 형질전환을 시도하였다. (E. coli XL-1 blue::pCOLADuetTM-1::accA, accB, accC, accD, E. coli XL-1 blue::pACYCDuetTM-1 fabF, fabB, fabA, E. coli XL-1 blue::pTrc99A::fabG, fabH, fabI, fabZ, E. coli XL-1 blue::pCDF-1b::`tesA)Each of the plasmids for the purpose of carrying the gene of interest (pCOLADuet TM -1 :: accA, accB , accC, accD, fabD, pACYCDuet TM -1 :: fabF, fabB, fabA, pTrc99A :: fabG, fabH, fabI, fabZ , pCDF-1b :: loading a `tesA) into the host cell before, E. coli transformants for improved efficiency when switching to a recombinant plasmid and a synthetic error check of vector stability and host strain of E. coli XL1-Blue (E. coli XL1 -B ) were used to prepare competent cells for primary transformation. (E. coli XL-1 blue :: pCOLADuet TM -1 :: accA, accB, accC, accD, E. coli XL-1 blue :: pACYCDuet TM -1 fabF, fabB, fabA, E. coli XL-1 blue :: pTrc99A :: fabG , fabH , fabI , fabZ, E. coli XL-1 blue :: pCDF-lb :: ` tesA )

컴피턴트 세포는 하기와 같은 과정으로 제조하였다. 37℃에서 배양한 E. coli XL1-Blue를 계대배양하여, 생장 곡선의 지수기에 접어들었을 때 회수하여, 0℃에서 30분 동안 보관하였다. 배양액을 5,000 rpm에서 원심분리한 후 상등액을 제거하고, 세포벽을 플라스미드 이동이 용이하게 처리하기 위하여 MgCl2 용액을 넣어 30분 동안 0℃에서 보관하였다. 상기 용액을 다시 원심분리 하여 상등액을 제거하고 CaCl2 용액을 넣어 60분간 0℃에서 이차 처리하였다. 여기에 외부 유전자를 포함한 각 재조합 플라스미드(pCOLADuetTM-1::accA, accB, accC, accD, fabD, pACYCDuetTM-1::fabF, fabB, fabA, pTrc99A::fabG, fabH, fabI, fabZ, pCDF-1b::`tesA)를 넣어 0℃에서 30분 동안 반응시키고, 42℃의 온수조에서 30초 동안 열처리하고, 5분 동안 0℃의 얼음에 순차적으로 넣는 열충격 형질전환방법 (heat-shock method)을 실시하였다. 상기 열충격 형질전환방법을 실시한 샘플은 37℃에서 1시간 동안 배양하여 형질전환 과정을 거친 세포들의 정상 생장을 도왔다. 이 세포들을 각 플라스미드가 내성을 가지고 있는 항생제 (카나마이신, 클로르암피니콜, 암피실린, 스트렙토마이신)가 포함된 고체 LB 배지 (LB 아가 플레이트, 트립톤 10 g/L, NaCl 5 g/L, 효모 추출액 5 g/L, 아가 15 g/L)에 일정량 도말 (spreading)하였다.The competent cells were prepared by the following procedure. E. coli XL1-Blue cultured at 37 ° C was subcultured, collected at the exponential period of the growth curve, and stored at 0 ° C for 30 minutes. The supernatant was removed by centrifugation at 5,000 rpm, and the MgCl 2 solution was added to the cell wall for 30 minutes at 0 ° C to facilitate the plasmid transfer. The solution was centrifuged again to remove the supernatant, and CaCl 2 solution was added and the mixture was subjected to secondary treatment at 0 ° C for 60 minutes. Wherein each recombinant plasmid containing the gene for the outer (pCOLADuet TM -1 :: accA, accB , accC, accD, fabD, pACYCDuet TM -1 :: fabF, fabB, fabA, pTrc99A :: fabG, fabH, fabI, fabZ, pCDF -1b :: ` tesA ), reacted at 0 ° C for 30 minutes, heat-treated in a hot water bath at 42 ° C for 30 seconds, and placed in ice at 0 ° C for 5 minutes sequentially (heat-shock method ). The sample subjected to the thermal shock transformation method was cultured at 37 ° C for 1 hour to help normal growth of the transformed cells. The cells were cultured in solid LB medium (LB agar plate, 10 g / L of tryptone, 5 g / L of NaCl, 5 g of yeast extract) containing antibiotics (kanamycin, chlorampinin, ampicillin, streptomycin) g / L, and agar 15 g / L).

상기 형질전환과정을 거친 샘플은 항생제가 포함된 고체 LB 배지에서 작은 원형 콜로니 (colony) 형태로 자라는 것을 확인하였다. 이 콜로니를 항생제가 포함된 5㎖의 액체 LB 배지에서 배양하고 일반적인 플라스미드 추출 키트를 이용하여 플라스미드를 추출하였다. 상기 추출한 플라스미드는 중합효소연쇄반응 과정 후에 라이게이션을 위해 처리한 제한효소를 이용하여 플라스미드와 목적 유전자의 정보를 보유한 뉴클레오티드를 절단하여 E. coli K-12 MG1655의 유전자와의 크기를 비교하였다. 또한 상기와 같은 플라스미드의 유전자 염기서열 분석결과와 KEGG에 공개된 유전정보가 일치하는지 확인하여, 형질전환 과정의 돌연변이나 중합효소연쇄반응 도중에 일어나는 합성오류가 없음을 확인하였다. 이는 도 14, 도 15, 도 16, 도 17, 도 18, 도 19, 도 20, 도 21, 도 22 및 도 23에 나타내었다.The transformed sample was found to grow in a small round colony form in solid LB medium containing antibiotics. The colonies were cultured in 5 ml of liquid LB medium containing antibiotics and plasmids were extracted using a general plasmid extraction kit. The extracted plasmid was digested with the restriction enzyme treated for ligation after the PCR, and the size of the plasmid and the nucleotide having the information of the target gene were cut and compared with the gene of E. coli K-12 MG1655. In addition, it was confirmed that there is no synthetic error occurring during the mutation of the transformation process or the polymerase chain reaction by confirming that the genomic sequence analysis result of the above plasmid and the genetic information disclosed in KEGG are identical. This is shown in Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23.

이 중에 재조합 플라스미드 pACYCDuetTM-1::fabF, fabB, fabAfabB 유전자의 염기서열과 E. coli K-12 MG1655의 fabB 유전자의 염기서열 분석결과에서 뉴클레오티드 한 곳의 서열이 E. coli K-12 MG1655와 상이하였지만, 아미노산으로 번역이 된 경우의 아미노산 서열과 효소의 기능을 하는 단백질로 입체구조를 가지는 경우에는 일치함을 확인하였다.
During this recombinant plasmid pACYCDuet TM -1 :: fabF, fabB, sequencing and sequence analysis of the sequence one nucleotide at a result of fabB gene of E. coli K-12 MG1655 a fabB fabA gene of the E. coli K-12 MG1655, but it was confirmed that the amino acid sequence when the protein was translated into amino acid and the protein having the steric structure as the enzyme function coincide with each other.

2. 재조합 대장균의 제조 (2. Preparation of recombinant E. coli E. coli E. coli BL21(DE3) △BL21 (DE3) fadDfadD ::pCOLADuet:: pCOLADuet TMTM -1::-One:: accA, accB, accC, accD, fabD accA, accB, accC, accD, fabD + pACYCDuet+ pACYCDuet TMTM -1::-One:: fabF, fabB, fabA fabF, fabB, fabA + pTrc99A::+ pTrc99A :: fabGfabG , , fabHfabH , , fabIfabi , , fabZfabZ + + pCDF-1b::`pCDF-1b :: ` tesAtesA ))

상기 1에서 합성오류를 점검한 재조합 플라스미드들 (pCOLADuetTM-1::accA, accB, accC, accD, fabD, pACYCDuetTM-1::fabF, fabB, fabA, pTrc99A::fabG, fabH, fabI, fabZ, pCDF-1b::`tesA)를 넣기 위해서, 상기 1의 컴피턴트 세포 제조방법과 동일한 방법으로 실시예 2에서 제조한 숙주 대장균 (E. coli BL21(DE3) △fadD)을 처리하고 재조합 플라스미드들 중 1개를 선택하여 열충격 형질전환방법을 시도하여 재조합 균주를 제조하고 상기의 재조합 균주를 가지고 상기 1의 방법을 다른 재조합 플라스미드들에 대해 순차적으로 반복 처리하여 최종 재조합 대장균 (E. coli BL21(DE3) △fadD::pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA)을 제조하였다.The recombinant plasmid check the synthesis error in the 1 (pCOLADuet TM -1 :: accA, accB, accC, accD, fabD, pACYCDuet TM -1 :: fabF, fabB, fabA, pTrc99A :: fabG, fabH, fabI, fabZ , pCDF-1b :: ` tesA ), the host E. coli strain ( E. coli BL21 (DE3) ΔfadD ) prepared in Example 2 was treated in the same manner as in the above-mentioned method for producing a competent cell 1 and recombinant plasmids Was selected to produce a recombinant strain, and the above-mentioned method 1 was sequentially and repeatedly applied to the other recombinant plasmids with the recombinant strain to obtain a final recombinant E. coli BL21 (DE3 ) △ fadD :: pCOLADuet TM -1 :: accA, accB, accC, accD, fabD + pACYCDuet TM -1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI, fabZ + pCDF-1b :: ` tesA ).

따라서, 상기 제조한 재조합 대장균 (E. coli BL21(DE3) △fadD::pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA)을 2014년 09월 17일자로 한국생명공학연구원 생물자원센터 유전자은행(KCTC)에 기탁하였으며, KCTC18325P의 수탁번호를 부여받았다.Thus, the recombinant E. coli BL21 (DE3) ΔfadD :: pCOLADuet -1 :: accA, accB, accC, accD, fabD + pACYCDuet -1 :: fabF, fabB, fabA + pTrc99A :: fabG , fabH , fabI , fabZ + pCF -1b :: ` tesA ) was donated to KCTC (Korea Research Institute of Bioscience and Biotechnology) on September 17, 2014, and received the accession number of KCTC18325P.

상기 제조된 재조합 대장균, 목적 유전자 및 재조합 플라스미드는 표 6에 나타내었다.
The prepared recombinant E. coli, the target gene and the recombinant plasmid are shown in Table 6.

재조합 대장균Recombinant E. coli 목적 유전자Target gene 재조합 플라스미드The recombinant plasmid E. coli BL21(DE3) fadD::pCOLADuet TM -1::accA, accB, accC, accD, fabD + pACYCDuet TM -1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA E. coli BL21 (DE3) △ fadD :: pCOLADuet TM -1 :: accA, accB, accC, accD, fabD + pACYCDuet TM -1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI, fabZ + pCDF-1b :: `tesA accA, accB, accC, accD, fabD, fabF, fabB, fabA, fabG, fabH, fabI, fabZ, `tesA accA, accB, accC, accD, fabD, fabF, fabB, fabA, fabG, fabH, fabI, fabZ, ` tesA pCOLADuetpCOLADuet TMTM -1::accA, accB, accC, accD, fabD + pACYCDuet-1 :: accA, accB, accC, accD, fabD + pACYCDuet TMTM -1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA-1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI, fabZ + pCDF-1b :: `tesA

실시예 4 : 재조합 대장균을 이용한 지방산의 생성Example 4 Production of Fatty Acids Using Recombinant Escherichia coli

상기 실시예 3에서 제조된 재조합 대장균 (E. coli BL21(DE3) △fadD::pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA)을 항생제인 카나마이신, 클로르암피니콜, 암피실린, 스트렙토마이신이 포함된 200㎖의 액체 LB 배지에 넣고 총 27시간 동안 배양하였다. 먼저 37℃의 진탕배양기에서 200rpm의 속도로 회전시키면서 배양하였다. 배양액의 OD (optical density)가 0.6~0.8에 이르렀을 때 유전자 발현을 목적으로 1.0mM IPTG (Isopropyl-β-D-thiogalactopyranoside)를 첨가한 후 낮은 온도에서 KASⅡ의 발현이 효율적임을 고려하여 17℃의 낮은 온도로 옮겨 배양하였으며, 원심분리하여 균체와 배지를 분리하고, 동결건조하여 균체의 수분을 제거하였다. 분석을 위한 샘플을 제조하기 위해서, 균체가 포함된 시험관에 황산과 메탄올 (5:100의 부피비)의 혼합용액을 첨가하고, 질소로 충진하였다. 시험관을 밀봉하여 90℃에서 30분 동안 에스테르화 반응을 하고 상온에서 냉각시켰다. 그 다음, 헥산과 증류수를 첨가하여 교반기 위에서 섞어주고 원심분리를 통해 층을 분리하여 FAMEs(fatty acid methyl esters)이 용해된 상층의 헥산층을 분석하였다. 분석에 이용한 장비는 가스크로마토그래피 (gas chromatography, Agilent 6890N)이며, 이용한 컬럼은 Agilent 19091N-133 capillary column이다.The recombinant E. coli BL21 (DE3) ΔfadD :: pCOLADuet -1 :: accA, accB, accC, accD, fabD + pACYCDuet -1 :: fabF, fabB, fabA + pTrc99A :: fabG , fabH , fabI , fabZ + pCDF-1b :: ` tesA ) was added to 200 ml of liquid LB medium containing antibiotics kanamycin, chloramphenicol, ampicillin, and streptomycin for a total of 27 hours. First, the cells were cultured in a shaking incubator at 37 DEG C while being rotated at a speed of 200 rpm. Considering that the expression of KAS II is efficient at low temperature after the addition of 1.0 mM IPTG (Isopropyl-β-D-thiogalactopyranoside) for the purpose of gene expression when the OD of the culture reached 0.6 ~ 0.8, The cells were cultured at low temperature, centrifuged to separate the cells and the medium, and lyophilized to remove moisture from the cells. To prepare a sample for analysis, a mixed solution of sulfuric acid and methanol (volume ratio of 5: 100) was added to a test tube containing cells, and the mixture was filled with nitrogen. The test tube was sealed, subjected to an esterification reaction at 90 DEG C for 30 minutes, and cooled at room temperature. Then, hexane and distilled water were added and mixed on a stirrer. The layers were separated by centrifugation, and the hexane layer of the upper layer in which FAMEs (fatty acid methyl esters) were dissolved was analyzed. The instrument used for the analysis was gas chromatography (Agilent 6890N), and the column used was an Agilent 19091N-133 capillary column.

표 7에 나타낸 바와 같이, 본 발명의 재조합 대장균의 불포화 지방산 조성을 분석한 결과, 본 발명의 재조합 균주는 야생형 균주(E. coli BL21(DE3))뿐만 아니라 불포화 지방산을 생산하는 양성 대조군(대한민국 등록특허 제10-1402108호에 개시된 E. coli BL21(DE3)::pCOLADuet-1::accA, accB, accC, accD + pEcoliNterm 6xHN::fabF, fabB, fabA + pCDF-1b::'tesA, 수탁번호 : KCTC 12216BP)과 비교하여 불포화 지방산 조성에서 차이가 생겼으며, 특히, 시스-박센산(cis-vaccenic acid)의 비율과 양이 탁월하게 향상된 것을 확인하였다.
As shown in Table 7, when the unsaturated fatty acid composition of the recombinant E. coli of the present invention was analyzed, it was found that the recombinant strain of the present invention contained not only a wild-type strain ( E. coli BL21 (DE3)) but also a positive control No. 10-1402108 disclosed in E. coli BL21 (DE3) :: pCOLADuet -1 :: accA, accB, accC, accD + pEcoliNterm 6xHN :: fabF, fabB, fabA + pCDF-1b :: 'tesA, accession No. KCTC 12216BP). In particular, it was confirmed that the ratio and amount of cis-vaccenic acid was remarkably improved.

Figure pat00002
Figure pat00002

한국생명공학연구원Korea Biotechnology Research Institute KCTC18325PKCTC18325P 2014091720140917

<110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same <130> INHA1.145P <160> 42 <170> KopatentIn 2.0 <210> 1 <211> 960 <212> DNA <213> Escherichia coli <400> 1 atgagtctga atttccttga ttttgaacag ccgattgcag agctggaagc gaaaatcgat 60 tctctgactg cggttagccg tcaggatgag aaactggata ttaacatcga tgaagaagtg 120 catcgtctgc gtgaaaaaag cgtagaactg acacgtaaaa tcttcgccga tctcggtgca 180 tggcagattg cgcaactggc acgccatcca cagcgtcctt ataccctgga ttacgttcgc 240 ctggcatttg atgaatttga cgaactggct ggcgaccgcg cgtatgcaga cgataaagct 300 atcgtcggtg gtatcgcccg tctcgatggt cgtccggtga tgatcattgg tcatcaaaaa 360 ggtcgtgaaa ccaaagaaaa aattcgccgt aactttggta tgccagcgcc agaaggttac 420 cgcaaagcac tgcgtctgat gcaaatggct gaacgcttta agatgcctat catcaccttt 480 atcgacaccc cgggggctta tcctggcgtg ggcgcagaag agcgtggtca gtctgaagcc 540 attgcacgca acctgcgtga aatgtctcgc ctcggcgtac cggtagtttg tacggttatc 600 ggtgaaggtg gttctggcgg tgcgctggcg attggcgtgg gcgataaagt gaatatgctg 660 caatacagca cctattccgt tatctcgccg gaaggttgtg cgtccattct gtggaagagc 720 gccgacaaag cgccgctggc ggctgaagcg atgggtatca ttgctccgcg tctgaaagaa 780 ctgaaactga tcgactccat catcccggaa ccactgggtg gtgctcaccg taacccggaa 840 gcgatggcgg catcgttgaa agcgcaactg ctggcggatc tggccgatct cgacgtgtta 900 agcactgaag atttaaaaaa tcgtcgttat cagcgcctga tgagctacgg ttacgcgtaa 960 960 <210> 2 <211> 1831 <212> DNA <213> Escherichia coli <400> 2 atggatattc gtaagattaa aaaactgatc gagctggttg aagaatcagg catctccgaa 60 ctggaaattt ctgaaggcga agagtcagta cgcattagcc gtgcagctcc tgccgcaagt 120 ttccctgtga tgcaacaagc ttacgctgca ccaatgatgc agcagccagc tcaatctaac 180 gcagccgctc cggcgaccgt tccttccatg gaagcgccag cagcagcgga aatcagtggt 240 cacatcgtac gttccccgat ggttggtact ttctaccgca ccccaagccc ggacgcaaaa 300 gcgttcatcg aagtgggtca gaaagtcaac gtgggcgata ccctgtgcat cgttgaagcc 360 atgaaaatga tgaaccagat cgaagcggac aaatccggta ccgtgaaagc aattctggtc 420 gaaagtggac aaccggtaga atttgacgag ccgctggtcg tcatcgagta acgaggcgaa 480 catgctggat aaaattgtta ttgccaaccg cggcgagatt gcattgcgta ttcttcgtgc 540 ctgtaaagaa ctgggcatca agactgtcgc tgtgcactcc agcgcggatc gcgatctaaa 600 acacgtatta ctggcagatg aaacggtctg tattggccct gctccgtcag taaaaagtta 660 tctgaacatc ccggcaatca tcagcgccgc tgaaatcacc ggcgcagtag caatccatcc 720 gggttacggc ttcctctccg agaacgccaa ctttgccgag caggttgaac gctccggctt 780 tatcttcatt ggcccgaaag cagaaaccat tcgcctgatg ggcgacaaag tatccgcaat 840 cgcggcgatg aaaaaagcgg gcgtcccttg cgtaccgggt tctgacggcc cgctgggcga 900 cgatatggat aaaaaccgtg ccattgctaa acgcattggt tatccggtga ttatcaaagc 960 ctccggcggc ggcggcggtc gcggtatgcg cgtagtgcgc ggcgacgctg aactggcaca 1020 atccatctcc atgacccgtg cggaagcgaa agctgctttc agcaacgata tggtttacat 1080 ggagaaatac ctggaaaatc ctcgccacgt cgagattcag gtactggctg acggtcaggg 1140 caacgctatc tatctggcgg aacgtgactg ctccatgcaa cgccgccacc agaaagtggt 1200 cgaagaagcg ccagcaccgg gcattacccc ggaactgcgt cgctacatcg gcgaacgttg 1260 cgctaaagcg tgtgttgata tcggctatcg cggtgcaggt actttcgagt tcctgttcga 1320 aaacggcgag ttctatttca tcgaaatgaa cacccgtatt caggtagaac acccggttac 1380 agaaatgatc accggcgttg acctgatcaa agaacagctg cgtatcgctg ccggtcaacc 1440 gctgtcgatc aagcaagaag aagttcacgt tcgcggccat gcggtggaat gtcgtatcaa 1500 cgccgaagat ccgaacacct tcctgccaag tccgggcaaa atcacccgtt tccacgcacc 1560 tggcggtttt ggcgtacgtt gggagtctca tatctacgcg ggctacaccg taccgccgta 1620 ctatgactca atgatcggta agctgatttg ctacggtgaa aaccgtgacg tggcgattgc 1680 ccgcatgaag aatgcgctgc aggagctgat catcgacggt atcaaaacca acgttgatct 1740 gcagatccgc atcatgaatg acgagaactt ccagcatggt ggcactaaca tccactatct 1800 ggagaaaaaa ctcggtcttc aggaaaaata a 1831 <210> 3 <211> 1831 <212> DNA <213> Escherichia coli <400> 3 atggatattc gtaagattaa aaaactgatc gagctggttg aagaatcagg catctccgaa 60 ctggaaattt ctgaaggcga agagtcagta cgcattagcc gtgcagctcc tgccgcaagt 120 ttccctgtga tgcaacaagc ttacgctgca ccaatgatgc agcagccagc tcaatctaac 180 gcagccgctc cggcgaccgt tccttccatg gaagcgccag cagcagcgga aatcagtggt 240 cacatcgtac gttccccgat ggttggtact ttctaccgca ccccaagccc ggacgcaaaa 300 gcgttcatcg aagtgggtca gaaagtcaac gtgggcgata ccctgtgcat cgttgaagcc 360 atgaaaatga tgaaccagat cgaagcggac aaatccggta ccgtgaaagc aattctggtc 420 gaaagtggac aaccggtaga atttgacgag ccgctggtcg tcatcgagta acgaggcgaa 480 catgctggat aaaattgtta ttgccaaccg cggcgagatt gcattgcgta ttcttcgtgc 540 ctgtaaagaa ctgggcatca agactgtcgc tgtgcactcc agcgcggatc gcgatctaaa 600 acacgtatta ctggcagatg aaacggtctg tattggccct gctccgtcag taaaaagtta 660 tctgaacatc ccggcaatca tcagcgccgc tgaaatcacc ggcgcagtag caatccatcc 720 gggttacggc ttcctctccg agaacgccaa ctttgccgag caggttgaac gctccggctt 780 tatcttcatt ggcccgaaag cagaaaccat tcgcctgatg ggcgacaaag tatccgcaat 840 cgcggcgatg aaaaaagcgg gcgtcccttg cgtaccgggt tctgacggcc cgctgggcga 900 cgatatggat aaaaaccgtg ccattgctaa acgcattggt tatccggtga ttatcaaagc 960 ctccggcggc ggcggcggtc gcggtatgcg cgtagtgcgc ggcgacgctg aactggcaca 1020 atccatctcc atgacccgtg cggaagcgaa agctgctttc agcaacgata tggtttacat 1080 ggagaaatac ctggaaaatc ctcgccacgt cgagattcag gtactggctg acggtcaggg 1140 caacgctatc tatctggcgg aacgtgactg ctccatgcaa cgccgccacc agaaagtggt 1200 cgaagaagcg ccagcaccgg gcattacccc ggaactgcgt cgctacatcg gcgaacgttg 1260 cgctaaagcg tgtgttgata tcggctatcg cggtgcaggt actttcgagt tcctgttcga 1320 aaacggcgag ttctatttca tcgaaatgaa cacccgtatt caggtagaac acccggttac 1380 agaaatgatc accggcgttg acctgatcaa agaacagctg cgtatcgctg ccggtcaacc 1440 gctgtcgatc aagcaagaag aagttcacgt tcgcggccat gcggtggaat gtcgtatcaa 1500 cgccgaagat ccgaacacct tcctgccaag tccgggcaaa atcacccgtt tccacgcacc 1560 tggcggtttt ggcgtacgtt gggagtctca tatctacgcg ggctacaccg taccgccgta 1620 ctatgactca atgatcggta agctgatttg ctacggtgaa aaccgtgacg tggcgattgc 1680 ccgcatgaag aatgcgctgc aggagctgat catcgacggt atcaaaacca acgttgatct 1740 gcagatccgc atcatgaatg acgagaactt ccagcatggt ggcactaaca tccactatct 1800 ggagaaaaaa ctcggtcttc aggaaaaata a 1831 <210> 4 <211> 915 <212> DNA <213> Escherichia coli <400> 4 atgagctgga ttgaacgaat taaaagcaac attactccca cccgcaaggc gagcattcct 60 gaaggggtgt ggactaagtg tgatagctgc ggtcaggttt tataccgcgc tgagctggaa 120 cgtaatcttg aggtctgtcc gaagtgtgac catcacatgc gtatgacagc gcgtaatcgc 180 ctgcatagcc tgttagatga aggaagcctt gtggagctgg gtagcgagct tgagccgaaa 240 gatgtgctga agtttcgtga ctccaagaag tataaagacc gtctggcatc tgcgcagaaa 300 gaaaccggcg aaaaagatgc gctggtggtg atgaaaggca ctctgtatgg aatgccggtt 360 gtcgctgcgg cattcgagtt cgcctttatg ggcggttcaa tggggtctgt tgtgggtgca 420 cgtttcgtgc gtgccgttga gcaggcgctg gaagataact gcccgctgat ctgcttctcc 480 gcctctggtg gcgcacgtat gcaggaagca ctgatgtcgc tgatgcagat ggcgaaaacc 540 tctgcggcac tggcaaaaat gcaggagcgc ggcttgccgt acatctccgt gctgaccgac 600 ccgacgatgg gcggtgtttc tgcaagtttc gccatgctgg gcgatctcaa catcgctgaa 660 ccgaaagcgt taatcggctt tgccggtccg cgtgttatcg aacagaccgt tcgcgaaaaa 720 ctgccgcctg gattccagcg cagtgaattc ctgatcgaga aaggcgcgat cgacatgatc 780 gtccgtcgtc cggaaatgcg cctgaaactg gcgagcattc tggcgaagtt gatgaatctg 840 ccagcgccga atcctgaagc gccgcgtgaa ggcgtagtgg tacccccggt accggatcag 900 gaacctgagg cctga 915 <210> 5 <211> 930 <212> DNA <213> Escherichia coli <400> 5 atgacgcaat ttgcatttgt gttccctgga cagggttctc aaaccgttgg aatgctggct 60 gatatggcgg cgagctatcc aattgtcgaa gaaacgtttg ctgaagcttc tgcggcgctg 120 ggctacgacc tgtgggcgct gacccagcag gggccagctg aagaactgaa taaaacctgg 180 caaactcagc ctgcgctgtt gactgcatct gttgcgctgt atcgcgtatg gcagcagcag 240 ggcggtaaag caccggcaat gatggccggt cacagcctgg gggaatactc cgcgctggtt 300 tgcgctggtg tgattgattt cgctgatgcg gtgcgtctgg ttgagatgcg cggcaagttc 360 atgcaagaag ccgtaccgga aggcacgggc gctatggcgg caatcatcgg tctggatgat 420 gcgtctattg cgaaagcgtg tgaagaagct gcagaaggtc aggtcgtttc tccggtaaac 480 tttaactctc cgggacaggt ggttattgcc ggtcataaag aagcggttga gcgtgctggc 540 gctgcctgta aagcggcggg cgcaaaacgc gcgctgccgt taccagtgag cgtaccgtct 600 cactgtgcgc tgatgaaacc agcagccgac aaactggcag tagaattagc gaaaatcacc 660 tttaacgcac caacagttcc tgttgtgaat aacgttgatg tgaaatgcga aaccaatggt 720 gatgccatcc gtgacgcact ggtacgtcag ttgtataacc cggttcagtg gacgaagtct 780 gttgagtaca tggcagcgca aggcgtagaa catctctatg aagtcggccc gggcaaagtg 840 cttactggcc tgacgaaacg cattgtcgac accctgaccg cctcggcgct gaacgaacct 900 tcagcgatgg cagcggcgct cgagctttaa 930 <210> 6 <211> 1242 <212> DNA <213> Escherichia coli <400> 6 gtgtctaagc gtcgtgtagt tgtgaccgga ctgggcatgt tgtctcctgt cggcaatacc 60 gtagagtcta cctggaaagc tctgcttgcc ggtcagagtg gcatcagcct aatcgaccat 120 ttcgatacta gcgcctatgc aacgaaattt gctggcttag taaaggattt taactgtgag 180 gacattatct cgcgcaaaga acagcgcaag atggatgcct tcattcaata tggaattgtc 240 gctggcgttc aggccatgca ggattctggc cttgaaataa cggaagagaa cgcaacccgc 300 attggtgccg caattggctc cgggattggc ggcctcggac tgatcgaaga aaaccacaca 360 tctctgatga acggtggtcc acgtaagatc agcccattct tcgttccgtc aacgattgtg 420 aacatggtgg caggtcatct gactatcatg tatggcctgc gtggcccgag catctctatc 480 gcgactgcct gtacttccgg cgtgcacaac attggccatg ctgcgcgtat tatcgcgtat 540 ggcgatgctg acgtgatggt tgcaggtggc gcagagaaag ccagtacgcc gctgggcgtt 600 ggtggttttg gcgcggcacg tgcattatct acccgcaatg ataacccgca agcggcgagc 660 cgcccgtggg ataaagagcg tgatggtttc gtactgggcg atggtgccgg tatgctggta 720 cttgaagagt acgaacacgc gaaaaaacgc ggtgcgaaaa tttacgctga actcgtcggc 780 tttggtatga gcagcgatgc ttatcatatg acgtcaccgc cagaaaatgg cgcaggcgca 840 gctctggcga tggcaaatgc tctgcgtgat gcaggcattg aagcgagtca gattggctac 900 gttaacgcgc acggtacttc tacgccggct ggcgataaag ctgaagcgca ggcggtgaaa 960 accatcttcg gtgaagctgc aagccgtgtg ttggtaagct ccacgaaatc tatgaccggt 1020 cacctgttag gtgcggcggg tgcagtagaa tctatctact ccatcctggc gctgcgcgat 1080 caggctgttc cgccaaccat caacctggat aacccggatg aaggttgcga tctggatttc 1140 gtaccgcacg aagcgcgtca ggttagcgga atggaataca ctctgtgtaa ctccttcggc 1200 ttcggtggca ctaatggttc tttgatcttt aaaaagatct aa 1242 <210> 7 <211> 1217 <212> DNA <213> Escherichia coli <400> 7 aaacgtgcag tgattactgg cctgggcatt gtttccagca tcggtaataa ccagcaggaa 60 gtcctggcat ctctgcgtga aggacgttca gggatcactt tctctcagga gctgaaggat 120 tccggcatgc gtagccacgt ctggggcaac gtaaaactgg ataccactgg cctcattgac 180 cgcaaagttg tgcgctttat gagcgacgca tccatttatg cattcctttc tatggagcag 240 gcaatcgctg atgcgggcct ctctccggaa gcttaccaga ataacccgcg cgttggcctg 300 attgcaggtt ccggcggcgg ctccccgcgt ttccaggtgt tcggcgctga cgcgatgcgc 360 ggcccgcgcg gcctgaaagc ggttggcccg tatgtggtca ccaaagcgat ggcatccggc 420 gtttctgcct gcctcgccac cccgtttaaa attcatggcg ttaactactc catcagtccg 480 cgtgtgcgac ttccgcacac tgtatcggta acgcagtaga gcagatccaa ctgggcaaac 540 aggacatcgt gtttgctggc ggcggcgaag agctgtgctg ggaaatggct tgcgaattcg 600 acgcaatggg tgcgctgtct actaaataca acgacacccc ggaaaaagcc tcccgtactt 660 acgacgctca ccgtgacggt ttcgttatcg ctggcggcgg cggtatggta gtggttgaag 720 agctggaaca cgcgctggcg cgtggtgctc acatctatgc tgaaatcgtt ggctacggcg 780 caacctctga tggtgcagac atggttgctc cgtctggcga aggcgcagta cgctgcatga 840 agatggcgat gcatggcgtt gataccccaa tcgattacct gaactcccac ggtacttcga 900 ctccggttgg cgacgtgaaa gagctggcag ctatccgtga agtgttcggc gataagagcc 960 cggcgatttc tgcaaccaaa gccatgaccg gtcactctct gggcgctgct ggcgtacagg 1020 aagctatcta ctctctgctg atgctggaac acggctttat cgccccgagc atcaacattg 1080 aagagctgga cgagcaggct gcgggtctga acatcgtgac cgaaacgacc gatcgcgaac 1140 tgaccaccgt tatgtctaac agcttcggct tcggcggcac caacgccacg ctggtaatgc 1200 gcaagctgaa agattaa 1217 <210> 8 <211> 518 <212> DNA <213> Escherichia coli <400> 8 atggtagata aacgcgaatc ctatacaaaa gaagaccttc ttgcctctgg tcgcggtgac 60 tgtttggcgc taaaggcccg caattgccag caccgaacat gctgatgatg gaccgtgtgg 120 tcaaaatgac cgaaacgggt ggtaacttcg acaaagggta tgttgaagca gaactggata 180 tcaatccgga tctgtggttc ttcggatgcc actttattgg cgatccggtt atgccgggat 240 gcctgggcct ggacgcaatg tggcagctgg tagggttcta cctcggctgg ctgggcggcg 300 aaggtaaagg ccgcgcgctg ggcgttggcg aagtgaaatt cactggtcag gtactgccga 360 cagcgaaaaa agtgacctac cgtattcact ttaaacgcat tgttaaccgt cgtctgatta 420 tgggcctggc ggatggcgaa gtgctggttg atggtcgtct gatctatacc gccagcgacc 480 tgaaagtcgg tctgttccag gatacgtctg ccttctga 518 <210> 9 <211> 735 <212> DNA <213> Escherichia coli <400> 9 atgaattttg aaggaaaaat cgcactggta accggtgcaa gccgcggaat tggccgcgca 60 attgctgaaa cgctcgcagc ccgtggcgcg aaagttattg gcactgcgac cagtgaaaat 120 ggcgctcagg cgatcagtga ttatttaggt gccaacggca aaggtctgat gttgaatgtg 180 accgacccgg catctatcga atctgttctg gaaaaaattc gcgcagaatt tggtgaagtg 240 gatatcctgg tcaataatgc cggtatcact cgtgataacc tgttaatgcg aatgaaagat 300 gaagagtgga acgatattat cgaaaccaac ctttcatctg ttttccgtct gtcaaaagcg 360 gtaatgcgcg ctatgatgaa aaagcgtcat ggtcgtatta tcactatcgg ttctgtggtt 420 ggtaccatgg gaaatggcgg tcaggccaac tacgctgcgg cgaaagcggg cttgatcggc 480 ttcagtaaat cactggcgcg cgaagttgcg tcacgcggta ttactgtaaa cgttgttgct 540 ccgggcttta ttgaaacgga catgacacgt gcgctgagcg atgaccagcg tgcgggtatc 600 ctggcgcagg ttcctgcggg tcgcctcggc ggcgcacagg aaatcgccaa cgcggttgca 660 ttcctggcat ccgacgaagc agcttacatc acgggtgaaa ctttgcatgt gaacggcggg 720 atgtacatgg tctga 735 <210> 10 <211> 954 <212> DNA <213> Escherichia coli <400> 10 atgtatacga agattattgg tactggcagc tatctgcccg aacaagtgcg gacaaacgcc 60 gatttggaaa aaatggtgga cacctctgac gagtggattg tcactcgtac cggtatccgc 120 gaacgccaca ttgccgcgcc aaacgaaacc gtttcaacca tgggctttga agcggcgaca 180 cgcgcaattg agatggcggg cattgagaaa gaccagattg gcctgatcgt tgtggcaacg 240 acttctgcta cgcacgcttt cccgagcgca gcttgtcaga ttcaaagcat gttgggcatt 300 aaaggttgcc cggcatttga cgttgcagca gcctgcgcag gtttcaccta tgcattaagc 360 gtagccgatc aatacgtgaa atctggggcg gtgaagtatg ctctggtcgt cggttccgat 420 gtactggcgc gcacctgcga tccaaccgat cgtgggacta ttattatttt tggcgatggc 480 gcgggcgctg cggtgctggc tgcctctgaa gagccgggaa tcatttccac ccatctgcat 540 gccgacggta gttatggtga attgctgacg ctgccaaacg ccgaccgcgt gaatccagag 600 aattcaattc atctgacgat ggcgggcaac gaagtcttca aggttgcggt aacggaactg 660 gcgcacatcg ttgatgagac gctggcggcg aataatcttg accgttctca actggactgg 720 ctggttccgc atcaggctaa cctgcgtatt atcagtgcaa cggcgaaaaa actcggtatg 780 tctatggata atgtcgtggt gacgctggat cgccacggta atacctctgc ggcctctgtc 840 ccgtgcgcgc tggatgaagc tgtacgcgac gggcgcatta agccggggca gttggttctg 900 cttgaagcct ttggcggtgg attcacctgg ggctccgcgc tggttcgttt ctag 954 <210> 11 <211> 789 <212> DNA <213> Escherichia coli <400> 11 atgggttttc tttccggtaa gcgcattctg gtaaccggtg ttgccagcaa actatccatc 60 gcctacggta tcgctcaggc gatgcaccgc gaaggagctg aactggcatt cacctaccag 120 aacgacaaac tgaaaggccg cgtagaagaa tttgccgctc aattgggttc tgacatcgtt 180 ctgcagtgcg atgttgcaga agatgccagc atcgacacca tgttcgctga actggggaaa 240 gtttggccga aatttgacgg tttcgtacac tctattggtt ttgcacctgg cgatcagctg 300 gatggtgact atgttaacgc cgttacccgt gaaggcttca aaattgccca cgacatcagc 360 tcctacagct tcgttgcaat ggcaaaagct tgccgctcca tgctgaatcc gggttctgcc 420 ctgctgaccc tttcctacct tggcgctgag cgcgctatcc cgaactacaa cgttatgggt 480 ctggcaaaag cgtctctgga agcgaacgtg cgctatatgg cgaacgcgat gggtccggaa 540 ggtgtgcgtg ttaacgccat ctctgctggt ccgatccgta ctctggcggc ctccggtatc 600 aaagacttcc gcaaaatgct ggctcattgc gaagccgtta ccccgattcg ccgtaccgtt 660 actattgaag atgtgggtaa ctctgcggca ttcctgtgct ccgatctctc tgccggtatc 720 tccggtgaag tggtccacgt tgacggcggt ttcagcattg ctgcaatgaa cgaactcgaa 780 ctgaaataa 789 <210> 12 <211> 456 <212> DNA <213> Escherichia coli <400> 12 ttgactacta acactcatac tctgcagatt gaagagattt tagaacttct gccgcaccgt 60 ttcccgttct tactggtgga tcgcgtgctg gattttgaag aaggtcgttt tctgcgcgca 120 gtaaaaaatg tctctgtcaa tgagccattc ttccagggcc atttccctgg aaaaccgatt 180 ttcccgggtg tgctgattct ggaagcaatg gcacaggcaa caggtattct ggcgtttaaa 240 agcgtaggaa aactggaacc gggtgagctg tactacttcg ctggtattga cgaagcgcgc 300 ttcaagcgcc cggtcgtgcc tggcgatcaa atgatcatgg aagtcacttt cgaaaaaacg 360 cgccgcggcc tgacccgttt taaaggggtt gctctggtcg atggtaaagt agtttgcgaa 420 gcaacgatga tgtgtgctcg tagccgggag gcctga 456 <210> 13 <211> 627 <212> DNA <213> Escherichia coli <400> 13 atgatgaact tcaacaatgt tttccgctgg catttgccct tcctgttcct ggtcctgtta 60 accttccgtg ccgctgcagc ggacacgtta ttgattctgg gtgatagcct gagcgccggg 120 tatcgaatgt ctgccagcgc ggcctggcct gccttgttga atgataagtg gcagagtaaa 180 acgtcggtag ttaatgccag catcagcggc gacacctcgc aacaaggact ggcgcgcctt 240 ccggctctgc tgaaacagca tcagccgcgt tgggtgctgg ttgaactggg cggcaatgac 300 ggtttgcgtg gttttcagcc acagcaaacc gagcaaacgc tgcgccagat tttgcaggat 360 gtcaaagccg ccaacgctga accattgtta atgcaaatac gtctgcctgc aaactatggt 420 cgccgttata atgaagcctt tagcgccatt taccccaaac tcgccaaaga gtttgatgtt 480 ccgctgctgc ccttttttat ggaagaggtc tacctcaagc cacaatggat gcaggatgac 540 ggtattcatc ccaaccgcga cgcccagccg tttattgccg actggatggc gaagcagttg 600 cagcctttag taaatcatga ctcataa 627 <210> 14 <211> 1686 <212> DNA <213> Escherichia coli <400> 14 ttgaagaagg tttggcttaa ccgttatccc gcggacgttc cgacggagat caaccctgac 60 cgttatcaat ctctggtaga tatgtttgag cagtcggtcg cgcgctacgc cgatcaacct 120 gcgtttgtga atatggggga ggtaatgacc ttccgcaagc tggaagaacg cagtcgcgcg 180 tttgccgctt atttgcaaca agggttgggg ctgaagaaag gcgatcgcgt tgcgttgatg 240 atgcctaatt tattgcaata tccggtggcg ctgtttggca ttttgcgtgc cgggatgatc 300 gtcgtaaacg ttaacccgtt gtataccccg cgtgagcttg agcatcagct taacgatagc 360 ggcgcatcgg cgattgttat cgtgtctaac tttgctcaca cactggaaaa agtggttgat 420 aaaaccgccg ttcagcacgt aattctgacc cgtatgggcg atcagctatc tacggcaaaa 480 ggcacggtag tcaatttcgt tgttaaatac atcaagcgtt tggtgccgaa ataccatctg 540 ccagatgcca tttcatttcg tagcgcactg cataacggct accggatgca gtacgtcaaa 600 cccgaactgg tgccggaaga tttagctttt ctgcaataca ccggcggcac cactggtgtg 660 gcgaaaggcg cgatgctgac tcaccgcaat atgctggcga acctggaaca ggttaacgcg 720 acctatggtc cgctgttgca tccgggcaaa gagctggtgg tgacggcgct gccgctgtat 780 cacatttttg ccctgaccat taactgcctg ctgtttatcg aactgggtgg gcagaacctg 840 cttatcacta acccgcgcga tattccaggg ttggtaaaag agttagcgaa atatccgttt 900 accgctatca cgggcgttaa caccttgttc aatgcgttgc tgaacaataa agagttccag 960 cagctggatt tctccagtct gcatctttcc gcaggcggag ggatgccagt gcagcaagtg 1020 gtggcagagc gttgggtgaa actgacagga cagtatctgc tggaaggcta tggccttacc 1080 gagtgtgcgc cgctggtcag cgttaaccca tatgatattg attatcatag tggtagcatc 1140 ggtttgccgg tgccgtcgac ggaagccaaa ctggtggatg atgatgataa tgaagtacca 1200 ccgggtcaac cgggtgagct ttgtgtcaaa ggaccgcagg tgatgctggg ttactggcag 1260 cgtccggatg ctacagatga gatcatcaaa aatggctggt tacacaccgg cgacatcgcg 1320 gtgatggatg aagaagggtt cctgcgcatt gtcgatcgta aaaaagacat gattctggtt 1380 tccggtttta acgtctatcc caacgagatt gaagatgtcg tcatgcagca tcctggcgta 1440 caggaagtcg cggctgttgg cgtaccttcc ggctccagtg gtgaagcggt gaaaatcttc 1500 gtagtgaaaa aagatccatc gcttaccgaa gagtcactgg tgaccttttg ccgccgtcag 1560 ctcacgggct acaaagtacc gaagctggtg gagtttcgtg atgagttacc gaaatctaac 1620 gtcggaaaaa ttttgcgacg agaattacgt gacgaagcgc gcggcaaagt ggacaataaa 1680 gcctga 1686 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> forward primer for accA gene <400> 15 cggatccgat gaatttcctt gattttgaac agc 33 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for accA gene <400> 16 gcgtcgacgt cttacgcgta accgtag 27 <210> 17 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> forward primer for accB and accC gene <400> 17 gaagatcttc ggatggatat tcgtaagatt aaaaaactga tcg 43 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for accB and accC gene <400> 18 gaagatcttc ggatggatat tcgtaagatt aaaaaactga tcg 43 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> forward primer for accD gene <400> 19 gcgtcgacgt caaggagata tacatgagct ggattgaac 39 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for accD gene <400> 20 ataagaatgc ggccgctcag gcctcaggtt 30 <210> 21 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabD gene <400> 21 ggaattccat atggaattcc atgacgcaat ttgcatt 37 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabD gene <400> 22 gaagatcttc ctccttttaa agctcgagcg cc 32 <210> 23 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabB gene <400> 23 ggaagatctg aaggagatat accatgaaac gtgcagtgat tactggcc 48 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabB gene <400> 24 ataagaatgc ggccgcttaa tctttcagct tgcgcattac ca 42 <210> 25 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabF gene <400> 25 aaaactgcag gtgtgtctaa gcgtcgtgta gttgtga 37 <210> 26 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabF gene <400> 26 acgcgtcgac ttagatcttt ttaaagatca aagaacc 37 <210> 27 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabA gene <400> 27 ccttaattaa ggaaggaggg atggtagata aacgcgaatc c 41 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabA gene <400> 28 gctctagagc tcagaaggca gacgtatcct g 31 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabF, fabB and fabA gene <400> 29 aaaaggatcc ggtgtctaag cgtcgtgtag 30 <210> 30 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabF, fabB and fabA gene <400> 30 aaaactgcag tcagaaggca gacgtatcct g 31 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabG gene <400> 31 gaattcggaa aatcatgaat tttgaaggaa 30 <210> 32 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabG gene <400> 32 gagctcttad gdgtaaccgt agctcatc 28 <210> 33 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabH gene <400> 33 ggatccccga aaagtgactg agcgtaca 28 <210> 34 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabH gene <400> 34 tctagactag aaacgaacca gcgcggag 28 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabI gene <400> 35 tctagaaagg attaaagcta tgggttttct 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabI gene <400> 36 tctagattat ttcagttcga gttcgttcat 30 <210> 37 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabZ gene <400> 37 gagctcggaa gagtatcttg actactaac 29 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabZ gene <400> 38 ggatcctcag gcctcccggc tacgagc 27 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer for tesA gene <400> 39 cgggatccca tgatgaactt caacaatgtt ttccg 35 <210> 40 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for tesA gene <400> 40 ggaagatctg aaggagatat accatgaaac gtgcagtgat tactggcc 48 <210> 41 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer for 'tesA gene <400> 41 gttaaccttc cgtgccgctg cagcggacac gttattg 37 <210> 42 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for 'tesA gene <400> 42 caataacgtg tccgctgcag cggcacggaa ggttaac 37 <110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Recombinant E. coli producing unsaturated fatty acid, and method          for producing unsaturated fatty acid using the same <130> INHA1.145P <160> 42 <170> Kopatentin 2.0 <210> 1 <211> 960 <212> DNA <213> Escherichia coli <400> 1 atgagtctga atttccttga ttttgaacag ccgattgcag agctggaagc gaaaatcgat 60 tctctgactg cggttagccg tcaggatgag aaactggata ttaacatcga tgaagaagtg 120 catcgtctgc gtgaaaaaag cgtagaactg acacgtaaaa tcttcgccga tctcggtgca 180 tggcagattg cgcaactggc acgccatcca cagcgtcctt ataccctgga ttacgttcgc 240 ctggcatttg atgaatttga cgaactggct ggcgaccgcg cgtatgcaga cgataaagct 300 atcgtcggtg gtatcgcccg tctcgatggt cgtccggtga tgatcattgg tcatcaaaaa 360 ggtcgtgaaa ccaaagaaaa aattcgccgt aactttggta tgccagcgcc agaaggttac 420 cgcaaagcac tgcgtctgat gcaaatggct gaacgcttta agatgcctat catcaccttt 480 atcgacaccc cgggggctta tcctggcgtg ggcgcagaag agcgtggtca gtctgaagcc 540 attgcacgca acctgcgtga aatgtctcgc ctcggcgtac cggtagtttg tacggttatc 600 ggtgaaggtg gttctggcgg tgcgctggcg attggcgtgg gcgataaagt gaatatgctg 660 caatacagca cctattccgt tatctcgccg gaaggttgtg cgtccattct gtggaagagc 720 gccgacaaag cgccgctggc ggctgaagcg atgggtatca ttgctccgcg tctgaaagaa 780 ctgaaactga tcgactccat catcccggaa ccactgggtg gtgctcaccg taacccggaa 840 gcgatggcgg catcgttgaa agcgcaactg ctggcggatc tggccgatct cgacgtgtta 900 agcactgaag atttaaaaaa tcgtcgttat cagcgcctga tgagctacgg ttacgcgtaa 960                                                                          960 <210> 2 <211> 1831 <212> DNA <213> Escherichia coli <400> 2 atggatattc gtaagattaa aaaactgatc gagctggttg aagaatcagg catctccgaa 60 ctggaaattt ctgaaggcga agagtcagta cgcattagcc gtgcagctcc tgccgcaagt 120 ttccctgtga tgcaacaagc ttacgctgca ccaatgatgc agcagccagc tcaatctaac 180 gcagccgctc cggcgaccgt tccttccatg gaagcgccag cagcagcgga aatcagtggt 240 cacatcgtac gttccccgat ggttggtact ttctaccgca ccccaagccc ggacgcaaaa 300 gcgttcatcg aagtgggtca gaaagtcaac gtgggcgata ccctgtgcat cgttgaagcc 360 atgaaaatga tgaaccagat cgaagcggac aaatccggta ccgtgaaagc aattctggtc 420 gaaagtggac aaccggtaga atttgacgag ccgctggtcg tcatcgagta acgaggcgaa 480 catgctggat aaaattgtta ttgccaaccg cggcgagatt gcattgcgta ttcttcgtgc 540 ctgtaaagaa ctgggcatca agactgtcgc tgtgcactcc agcgcggatc gcgatctaaa 600 acacgtatta ctggcagatg aaacggtctg tattggccct gctccgtcag taaaaagtta 660 tctgaacatc ccggcaatca tcagcgccgc tgaaatcacc ggcgcagtag caatccatcc 720 gggttacggc ttcctctccg agaacgccaa ctttgccgag caggttgaac gctccggctt 780 tatcttcatt ggcccgaaag cagaaaccat tcgcctgatg ggcgacaaag tatccgcaat 840 cgcggcgatg aaaaaagcgg gcgtcccttg cgtaccgggt tctgacggcc cgctgggcga 900 cgatatggat aaaaaccgtg ccattgctaa acgcattggt tatccggtga ttatcaaagc 960 ctccggcggc ggcggcggtc gcggtatgcg cgtagtgcgc ggcgacgctg aactggcaca 1020 atccatctcc atgacccgtg cggaagcgaa agctgctttc agcaacgata tggtttacat 1080 ggagaaatac ctggaaaatc ctcgccacgt cgagattcag gtactggctg acggtcaggg 1140 caacgctatc tatctggcgg aacgtgactg ctccatgcaa cgccgccacc agaaagtggt 1200 cgaagaagcg ccagcaccgg gcattacccc ggaactgcgt cgctacatcg gcgaacgttg 1260 cgctaaagcg tgtgttgata tcggctatcg cggtgcaggt actttcgagt tcctgttcga 1320 aaacggcgag ttctatttca tcgaaatgaa cacccgtatt caggtagaac acccggttac 1380 agaaatgatc accggcgttg acctgatcaa agaacagctg cgtatcgctg ccggtcaacc 1440 gctgtcgatc aagcaagaag aagttcacgt tcgcggccat gcggtggaat gtcgtatcaa 1500 cgccgaagat ccgaacacct tcctgccaag tccgggcaaa atcacccgtt tccacgcacc 1560 tggcggtttt ggcgtacgtt gggagtctca tatctacgcg ggctacaccg taccgccgta 1620 ctatgactca atgatcggta agctgatttg ctacggtgaa aaccgtgacg tggcgattgc 1680 ccgcatgaag aatgcgctgc aggagctgat catcgacggt atcaaaacca acgttgatct 1740 gcagatccgc atcatgaatg acgagaactt ccagcatggt ggcactaaca tccactatct 1800 ggagaaaaaa ctcggtcttc aggaaaaata a 1831 <210> 3 <211> 1831 <212> DNA <213> Escherichia coli <400> 3 atggatattc gtaagattaa aaaactgatc gagctggttg aagaatcagg catctccgaa 60 ctggaaattt ctgaaggcga agagtcagta cgcattagcc gtgcagctcc tgccgcaagt 120 ttccctgtga tgcaacaagc ttacgctgca ccaatgatgc agcagccagc tcaatctaac 180 gcagccgctc cggcgaccgt tccttccatg gaagcgccag cagcagcgga aatcagtggt 240 cacatcgtac gttccccgat ggttggtact ttctaccgca ccccaagccc ggacgcaaaa 300 gcgttcatcg aagtgggtca gaaagtcaac gtgggcgata ccctgtgcat cgttgaagcc 360 atgaaaatga tgaaccagat cgaagcggac aaatccggta ccgtgaaagc aattctggtc 420 gaaagtggac aaccggtaga atttgacgag ccgctggtcg tcatcgagta acgaggcgaa 480 catgctggat aaaattgtta ttgccaaccg cggcgagatt gcattgcgta ttcttcgtgc 540 ctgtaaagaa ctgggcatca agactgtcgc tgtgcactcc agcgcggatc gcgatctaaa 600 acacgtatta ctggcagatg aaacggtctg tattggccct gctccgtcag taaaaagtta 660 tctgaacatc ccggcaatca tcagcgccgc tgaaatcacc ggcgcagtag caatccatcc 720 gggttacggc ttcctctccg agaacgccaa ctttgccgag caggttgaac gctccggctt 780 tatcttcatt ggcccgaaag cagaaaccat tcgcctgatg ggcgacaaag tatccgcaat 840 cgcggcgatg aaaaaagcgg gcgtcccttg cgtaccgggt tctgacggcc cgctgggcga 900 cgatatggat aaaaaccgtg ccattgctaa acgcattggt tatccggtga ttatcaaagc 960 ctccggcggc ggcggcggtc gcggtatgcg cgtagtgcgc ggcgacgctg aactggcaca 1020 atccatctcc atgacccgtg cggaagcgaa agctgctttc agcaacgata tggtttacat 1080 ggagaaatac ctggaaaatc ctcgccacgt cgagattcag gtactggctg acggtcaggg 1140 caacgctatc tatctggcgg aacgtgactg ctccatgcaa cgccgccacc agaaagtggt 1200 cgaagaagcg ccagcaccgg gcattacccc ggaactgcgt cgctacatcg gcgaacgttg 1260 cgctaaagcg tgtgttgata tcggctatcg cggtgcaggt actttcgagt tcctgttcga 1320 aaacggcgag ttctatttca tcgaaatgaa cacccgtatt caggtagaac acccggttac 1380 agaaatgatc accggcgttg acctgatcaa agaacagctg cgtatcgctg ccggtcaacc 1440 gctgtcgatc aagcaagaag aagttcacgt tcgcggccat gcggtggaat gtcgtatcaa 1500 cgccgaagat ccgaacacct tcctgccaag tccgggcaaa atcacccgtt tccacgcacc 1560 tggcggtttt ggcgtacgtt gggagtctca tatctacgcg ggctacaccg taccgccgta 1620 ctatgactca atgatcggta agctgatttg ctacggtgaa aaccgtgacg tggcgattgc 1680 ccgcatgaag aatgcgctgc aggagctgat catcgacggt atcaaaacca acgttgatct 1740 gcagatccgc atcatgaatg acgagaactt ccagcatggt ggcactaaca tccactatct 1800 ggagaaaaaa ctcggtcttc aggaaaaata a 1831 <210> 4 <211> 915 <212> DNA <213> Escherichia coli <400> 4 atgagctgga ttgaacgaat taaaagcaac attactccca cccgcaaggc gagcattcct 60 gaaggggtgt ggactaagtg tgatagctgc ggtcaggttt tataccgcgc tgagctggaa 120 cgtaatcttg aggtctgtcc gaagtgtgac catcacatgc gtatgacagc gcgtaatcgc 180 ctgcatagcc tgttagatga aggaagcctt gtggagctgg gtagcgagct tgagccgaaa 240 gatgtgctga agtttcgtga ctccaagaag tataaagacc gtctggcatc tgcgcagaaa 300 gaaaccggcg aaaaagatgc gctggtggtg atgaaaggca ctctgtatgg aatgccggtt 360 gtcgctgcgg cattcgagtt cgcctttatg ggcggttcaa tggggtctgt tgtgggtgca 420 cgtttcgtgc gtgccgttga gcaggcgctg gaagataact gcccgctgat ctgcttctcc 480 gcctctggtg gcgcacgtat gcaggaagca ctgatgtcgc tgatgcagat ggcgaaaacc 540 tctgcggcac tggcaaaaat gcaggagcgc ggcttgccgt acatctccgt gctgaccgac 600 ccgacgatgg gcggtgtttc tgcaagtttc gccatgctgg gcgatctcaa catcgctgaa 660 ccgaaagcgt taatcggctt tgccggtccg cgtgttatcg aacagaccgt tcgcgaaaaa 720 ctgccgcctg gattccagcg cagtgaattc ctgatcgaga aaggcgcgat cgacatgatc 780 gtccgtcgtc cggaaatgcg cctgaaactg gcgagcattc tggcgaagtt gatgaatctg 840 ccagcgccga atcctgaagc gccgcgtgaa ggcgtagtgg tacccccggt accggatcag 900 gaacctgagg cctga 915 <210> 5 <211> 930 <212> DNA <213> Escherichia coli <400> 5 atgacgcaat ttgcatttgt gttccctgga cagggttctc aaaccgttgg aatgctggct 60 gatatggcgg cgagctatcc aattgtcgaa gaaacgtttg ctgaagcttc tgcggcgctg 120 ggctacgacc tgtgggcgct gacccagcag gggccagctg aagaactgaa taaaacctgg 180 caaactcagc ctgcgctgtt gactgcatct gttgcgctgt atcgcgtatg gcagcagcag 240 ggcggtaaag caccggcaat gatggccggt cacagcctgg gggaatactc cgcgctggtt 300 tgcgctggtg tgattgattt cgctgatgcg gtgcgtctgg ttgagatgcg cggcaagttc 360 atgcaagaag ccgtaccgga aggcacgggc gctatggcgg caatcatcgg tctggatgat 420 gcgtctattg cgaaagcgtg tgaagaagct gcagaaggtc aggtcgtttc tccggtaaac 480 tttaactctc cgggacaggt ggttattgcc ggtcataaag aagcggttga gcgtgctggc 540 gctgcctgta aagcggcggg cgcaaaacgc gcgctgccgt taccagtgag cgtaccgtct 600 cactgtgcgc tgatgaaacc agcagccgac aaactggcag tagaattagc gaaaatcacc 660 tttaacgcac caacagttcc tgttgtgaat aacgttgatg tgaaatgcga aaccaatggt 720 gatgccatcc gtgacgcact ggtacgtcag ttgtataacc cggttcagtg gacgaagtct 780 gttgagtaca tggcagcgca aggcgtagaa catctctatg aagtcggccc gggcaaagtg 840 cttactggcc tgacgaaacg cattgtcgac accctgaccg cctcggcgct gaacgaacct 900 tcagcgatgg cagcggcgct cgagctttaa 930 <210> 6 <211> 1242 <212> DNA <213> Escherichia coli <400> 6 gtgtctaagc gtcgtgtagt tgtgaccgga ctgggcatgt tgtctcctgt cggcaatacc 60 gtagagtcta cctggaaagc tctgcttgcc ggtcagagtg gcatcagcct aatcgaccat 120 ttcgatacta gcgcctatgc aacgaaattt gctggcttag taaaggattt taactgtgag 180 gacattatct cgcgcaaaga acagcgcaag atggatgcct tcattcaata tggaattgtc 240 gctggcgttc aggccatgca ggattctggc cttgaaataa cggaagagaa cgcaacccgc 300 attggtgccg caattggctc cgggattggc ggcctcggac tgatcgaaga aaaccacaca 360 tctctgatga acggtggtcc acgtaagatc agcccattct tcgttccgtc aacgattgtg 420 aacatggtgg caggtcatct gactatcatg tatggcctgc gtggcccgag catctctatc 480 gcgactgcct gtacttccgg cgtgcacaac attggccatg ctgcgcgtat tatcgcgtat 540 ggcgatgctg acgtgatggt tgcaggtggc gcagagaaag ccagtacgcc gctgggcgtt 600 ggtggttttg gcgcggcacg tgcattatct acccgcaatg ataacccgca agcggcgagc 660 cgcccgtggg ataaagagcg tgatggtttc gtactgggcg atggtgccgg tatgctggta 720 cttgaagagt acgaacacgc gaaaaaacgc ggtgcgaaaa tttacgctga actcgtcggc 780 tttggtatga gcagcgatgc ttatcatatg acgtcaccgc cagaaaatgg cgcaggcgca 840 gctctggcga tggcaaatgc tctgcgtgat gcaggcattg aagcgagtca gattggctac 900 gttaacgcgc acggtacttc tacgccggct ggcgataaag ctgaagcgca ggcggtgaaa 960 accatcttcg gtgaagctgc aagccgtgtg ttggtaagct ccacgaaatc tatgaccggt 1020 cacctgttag gtgcggcggg tgcagtagaa tctatctact ccatcctggc gctgcgcgat 1080 caggctgttc cgccaaccat caacctggat aacccggatg aaggttgcga tctggatttc 1140 gtaccgcacg aagcgcgtca ggttagcgga atggaataca ctctgtgtaa ctccttcggc 1200 ttcggtggca ctaatggttc tttgatcttt aaaaagatct aa 1242 <210> 7 <211> 1217 <212> DNA <213> Escherichia coli <400> 7 aaacgtgcag tgattactgg cctgggcatt gtttccagca tcggtaataa ccagcaggaa 60 gtcctggcat ctctgcgtga aggacgttca gggatcactt tctctcagga gctgaaggat 120 tccggcatgc gtagccacgt ctggggcaac gtaaaactgg ataccactgg cctcattgac 180 cgcaaagttg tgcgctttat gagcgacgca tccatttatg cattcctttc tatggagcag 240 gcaatcgctg atgcgggcct ctctccggaa gcttaccaga ataacccgcg cgttggcctg 300 attgcaggtt ccggcggcgg ctccccgcgt ttccaggtgt tcggcgctga cgcgatgcgc 360 ggcccgcgcg gcctgaaagc ggttggcccg tatgtggtca ccaaagcgat ggcatccggc 420 gtttctgcct gcctcgccac cccgtttaaa attcatggcg ttaactactc catcagtccg 480 cgtgtgcgac ttccgcacac tgtatcggta acgcagtaga gcagatccaa ctgggcaaac 540 aggacatcgt gtttgctggc ggcggcgaag agctgtgctg ggaaatggct tgcgaattcg 600 acgcaatggg tgcgctgtct actaaataca acgacacccc ggaaaaagcc tcccgtactt 660 acgacgctca ccgtgacggt ttcgttatcg ctggcggcgg cggtatggta gtggttgaag 720 agctggaaca cgcgctggcg cgtggtgctc acatctatgc tgaaatcgtt ggctacggcg 780 caacctctga tggtgcagac atggttgctc cgtctggcga aggcgcagta cgctgcatga 840 agatggcgat gcatggcgtt gataccccaa tcgattacct gaactcccac ggtacttcga 900 ctccggttgg cgacgtgaaa gagctggcag ctatccgtga agtgttcggc gataagagcc 960 cggcgatttc tgcaaccaaa gccatgaccg gtcactctct gggcgctgct ggcgtacagg 1020 aagctatcta ctctctgctg atgctggaac acggctttat cgccccgagc atcaacattg 1080 aagagctgga cgagcaggct gcgggtctga acatcgtgac cgaaacgacc gatcgcgaac 1140 tgaccaccgt tatgtctaac agcttcggct tcggcggcac caacgccacg ctggtaatgc 1200 gcaagctgaa agattaa 1217 <210> 8 <211> 518 <212> DNA <213> Escherichia coli <400> 8 atggtagata aacgcgaatc ctatacaaaa gaagaccttc ttgcctctgg tcgcggtgac 60 tgtttggcgc taaaggcccg caattgccag caccgaacat gctgatgatg gaccgtgtgg 120 tcaaaatgac cgaaacgggt ggtaacttcg acaaagggta tgttgaagca gaactggata 180 tcaatccgga tctgtggttc ttcggatgcc actttattgg cgatccggtt atgccgggat 240 gcctgggcct ggacgcaatg tggcagctgg tagggttcta cctcggctgg ctgggcggcg 300 aaggtaaagg ccgcgcgctg ggcgttggcg aagtgaaatt cactggtcag gtactgccga 360 cagcgaaaaa agtgacctac cgtattcact ttaaacgcat tgttaaccgt cgtctgatta 420 tgggcctggc ggatggcgaa gtgctggttg atggtcgtct gatctatacc gccagcgacc 480 tgaaagtcgg tctgttccag gatacgtctg ccttctga 518 <210> 9 <211> 735 <212> DNA <213> Escherichia coli <400> 9 atgaattttg aaggaaaaat cgcactggta accggtgcaa gccgcggaat tggccgcgca 60 attgctgaaa cgctcgcagc ccgtggcgcg aaagttattg gcactgcgac cagtgaaaat 120 ggcgctcagg cgatcagtga ttatttaggt gccaacggca aaggtctgat gttgaatgtg 180 accgacccgg catctatcga atctgttctg gaaaaaattc gcgcagaatt tggtgaagtg 240 gatatcctgg tcaataatgc cggtatcact cgtgataacc tgttaatgcg aatgaaagat 300 gaagagtgga acgatattat cgaaaccaac ctttcatctg ttttccgtct gtcaaaagcg 360 gtaatgcgcg ctatgatgaa aaagcgtcat ggtcgtatta tcactatcgg ttctgtggtt 420 ggtaccatgg gaaatggcgg tcaggccaac tacgctgcgg cgaaagcggg cttgatcggc 480 ttcagtaaat cactggcgcg cgaagttgcg tcacgcggta ttactgtaaa cgttgttgct 540 ccgggcttta ttgaaacgga catgacacgt gcgctgagcg atgaccagcg tgcgggtatc 600 ctggcgcagg ttcctgcggg tcgcctcggc ggcgcacagg aaatcgccaa cgcggttgca 660 ttcctggcat ccgacgaagc agcttacatc acgggtgaaa ctttgcatgt gaacggcggg 720 atgtacatgg tctga 735 <210> 10 <211> 954 <212> DNA <213> Escherichia coli <400> 10 atgtatacga agattattgg tactggcagc tatctgcccg aacaagtgcg gacaaacgcc 60 gatttggaaa aaatggtgga cacctctgac gagtggattg tcactcgtac cggtatccgc 120 gaacgccaca ttgccgcgcc aaacgaaacc gtttcaacca tgggctttga agcggcgaca 180 cgcgcaattg agatggcggg cattgagaaa gaccagattg gcctgatcgt tgtggcaacg 240 acttctgcta cgcacgcttt cccgagcgca gcttgtcaga ttcaaagcat gttgggcatt 300 aaaggttgcc cggcatttga cgttgcagca gcctgcgcag gtttcaccta tgcattaagc 360 gtagccgatc aatacgtgaa atctggggcg gtgaagtatg ctctggtcgt cggttccgat 420 gtactggcgc gcacctgcga tccaaccgat cgtgggacta ttattatttt tggcgatggc 480 gcgggcgctg cggtgctggc tgcctctgaa gagccgggaa tcatttccac ccatctgcat 540 gccgacggta gttatggtga attgctgacg ctgccaaacg ccgaccgcgt gaatccagag 600 aattcaattc atctgacgat ggcgggcaac gaagtcttca aggttgcggt aacggaactg 660 gcgcacatcg ttgatgagac gctggcggcg aataatcttg accgttctca actggactgg 720 ctggttccgc atcaggctaa cctgcgtatt atcagtgcaa cggcgaaaaa actcggtatg 780 tctatggata atgtcgtggt gacgctggat cgccacggta atacctctgc ggcctctgtc 840 ccgtgcgcgc tggatgaagc tgtacgcgac gggcgcatta agccggggca gttggttctg 900 cttgaagcct ttggcggtgg attcacctgg ggctccgcgc tggttcgttt ctag 954 <210> 11 <211> 789 <212> DNA <213> Escherichia coli <400> 11 atgggttttc tttccggtaa gcgcattctg gtaaccggtg ttgccagcaa actatccatc 60 gcctacggta tcgctcaggc gatgcaccgc gaaggagctg aactggcatt cacctaccag 120 aacgacaaac tgaaaggccg cgtagaagaa tttgccgctc aattgggttc tgacatcgtt 180 ctgcagtgcg atgttgcaga agatgccagc atcgacacca tgttcgctga actggggaaa 240 gtttggccga aatttgacgg tttcgtacac tctattggtt ttgcacctgg cgatcagctg 300 gatggtgact atgttaacgc cgttacccgt gaaggcttca aaattgccca cgacatcagc 360 tcctacagct tcgttgcaat ggcaaaagct tgccgctcca tgctgaatcc gggttctgcc 420 ctgctgaccc tttcctacct tggcgctgag cgcgctatcc cgaactacaa cgttatgggt 480 ctggcaaaag cgtctctgga agcgaacgtg cgctatatgg cgaacgcgat gggtccggaa 540 ggtgtgcgtg ttaacgccat ctctgctggt ccgatccgta ctctggcggc ctccggtatc 600 aaagacttcc gcaaaatgct ggctcattgc gaagccgtta ccccgattcg ccgtaccgtt 660 actattgaag atgtgggtaa ctctgcggca ttcctgtgct ccgatctctc tgccggtatc 720 tccggtgaag tggtccacgt tgacggcggt ttcagcattg ctgcaatgaa cgaactcgaa 780 ctgaaataa 789 <210> 12 <211> 456 <212> DNA <213> Escherichia coli <400> 12 ttgactacta acactcatac tctgcagatt gaagagattt tagaacttct gccgcaccgt 60 ttcccgttct tactggtgga tcgcgtgctg gattttgaag aaggtcgttt tctgcgcgca 120 gtaaaaaatg tctctgtcaa tgagccattc ttccagggcc atttccctgg aaaaccgatt 180 ttcccgggtg tgctgattct ggaagcaatg gcacaggcaa caggtattct ggcgtttaaa 240 agcgtaggaa aactggaacc gggtgagctg tactacttcg ctggtattga cgaagcgcgc 300 ttcaagcgcc cggtcgtgcc tggcgatcaa atgatcatgg aagtcacttt cgaaaaaacg 360 cgccgcggcc tgacccgttt taaaggggtt gctctggtcg atggtaaagt agtttgcgaa 420 gcaacgatga tgtgtgctcg tagccgggag gcctga 456 <210> 13 <211> 627 <212> DNA <213> Escherichia coli <400> 13 atgatgaact tcaacaatgt tttccgctgg catttgccct tcctgttcct ggtcctgtta 60 accttccgtg ccgctgcagc ggacacgtta ttgattctgg gtgatagcct gagcgccggg 120 tatcgaatgt ctgccagcgc ggcctggcct gccttgttga atgataagtg gcagagtaaa 180 acgtcggtag ttaatgccag catcagcggc gacacctcgc aacaaggact ggcgcgcctt 240 ccggctctgc tgaaacagca tcagccgcgt tgggtgctgg ttgaactggg cggcaatgac 300 ggtttgcgtg gttttcagcc acagcaaacc gagcaaacgc tgcgccagat tttgcaggat 360 gtcaaagccg ccaacgctga accattgtta atgcaaatac gtctgcctgc aaactatggt 420 cgccgttata atgaagcctt tagcgccatt taccccaaac tcgccaaaga gtttgatgtt 480 ccgctgctgc ccttttttat ggaagaggtc tacctcaagc cacaatggat gcaggatgac 540 ggtattcatc ccaaccgcga cgcccagccg tttattgccg actggatggc gaagcagttg 600 cagcctttag taaatcatga ctcataa 627 <210> 14 <211> 1686 <212> DNA <213> Escherichia coli <400> 14 ttgaagaagg tttggcttaa ccgttatccc gcggacgttc cgacggagat caaccctgac 60 cgttatcaat ctctggtaga tatgtttgag cagtcggtcg cgcgctacgc cgatcaacct 120 gcgtttgtga atatggggga ggtaatgacc ttccgcaagc tggaagaacg cagtcgcgcg 180 tttgccgctt atttgcaaca agggttgggg ctgaagaaag gcgatcgcgt tgcgttgatg 240 atgcctaatt tattgcaata tccggtggcg ctgtttggca ttttgcgtgc cgggatgatc 300 gtcgtaaacg ttaacccgtt gtataccccg cgtgagcttg agcatcagct taacgatagc 360 ggcgcatcgg cgattgttat cgtgtctaac tttgctcaca cactggaaaa agtggttgat 420 aaaaccgccg ttcagcacgt aattctgacc cgtatgggcg atcagctatc tacggcaaaa 480 ggcacggtag tcaatttcgt tgttaaatac atcaagcgtt tggtgccgaa ataccatctg 540 ccagatgcca tttcatttcg tagcgcactg cataacggct accggatgca gtacgtcaaa 600 cccgaactgg tgccggaaga tttagctttt ctgcaataca ccggcggcac cactggtgtg 660 gcgaaaggcg cgatgctgac tcaccgcaat atgctggcga acctggaaca ggttaacgcg 720 acctatggtc cgctgttgca tccgggcaaa gagctggtgg tgacggcgct gccgctgtat 780 cacatttttg ccctgaccat taactgcctg ctgtttatcg aactgggtgg gcagaacctg 840 cttatcacta acccgcgcga tattccaggg ttggtaaaag agttagcgaa atatccgttt 900 accgctatca cgggcgttaa caccttgttc aatgcgttgc tgaacaataa agagttccag 960 cagctggatt tctccagtct gcatctttcc gcaggcggag ggatgccagt gcagcaagtg 1020 gtggcagagc gttgggtgaa actgacagga cagtatctgc tggaaggcta tggccttacc 1080 ggtgtgcgc cgctggtcag cgttaaccca tatgatattg attatcatag tggtagcatc 1140 ggtttgccgg tgccgtcgac ggaagccaaa ctggtggatg atgatgataa tgaagtacca 1200 ccgggtcaac cgggtgagct ttgtgtcaaa ggaccgcagg tgatgctggg ttactggcag 1260 cgtccggatg ctacagatga gatcatcaaa aatggctggt tacacaccgg cgacatcgcg 1320 gtgatggatg aagaagggtt cctgcgcatt gtcgatcgta aaaaagacat gattctggtt 1380 tccggtttta acgtctatcc caacgagatt gaagatgtcg tcatgcagca tcctggcgta 1440 caggaagtcg cggctgttgg cgtaccttcc ggctccagtg gtgaagcggt gaaaatcttc 1500 gtagtgaaaa aagatccatc gcttaccgaa gagtcactgg tgaccttttg ccgccgtcag 1560 ctcacgggct acaaagtacc gaagctggtg gagtttcgtg atgagttacc gaaatctaac 1620 gtcggaaaaa ttttgcgacg agaattacgt gacgaagcgc gcggcaaagt ggacaataaa 1680 gcctga 1686 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> forward primer for accA gene <400> 15 cggatccgat gaatttcctt gattttgaac agc 33 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for accA gene <400> 16 gcgtcgacgt cttacgcgta accgtag 27 <210> 17 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> forward primer for accB and accC gene <400> 17 gaagatcttc ggatggatat tcgtaagatt aaaaaactga tcg 43 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for accB and accC gene <400> 18 gaagatcttc ggatggatat tcgtaagatt aaaaaactga tcg 43 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> forward primer for accD gene <400> 19 gcgtcgacgt caaggagata tacatgagct ggattgaac 39 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for accD gene <400> 20 ataagaatgc ggccgctcag gcctcaggtt 30 <210> 21 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabD gene <400> 21 ggaattccat atggaattcc atgacgcaat ttgcatt 37 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabD gene <400> 22 gaagatcttc ctccttttaa agctcgagcg cc 32 <210> 23 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabB gene <400> 23 ggaagatctg aaggagatat accatgaaac gtgcagtgat tactggcc 48 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabB gene <400> 24 ataagaatgc ggccgcttaa tctttcagct tgcgcattac ca 42 <210> 25 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabF gene <400> 25 gt; <210> 26 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabF gene <400> 26 acgcgtcgac ttagatcttt ttaaagatca aagaacc 37 <210> 27 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabA gene <400> 27 ccttaattaa ggaaggaggg atggtagata aacgcgaatc c 41 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabA gene <400> 28 gctctagagc tcagaaggca gacgtatcct g 31 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabF, fabB and fabA gene <400> 29 aaaaggatcc ggtgtctaag cgtcgtgtag 30 <210> 30 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabF, fabB and fabA gene <400> 30 aaaactgcag tcagaaggca gacgtatcct g 31 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabG gene <400> 31 gaattcggaa aatcatgaat tttgaaggaa 30 <210> 32 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabG gene <400> 32 gagctcttad gdgtaaccgt agctcatc 28 <210> 33 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabH gene <400> 33 ggatccccga aaagtgactg agcgtaca 28 <210> 34 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabH gene <400> 34 tctagactag aaacgaacca gcgcggag 28 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabI gene <400> 35 tctagaaagg attaaagcta tgggttttct 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabI gene <400> 36 tctagattat ttcagttcga gttcgttcat 30 <210> 37 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer for fabZ gene <400> 37 gagctcggaa gagtatcttg actactaac 29 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for fabZ gene <400> 38 ggatcctcag gcctcccggc tacgagc 27 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer for tesA gene <400> 39 cgggatccca tgatgaactt caacaatgtt ttccg 35 <210> 40 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for tesA gene <400> 40 ggaagatctg aaggagatat accatgaaac gtgcagtgat tactggcc 48 <210> 41 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer for 'tesA gene <400> 41 gttaaccttc cgtgccgctg cagcggacac gttattg 37 <210> 42 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for 'tesA gene <400> 42 caataacgtg tccgctgcag cggcacggaa ggttaac 37

Claims (10)

E. coli K-12 MG1655의 카복실트렌스퍼라제 알파-유닛(CT-α, carboxyltransferase α-unit)의 유전정보를 보유한 뉴클레오티드(accA, 서열번호 1); E. coli K-12 MG1655의 비오틴 카복실 캐리어 단백질(BCCP, biotin carboxyl carrier protein)의 유전정보를 보유한 뉴클레오티드(accB, 서열번호 2); E. coli K-12 MG1655의 비오틴 카복실라제(BC, biotin carboxylase)의 유전정보를 보유한 뉴클레오티드(accC, 서열번호 3); E. coli K-12 MG1655의 카복실트랜스퍼라제 베타-유닛(CT-β, carboxyltransferase β-unit)의 유전정보를 보유한 뉴클레오티드(accD, 서열번호 4); E. coli K-12 MG1655의 말로닐-코엔자임에이:아실 운반 단백질 트랜스아실레이즈 (Malonyl-Coenzyme A:acyl carrier protein transacylase)의 유전정보를 보유한 뉴클레오티드 (fabD, 서열번호 5); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소II (KASII, β-keto acyl-acyl carrier protein synthaseII)의 유전정보를 보유한 뉴클레오티드 (fabF, 서열번호 6); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소I (KASI, β-keto acyl-acyl carrier protein synthaseI)의 유전정보를 보유한 뉴클레오티드 (fabB, 서열번호 7); E. coli K-12 MG1655의 베타-하이드록시 데카노일 사이오에스터 디하이드레이즈/아이소머레이즈 (β-hydroxy decanoyl thioester dehydrase/isomerase)의 유전정보를 보유한 뉴클레오티드 (fabA, 서열번호 8); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소 (KAS, β-keto acyl-acyl carrier protein synthase)의 유전정보를 보유한 뉴클레오티드 (fabG, 서열번호 9); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소III (KASIII, β-keto acyl-acyl carrier protein synthaseIII)의 유전정보를 보유한 뉴클레오티드 (fabH, 서열번호 10); E. coli K-12 MG1655의 엔오일-아실 운반 단백질 환원효소 (enoyl-acyl carrier protein reductase)의 유전정보를 보유한 뉴클레오티드 (fabI, 서열번호 11); E. coli K-12 MG1655의 3-하이드록시 아실-아실 운반 단백질 탈수효소 (3-hydroxy acyl-acyl carrier protein dehydratase)의 유전정보를 보유한 뉴클레오티드 (fabZ, 서열번호 12); 및 E. coli K-12 MG1655의 티오에스터라제I (thioesteraseI)에서 선도서열을 제거하여 주변세포질 (periplasm)이 아닌 세포질에 존재하게 변형시킨 유전정보를 보유한 뉴클레오티드 (`tesA, 서열번호 13); 로 이루어진 군으로부터 선택되는 1종 이상의 뉴클레오티드를 포함하는 재조합 플라스미드로 숙주 대장균을 형질전환시킨 형질전환체인, 불포화 지방산을 생산하는 재조합 대장균. A nucleotide ( accA , SEQ ID NO: 1) carrying the genetic information of a carboxyl-transferase alpha-unit (CT-alpha) of E. coli K-12 MG1655; A nucleotide ( accB , SEQ ID NO: 2) carrying the genetic information of the biotin carboxyl carrier protein (BCCP) of E. coli K-12 MG1655; A nucleotide ( accC , SEQ ID NO: 3) carrying the genetic information of biotin carboxylase of E. coli K-12 MG1655; A nucleotide ( accD , SEQ ID NO: 4) carrying the genetic information of a carboxyl-transferase beta-unit (CT-beta) of E. coli K-12 MG1655; Of E. coli K-12 MG1655 Nucleotides ( fabD , SEQ ID NO: 5) carrying the genetic information of malonyl-coenzyme A: malonyl-Coenzyme A (acyl carrier protein transacylase); Nucleotides ( fabF , SEQ ID NO: 6) carrying the genetic information of beta-ketoacyl-acyl carrier protein synthase II (KASII, β-keto acyl-acyl carrier protein synthase II) of E. coli K-12 MG1655; Nucleotides ( fabB , SEQ ID NO: 7) carrying the genetic information of beta-ketoacyl-acyl carrier protein synthase I (KASI, β-keto acyl-acyl carrier protein synthase I) of E. coli K-12 MG1655; Nucleotides ( fabA , SEQ ID NO: 8) carrying the genetic information of β-hydroxy decanoyl thioester dehydrase / isomerase of β-hydroxydecanoyl thioesterase / isomerase of E. coli K-12 MG1655; Nucleotides ( fabG , SEQ ID NO: 9) carrying the genetic information of the beta-keto acyl-acyl carrier protein synthase (KAS) of E. coli K-12 MG1655; Nucleotides ( fabH , SEQ ID NO: 10) carrying the genetic information of beta-ketoacyl-acyl transferase protein synthetase III (KASIII, β-keto acyl-acyl carrier protein synthase III) of E. coli K-12 MG1655; A nucleotide having a genetic information of an enoyl-acyl carrier protein reductase of E. coli K-12 MG1655 ( fabI , SEQ ID NO: 11); Nucleotides ( fabZ , SEQ ID NO: 12) carrying the genetic information of 3-hydroxyacyl-acyl carrier protein dehydratase of E. coli K-12 MG1655; And a nucleotide (` tesA, SEQ ID NO: 13) with genetic information modified to exist in the cytoplasm rather than the periplasm by removing the leader sequence from the thioesterase I of E. coli K-12 MG1655; Wherein the recombinant E. coli is a transformant obtained by transforming a host E. coli with a recombinant plasmid containing at least one nucleotide selected from the group consisting of: 제 1항에 있어서, 상기 숙주 대장균은 E. coli BL21(DE3)의 긴-사슬 아실-코엔자임에이 합성효소 (long-chain acyl-Coenzyme A synthetase)의 유전정보를 보유한 뉴클레오티드 (fadD, 서열번호 14)가 제거된 E. coli BL21(DE3) △fadD인 것을 특징으로 하는 재조합 대장균.The host E. coli according to claim 1, wherein the host E. coli is a nucleotide ( fadD , SEQ ID NO: 14) having genetic information of a long-chain acyl-Coenzyme A synthetase of E. coli BL21 (DE3) E. coli BL21 (DE3)? FadD from which the E. coli strain has been removed. 제 1항에 있어서, 상기 재조합 플라스미드는 pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA인 것을 특징으로 하는 재조합 대장균.The method of claim 1, wherein the recombinant plasmid is pCOLADuet TM -1 :: accA, accB, accC, accD, fabD + pACYCDuet TM -1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI, fabZ + pCDF-1b :: ` tesA . 제 1항에 있어서, 상기 재조합 대장균은 E. coli BL21(DE3) △fadD::pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA인 것을 특징으로 하는 재조합 대장균(수탁번호 : KCTC18325P).2. The recombinant E. coli according to claim 1, wherein the recombinant E. coli is E. coli BL21 (DE3) ΔfadD :: pCOLADuet -1 :: accA, accB, accC, accD, fabD + pACYCDuet -1 :: fabF, fabB, fabA + pTrc99A :: fabG , fabH , fabI , fabZ + pCF -1b :: ` tesA (accession number: KCTC18325P). 제 1항에 있어서, 상기 불포화 지방산은 시스-박센산(cis-vaccenic acid)인 것을 특징으로 하는 재조합 대장균.The method of claim 1, wherein the unsaturated fatty acid is cis-recombinant E. coli, characterized in that the foil sensan (cis -vaccenic acid). E. coli K-12 MG1655의 카복실트렌스퍼라제 알파-유닛(CT-α, carboxyltransferase α-unit)의 유전정보를 보유한 뉴클레오티드(accA, 서열번호 1); E. coli K-12 MG1655의 비오틴 카복실 캐리어 단백질(BCCP, biotin carboxyl carrier protein)의 유전정보를 보유한 뉴클레오티드(accB, 서열번호 2); E. coli K-12 MG1655의 비오틴 카복실라제(BC, biotin carboxylase)의 유전정보를 보유한 뉴클레오티드(accC, 서열번호 3); E. coli K-12 MG1655의 카복실트랜스퍼라제 베타-유닛(CT-β, carboxyltransferase β-unit)의 유전정보를 보유한 뉴클레오티드(accD, 서열번호 4); E. coli K-12 MG1655의 말로닐-코엔자임에이:아실 운반 단백질 트랜스아실레이즈 (Malonyl-Coenzyme A:acyl carrier protein transacylase)의 유전정보를 보유한 뉴클레오티드 (fabD, 서열번호 5); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소II (KASII, β-keto acyl-acyl carrier protein synthaseII)의 유전정보를 보유한 뉴클레오티드 (fabF, 서열번호 6); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소I (KASI, β-keto acyl-acyl carrier protein synthaseI)의 유전정보를 보유한 뉴클레오티드 (fabB, 서열번호 7); E. coli K-12 MG1655의 베타-하이드록시 데카노일 사이오에스터 디하이드레이즈/아이소머레이즈 (β-hydroxy decanoyl thioester dehydrase/isomerase)의 유전정보를 보유한 뉴클레오티드 (fabA, 서열번호 8); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소 (KAS, β-keto acyl-acyl carrier protein synthase)의 유전정보를 보유한 뉴클레오티드 (fabG, 서열번호 9); E. coli K-12 MG1655의 베타-케토 아실-아실 운반 단백질 합성효소III (KASIII, β-keto acyl-acyl carrier protein synthaseIII)의 유전정보를 보유한 뉴클레오티드 (fabH, 서열번호 10); E. coli K-12 MG1655의 엔오일-아실 운반 단백질 환원효소 (enoyl-acyl carrier protein reductase)의 유전정보를 보유한 뉴클레오티드 (fabI, 서열번호 11); E. coli K-12 MG1655의 3-하이드록시 아실-아실 운반 단백질 탈수효소 (3-hydroxy acyl-acyl carrier protein dehydratase)의 유전정보를 보유한 뉴클레오티드 (fabZ, 서열번호 12); 및 E. coli K-12 MG1655의 티오에스터라제I (thioesteraseI)에서 선도서열을 제거하여 주변세포질 (periplasm)이 아닌 세포질에 존재하게 변형시킨 유전정보를 보유한 뉴클레오티드 (`tesA, 서열번호 13); 로 이루어진 뉴클레오티드를 포함하는 재조합 플라스미드(pCOLADuetTM-1::accA, accB, accC, accD, fabD + pACYCDuetTM-1::fabF, fabB, fabA + pTrc99A::fabG, fabH, fabI, fabZ + pCDF-1b::`tesA)에 의해 형질전환된, 시스-박센산(cis-vaccenic acid)을 과생산하는 재조합 대장균. A nucleotide ( accA , SEQ ID NO: 1) carrying the genetic information of a carboxyl-transferase alpha-unit (CT-alpha) of E. coli K-12 MG1655; A nucleotide ( accB , SEQ ID NO: 2) carrying the genetic information of the biotin carboxyl carrier protein (BCCP) of E. coli K-12 MG1655; A nucleotide ( accC , SEQ ID NO: 3) carrying the genetic information of biotin carboxylase of E. coli K-12 MG1655; A nucleotide ( accD , SEQ ID NO: 4) carrying the genetic information of a carboxyl-transferase beta-unit (CT-beta) of E. coli K-12 MG1655; Of E. coli K-12 MG1655 Nucleotides ( fabD , SEQ ID NO: 5) carrying the genetic information of malonyl-coenzyme A: malonyl-Coenzyme A (acyl carrier protein transacylase); Nucleotides ( fabF , SEQ ID NO: 6) carrying the genetic information of beta-ketoacyl-acyl carrier protein synthase II (KASII, β-keto acyl-acyl carrier protein synthase II) of E. coli K-12 MG1655; Nucleotides ( fabB , SEQ ID NO: 7) carrying the genetic information of beta-ketoacyl-acyl carrier protein synthase I (KASI, β-keto acyl-acyl carrier protein synthase I) of E. coli K-12 MG1655; Nucleotides ( fabA , SEQ ID NO: 8) carrying the genetic information of β-hydroxy decanoyl thioester dehydrase / isomerase of β-hydroxydecanoyl thioesterase / isomerase of E. coli K-12 MG1655; Nucleotides ( fabG , SEQ ID NO: 9) carrying the genetic information of the beta-keto acyl-acyl carrier protein synthase (KAS) of E. coli K-12 MG1655; Nucleotides ( fabH , SEQ ID NO: 10) carrying the genetic information of beta-ketoacyl-acyl transferase protein synthetase III (KASIII, β-keto acyl-acyl carrier protein synthase III) of E. coli K-12 MG1655; A nucleotide having a genetic information of an enoyl-acyl carrier protein reductase of E. coli K-12 MG1655 ( fabI , SEQ ID NO: 11); Nucleotides ( fabZ , SEQ ID NO: 12) carrying the genetic information of 3-hydroxyacyl-acyl carrier protein dehydratase of E. coli K-12 MG1655; And a nucleotide (` tesA, SEQ ID NO: 13) with genetic information modified to exist in the cytoplasm rather than the periplasm by removing the leader sequence from the thioesterase I of E. coli K-12 MG1655; Recombinant plasmids containing the oligonucleotide consisting of (pCOLADuet TM -1 :: accA, accB , accC, accD, fabD + pACYCDuet TM -1 :: fabF, fabB, fabA + pTrc99A :: fabG, fabH, fabI, fabZ + recombinant Escherichia coli producing cis- vaccenic acid and transformed with pCDF-1b :: ` tesA ). 다음 단계를 포함하는 불포화 지방산의 제조 방법:
(a) 제 1항 내지 제 6항 중 어느 한 항의 재조합 대장균을 1차 배양하는 단계;
(b) 상기 (a) 단계의 1차 배양한 재조합 대장균을 2차 배양하는 단계;
(c) 상기 (b) 단계에서 얻은 배양액을 원심분리하여 균체와 배지를 분리하는 단계;
(d) 상기 (c) 단계에서 분리된 균체에 황산과 메탄올의 혼합용액을 첨가하고, 질소를 충전한 다음, 에스테르화 반응을 수행하는 단계; 및
(e) 상기 (d) 단계의 반응액에 헥산과 증류수를 첨가하여 층을 분리하는 단계.
A process for preparing an unsaturated fatty acid comprising the steps of:
(a) primary culturing the recombinant Escherichia coli of any one of claims 1 to 6;
(b) secondary culturing the first-cultured recombinant E. coli of step (a);
(c) separating the culture medium and the culture medium by centrifuging the culture solution obtained in the step (b);
(d) adding a mixed solution of sulfuric acid and methanol to the cells separated in the step (c), filling the mixture with nitrogen, and performing an esterification reaction; And
(e) adding hexane and distilled water to the reaction solution of step (d) to separate the layers.
제 7항에 있어서, 상기 (b) 단계의 2차 배양은 10℃ 내지 20℃의 저온에서 배양하는 것을 특징으로 하는 방법.8. The method according to claim 7, wherein the secondary culture of step (b) is cultured at a low temperature of 10 to 20 占 폚. 제 7항에 있어서, 상기 (e) 단계에서 분리된 층의 불포화 지방산 조성을 분석하는 단계를 추가적으로 포함하는 것을 특징으로 하는 제조방법.The method of claim 7, further comprising analyzing the unsaturated fatty acid composition of the layer separated in step (e). 제 9항에 있어서, 상기 불포화 지방산은 시스-박센산(cis-vaccenic acid)인 것을 특징으로 하는, 불포화 지방산의 제조방법.The method of claim 9 wherein the unsaturated fatty acid is cis-night sensan (cis -vaccenic acid) method of producing a polyunsaturated fatty acids, characterized in that.
KR1020140139248A 2014-10-15 2014-10-15 Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same KR101701820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140139248A KR101701820B1 (en) 2014-10-15 2014-10-15 Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140139248A KR101701820B1 (en) 2014-10-15 2014-10-15 Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same

Publications (2)

Publication Number Publication Date
KR20160044695A true KR20160044695A (en) 2016-04-26
KR101701820B1 KR101701820B1 (en) 2017-02-03

Family

ID=55919067

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140139248A KR101701820B1 (en) 2014-10-15 2014-10-15 Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same

Country Status (1)

Country Link
KR (1) KR101701820B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190093169A (en) * 2018-01-31 2019-08-08 인하대학교 산학협력단 Recombinant E. coli producing fatty acid and method for producing biodiesel using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117828B1 (en) * 2018-07-19 2020-06-02 서울대학교산학협력단 Production of fatty acids and fatty acid derivatives with the reduced degree of unsaturatedness through engineering regulon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275090B1 (en) 2011-08-19 2013-06-17 인하대학교 산학협력단 Recombinant E.coli producing fatty acid, and method for producing fatty acid using the same
KR20130142391A (en) * 2012-06-19 2013-12-30 인하대학교 산학협력단 Recombinant e.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same
KR20140010475A (en) 2012-07-05 2014-01-27 서강대학교산학협력단 Method for preparing fatty acid using microorganism
KR101390327B1 (en) 2011-07-22 2014-04-30 서강대학교산학협력단 Method for Preparing Transformed E.coli for Over-expression of Long-Chain Fatty Acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390327B1 (en) 2011-07-22 2014-04-30 서강대학교산학협력단 Method for Preparing Transformed E.coli for Over-expression of Long-Chain Fatty Acid
KR101275090B1 (en) 2011-08-19 2013-06-17 인하대학교 산학협력단 Recombinant E.coli producing fatty acid, and method for producing fatty acid using the same
KR20130142391A (en) * 2012-06-19 2013-12-30 인하대학교 산학협력단 Recombinant e.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same
KR101402108B1 (en) 2012-06-19 2014-06-02 인하대학교 산학협력단 Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same
KR20140010475A (en) 2012-07-05 2014-01-27 서강대학교산학협력단 Method for preparing fatty acid using microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190093169A (en) * 2018-01-31 2019-08-08 인하대학교 산학협력단 Recombinant E. coli producing fatty acid and method for producing biodiesel using the same

Also Published As

Publication number Publication date
KR101701820B1 (en) 2017-02-03

Similar Documents

Publication Publication Date Title
US7897391B2 (en) PUFA polyketide synthase systems and uses thereof
Cao et al. Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes
US20070220634A1 (en) Plant seed oils containing polyunsaturated fatty acids
EP3022310A2 (en) Microorganisms and methods for the production of fatty acids and fatty acid derived products
KR101234199B1 (en) Pufa polyketide synthase systems and uses thereof
EP2739726A1 (en) Production of fatty acids and derivatives thereof having improved aliphatic chain length and saturation characteristics
CN106947706B (en) Schizochytrium limacinum strain, construction method and application thereof
KR101701820B1 (en) Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same
KR101402108B1 (en) Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same
US20150322467A1 (en) Method for optimizing production of eicosapentaenoic acid (epa) in a recombinant host
JP2016136962A (en) Production of fatty acids by heterologous expression of gene clusters from myxobacteria
KR101765219B1 (en) Recombinant E.coli producing unsaturated fatty acid, and method for producing unsaturated fatty acid using the same
KR102116473B1 (en) Recombinant E. coli producing fatty acid and method for producing biodiesel using the same
KR101275090B1 (en) Recombinant E.coli producing fatty acid, and method for producing fatty acid using the same
KR101279528B1 (en) Recombinant E.coli producing fatty acid, and method for producing fatty acid using the same
EP3844269A1 (en) Production of non-native monounsaturated fatty acids in bacteria
KR101390327B1 (en) Method for Preparing Transformed E.coli for Over-expression of Long-Chain Fatty Acid
US20240110196A1 (en) Use of multigene stacking method in synthesis of nervonic acid in brassica napus
JP5110511B2 (en) Method for producing highly unsaturated fatty acids and highly unsaturated lipids using microorganisms
Xie Functional analysis of ketoacyl synthase and dehydratase domains from a PUFA synthase of Thraustochytrium in Escherichia coli and Arabidopsis thaliana
CN118006532A (en) Engineering bacterium for producing branched-chain carboxylic acid and construction method and application thereof
CN116515917A (en) C derived from Mortierella alpina 16/18 Elongase and use thereof
US20160046968A1 (en) Novel strain secreting fatty acids by phospholipase and method for producing fatty acids using it
KR20130000615A (en) Method for preparing transformed escherichia coli for over-expression of fatty acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 4