KR20160036679A - Process for the preparation of environmentally composite material and the composite materaial produced thereby - Google Patents

Process for the preparation of environmentally composite material and the composite materaial produced thereby Download PDF

Info

Publication number
KR20160036679A
KR20160036679A KR1020140128055A KR20140128055A KR20160036679A KR 20160036679 A KR20160036679 A KR 20160036679A KR 1020140128055 A KR1020140128055 A KR 1020140128055A KR 20140128055 A KR20140128055 A KR 20140128055A KR 20160036679 A KR20160036679 A KR 20160036679A
Authority
KR
South Korea
Prior art keywords
composite material
mixture
soybean oil
minutes
fibers
Prior art date
Application number
KR1020140128055A
Other languages
Korean (ko)
Other versions
KR101688952B1 (en
Inventor
신영길
신나리
박상규
임정연
김영국
Original Assignee
주식회사 현진피오피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현진피오피 filed Critical 주식회사 현진피오피
Priority to KR1020140128055A priority Critical patent/KR101688952B1/en
Publication of KR20160036679A publication Critical patent/KR20160036679A/en
Application granted granted Critical
Publication of KR101688952B1 publication Critical patent/KR101688952B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/005Drying oils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

The present invention relates to a method for producing a composite material which can be widely used in various fields as industrial and everyday life materials such as vehicles, building materials, machines, electronic parts, and leisure/sports products. To this end, used are a biodegradable polymer, modified soybean oil, a resin blended with a ramie fiber. By using natural ingredients and biodegradable material, the composite material is eco-friendly and shows increased physiochemical characteristics by improving adhesiveness between the biodegradable polymer, modified soybean oil, and ramie fiber. In addition, the material is pollution-free due to its excellent degradability.

Description

친환경성 복합재료 제조방법 및 이로부터 제조된 복합재료{PROCESS FOR THE PREPARATION OF ENVIRONMENTALLY COMPOSITE MATERIAL AND THE COMPOSITE MATERAIAL PRODUCED THEREBY}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing an environmentally friendly composite material, and a composite material produced therefrom. BACKGROUND OF THE INVENTION 1. Field of the Invention [0002]

본 발명은 생분해성 고분자, 변성 대두오일, 저마섬유의 블렌드 수지를 이용하여 자동차, 건축자재, 기계 및 전자부품, 레저/스포츠 용품 등 산업 및 생활 소재로서 여러 분야에 광범위하게 사용할 수 있는 복합재료의 제조방법에 관한 것으로서, 천연재료, 생분해성 재료를 이용하여 친환경적이며, 생분해성 고분자, 변성 대두오일, 저마섬유 상호 간의 결합력을 높여 물리적·화학적 특성을 높일 수 있으며, 분해특성이 강하기 때문에 환경오염문제를 일으키지 않는다는 장점을 갖는다.
The present invention relates to a composite material which can be widely used in a variety of fields such as automobiles, building materials, machinery and electronic parts, leisure / sporting goods, and the like by using a blend resin of biodegradable polymer, modified soybean oil, The present invention relates to a method for producing a biodegradable polymer which is eco-friendly by using a natural material and a biodegradable material. The biodegradable polymer, denatured soybean oil, . ≪ / RTI >

섬유복합재료는 포장용기, 건축용 소재, 자동차, 항공기 소재 등 다양한 분야에 사용되고 있다. 생분해성 복합재료의 사용은 생활제품, 자동차 내외장재 등에서 사용되고 있으나, 천연섬유의 경우 세포벽에 의한 수분흡수 현상에 의해 치수가 변하는 결함이 있다. 따라서, 합성고분자의 사용에 따른 환경오염문제를 해결하기 위하여 천연섬유와 생분해성 고분자를 이용한 복합재료에 대한 관심이 집중되고 있는 실정이다.
Fiber composite materials are used in various fields such as packaging containers, construction materials, automobiles, and aircraft materials. The use of biodegradable composite materials is used in living products, automobile interior and exterior materials, etc. However, in the case of natural fibers, there are defects in which the dimensions are changed by the phenomenon of water absorption by cell walls. Therefore, in order to solve the environmental pollution problem caused by the use of the synthetic polymer, there is a growing interest in composite materials using natural fibers and biodegradable polymers.

대한민국 등록특허 10-0992666(등록일자 2010.11.01)Korean Registered Patent No. 10-0992666 (Registration date 2010.11.01) 대한민국 공개특허 10-2007-0094894(공개일자 2007.09.27)Korean Patent Laid-Open No. 10-2007-0094894 (Publication date 2007.09.27)

본 발명은 천연섬유의 수분흡수에 의한 치수변경 문제를 해소하고, 물리적·화학적 특성을 강화시킴으로써 자동차, 건축자재, 기계 및 전자부품, 레저/스포츠 용품 등 산업 및 생활 소재로서 여러 분야에 광범위하게 사용할 수 있는 친환경성 복합재료 제조방법 및 이로부터 제조된 복합재료를 제공하고자 하는 것을 발명의 목적으로 한다.
The present invention solves the problem of dimensional change caused by moisture absorption of natural fibers and strengthens physical and chemical properties, thereby making it widely applicable to various fields such as automobiles, building materials, machinery and electronic parts, leisure / And an object of the present invention is to provide a method for manufacturing an environmentally friendly composite material and a composite material produced therefrom.

상기의 목적을 달성하기 위하여,In order to achieve the above object,

폴리유산(PLA;Polylactic acid), 폴리글리코산(PGA;Polyglycolic acid), 폴리카프로락톤(PCL;Polycaprolactone), 폴리부틸렌 석시네이트(Polybutylene succinate) 또는 폴리부틸렌아디페이트/테레프탈레이트(PBAT;Poly(butylenes adipate-co-terephthalate) 중 선택되는 어느 1종 또는 2종 이상의 생분해성 고분자 85~95wt%에 변성 대두오일의 AESO(acrylated epoxidized soybean oil) 5~15wt%를 첨가하여 2~5분간 혼합하여 100wt%의 제1혼합물을 조성하고,Polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate, or polybutylene adipate / terephthalate (PBAT) 5 to 15 wt% of AESO (modified epoxidized soybean oil) of modified soybean oil is added to 85 to 95 wt% of any one or more biodegradable polymers selected from the group consisting of butylenes adipate-co-terephthalate, and the mixture is mixed for 2 to 5 minutes 100 wt% of a first mixture was prepared,

상기 제1혼합물 70~90wt%에 수산화나트륨(NaOH) 용액으로 알칼리 처리한 저마섬유 10~30wt%를 첨가하여 2~5분 동안 혼합하여 100wt%의 제2혼합물을 조성한 후,10 to 30 wt% of alkali-treated gum fibers with sodium hydroxide (NaOH) solution was added to 70 to 90 wt% of the first mixture, followed by mixing for 2 to 5 minutes to form a second mixture of 100 wt%

상기 제2혼합물을 250~290℃에서 1~3분 동안 예열한 후,After the second mixture is preheated at 250 to 290 ° C for 1 to 3 minutes,

예열한 제2혼합물을 130~180MPa의 압력으로 10~30초 동안 가압하여 복합재료를 제조하고,The preheated second mixture is pressurized at a pressure of 130 to 180 MPa for 10 to 30 seconds to prepare a composite material,

상기 복합재료를 20~30℃에서 20~60분 동안 냉각처리하여 이루어지는 친환경성 복합재료 제조방법을 제공한다.
And cooling the composite material at 20 to 30 ° C for 20 to 60 minutes to provide an environmentally friendly composite material.

이하, 상기의 기술 구성에 대해 구체적으로 살펴보고자 한다.
Hereinafter, the above technical constitution will be specifically described.

상기한 바와 같이, 본 발명에 따른 친환경성 복합재료의 제조공정은 폴리유산(PLA;Polylactic acid), 폴리글리코산(PGA;Polyglycolic acid), 폴리카프로락톤(PCL;Polycaprolactone), 폴리부틸렌 석시네이트(Polybutylene succinate) 또는 폴리부틸렌아디페이트/테레프탈레이트(PBAT;Poly(butylenes adipate-co-terephthalate) 중 선택되는 어느 1종 또는 2종 이상의 생분해성 고분자 85~95wt%에 변성 대두오일의 AESO(acrylated epoxidized soybean oil) 5~15wt%를 첨가하여 2~5분간 혼합하여 100wt%의 제1혼합물을 조성하고,As described above, the manufacturing process of the environmentally friendly composite material according to the present invention is characterized in that the manufacturing process of the environmentally friendly composite material is performed using polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate (AESO) of modified soybean oil is added to 85 to 95 wt% of any one or more biodegradable polymers selected from polybutylene succinate or polybutylene adipate-co-terephthalate (PBAT) 5 to 15 wt% of epoxidized soybean oil was added thereto, and the mixture was mixed for 2 to 5 minutes to form a first mixture of 100 wt%

상기 제1혼합물 70~90wt%에 수산화나트륨(NaOH) 용액으로 알칼리 처리한 저마섬유 10~30wt%를 첨가하여 2~5분 동안 혼합하여 100wt%의 제2혼합물을 조성한 후,10 to 30 wt% of alkali-treated gum fibers with sodium hydroxide (NaOH) solution was added to 70 to 90 wt% of the first mixture, followed by mixing for 2 to 5 minutes to form a second mixture of 100 wt%

상기 제2혼합물을 250~290℃에서 1~3분 동안 예열한 후,After the second mixture is preheated at 250 to 290 ° C for 1 to 3 minutes,

예열한 제2혼합물을 130~180MPa의 압력으로 10~30초 동안 가압하여 복합재료를 제조하고,The preheated second mixture is pressurized at a pressure of 130 to 180 MPa for 10 to 30 seconds to prepare a composite material,

상기 복합재료를 20~30℃에서 20~60분 동안 냉각처리하는 과정을 거쳐 이루어진다.
And cooling the composite material at 20 to 30 DEG C for 20 to 60 minutes.

상기 생분해성 고분자는 크게 세 가지 형태로 구분되는 것으로서, 그 첫 번째가 미생물로부터 생산되는 poly(hydroxyalkanoate)이며, 두 번째가 전분유도체와 전분충전 플라스틱이며, 마지막으로 세 번째가 폴리카프로락톤 등의 분해성 합성 고분자인 지방족 폴리에스테르, 유기산과 알코올 통합성의 TMPTO(trimethylol propane trioleate) 등이 있다.
The biodegradable polymer is divided into three types, the first one being poly (hydroxyalkanoate) produced from microorganisms, the second being starch derivatives and starch-filled plastics, and the third being biodegradable polymers such as polycaprolactone Aliphatic polyester which is a synthetic polymer, and trimethylol propane trioleate (TMPTO) which is an organic acid and alcohol-integrated.

이중 미생물로부터 생성된 고분자가 분해성이 가장 뛰어나지만 생산성과 용도에 있어 제약이 있으며, 상기 천연고분자인 전분유도체는 그 자체로써 상용화에 어려움이 있어 범용 고분자와의 blending을 통하여 제품화하고 있으나 분해성이 떨어지는 단점이 있다.Although the polymer produced from the microorganisms has the greatest decomposability, there is a limit in productivity and applications. The starch derivative, which is a natural polymer, is difficult to be commercialized as such and is commercialized by blending with a general-purpose polymer, .

그러나, 합성고분자인 폴리유산(PLA;Polylactic acid), 폴리글리코산(PGA;Polyglycolic acid), 폴리카프로락톤(PCL;Polycaprolactone), 폴리부틸렌 석시네이트(Polybutylene succinate) 또는 폴리부틸렌아디페이트/테레프탈레이트(PBAT;Poly(butylenes adipate-co-terephthalate)는 물성이 비교적 우수하며, 산업용, 가정용의 생분해성 고분자로 사용되며, 이외에 의료용으로 사용된다.
However, the synthetic polymers such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate or polybutylene adipate / Poly (butylenes adipate-co-terephthalate) (PBAT) has relatively good physical properties and is used as biodegradable polymers for industrial and household use, and is also used for medical applications.

상기 합성고분자의 생분해성 고분자는 기본적으로 복합재료에 사용되어 생분해성 특성을 부여하게 되나, 저마섬유와의 블렌드에 의해 높은 물리적·화학적 특성을 갖게 된다.
The biodegradable polymer of the synthetic polymer is basically used in a composite material to give a biodegradable property, but it has high physical and chemical properties by blending with a geoma fiber.

상기 생분해성 고분자는 저마섬유와의 블렌드에 앞서, 1차적으로 변성 대두오일과 블렌드 과정을 거치게 된다.The biodegradable polymer is first subjected to a blending process with a modified soybean oil prior to blending with the geoma fibers.

즉, 상기 생분해성 고분자는 변성 대두오일과 1차 혼합을 이룬 후, 1차 혼합을 이룬 제1혼합물에 저마섬유를 첨가하여 복합 재료를 제조함으로써, 변성 대두오일에 의한 높은 결합력 및 저마섬유의 사용에 의한 기계적 특성을 강화시키게 되며, 또한 상기 변성 대두오일에 의한 분해 속도 조절에 의한 복합재료의 노화속도를 적절하게 유지시켜 줄 수 있다.
That is, the biodegradable polymer is first mixed with denatured soybean oil, and then the first mixture is subjected to primary mixing to produce a composite material by adding geomass fiber, whereby a high binding force by the modified soybean oil and the use of geomasa fibers And the aging speed of the composite material by controlling the decomposition rate by the modified soybean oil can be appropriately maintained.

상기 1차 혼합물을 구성하는 생분해성 고분자의 사용량은 변성 대두오일에 대해 85~95wt%의 범위 내로 사용되며, 85wt% 미만인 경우에는 복합재료의 품질이 떨어질 수 있으며, 95wt%를 초과하게 되는 경우에는 분해기능성에 의한 복합재료의 노화 진행이 빨라질 수 있으므로, 상기 생분해성 고분자의 사용량은 변성 대두오일에 대해 85~95wt%의 범위 내로 한정하는 것이 바람직하다.
The amount of the biodegradable polymer constituting the primary mixture is used in the range of 85 to 95 wt% with respect to the modified soybean oil. When the amount is less than 85 wt%, the quality of the composite material may deteriorate. When the amount exceeds 95 wt% The progress of the aging of the composite material due to the decomposition function may be accelerated. Therefore, the amount of the biodegradable polymer used is preferably limited to 85 to 95 wt% with respect to the modified soybean oil.

상기 생분해성 고분자와 혼합을 이루는 변성 대두오일은 높은 결합력에 의해 복합재료의 생분해속도를 늦춰 복합재료의 노화가 급격하게 진행되는 것을 억제하는 기능을 갖게 된다.The modified soybean oil that mixes with the biodegradable polymer has a function of inhibiting rapid progress of aging of the composite material by slowing the biodegradation rate of the composite material due to high binding force.

상기 변성 대두오일은 AESO(acrylated epoxidized soybean oil)로서, 그 사용량이 5wt% 미만인 경우에는 복합재료의 노화 억제 기능이 떨어져 복합재료의 내구성이 떨어지는 문제가 있고, 15wt%를 초과하게 되는 경우에는 균일 배합조성이 이루어지지 않을 수 있으므로, 상기 변성 대두오일의 사용량은 생분해성 고분자에 대해 5~15wt%의 범위 내로 한정하는 것이 바람직하다.
When the amount of the modified soybean oil used is less than 5 wt%, there is a problem that the durability of the composite material deteriorates due to the deterioration of the aging suppression function of the composite material. When the amount of the modified soybean oil exceeds 15 wt% The amount of the modified soybean oil used is preferably limited within the range of 5 to 15 wt% with respect to the biodegradable polymer.

이때 상기 AESO는 대두유(soybean oil)에 포름산(formic acid)과 H2O2를 반응시켜, 에폭시(expoxy)기가 함유된 ESO(exposidized soybean oil)를 생성시킨 후, ESO를 acrylic acid과 반응시켜 얻을 수 있다.
The AESO is obtained by reacting formic acid and H 2 O 2 in soybean oil to produce ESO (exposidized soybean oil) containing an expoxy group and then reacting ESO with acrylic acid have.

이와 같이 생분해성 고분자와 변성 대두오일의 혼합에 의해 조성된 제1혼합물에 저마섬유를 첨가하여 제2혼합물을 조성하게 된다.
Thus, the second mixture is formed by adding geoma fibers to the first mixture formed by mixing the biodegradable polymer and the modified soybean oil.

이때 저마섬유는 상기 제1혼합물에 대해 10~30wt%의 범위 내로 사용된다.Wherein the gum fibers are used in the range of 10 to 30 wt% with respect to the first mixture.

상기 저마섬유의 사용량이 10wt% 미만인 경우에는 복합재료의 인장강도 등 기계적 강도 특성을 향상시키기 어렵고, 30wt%를 초과하게 되는 경우에는 다른 성분들과의 결합력이 다소 떨어지거나, 또는 높은 흡수성에 의한 복합재료의 변형 우려가 있으므로, 상기 저마섬유의 사용량은 제1혼합물에 대해 10~30wt%의 범위 내로 한정하는 것이 바람직하다.
When the amount of the ground fibers is less than 10 wt%, it is difficult to improve the mechanical strength characteristics such as the tensile strength of the composite material. When the amount exceeds 30 wt%, the bonding strength with other components is somewhat deteriorated, The use amount of the ground fibers is preferably limited within a range of 10 to 30 wt% with respect to the first mixture.

상기 저마섬유(ramie)는 인피섬유의 일종으로 고배향된 구조를 갖는 셀룰로오즈섬유로서 셀룰로오즈와 헤미(hemi)셀룰로오즈, 리그닌(lignin), 왁스(wax) 등의 유기화합물로 구성되어 있다. 저마섬유의 강도는 40~65g/tex, 신도 3~4%, 밀도 1.56g/㎤, 섬유직경 11~80㎛이다.The gum arabic is a type of bast fiber and is a cellulose fiber having a highly oriented structure composed of cellulose and an organic compound such as hemicellulose, lignin, and wax. The strength of the gauze fiber is 40 to 65 g / tex, the elongation is 3 to 4%, the density is 1.56 g / cm3, and the fiber diameter is 11 to 80 탆.

저마섬유는 많은 장점을 가짐에도 낮은 염색성, 의복으로 착용하는 과정에서 구김 발생의 단점이 있으며, 또한 셀룰로오스 분자구조의 OH기의 다른 극성기에 의한 높은 흡수성을 인한 소수성 고분자 매트릭스와의 낮은 계면 결합력, 고온에서 사용상의 어려움과 저마섬유의 공정상의 문제로 폭넓은 용도전개에 어려움이 따른다.
The low molecular weight fiber has many advantages, but it has a low dyeing property, a disadvantage of wrinkling in the process of wearing with clothes, a low interfacial bonding force with the hydrophobic polymer matrix due to the high water absorption by the other polar group of the hydroxyl group of the cellulose molecular structure, And it is difficult to develop it in a wide range of applications due to the difficulty of use in the process and the problem of the process of the gum fiber.

이와 같은 문제를 해결하기 위해, 본 발명에서는 상기 저마섬유를 알칼리 처리한다.In order to solve such a problem, in the present invention, the ground fibers are treated with an alkali.

즉 상기 알칼리 처리에 의해 표면처리를 하여 표면의 거칠기가 증가시켜 접촉면적의 증가로 인해 변성 대두오일 및 생분해성 고분자와의 결합력을 높일 수 있도록 한다.That is, the surface treatment is performed by the alkali treatment to increase the roughness of the surface, thereby increasing the bonding force between the modified soybean oil and the biodegradable polymer due to the increase of the contact area.

더욱 상세히는, 상기 저마섬유는 10mm~30mm로 절단하여, 90~100℃의 4% 수산화나트륨(NaOH) 용액에서 1~2시간 동안 정련하고,More specifically, the ground fibers are cut into 10 mm to 30 mm, refined in a 4% sodium hydroxide (NaOH) solution at 90 to 100 ° C for 1 to 2 hours,

상기 정련과정을 거친 저마섬유를 60~70℃의 4% 수산화나트륨 용액에서 3~5시간 동안 알칼리 처리한 것을 사용한다.
The ground fibers that have undergone the refining process are treated with a 4% sodium hydroxide solution at 60 to 70 ° C for 3 to 5 hours.

상기한 바와 같이, 본 발명에 따른 친환경성 복합소재는 생분해성 고분자와 변성 대두오일을 1차 혼합하여 제1혼합물을 조성한 후,As described above, the eco-friendly composite material according to the present invention comprises a first mixture of a biodegradable polymer and a modified soybean oil to form a first mixture,

상기 제1혼합물에 표면처리한 저마섬유를 첨가하여 제2혼합물을 조성한 다음, 상기 제2혼합물을 예열, 압착, 냉각처리과정을 거쳐 친환경성 복합재료를 제조하게 된다.
The second mixture is formed by adding the ground fibers treated with the first mixture to the first mixture, and then the second mixture is preheated, compressed and cooled to produce an environmentally friendly composite material.

이하, 상기의 기술 구성에 대한 구체적인 내용을 실시예와 함께 살펴보고자 한다.
Hereinafter, specific details of the above-described technical configuration will be described with examples.

저마섬유의Gum 표면처리 Surface treatment

저마섬유를 10mm로 절단하여, 100℃의 4% 수산화나트륨(NaOH) 용액에서 1시간 동안 정련하고, 상기 정련한 저마섬유를 70℃의 4% 수산화나트륨 용액에서 3시간 동안 알칼리 처리하여 표면처리를 이룬다.
The ground fibers were cut to 10 mm and refined in a 4% sodium hydroxide (NaOH) solution at 100 ° C for 1 hour. The refined cotton fibers were subjected to alkali treatment in a 4% sodium hydroxide solution at 70 ° C for 3 hours for surface treatment It accomplishes.

복합재료 제조Composite material manufacturing

폴리유산(PLA;Polylactic acid)의 생분해성 고분자 90wt%에 변성 대두오일의 AESO(acrylated epoxidized soybean oil) 10wt%를 첨가하여 3분간 혼합하여 제1혼합물을 조성한다.To 90 wt% of biodegradable polymer of polylactic acid (PLA), 10 wt% of modified soybean oil AESO (acrylated epoxidized soybean oil) is added and mixed for 3 minutes to form a first mixture.

그리고 이와 같이 조성된 제1혼합물 80wt%에 실시예 1을 통해 제조한 저마섬유 20wt%를 첨가하여 3분간 혼합하여 제2혼합물을 조성한다.Then, 20 wt% of the geoma fibers prepared in Example 1 was added to 80 wt% of the thus-prepared first mixture and mixed for 3 minutes to form a second mixture.

다음으로, 이와 같이 조성된 제2혼합물을 270℃에서 2분 동안 예열한 후,Next, the thus-prepared second mixture was pre-heated at 270 DEG C for 2 minutes,

예열한 혼합물을 150MPa의 압력으로 20초 동안 가압하여 복합재료를 제조하고, 이와 같이 제조된 복합재료를 25℃에서 30분 동안 냉각처리하여 친환경성 복합재료를 완성한다.
The preheated mixture is pressurized at a pressure of 150 MPa for 20 seconds to prepare a composite material, and the composite material thus produced is cooled at 25 DEG C for 30 minutes to complete an environmentally friendly composite material.

본 발명에 따른 복합재료는 천연재료, 생분해성 재료를 이용하여 친환경적이며, 생분해성 고분자, 변성 대두오일, 저마섬유 상호 간의 결합력을 높여 물리적·화학적 특성을 높일 수 있으며, 분해특성이 강하기 때문에 환경오염문제를 일으키지 않는다는 장점을 갖으므로 산업상 이용가능성이 크다.The composite material according to the present invention is environmentally friendly using natural materials and biodegradable materials, and can increase physical and chemical properties by increasing the binding force between the biodegradable polymer, the modified soybean oil and the gum fiber, It has the advantage of not causing a problem and is highly likely to be used industrially.

Claims (3)

폴리유산(PLA;Polylactic acid), 폴리글리코산(PGA;Polyglycolic acid), 폴리카프로락톤(PCL;Polycaprolactone), 폴리부틸렌 석시네이트(Polybutylene succinate) 또는 폴리부틸렌아디페이트/테레프탈레이트(PBAT;Poly(butylenes adipate-co-terephthalate) 중 선택되는 어느 1종 또는 2종 이상의 생분해성 고분자 85~95wt%에 변성 대두오일의 AESO(acrylated epoxidized soybean oil) 5~15wt%를 첨가하여 2~5분간 혼합하여 100wt%의 제1혼합물을 조성하고,
상기 제1혼합물 70~90wt%에 수산화나트륨(NaOH) 용액으로 알칼리 처리한 저마섬유 10~30wt%를 첨가하여 2~5분 동안 혼합하여 100wt%의 제2혼합물을 조성한 후,
상기 제2혼합물을 250~290℃에서 1~3분 동안 예열한 후,
예열한 제2혼합물을 130~180MPa의 압력으로 10~30초 동안 가압하여 복합재료를 제조하고,
상기 복합재료를 20~30℃에서 20~60분 동안 냉각처리하여 이루어지는 것임을 특징으로 하는 친환경성 복합재료 제조방법.
Polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate, or polybutylene adipate / terephthalate (PBAT) 5 to 15% by weight of an acrylated epoxidized soybean oil (AESO) of modified soybean oil is added to 85 to 95% by weight of one or more biodegradable polymers selected from butylenes adipate-co-terephthalate and mixed for 2 to 5 minutes 100 wt% of a first mixture was prepared,
10 to 30 wt% of alkali-treated gum fibers with sodium hydroxide (NaOH) solution was added to 70 to 90 wt% of the first mixture, followed by mixing for 2 to 5 minutes to form a second mixture of 100 wt%
After the second mixture is preheated at 250 to 290 ° C for 1 to 3 minutes,
The preheated second mixture is pressurized at a pressure of 130 to 180 MPa for 10 to 30 seconds to prepare a composite material,
Wherein the composite material is subjected to a cooling treatment at 20 to 30 DEG C for 20 to 60 minutes.
청구항 1에 있어서,
저마섬유는 10mm~30mm로 절단하여, 90~100℃의 4% 수산화나트륨(NaOH) 용액에서 1~2시간 동안 정련하고,
상기 정련과정을 거친 저마섬유를 60~70℃의 4% 수산화나트륨 용액에서 3~5시간 동안 알칼리 처리한 것임을 특징으로 하는 친환경성 복합재료 제조방법.
The method according to claim 1,
The ground fibers are cut into 10 mm to 30 mm, refined in a 4% sodium hydroxide (NaOH) solution at 90 to 100 ° C for 1 to 2 hours,
Wherein the refractory germinated fibers are alkali treated in a 4% sodium hydroxide solution at 60 to 70 ° C for 3 to 5 hours.
청구항 1의 제조방법을 통해 제조된 것임을 특징으로 하는 친환경성 복합재료.








Wherein the composite material is produced through the manufacturing method of claim 1.








KR1020140128055A 2014-09-25 2014-09-25 Process for the preparation of environmentally composite material and the composite materaial produced thereby KR101688952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140128055A KR101688952B1 (en) 2014-09-25 2014-09-25 Process for the preparation of environmentally composite material and the composite materaial produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140128055A KR101688952B1 (en) 2014-09-25 2014-09-25 Process for the preparation of environmentally composite material and the composite materaial produced thereby

Publications (2)

Publication Number Publication Date
KR20160036679A true KR20160036679A (en) 2016-04-05
KR101688952B1 KR101688952B1 (en) 2016-12-23

Family

ID=55799968

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140128055A KR101688952B1 (en) 2014-09-25 2014-09-25 Process for the preparation of environmentally composite material and the composite materaial produced thereby

Country Status (1)

Country Link
KR (1) KR101688952B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320933A (en) * 2018-10-16 2019-02-12 福建农林大学 A kind of activeness and quietness bamboo fibre/lactic acid composite material and preparation method thereof
CN109467897A (en) * 2018-10-16 2019-03-15 福建农林大学 A kind of bamboo fibre/lactic acid composite material of reactive compatibilization and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070094894A (en) 2004-11-08 2007-09-27 아즈델, 인코포레이티드 Composite thermoplastic sheets including natural fibers
KR20090019999A (en) * 2007-08-22 2009-02-26 도레이새한 주식회사 Biodegradable sheet reinforced with a natural hemp and the producing process thereof
KR100992666B1 (en) 2008-09-09 2010-11-05 충남대학교산학협력단 Biodecompositive Soy Protein/Natural Fiber Composites
KR101170726B1 (en) * 2009-12-02 2012-08-02 엔브이에이치코리아(주) Manufacturing method of a biodegradable composite panel for vehicles
US8604123B1 (en) * 2011-07-13 2013-12-10 C-Stone Llc Biodegradable polymer composition with calcium carbonate and methods and products using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070094894A (en) 2004-11-08 2007-09-27 아즈델, 인코포레이티드 Composite thermoplastic sheets including natural fibers
KR20090019999A (en) * 2007-08-22 2009-02-26 도레이새한 주식회사 Biodegradable sheet reinforced with a natural hemp and the producing process thereof
KR100992666B1 (en) 2008-09-09 2010-11-05 충남대학교산학협력단 Biodecompositive Soy Protein/Natural Fiber Composites
KR101170726B1 (en) * 2009-12-02 2012-08-02 엔브이에이치코리아(주) Manufacturing method of a biodegradable composite panel for vehicles
US8604123B1 (en) * 2011-07-13 2013-12-10 C-Stone Llc Biodegradable polymer composition with calcium carbonate and methods and products using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320933A (en) * 2018-10-16 2019-02-12 福建农林大学 A kind of activeness and quietness bamboo fibre/lactic acid composite material and preparation method thereof
CN109467897A (en) * 2018-10-16 2019-03-15 福建农林大学 A kind of bamboo fibre/lactic acid composite material of reactive compatibilization and preparation method thereof
CN109320933B (en) * 2018-10-16 2021-03-16 福建农林大学 Reinforced and toughened bamboo fiber/polylactic acid composite material and preparation method thereof
CN109467897B (en) * 2018-10-16 2021-03-16 福建农林大学 Reactive compatibilized bamboo fiber/polylactic acid composite material and preparation method thereof

Also Published As

Publication number Publication date
KR101688952B1 (en) 2016-12-23

Similar Documents

Publication Publication Date Title
Mousavi et al. Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies
Pappu et al. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding
Nam et al. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites
Terzopoulou et al. Green composites prepared from aliphatic polyesters and bast fibers
CN110655769A (en) High-toughness fully-degradable composite material
CN101812221B (en) Modified glass fiber reinforced polylactic acid composite material and preparation method thereof
Kuciel et al. Biocomposites based on PHB filled with wood or kenaf fibers
CN109111710B (en) Heat-resistant PLA-based degradable plastic bottle and preparation method thereof
Jadhav et al. Production of green composites from various sustainable raw materials
CN104231582A (en) Polylactic acid base composite material and preparation method thereof
CN107151427A (en) A kind of biodegradable toughness reinforcing heat-proof polylactic acid modified resin and preparation method thereof
CN103102663B (en) Sumac seed shell fiber-reinforced polylactic acid composite material and preparation method as well as application thereof
CN109251494A (en) A kind of natural gutta-percha/cellulose modified lactic acid composite material and preparation method
CN108410146B (en) Preparation method of biodegradable super-tough flame-retardant polylactic acid-based composite material
Mokhothu et al. Bio-based fillers for environmentally friendly composites
KR101688952B1 (en) Process for the preparation of environmentally composite material and the composite materaial produced thereby
KR101646121B1 (en) Biocomposites having high impact strength and flexural strength
CN114933815A (en) Straw composite material master batch and preparation method thereof
Nurul Fazita et al. Woven natural fiber fabric reinforced biodegradable composite: processing, properties and application
CN114230991B (en) Preparation method of modified epoxidized vegetable oil toughened polylactic acid material
Bhaskaran et al. Natural fibre reinforced vegetable-oil based polyurethane composites: A review
Kajiyama et al. Effect of hexamethylene diisocyanate as compatibilizer on the mechanical properties of banana fiber/poly (butylene succinate) composites
CN115232454B (en) Super-tough polylactic acid-based composite material with core-shell structure and preparation method thereof
CN104194295A (en) Profiled Lyocell fiber reinforced polylactic acid composite material and preparation method thereof
JP2019178267A (en) Complex and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191212

Year of fee payment: 4