KR20160026356A - Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation - Google Patents

Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation Download PDF

Info

Publication number
KR20160026356A
KR20160026356A KR1020140114745A KR20140114745A KR20160026356A KR 20160026356 A KR20160026356 A KR 20160026356A KR 1020140114745 A KR1020140114745 A KR 1020140114745A KR 20140114745 A KR20140114745 A KR 20140114745A KR 20160026356 A KR20160026356 A KR 20160026356A
Authority
KR
South Korea
Prior art keywords
conductivity
lead
solution
green tea
increased
Prior art date
Application number
KR1020140114745A
Other languages
Korean (ko)
Inventor
양연진
Original Assignee
양연진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양연진 filed Critical 양연진
Priority to KR1020140114745A priority Critical patent/KR20160026356A/en
Publication of KR20160026356A publication Critical patent/KR20160026356A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Addition of green tea shows an effect on removal of lead ions through the reduction in conductivity using a result of conductivity measurement, whereas ionized water in the green tea can affect the result of the measurement, thereby setting a solution to be compared to be 500 ppm and 75 ml in volume so as to be equal to a standard solution. As the concentration of the lead standard solution can be lower than the concentration of the solution to be compared, the conductivity of the solution is adjusted to be increased by 500 ppm or the increased conductivity of the green tea using KNO_3 containing ions while watching an electrical conductivity meter. Then, 1 ml of the 20000 ppm lead standard solution is instilled into both sides and the time course change of the conductivity is observed (the conductivity increases up to about 1500 ppm). As the conductivity may be increased by releasing ions from a sample depending on samples, a change in the conductivity of the samples should be examined in advance. In addition, as the temperature has to be increased by a certain temperature to allow heavy metals to interact with a substance having an effect on the removal of the heavy metals, a change in the conductivity after raising the temperature should be observed. The result of changes in the conductivity of see mustard, garlic, green tea, and the lead standard solution measured by the electrical conductivity meter showed the see mustard and the green tea leaves absorbed lead ions, whereas the conductivity of the garlic increased. However, an increase in the conductivity of a substance like garlic may be due to release of ionic matter from the substance by a rise in the temperature. Thus, the concentration of lead can be calculated by comparing a change in color of unique yellow precipitation, which is formed by putting an excess KI solution interacting lead, with the lead concentration to precisely detect the lead in the ionized solution.

Description

전기전도도와 앙금 착물 형성을 이용한 중금속이온 측정방법{ Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation}[0001] The present invention relates to a method for measuring heavy metal ions using electric conductivity and a precipitate complex formation method,

중금속 오염, 전기전도도법, 착물 형성.Heavy metal contamination, electrical conductivity method, complex formation.

인류의 활동과 산업의 발달로 새롭고 잠재적인 위해성을 지닌 화학물질이 생산되고 수서 생태계로 유입되고 있다. 현대화학의 발전은 알려진 유용한 화학물의 생산량을 높이는데 기여했을 뿐만 아니라 매일 1200 여종 가량의 새로운 물질도 만들어내고 있다. 물질의 이동과 변환이 급속하게 일어나는 수서 생태계의 특성상, 이러한 독성 물질에 대한 위해성을 평가하고 법적인 대처를 취하는 노력이 이루어지지 않는다면 매년 수천 종의 화학물질을 함유한 산업폐수와 도시하수에 의해서 위기에 처하게 될 위험성에 노출되어 있다.With the development of human activities and industry, new and potentially harmful chemicals are being produced and entering the Suez ecosystem. The development of modern chemistry not only contributes to the production of known useful chemicals, but it also produces about 1,200 new substances every day. Unless efforts are made to evaluate the risks to these toxic substances and to take legal action, the nature of the Suseo ecosystem, where material movement and conversion occurs rapidly, is not enough to prevent crises by industrial wastewater and city sewage containing thousands of chemicals each year And is exposed to the risk that it will face.

세계 보건기구인 WHO(World Health Organization)에서 음용수에 대해 독성이 심각하다고 지적한 독성 물질은 비소(As; Arsenic), 카드뮴(Cd; Cadmium), 코발트(Co; Cobalt),크롬(Cr;Chromium), 구리(Cu; Copper), 철(Fe;Iron), 수은(Hg; Mercury), 니켈(Ni; Nickel), 납(Pb; Lead), 및 아연(Zn; Zinc) 등과 같은 중금속 류가 있다. 이러한 환경 오염성 중금속은 그 자체의 독성이 강할 뿐 아니라 축적성도 있어 먹이 연쇄에 따라 크게 농축된다. 따라서 유해성 중금속을 제거하는 많은 방법들이 개발되었고 기존의 방법으로는 화학적 침전, 전기분해 회수, 용매 추출, 막 분리 및 이온교환수지법이 있다. 하지만 이런 방법보다는 우리 주변의 자연에 존재하는 천연물을 이용한 생물학적 흡착제를 이용하는 방법이 기대 되고 있으며 보다 경제적이며 친환경적인 방법으로 중금속을 제거하는 방향으로 가고 있다.The World Health Organization (WHO) has indicated that toxic substances such as arsenic, cadmium, cobalt, cobalt, chromium, Heavy metals such as copper (Cu), iron (Fe), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) Such environmental pollution heavy metals are not only highly toxic but also accumulate, which is greatly concentrated according to the food chain. Thus, many methods for removing harmful heavy metals have been developed and include chemical precipitation, electrolysis recovery, solvent extraction, membrane separation and ion exchange resin method. However, this method is expected to use a biological adsorbent using natural materials present in nature around us, and is going to remove heavy metals in a more economical and environmentally friendly way.

여러 가지 중금속을 제거하는 생물학적 흡착제로는 균류, 박테리아, 식물 추출물 및 해조류 등이 있으며, 무기질 흡착제로는 제올라이트나 규조토등이 있다.Biological adsorbents that remove various heavy metals include fungi, bacteria, plant extracts, and seaweeds, and inorganic adsorbents include zeolite and diatomaceous earth.

이중에서 갈색 해조류와 마늘과 양파추출물에서의 중금속 흡착성능이 매우 우수한 흡착제로 알려져 있어서 이러한 특성을 평가 하는 화학 분석 방법에 대해서 연구하여 보았다. 일반적으로 중금속 농도를 분석하는 방법으로 원자 흡광광도계(Atomic Absorption Spectrometer) 이나 ICP를 이용해서 중금속이온의 고유 파장의 흡수도를 이용하여 평가하는 것이 많이 사용되고 있다. 하지만 이 연구에서는 기본적인 화학 반응의 원리를 이용하여 기본적인 화학 센서인 전기전도도(Conductivity Meter) 센서와 가시광선 흡광기(Visible Spectrometer)를 이용한 방법으로 중금속의 함량을 측정하는 방법이 타당성이 있는가를 연구하여 중금속을 제거하는 방법의 분석 수단으로 활용 하고자 한다Among them, it is known that the adsorbent of brown algae, garlic and onion extracts has a very high adsorption capacity for heavy metals. Therefore, a chemical analysis method for evaluating such characteristics has been studied. Generally, it is widely used to evaluate the concentration of heavy metals by using absorption spectra of intrinsic wavelength of heavy metal ions using Atomic Absorption Spectrometer or ICP. However, in this study, we investigated the feasibility of measuring the content of heavy metals by using the basic chemical sensor, Conductivity Meter, which is a basic chemical reaction, and Visible Spectrometer, As a means of analysis

환경 오염성 중금속은 그 자체의 독성이 강할 뿐 아니라 축적성도 있어 먹이 연쇄에 따라 크게 농축된다. 따라서 유해성 중금속을 제거하는 많은 방법들이 개발되었고 기존의 방법으로는 화학적 침전, 전기분해 회수, 용매 추출, 막 분리 및 이온교환수지법이 있다. 하지만 이런 방법보다는 우리 주변의 자연에 존재하는 천연물을 이용한 생물학적 흡착제를 이용하는 방법이 기대 되고 있으며 보다 경제적이며 친환경적인 방법으로 중금속을 제거하는 방향으로 가고 있다.Contaminated heavy metals are not only highly toxic but also accumulate and are highly concentrated according to the food chain. Thus, many methods for removing harmful heavy metals have been developed and include chemical precipitation, electrolysis recovery, solvent extraction, membrane separation and ion exchange resin method. However, this method is expected to use a biological adsorbent using natural materials present in nature around us, and is going to remove heavy metals in a more economical and environmentally friendly way.

여러 가지 중금속을 제거하는 생물학적 흡착제로는 균류, 박테리아, 식물 추출물 및 해조류 등이 있으며, 무기질 흡착제로는 제올라이트나 규조토등이 있다.Biological adsorbents that remove various heavy metals include fungi, bacteria, plant extracts, and seaweeds, and inorganic adsorbents include zeolite and diatomaceous earth.

이중에서 갈색 해조류와 마늘과 양파추출물에서의 중금속 흡착성능이 매우 우수한 흡착제로 알려져 있어서 이러한 특성을 평가 하는 화학 분석 방법에 대해서 연구하여 보았다. 일반적으로 중금속 농도를 분석하는 방법으로 원자 흡광광도계(Atomic Absorption Spectrometer) 이나 ICP를 이용해서 중금속이온의 고유 파장의 흡수도를 이용하여 평가하는 것이 많이 사용되고 있다. Among them, it is known that the adsorbent of brown algae, garlic and onion extracts has a very high adsorption capacity for heavy metals. Therefore, a chemical analysis method for evaluating such characteristics has been studied. Generally, it is widely used to evaluate the concentration of heavy metals by using absorption spectra of intrinsic wavelength of heavy metal ions using Atomic Absorption Spectrometer or ICP.

이중에서 갈색 해조류와 마늘과 양파추출물에서의 중금속 흡착성능이 매우 우수한 흡착제로 알려져 있어서 이러한 특성을 평가 하는 화학 분석 방법에 대해서 연구하여 보았다. 일반적으로 중금속 농도를 분석하는 방법으로 원자 흡광광도계(Atomic Absorption Spectrometer) 이나 ICP를 이용해서 중금속이온의 고유 파장의 흡수도를 이용하여 평가하는 것이 많이 사용되고 있다. 하지만 이 연구에서는 기본적인 화학 반응의 원리를 이용하여 기본적인 화학 센서인 전기전도도(Conductivity Meter) 센서와 가시광선 흡광기(Visible Spectrometer)를 이용한 방법으로 중금속의 함량을 측정하는 방법이 타당성이 있는가를 연구하여 중금속을 제거하는 방법의 분석 수단으로 활용 하고자 한다Among them, it is known that the adsorbent of brown algae, garlic and onion extracts has a very high adsorption capacity for heavy metals. Therefore, a chemical analysis method for evaluating such characteristics has been studied. Generally, it is widely used to evaluate the concentration of heavy metals by using absorption spectra of intrinsic wavelength of heavy metal ions using Atomic Absorption Spectrometer or ICP. However, in this study, we investigated the feasibility of measuring the content of heavy metals by using the basic chemical sensor, Conductivity Meter, which is a basic chemical reaction, and Visible Spectrometer, As a means of analysis

유해성 중금속을 제거하는 많은 방법들이 개발되었고 기존의 방법으로는 화학적 침전, 전기분해 회수, 용매 추출, 막 분리 및 이온교환수지법이 있다. 하지만 이런 방법보다는 우리 주변의 자연에 존재하는 천연물을 이용한 생물학적 흡착제를 이용하는 방법이 기대 되고 있으며 보다 경제적이며 친환경적인 방법으로 중금속을 제거하는 방향으로 가고 있다.Many methods for removing harmful heavy metals have been developed and include chemical precipitation, electrolysis recovery, solvent extraction, membrane separation and ion exchange resin methods. However, this method is expected to use a biological adsorbent using natural materials present in nature around us, and is going to remove heavy metals in a more economical and environmentally friendly way.

여러 가지 중금속을 제거하는 생물학적 흡착제로는 균류, 박테리아, 식물 추출물 및 해조류 등이 있으며, 무기질 흡착제로는 제올라이트나 규조토등이 있다.Biological adsorbents that remove various heavy metals include fungi, bacteria, plant extracts, and seaweeds, and inorganic adsorbents include zeolite and diatomaceous earth.

이중에서 갈색 해조류와 마늘과 양파추출물에서의 중금속 흡착성능이 매우 우수한 흡착제로 알려져 있어서 이러한 특성을 평가 하는 화학 분석 방법에 대해서 연구하여 보았다. 일반적으로 중금속 농도를 분석하는 방법으로 원자 흡광광도계(Atomic Absorption Spectrometer) 이나 ICP를 이용해서 중금속이온의 고유 파장의 흡수도를 이용하여 평가하는 것이 많이 사용되고 있다. Among them, it is known that the adsorbent of brown algae, garlic and onion extracts has a very high adsorption capacity for heavy metals. Therefore, a chemical analysis method for evaluating such characteristics has been studied. Generally, it is widely used to evaluate the concentration of heavy metals by using absorption spectra of intrinsic wavelength of heavy metal ions using Atomic Absorption Spectrometer or ICP.

도면.1 은 본발명의 실시예1 shows an embodiment of the present invention

전도도 측정결과로 녹차의 첨가에 의한 전도도의 감소로 납이온의 제거 효과를 알수 있기도 하지만 녹차 자체의 이온수가 실험에 영향을 줄 수 있으므로 비교하고자 하는 용액을 500ppm 75ml 부피로 동일하게 맞춘다. 납 표준 용액의 농도가 더 작게 나 올 있으므로 이 용액에는 이온이 함유되어 있는 KNO3을 이용하여 전도계를 보면서 전도도를 500ppm이나 녹차용액의 늘어난 전도도 만큼을 늘어나도록 조절해준다.As a result of conductivity measurement, decrease of conductivity by addition of green tea shows the removal effect of lead ion. However, since the ionized water of green tea itself may affect the experiment, the solution to be compared is adjusted to the same volume of 500ppm to 75ml. Since the concentration of lead standard solution will be smaller, adjust the conductivity to 500ppm or increase the conductivity of the green tea solution while observing the conductivity meter using KNO3 containing ion.

그 다음에 양쪽에 20000ppm 1ml를 떨어뜨린 후 전도도의 변화를 시간에 따라 관찰한다.(약 1500ppm 정도로 전도도 상승) 시료에 따라 시료자체에 이온이 녹아 나오면서 전도도가 증가 하는 것도 있으므로 이러한 전도도 변화를 사전에 검사 해야 한다. 또한 중금속이 중금속 제거효과를 보이는 물질과 반응하기 위해서는 일정한 온도이상이 필요하므로 온도를 높인 후에 전도도의 변화를 관찰 해야 한다. After 1 ml of 20000 ppm is dropped on both sides, the change in conductivity is observed over time (the conductivity increases to about 1500 ppm). Depending on the sample, the conductivity of the sample increases as ions are dissolved in the sample itself. It should be examined. In order to react with heavy metal removal substances, it is necessary to observe a change in conductivity after raising the temperature.

아래 전도도 측정기에 미역, 마늘, 녹차 그리고 납 표준용액의 전도도 변화로 미역과 녹차잎이 납이온을 흡수하였고 마늘은 전도도가 오히려 올라 가는 것을 관찰 할 수 있다. 하지만 마늘 같은 물질은 온도 상승에 의해 내부에 있던 많은 이온성 물질들이 녹아 나와서 전도도의 상승을 높였을 것이다.The conductivity of the sea salt, garlic, green tea and lead standard solution was changed by the conductivity meter to absorb the lead ions in the seaweed and green tea leaves, and the conductivity of the garlic could be increased. But, like the garlic, the increase in temperature would increase the rise of the conductivity by melting the many ionic substances inside.

따라서 이용액에 들어 있는 납을 정확히 검출하기 위해서는 납과 반응하는 KI용액을 과량을 넣으면 특징적인 Yellow Precipitation을 형성하므로 이 색깔의 변화를 납의 농도로 비교하여 계산 할 수 있을 것이다. Therefore, in order to accurately detect the lead contained in the solution, it is possible to calculate the change of the color by comparing with the concentration of lead since an excessive amount of KI solution reacting with lead forms a characteristic yellow precipitation.

생략skip

Claims (1)

갈색 해조류와 마늘과 양파추출물에서의 중금속 흡착성능이 매우 우수한 흡착제로 알려져 있어서 이러한 특성을 평가 하는 화학 분석 방법에 대해서 연구하여 보았다. 일반적으로 중금속 농도를 분석하는 방법으로 원자 흡광광도계(Atomic Absorption Spectrometer) 이나 ICP를 이용해서 중금속이온의 고유 파장의 흡수도를 이용하여 평가하는 발명에 한함.It is known as an adsorbent with high adsorption capacity for heavy metals in brown algae, garlic and onion extracts. In general, the method for analyzing the concentration of heavy metals is limited to the invention using an atomic absorption spectrometer (Atomic Absorption Spectrometer) or ICP to evaluate the absorption using the intrinsic wavelength of heavy metal ions.
KR1020140114745A 2014-08-31 2014-08-31 Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation KR20160026356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140114745A KR20160026356A (en) 2014-08-31 2014-08-31 Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140114745A KR20160026356A (en) 2014-08-31 2014-08-31 Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation

Publications (1)

Publication Number Publication Date
KR20160026356A true KR20160026356A (en) 2016-03-09

Family

ID=55536763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140114745A KR20160026356A (en) 2014-08-31 2014-08-31 Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation

Country Status (1)

Country Link
KR (1) KR20160026356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389115A (en) * 2018-04-18 2019-10-29 天津师范大学 Utilize the method and its application of panorama cell multidimentional system detection water body cadmium ion
CN114414519A (en) * 2022-01-24 2022-04-29 上海理工大学 Method for detecting types and concentrations of heavy metals in water body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389115A (en) * 2018-04-18 2019-10-29 天津师范大学 Utilize the method and its application of panorama cell multidimentional system detection water body cadmium ion
CN114414519A (en) * 2022-01-24 2022-04-29 上海理工大学 Method for detecting types and concentrations of heavy metals in water body
CN114414519B (en) * 2022-01-24 2023-07-25 上海理工大学 Method for detecting type and concentration of heavy metal in water body

Similar Documents

Publication Publication Date Title
Rathi et al. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system
Islam et al. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country
Jayaprakash et al. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect
Wang et al. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge
Semião et al. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration
Illuminati et al. In-situ trace metal (Cd, Pb, Cu) speciation along the Po River plume (Northern Adriatic Sea) using submersible systems
Petit et al. Anthropogenic sources and biogeochemical reactivity of particulate and dissolved Cu isotopes in the turbidity gradient of the Garonne River (France)
Roig et al. Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods
Singare et al. Sediment heavy metal contaminants in Vasai Creek of Mumbai: pollution impacts
Singh et al. Evaluation of groundwater quality in northern Indo-Gangetic alluvium region
Oral et al. Preconcentration and determination of copper and cadmium ions with 1, 6-bis (2-carboxy aldehyde phenoxy) butane functionalized Amberlite XAD-16 by flame atomic absorption spectrometry
Chito et al. Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique)
Bai et al. Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study
Zierhut et al. Analysis of total dissolved mercury in waters after on-line preconcentration on an active gold column
Ribé et al. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates
Namieśnik et al. The speciation of aluminum in environmental samples
Xu et al. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA)
Al-Qahtani Extraction heavy metals from contaminated, water using chelating agents
Roig et al. Integrated study of metal behavior in Mediterranean stream ecosystems: a case-study
Hu et al. Spatiotemporal patterns and influencing factors of dissolved heavy metals off the Yangtze River Estuary, East China Sea
Kamyabi et al. Investigation of the Hg (II) biosorption from wastewater by using garlic plant and differential pulse voltammetry
KR20160026356A (en) Poisonous Heavy Metal Detection Method Using Conductivity Meter and Complex Formation
Fiaizullina et al. The possibility of wastewater treatment of heavy metals by natural sorbents
Lucas et al. Spatial and temporal distribution of Au and other trace elements in an estuary using the diffusive gradients in thin films technique and grab sampling
Kulkarni Heavy metal pollution: sources, effects, and control methods

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination