KR20160018658A - Rotary encoder - Google Patents

Rotary encoder Download PDF

Info

Publication number
KR20160018658A
KR20160018658A KR1020167000093A KR20167000093A KR20160018658A KR 20160018658 A KR20160018658 A KR 20160018658A KR 1020167000093 A KR1020167000093 A KR 1020167000093A KR 20167000093 A KR20167000093 A KR 20167000093A KR 20160018658 A KR20160018658 A KR 20160018658A
Authority
KR
South Korea
Prior art keywords
phase
signal
conductive pattern
excitation signal
stator element
Prior art date
Application number
KR1020167000093A
Other languages
Korean (ko)
Other versions
KR102182787B1 (en
Inventor
장 한 톨리 르웨렌쯔
Original Assignee
아틀라스 콥코 인더스트리얼 테크니크 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아틀라스 콥코 인더스트리얼 테크니크 에이비 filed Critical 아틀라스 콥코 인더스트리얼 테크니크 에이비
Publication of KR20160018658A publication Critical patent/KR20160018658A/en
Application granted granted Critical
Publication of KR102182787B1 publication Critical patent/KR102182787B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2066Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to a single other coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B47/00Constructional features of components specially designed for boring or drilling machines; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

본 발명은 전동 공구의 두 개의 상대적으로 움직이는 부분 사이의 상대적 변위를 센싱하기 위한 유도적 변위 센서 및 그와 관련된 방법에 관한 것이다. 변위 센서는 상대적으로 움직이든 제1 전도성 패턴을 가진 스테이터 요소와 제2 전도성 패턴을 가진 로터 요소를 포함한다. 제1 전도성 패턴 및 제2 전도성 패턴은 상호 유도적으로 결합된다. 제1 전도성 패턴은 실질적으로 일정한 진폭을 가진 고주파수 여기 신호를 수신하도록 구성된다. 고주파수 여기 신호는, 제1 전도성 패턴과 제2 전도성 패턴 사이의 상호 유도에 의해, 제2 전도성 패턴 내에서 생성될 중간 신호를 야기한다. 중간 신호는 스테이터 요소와 로터 요소 사이의 상대적 변위를 나타낸다.The present invention relates to an inductive displacement sensor and its associated method for sensing the relative displacement between two relatively moving parts of a power tool. The displacement sensor includes a stator element having a first conductive pattern and a rotor element having a second conductive pattern, both of which are relatively movable. The first conductive pattern and the second conductive pattern are mutually inductively coupled. The first conductive pattern is configured to receive a high frequency excitation signal having a substantially constant amplitude. The high frequency excitation signal causes an intermediate signal to be generated in the second conductive pattern by mutual induction between the first conductive pattern and the second conductive pattern. The intermediate signal represents the relative displacement between the stator element and the rotor element.

Description

로터리 인코더{ROTARY ENCODER}Rotary encoder {ROTARY ENCODER}

본 발명은 변위를 센싱하기 위한 센서가 있는 전동 공구 및 전동 공구 내의 변위를 센싱하기 위한 방법에 관한 것이다.The present invention relates to a power tool having a sensor for sensing displacement and a method for sensing displacement in a power tool.

본 발명은 특히 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 유도성 타입의 로터리 인코더가 있는 전동 공구 및 유도성 로터리 인코더를 사용하여 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법에 관한 것이다.The invention relates particularly to the use of an inductive rotary encoder with an inductive-type rotary encoder for sensing the displacement between two relatively moving parts of the power tool and between the two relatively moving parts of the power tool using an inductive rotary encoder The method comprising:

스크류 드라이버, 너트 러너, 드릴과 같은 전동 공구는 전형적으로, 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 상대적인 각변위와 같은 하나 이상의 파라미터를 센싱하기 위한 일부 형태의 적어도 하나의 검출기 장치를 구비한다. 하나 이상의 파라미터는 가령, 모니터링 목적이나 피드백 제어를 위해 사용될 수 있다.A power tool, such as a screwdriver, nut runner, or drill, typically has at least one detector device of some form for sensing one or more parameters, such as the relative angular displacement between two relatively moving portions of the power tool . One or more parameters may be used, for example, for monitoring purposes or feedback control.

검출기 장치는 전형적으로 선형 변위나 회전 변위, 즉 각변위를 측정하도록 구성되는 적용예에 의존한다.The detector device typically relies on applications that are configured to measure linear displacements or rotational displacements, i.e., angular displacements.

또한, 검출기 장치는 전형적으로, 검출기 장치에 의해 와이어링이 상대적으로 움직이는 측정 대상에 물리적 접촉을 요하는지 아닌지에 따라 접촉 검출기 장치 또는 비접척 검출기 장치로 특징된다.In addition, the detector device is typically characterized by a contact detector device or a non-coherent detector device, depending on whether or not the physical contact is required by the detector device with respect to the object on which the wiring is relatively moving.

다양한 검출기 장치가 회전가능한 요소와 정지 요소 사이와 같은 두 개의 상대적으로 움직이는 요소 사이의 변위, 즉 상대적 위치를 센싱하기 위해 다양한 서로 다른 시스템에 걸쳐 오늘날 사용된다. 이들 검출기 장치는 전형적으로, 싱크로스, 리졸버, 인코더, 슬립링 또는 트랜스듀서로 언급되고, 광학적-, 자기적- , 유도성- , 커패시티브- 와 같은 물리적 센싱 원리 또는 에디 전류 물리적 센싱 원리에 기초하여 동작한다.Various detector devices are used today across a variety of different systems to sense the displacement, or relative position, between two relatively moving elements, such as between a rotatable element and a stop element. These detector devices are typically referred to as syncroxes, resolvers, encoders, slip rings or transducers, and may be used in conjunction with physical sensing principles such as optical, magnetic, inductive, capacitive, or eddy current physical sensing principles .

광학적 검출기 장치는 전형적으로, 회전 샤프트와 같은 회전가능한 측정 대상에 장착된 디스크를 실행하는데, 상기 디스크는 투명한 영역과 불투명한 영역이 있는 유리 또는 플라스틱으로 제조된다. 이들 영역은 광원으로부터의 광에 노출된다. 결과로 나온 광, 즉, 광학 패턴은 광학 패턴을 판독하는 포토검출기 어레이에 의해 수신된다. 그리고 나서, 판독된 광학 패턴은 디스크의 위치, 즉, 샤프트의 각도를 제공하기 위해 처리된다.An optical detector device typically implements a disk mounted on a rotatable object, such as a rotating shaft, wherein the disk is made of glass or plastic with a transparent area and an opaque area. These regions are exposed to light from a light source. The resulting light, i. E. The optical pattern, is received by the photo detector array reading the optical pattern. The read optical pattern is then processed to provide the position of the disk, i.e., the angle of the shaft.

자기적 검출 장치는 전형적으로, 교호하는 북극-남극 컨피규레이션으로 제공된 동일 거리의 일련의 자극을 실행한다. 일련의 자극은 회전 샤프트와 같은 회전가능한 측정 대상에 장착된다. 자기적 센서(전형적으로 자기저항성 또는 홀 효과)는 자극 위치를 판독한다.Magnetic detection devices typically perform a series of stimuli of the same distance provided in alternating Arctic-Antarctic configurations. A series of stimuli are mounted on a rotatable object such as a rotating shaft. A magnetic sensor (typically a magnetoresistive or Hall effect) reads the magnetic pole position.

그리고 나서, 이들 위치는 샤프트의 각도를 결정하기 위해, 상기 기술된 광학적 검출기 장치와 유사하게 프로세싱 장치에 의해 처리될 수 있다.These positions can then be processed by a processing device similar to the optical detector device described above to determine the angle of the shaft.

유도성 검출기 장치는 전형적으로, 회전 샤프트와 같은 회전가능한 측정 대상에 장착된 적어도 하나의 제1 코일의 형태인 유도성 요소를 실행하여, 상기 적어도 하나의 제1 코일은, 측정 대상의 회전 동안에, 적어도 하나의 제2 코일에 상대적으로 움직인다. 에너지를 적어도 하나의 제2 코일에 인가함에 의해, 교류(AC)를 사용하여, 상호 인덕턴스 때문에, 제1 코일에서 전류가 유도된다. 적어도 하나의 제1 코일과 적어도 하나의 제2 코일 사이의 전기적 연결 정도는 적어도 하나의 제1 코일과 적어도 하나의 제2 코일 사이의 상대적 변위를 나타낸다.The inductive detector device typically implements an inductive element in the form of at least one first coil mounted on a rotatable object of measurement, such as a rotating shaft, wherein the at least one first coil, during rotation of the object to be measured, And moves relative to at least one second coil. By applying energy to at least one second coil, current is induced in the first coil, because of mutual inductance, using alternating current (AC). The degree of electrical connection between the at least one first coil and the at least one second coil indicates a relative displacement between the at least one first coil and the at least one second coil.

커패시티브 검출기 장치는 전형적으로, 회전가능한 측정 대상의 디스크를 사용한다. 측정 대상이 회전하면, 디스크는 커패시티브 검출기 장치의 두 전극 사이의 커패시턴스를 변화시키고, 상기 커패시턴스는 측정될 수 있고, 각변위의 표시를 제공하기 위해 처리될 수 있다.The capacitive detector device typically uses a rotatable measurement target disk. When the object to be measured rotates, the disk changes the capacitance between the two electrodes of the capacitive detector device, the capacitance can be measured, and can be processed to provide an indication of angular displacement.

에디 전류 검출기 장치는 전형적으로 높고 낮은 침투성, 비자기적 물질로 코딩된 스케일(scale)을 사용하는데, 이는 유도성 코일 센서를 포함하는 AC 회로의 인덕턴스에서의 변화를 모니터링함에 의해 검출되고 디코딩된다.Eddy current detector devices typically use a high and low permeable, non-magnetic material-coded scale, which is detected and decoded by monitoring changes in the inductance of the AC circuit including the inductive coil sensor.

그러나, 종래 기술에 따른 검출기 장치는 다음의 하나 이상의 단점을 가지는 경향이 있는데, 큰 공간을 요하거나, 복잡한 회로(들)를 원하거나, 고전력 소비를 야기하거나, 유지하기 어렵거나, 구축하는데 비용이 많이 들거나, 외부 자기장에 민감하거나, 낮은 정확성을 제공하거나 마모에 약할 수 있다.However, prior art detector devices tend to have one or more of the following disadvantages: they require large space, require complex circuit (s), cause high power consumption, are difficult to maintain, May be heavier, susceptible to external magnetic fields, provide less accuracy, or be less susceptible to wear.

이들 단점은 성능면 및/또는 전동 공구에 대한 비용에 있어 악영향을 미치므로, 이들 단점은 전동 공구 내에서의 사용을 부적합하게 한다.These drawbacks adversely affect performance and / or cost for power tools, and these drawbacks make them unsuitable for use in power tools.

따라서, 전동 공구의 상대적으로 움직이는 부분들 사이의 상대적 변위를 센싱하기 위한 검출기 장치의 개선점을 제시할 필요가 있다.Accordingly, there is a need to provide improvements in the detector arrangement for sensing the relative displacement between the relatively moving parts of the power tool.

본 발명이 가지는 하나의 목적은 전동 공구를 위한 강건한 상대적 변위 센서를 제공하는 것이다.One object of the present invention is to provide a robust relative displacement sensor for a power tool.

추가적인 목적은 전동 공구를 위한 정확한 상대적 변위 센서를 제공하는 것이다.A further object is to provide an accurate relative displacement sensor for a power tool.

추가적인 목적은 전동 공구의 내부에 장착될 때, 많은 공간을 요하지 않는 작은 크기의 상대적 변위 센서를 제공하는 것이다.A further object is to provide a relatively small relative displacement sensor that does not require much space when mounted inside a power tool.

추가적인 목적은 종래 기술에 따라 알려진 기술보다 덜 복잡하고, 덜 비용이 드는 상대적 변위 센서를 제공하는 것이다.A further object is to provide a relative displacement sensor that is less complex and less costly than known techniques in the prior art.

이들 하나 이상의 목적은 청구항 1에서 정의된 바와 같은 본 발명에 따른 전동 공구를 위한 변위 센서에 의해 달성된다. 변위 센서는 측정 경로를 따라 상대적 움직임을 위해 구성된 스테이터 요소와 로터 요소를 포함한다. 스테이터 요소는 제1 전도성 패턴을 포함하고, 로터 요소는 제2 전도성 패턴을 포함한다. 제1 전도성 패턴 및 제2 전도성 패턴은 상호 유도적으로 결합된다. 제1 전도성 패턴은 여기 신호를 수신하도록 구성된다. 제2 전도성 패턴은 제1 전도성 패턴과 제2 전도성 패턴 사이의 상호 유도에 의해 야기되어 제2 전도성 패턴내에서 중간 신호를 생성하도록 구성된다. 생성된 중간 신호는 스테이터 요소와 로터 요소 사이의 상대적 변위를 나타낸다. 여기 신호는 실질적으로 일정한 진폭을 가진 고주파수 여기 신호이다.One or more of these objects is achieved by a displacement sensor for a power tool according to the invention as defined in claim 1. The displacement sensor includes a stator element and a rotor element configured for relative movement along the measurement path. The stator element comprises a first conductive pattern and the rotor element comprises a second conductive pattern. The first conductive pattern and the second conductive pattern are mutually inductively coupled. The first conductive pattern is configured to receive an excitation signal. The second conductive pattern is caused by mutual induction between the first conductive pattern and the second conductive pattern and is configured to produce an intermediate signal within the second conductive pattern. The resulting intermediate signal represents the relative displacement between the stator element and the rotor element. The excitation signal is a high frequency excitation signal with a substantially constant amplitude.

여기 신호가 실질적으로 일정한 진폭을 가진다는 사실은, 진폭이 어떠한 정보도 가지고 있지 않다는 점, 즉, 진폭 변조가 수행되지 않다는 것으로 정의될 수 있다.The fact that the excitation signal has a substantially constant amplitude can be defined as the amplitude having no information, i.e. amplitude modulation is not performed.

주파수와 관련하여, 여기 신호는 전동 공구 주위에 존재하는 전자기적 간섭의 소스와 일반적으로 관련된 주파수로부터 멀리 떨어져 있어서, 전자기적 간섭과 관련하여 강건한, 전동 공구를 위한 변위 센서가 달성된다. 중간 신호의 위상은 상대적 변위, 즉, 로터 요소와 스테이터 요소 사이의 상대적 각변위를 나타낼 것이고, 또는 좀 더 자세히, 중간 신호와 고주파수 여기 신호 사이의 위상 차이는 상대적 위치를 나타낼 것이다.With respect to frequency, a displacement sensor for a power tool is achieved, which is robust with respect to electromagnetic interference, so that the excitation signal is far from the frequency generally associated with the source of electromagnetic interference present around the power tool. The phase of the intermediate signal will exhibit a relative displacement, i. E. Relative angular displacement between the rotor element and the stator element, or more precisely, the phase difference between the intermediate signal and the high frequency excitation signal will indicate a relative position.

더구나, 로터 요소와 스테이터 요소 사이의 측면 정렬 불량에 대한 공자가 증가된다. 또한, 스테이터 요소와 로터 요소 사이의 거리는 변위 센서의 유지된 정확성과 함께 증가될 수 있다.Moreover, confinement for poor lateral alignment between the rotor element and the stator element is increased. In addition, the distance between the stator element and the rotor element can be increased with the maintained accuracy of the displacement sensor.

또한, 고주파수 여기 신호를 사용하여, 스테이터 요소와 로터 요소의 전도성 패턴은 그 사이에 포함된 비교적 적은 양의 인덕턴스로 각각 실행될 수 있고, 변위 센서의 컨피규레이션에 적합한 충분한 임피던스를 여전히 제공할 수 있다. 또한, 이는 각자의 전도성 패턴을 구성할 수 있어서 전도성 요소, 즉, 코일을 형성할 수 있고, 각각이 전도성 물질/요소가 비교적 없는 영역을 둘러싸는 것은 전도성 패턴이 비교적 적은 코일 요소당 턴(turn)으로 실행될 수 있다는 것을 의미한다.In addition, using the high frequency excitation signal, the conductive pattern of the stator element and the rotor element can each be implemented with a relatively small amount of inductance contained between them, and still provide sufficient impedance suitable for the configuration of the displacement sensor. In addition, it can constitute a conductive pattern of each, so that it can form a conductive element, that is, a coil, and each surrounding a region where there is relatively no conductive material / element, Lt; / RTI >

더구나, 변위 센서는 적은 회로 구성으로 실행될 수 있는데, 왜냐하면, 센서 신호를 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타내는 값으로 변환할 대, 중간 신호의 형태인 오직 하나의 신호가 필요하기 때문이다. 이는 적은 폼 팩터(form factor), 가벼운 무게 및 적은 생산 단가로 변위 센서를 생산할 수 있도록 한다. 반면, 종래 기술에 따른 변위 센서는 전형적으로, 여려 수신 신호를 사용하는데, 이들 각각은 상대적 변위를 나타내는 값을 출력하기 위하여, 전용 디코딩 회로로 수행되는 디코딩이 필요하다.Moreover, the displacement sensor can be implemented with a small circuit configuration, since only one signal is needed, which is the form of the intermediate signal, when converting the sensor signal to a value representing the relative displacement between the rotor element and the stator element. This allows the production of displacement sensors with low form factor, light weight and low production costs. On the other hand, displacement sensors according to the prior art typically use different receive signals, each of which requires decoding performed by a dedicated decoding circuit to output a value indicative of the relative displacement.

변위 센서는 하나의 옵션 사항으로, 고주파수 신호가 100 KHz - 100MHz의 주파수 범위에서 선택된 주파수를 가진 신호인 것을 특징으로 한다.The displacement sensor is an optional feature in that the high frequency signal is a signal having a frequency selected from a frequency range of 100 KHz to 100 MHz.

변위 센서는 하나의 옵션 사항으로, 고주파수 신호가 1 MHz - 10MHz의 주파수 범위에서 선택된 주파수를 가진 신호인 것을 특징으로 한다.The displacement sensor is an optional feature in that the high frequency signal is a signal having a frequency selected in the frequency range of 1 MHz - 10 MHz.

변위 센서는 하나의 옵션 사항으로, 여기 신호가 복수의 고주파수 여기 신호를 포함하는 멀티-위상 여기 신호이고, 각각의 여기 신호는 복수의 위상을 가지도록 구성된다.The displacement sensor is an option, wherein the excitation signal is a multi-phase excitation signal comprising a plurality of high frequency excitation signals, each excitation signal being configured to have a plurality of phases.

이에 의해, 전동 공구를 위한 변위 센서가 달성되는데, 여기서, 변위 센서는 장애에 대한 내성과 관련하여 개선된 강건성을 가지고, 변위 센서의 수신 회로는 덜 복잡한 회로로 제조될 수 있다. 좀 더 자세히 말하면, 멀티-위상 여기 신호를 사용하여, 변위 센서의 수신측의 회로는 덜 복잡하게 제조될 수 있다. 변위 센서의 리시버 측에 덜 복잡한 회로를 실행하는 것과 별도로, 변위 센서는 멀티-위상 여기 신호를 사용하여 더욱 강건하게 제조되는데, 왜냐하면, 오직 하나의 리시버/디코더 회로가 리시버 측에 요구되기 때문이다. 이는, 전형적으로 두 개의 별도의 리시버/디코더 회로가 리시버 측에 요구되는 종래 기술에 따른 변위 센서와 다르다. 리시버 측에 오직 하나의 리시버/디코더 회로를 사용하는 것은, 두 개의 리시버/디코더 회로를 사용하는 것에 비해, 변위 센서를 장애에 대해 더욱 강건하게 한다. 변위 센서의 리시버 측에 영향을 주는 이러한 장애는 변위 센서, 특히 두 개의 리시버/디코더 회로를 가진 변위 센서에 심각한 영향을 줄 수 있는데, 왜냐하면, 리시버 측의 신호 강도는 전형적으로 매우 약하고, 따라서, 두 개의 리시버/디코더 회로의 각각에 상이하게 영향을 줄 수 있는 장애에 더욱 민감하기 때문이다. 그에 반해, 본 발명에 따른 변위 센서는, 전류가 최소 60 암페어(A) 흐름에 달하는 전동 공구의 모터와 연결된 전력 케이블과 같은 전력 케이블에 근접한 노출된 방식(unscreened fashion)으로 정확하게 동작할 수 있다.Thereby, a displacement sensor for a power tool is achieved, wherein the displacement sensor has improved robustness with respect to resistance to failure, and the receiving circuit of the displacement sensor can be made of less complex circuitry. More specifically, using the multi-phase excitation signal, the circuit on the receiving side of the displacement sensor can be made less complex. Apart from implementing a less complex circuit on the receiver side of the displacement sensor, the displacement sensor is made more robust using a multi-phase excitation signal because only one receiver / decoder circuit is required on the receiver side. This is different from prior art displacement sensors, which typically require two separate receiver / decoder circuits on the receiver side. The use of only one receiver / decoder circuit on the receiver side makes the displacement sensor more robust against faults compared to using two receiver / decoder circuits. This disturbance affecting the receiver side of the displacement sensor can seriously affect the displacement sensor, especially the displacement sensor with two receiver / decoder circuits, because the signal strength at the receiver side is typically very weak, Lt; RTI ID = 0.0 > receiver / decoder < / RTI > circuitry. In contrast, the displacement sensor according to the present invention can operate correctly in an unscreened fashion, close to a power cable, such as a power cable connected to a motor of a power tool with a current of at least 60 amperes (A).

변위 센서는 하나의 옵션 사항으로, 멀티-위상 여기 신호가 0도 위상, 90도 위상, 180도 위상 및 270도 위상을 포함하는 4개의 위상을 가진 4-위상 여기 신호인 것을 특징으로 한다.The displacement sensor is an optional feature and is characterized in that the multi-phase excitation signal is a 4-phase excitation signal with four phases including 0 degree phase, 90 degree phase, 180 degree phase and 270 degree phase.

이에 의해, 멀티-위상 여기 신호가 효율적인 방식으로 생성될 수 있는 전동 공구를 위한 변위 센서가 달성되는데, 왜냐하면, 0°위상과 90°위상은 간단히 반전되어서 멀티-위상 여기 신호의 180°위상과 270°위상을 생성할 수 있기 때문이다. 멀티-위상 여기 신호의 이러한 컨피규레이션은 스테이터 요소의 제1 전도성 패텅과 로터 요소의 제2 전도성 패턴의 컨피규레이션과 관련한 위상 매칭을 가능하게 한다. 예를 들어, 제2 전도성 패턴이 0°위상과 180°위상을 포함하는 교호하는 2-위상 패턴을 형성하도록 구성되는 경우, 즉, 교호하는 위상과 안티위상 패턴에서, 멀티-위상 여기 신호의 위상 0°와 180°는 제1 전도성 패턴으로 공급되어서, 멀티-위상 여기 신호의 0°위상으로 공급된 제1 전도성 패턴의 일부는 0°위상을 형성하도록 구성된 제2 전도성 패턴의 일부와 마주하고, 제1 전도성 패턴이 180°위상의 일부와 함께, 180°위상을 형성하도록 구성된 제2 전도성 패턴의 일부와 마주한다.This achieves a displacement sensor for a power tool in which the multi-phase excitation signal can be generated in an efficient manner because the 0 DEG phase and the 90 DEG phase are simply inverted to produce a 180 DEG phase of the multi- Phase can be generated. This configuration of the multi-phase excitation signal enables phase matching with respect to the configuration of the first conductive pattern of the stator element and the second conductive pattern of the rotor element. For example, if the second conductive pattern is configured to form alternating two-phase patterns that include a 0 DEG phase and a 180 DEG phase, i.e., in alternating and anti-phase patterns, the phase of the multi- 0 DEG and 180 DEG are supplied in a first conductive pattern such that a portion of the first conductive pattern supplied in the 0 DEG phase of the multi-phase excitation signal faces a portion of the second conductive pattern configured to form a 0 DEG phase, The first conductive pattern faces a portion of the second conductive pattern configured to form a 180 [deg.] Phase with a portion of the 180 [deg.] Phase.

변위 센서는 하나의 옵션 사항으로, 멀티-위상 여기 신호는 0도 위상, 120도 위상 및 240도 위상을 포함하는 세 개의 위상을 가진 3-위상 여기 신호인 것을 특징으로 한다.The displacement sensor is an optional feature, wherein the multi-phase excitation signal is a three-phase excitation signal with three phases including a 0 degree phase, a 120 degree phase, and a 240 degree phase.

이에 의해, 세 개의 위상을 가진 멀티-위상 여기 신호를 사용하여, 3-위상 모터와 관련된 상대적으로 움직이는 부분들의 상대적 변위 센싱을 가능하게 하는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool is achieved, which uses a three-phase multi-phase excitation signal to enable relative displacement sensing of relatively moving parts associated with a three-phase motor.

변위 센서는 하나의 옵션 사항으로, 스테이터 요소의 제1 전도성 패턴은 스테이터 요소의 측정 경로를 따라 연장되는 일련의 구동 코일을 포함하는 것을 특징으로 한다. 일련의 구동 코일은 주기적으로 반복되는 위상 패턴으로 배열된다. 위상 패턴은 측정 경로를 따라 n번 반복된다. 멀티-위상 신호의 위상이 주기적으로 반복되는 위상 패턴의 각각의 구동 코일에 공급되는 것으로 구성된다.The displacement sensor is an optional feature wherein the first conductive pattern of the stator element includes a series of drive coils extending along the measurement path of the stator element. A series of drive coils are arranged in a periodic repeating phase pattern. The phase pattern repeats n times along the measurement path. And the phase of the multi-phase signal is supplied to each drive coil of the phase pattern which is periodically repeated.

변위 센서는 하나의 옵션 사항으로, 주기적으로 반복되는 위상 패턴의 구동 코일의 연이은 순서로 점차적으로 증가하는 멀티-위상 여기 신호의 위상이 주기적으로 반복되는 위상 패턴의 각각의 구동 코일에 제공되도록 구성되는 것을 특징으로 한다.The displacement sensor is one option that is configured such that the phase of the gradually increasing multi-phase excitation signal in the sequence of the drive coils of the periodically repeated phase pattern is provided to each drive coil of the periodically repeated phase pattern .

변위 센서는 하나의 옵션 사항으로, 로터 요소의 제2 전도성 패턴은 직렬로 연결되고 로터 요소의 측정 경로를 따라 연장된 일련의 균형있는 수신 코일을 포함하되, 로터 요소의 상기 측정 경로는 스테이터 요소의 측정 경로와 대면하는 것을 특징으로 한다.The displacement sensor is an optional feature wherein the second conductive pattern of the rotor element includes a series of balanced receiving coils connected in series and extending along the measuring path of the rotor element, And facing the measurement path.

변위 센서는 하나의 옵션 사항으로, 일련의 수신 코일들의 각각의 수신 코일은 측정 경로를 따라 i-1번 반복된, 주기적으로 반복되는 균형있는 2-위상 패턴을 형성되어서, 일련의 수신 코일들의 각각의 수신 코일의 인접한 루프들이 안티-위상인것을 특징으로 한다.The displacement sensor is an option, with each receive coil of a series of receive coils formed with a periodically repeating balanced two-phase pattern repeated i-1 times along the measurement path so that each of the series of receive coils The adjacent loops of the receiving coil of the antenna are anti-phase.

이에 의해, 외부 자기장으로부터 생성된 장애가 중간 신호에서 나타나는 것을 효과적으로 제거되는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool is achieved, in which a fault generated from an external magnetic field is effectively prevented from appearing in an intermediate signal.

변위 센서는 하나의 옵션사항으로, 로터 요소가 균형있는 구동 코일을 더 포함하는 것을 특징으로 한다. 균형있는 구동 코일은 제2 전도성 패턴에 결합되어서, 균형있는 구동 코일과 균형있는 수신 코일 사이에 형성된 상호 유도에 의해, 스테이터 요소의 균형있는 수신 코일로 중간 신호를 전송하도록 구성된다.The displacement sensor is an optional feature, further comprising a drive coil having a balanced rotor element. A balanced drive coil is coupled to the second conductive pattern and is configured to transfer the intermediate signal to the balanced receive coil of the stator element by a mutual induction formed between the balanced drive coil and the balanced receive coil.

이에 의해, 구동 코일이 균형있고, 수신 코일이 균형있기 때문에, 원거리 장애의 효과가 감소되는, 전동 공구를 위한 변위 센서가 달성된다. 변위 센서는 하나의 옵션 사항으로, 각각의 균형있는 구동 코일과 균형있는 수신 코일은 각각 두 개의 코일 섹션을 포함하는 것을 특징으로 한다. 상기 두 개의 코일 섹션은 두 개의 코일 섹션에서의 전류 흐름이 로터 요소와 스테이터 요소의 측정 경로를 따라 서로에 대해 반대 방향으로 각각 흐르도록 구성된다.Thereby, a displacement sensor for a power tool is achieved, in which the effect of the disturbance is reduced because the drive coils are balanced and the receive coils are balanced. The displacement sensor is an option, with each balanced drive coil and balanced receive coil each comprising two coil sections. The two coil sections are configured such that the current flow in the two coil sections flows in opposite directions to each other along the measurement path of the rotor element and the stator element.

이에 의해, 로터 요소에서 스테이터 요소로 중간 신호가 전송될 때, 외부 자기장으로부터 생성된 장애가 중간 신호에서 나타나는 것이 효과적으로 제거되는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, when the intermediate signal is transmitted from the rotor element to the stator element, a displacement sensor for the power tool is obtained in which the failure generated from the external magnetic field is effectively removed from the intermediate signal.

변위 센서는 하나의 옵션 사항으로, 신호 생성 회로를 포함하는 것을 추가적인 특징으로 한다. 신호 생성 회로는 스테이터 요소의 제1 전도성 패턴에 결합된다. 상기 신호 생성기는 여기 신호를 생성하고, 상기 제1 전도성 패턴에 에너지를 인가하기 위해 제1 전도성 패턴으로 여기 신호를 제공하도록 구성된다.The displacement sensor is an optional feature that includes a signal generation circuit. The signal generating circuit is coupled to the first conductive pattern of the stator element. The signal generator is configured to generate an excitation signal and provide an excitation signal in a first conductive pattern to energize the first conductive pattern.

변위 센서는 하나의 옵션 사항으로, 단상 신호 프로세서 회로를 더 포함하는 것을 특징으로 한다. 신호 프로세서 회로는 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타내는 출력 신호를 제공하기 위하여, 스테이터 요소에서 수신되는 중간 신호에 대응되는 단상 수신 신호를 수신하고 처리하도록 구성된다.The displacement sensor is an optional feature, further comprising a single-phase signal processor circuit. The signal processor circuit is configured to receive and process a single phase received signal corresponding to an intermediate signal received at the stator element to provide an output signal indicative of a relative displacement between the rotor element and the stator element.

변위 센서는 하나의 옵션 사항으로, 상기 출력 신호를 제공하기 위하여, 수신 신호와 여기 신호 사이의 위상 차이를 검출하기 위하여, 단상 신호 프로세서 회로는 수신 신호를 처리하도록 구성된 위상 검출 회로를 포함하는 것을 특징으로 한다.The displacement sensor is an optional feature that the single phase signal processor circuit includes a phase detection circuit configured to process the received signal to detect the phase difference between the received signal and the excitation signal to provide the output signal .

진폭이 실질적으로 일정하게 유지된다는 사실, 즉, 진폭 변조가 수행되지 않는다는 사실 때문에, 수신단에서 복조 단계가 없을 수 있다. 또한, 여기 신호가 고주파수이기 때문에, 작은 부품을 사용할 수 있기 위해 고주파수에서 수행되는 것이 바람직하여, 위상을 검출하는데 주파수 조절이 불필요하다.Due to the fact that the amplitude remains substantially constant, i. E. The fact that amplitude modulation is not performed, there may be no demodulation step at the receiving end. Further, since the excitation signal is a high frequency, it is desirable to perform at a high frequency so that a small part can be used, so that frequency adjustment is unnecessary for detecting the phase.

이에 의해, 진폭 변조된 장애가 위상 차이에 영향을 주지 않기 때문에, 변위 센서가 이러한 장애에 대해 내성이 있는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool is obtained in which the displacement sensor is resistant to such a failure, since the amplitude-modulated disturbance does not affect the phase difference.

변위 센서는 하나의 옵션 사항으로, 위상 검출 회로는 상기 수신 신호와 상기 여기 신호의 위상 차이를 나타내는 두 개의 콰드러처(quadrature) 신호를 출력하도록 구성된 I/Q 복조 회로인 것을 특징으로 한다.The displacement sensor is an optional feature and the phase detection circuit is an I / Q demodulation circuit configured to output two quadrature signals representing the phase difference between the received signal and the excitation signal.

이에 의해, IQ-복조기가 간단하고 강건한 방식으로 가령, 레퍼런스 신호와 수신 신호 사이의 위상 차이를 검출할 수 있기 때문에, 개선된 변위 센싱하는 전동 공구를 위한 변위 센서가 달성된다. 검출의 용이성과 강건성은 별론으로 하고, IQ-복조기가 비교적 저가로 제조될 수 있기 때문에, IQ-복조기의 사용은 또한, 변위 센서의 제조와 관련하여 가격 효율성을 제공한다.This achieves a displacement sensor for an electric power tool with improved displacement sensing, since the IQ-demodulator can detect the phase difference between the reference signal and the received signal, for example, in a simple and robust manner. Apart from the ease of detection and robustness, the use of an IQ-demodulator also provides cost efficiency in connection with the manufacture of displacement sensors, since the IQ-demodulator can be manufactured at relatively low cost.

변위 센서는 하나의 옵션 사항으로, 로터 요소는 전동 공구의 제1 움직이는 부분에 부착되도록 구성되고, 스테이터 요소는 전동 공구의 제2 정지된 부분에 부착되도록 구성되는 것을 특징으로 한다.The displacement sensor is an optional feature wherein the rotor element is configured to be attached to the first moving portion of the power tool and the stator element is configured to be attached to the second stationary portion of the power tool.

이에 의해, 전동 공구의 제1 움직이는 부분과 제2 정지된 부분 사이의 상대적 변위를 센싱할 수 있는 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool capable of sensing the relative displacement between the first moving part and the second stationary part of the power tool is achieved.

변위 센서는 하나의 옵션 사항으로, 로터 요소와 스테이터 요소는 환형 디스크로 형성되는 것을 특징으로 한다.The displacement sensor is an optional feature, wherein the rotor element and the stator element are formed as annular discs.

변위 센서는 하나의 옵션 사항으로, 로터 요소와 스테이터 요소는, 각각 제1 전도성 패턴과 제2 전도성 패턴을 형성하는 전도성 트레이스가 있는 인쇄 회로 기판으로 형성되는 것을 특징으로 한다.The displacement sensor is an optional feature wherein the rotor element and the stator element are each formed of a printed circuit board having conductive traces forming a first conductive pattern and a second conductive pattern, respectively.

이에 의해, 스테이터 요소와 로터 요소 및 그와 관련된 전도성 요소는 가격 효율적인 방식으로 제조될 수 있는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool is achieved, wherein the stator element and the rotor element and the associated conductive elements can be manufactured in a cost-effective manner.

변위 센서는 하나의 옵션 사항으로, 로터 요소는 잡음 억제를 제공하도록 구성된 적어도 하나의 커패시턴스 구성을 포함하는 것을 특징으로 한다.The displacement sensor is an optional feature, wherein the rotor element includes at least one capacitance configuration configured to provide noise suppression.

이에 의해, 중간 신호에 영향을 주는 잡음이 효과적으로 억제될 수 있는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool is achieved, in which the noise affecting the intermediate signal can be effectively suppressed.

변위 센서는 하나의 옵션 사항으로, 로터 요소는 잡음 억제를 제공하기 위하여, 적어도 하나의 커패시터를 형성하는 적어도 하나의 커패시턴스 층을 포함하는 것을 특징으로 한다.The displacement sensor is an optional feature wherein the rotor element comprises at least one capacitance layer forming at least one capacitor to provide noise suppression.

이에 의해, 중간 신호에 영향을 주는 잡음이 효과적으로 억제되고, 커패시턴스 층의 형태인 커패시터가 기계적 충격으로부터 보호되는, 전동 공구를 위한 변위 센서가 달성된다.Thereby, a displacement sensor for a power tool is achieved, in which the noise affecting the intermediate signal is effectively suppressed and the capacitor, which is in the form of a capacitance layer, is protected from mechanical shock.

또한, 이들 목적의 하나 이상은 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하는 방법에 의해 달성될 수 있다. 본 방법은 실질적으로 일정한 진폭을 가진 고주파수 여기 신호의 형태인 여기 신호를 생성하는 단계를 포함한다. 본 방법은, 스테이터 요소의 제1 전도성 패턴으로 여기 신호를 제공하는 단계를 더 포함한다. 본 방법은, 제1 전도성 패턴과 제2 전도성 패턴 사이의 상호 유도 때문에, 로터 요소의 제2 전도성 패턴 내의 중간 신호를 생성하는 단계를 더 포함한다. 상기 중간 신호는 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타낸다.In addition, one or more of these objects can be achieved by a method of sensing the displacement between two relatively moving parts of the power tool. The method includes generating an excitation signal in the form of a high frequency excitation signal having a substantially constant amplitude. The method further includes providing an excitation signal to the first conductive pattern of the stator element. The method further comprises generating an intermediate signal in a second conductive pattern of the rotor element due to the mutual induction between the first conductive pattern and the second conductive pattern. The intermediate signal represents the relative displacement between the rotor element and the stator element.

종속항은 시스템과 관련하여 기술된 것에 해당하는 선택적인 특징을 정의한다.Dependencies define optional features that correspond to those described in relation to the system.

본 발명은 이제 본 발명의 설명을 제한하지 않으면서, 첨부된 도면을 참조하여 더욱 자세히 실시예로 기술될 것이다.
도 1은 본 발명의 실시예에 따른 로터리 인코더가 있는 전동 공구를 개략적으로 도시한다.
도 2는 본 발명의 실시예에 따른 신호 생성 회로 의 블록도를 개략적으로 도시한다.
도 3은 본 발명의 실시예에 따른 로터리 인코더의 스테이터의 평면도를 개략적으로 도시한다.
도 4는 본 발명의 실시예에 따른 로터리 인코더의 로터의 평면도를 개략적으로 도시한다.
도 5a는 본 발명의 실시예에 따른 로터리 인코더의 로터에서 출력된 파형을 개략적으로 도시한다.
도 5b는 본 발명의 실시예에 따른 로터리 인코더의 로터에서 출력된 파형을 개략적으로 도시한다.
도 6은 본 발명의 실시예에 따른 신호 프로세서 회로의 블록도를 개략적으로 도시한다.
도 7a는 본 발명의 실시예에 따른 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법의 순서도를 도시한다.
도 7b는 본 발명의 실시예에 따른 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법의 순서도를 더 자세히 도시한다.
The present invention will now be described in more detail with reference to the accompanying drawings, without restricting the description of the invention.
Figure 1 schematically illustrates a power tool with a rotary encoder according to an embodiment of the invention.
2 schematically shows a block diagram of a signal generating circuit according to an embodiment of the present invention.
Figure 3 schematically shows a top view of the stator of a rotary encoder according to an embodiment of the invention.
4 schematically shows a top view of a rotor of a rotary encoder according to an embodiment of the present invention.
5A schematically shows a waveform output from a rotor of a rotary encoder according to an embodiment of the present invention.
5B schematically shows waveforms output from a rotor of a rotary encoder according to an embodiment of the present invention.
6 schematically shows a block diagram of a signal processor circuit according to an embodiment of the present invention.
7A shows a flowchart of a method for sensing displacement between two relatively moving portions of a power tool according to an embodiment of the present invention.
Figure 7b shows a more detailed flowchart of a method for sensing displacement between two relatively moving parts of a power tool according to an embodiment of the present invention.

도면은 간결성을 위하여 개략적이고 간단화되며, 도면은 본 발명을 이해하는데 있어 본질적인 세부사항만을 도시하고, 그 밖의 것은 그대로 둔다. 이하의 상세한 설명 전반에 걸쳐, 동일한 참조 번호는 동일하거나 해당되는 부분이나 단계에 대해 사용된다.The drawings are schematic and simplified for brevity, and the drawings show only essential details in understanding the present invention, and others remain intact. Throughout the following detailed description, the same reference numerals are used for the same or corresponding parts or steps.

도 1을 참조하면, 유도성 로터리 인코더(2)의 형태인 변위 센서를 가진 전동 공구(1)가 본 발명의 실시예로 개시된다. 유도성 로터리 인코더(2)는 스테이터 요소(4)와 로터 요소(3)를 포함한다. 스테이터 요소(4)와 로터 요소(3)는, 전동 공구(1)의 샤프트의 축방향으로 연장되는 축 주위에 동심원으로 장착되는 것과 같이, 축(A) 주위에 동심원으로 장착되도록 구성된다. 스테이터 요소(4)와 로터 요소(3)는 서로 축방향 거리(AD)에서 장착되도록 추가로 구성된다. 이는 스테이터 요소(4)와 로터 요소(3) 사이에 에어갭이 형성된다는 것을 의미한다.Referring to Figure 1, an electric power tool 1 with a displacement sensor in the form of an inductive rotary encoder 2 is disclosed in an embodiment of the present invention. The inductive rotary encoder 2 comprises a stator element 4 and a rotor element 3. The stator element 4 and the rotor element 3 are configured to be mounted concentrically around the axis A, such as being mounted concentrically around an axis extending in the axial direction of the shaft of the power tool 1. [ The stator element 4 and the rotor element 3 are further configured to be mounted at an axial distance AD with respect to one another. This means that an air gap is formed between the stator element 4 and the rotor element 3.

스테이터 요소(4)는 전동 공구(1)의 정지된 부분(미도시)에 부착하기 위해 구성된다. 전동 공구의 정지된 부분은 지지 구조물이나 전동 공구의 움직이는 부분(미도시)을 위한 하우징일 수 있다. 전동 공구(1)의 예시적인 지지 구조물이나 하우징은 축(A)을 따라 연장된 회전가능한 샤프트의 형태인 움직이는 부분을 위한 지지 구조물이나 하우징일 수 있는데, 상기 회전가능한 샤프트는 방향 D로 축(A)에 대해 왕복 회전하도록 구성된다. 로터 요소(3)는 상기 예로들은 회전가능한 샤프트에 부착하도록 구성된, 전동 공구(1)의 움직이는 부분에 부착하도록 구성된다. 이는, 로터 요소(3)가 움직이는 부분에 부착됨에 의해 움직이는 부분과 결합하여 움직이는 반면, 스테이터 요소(4)가 정지된 부분에 부착됨에 의해 정지된다는 것을 의미한다. 따라서, 전동 공구(1)의 움직이는 부분이 움직이면, 로터 요소(3)는 스테이터 요소(4)에 대해 이동될 것이다. 로터 요소(3)가 상기 예로 들은 회전가능한 샤프트에 부착되는 경우에, 회전 샤프트가 움직이면, 로터 요소(3)는 스테이터 요소(4)에 대해 각바향으로(angularly) 이동될 것이다.The stator element 4 is configured for attachment to a stationary portion (not shown) of the power tool 1. The stationary portion of the power tool may be a support structure or a housing for a moving part (not shown) of the power tool. An exemplary support structure or housing of the power tool 1 may be a support structure or housing for the moving part in the form of a rotatable shaft extending along the axis A, As shown in Fig. The rotor element 3 is configured to be attached to the moving part of the power tool 1, which is configured to attach to the rotatable shaft, as in the examples above. This means that the stator element 4 is stopped by being attached to the stationary part while moving in conjunction with the moving part by the attachment of the rotor element 3 to the moving part. Thus, when the moving part of the power tool 1 moves, the rotor element 3 will be moved relative to the stator element 4. When the rotor element 3 is attached to a rotatable shaft as in the above examples, the rotor element 3 will be angularly moved relative to the stator element 4 when the rotating shaft is moved.

로터 요소(3)와 스테이터 요소(4)는 환형의 얇은 디스크 모양이다. 로터 요소 및/또는 스테이터 요소는, 전동 공구(1)의 적어도 하나의 부분, 가령, 전동 공구의 샤프트를 수용하기 위해 구성된, 쓰루홀과 같은 적어도 하나의 중심 어퍼처가 더욱 구비될 수 있다.The rotor element (3) and the stator element (4) are annular thin disk shaped. The rotor element and / or the stator element may further comprise at least one central aperture, such as a through hole, configured to accommodate at least one portion of the power tool 1, e.g., a shaft of the power tool.

스테이터 요소(4)는 제1 전도성 패턴 또는 트랙(CT1)을 포함한다. 좀 더 자세하게는, 제1 전도성 패턴(CT1)은 스테이터 요소(4) 내에 형성된다. 로터 요소(3)는 제2 전도성 패턴 또는 트랙(CT2)을 포함한다. 좀 더 자세하게는, 제2 전도성 패턴(CT2)은 로터 요소(3) 내에 형성된다. 제1 및 제2 전도성 패턴(CT1, CT2)은 반경 방향 RD에 각각 스테이터 요소와 로터 요소 내에 형성된다. 따라서, 제1 및 제2 전도성 패턴(CT1, CT2)이 동일한 반경 방향 RD에 위치되는 것이 바람직하고, 스테이터 요소(4)와 로터 요소(3)가 축(A) 주위에 동심원으로 장착되도록 구성되기 때문에, 제1 및 제2 전도성 패턴(CT1, CT2)은 서로 상기 에어갭을 통해 마주보도록 구성된다.The stator element 4 comprises a first conductive pattern or track CT1. More specifically, the first conductive pattern CT1 is formed in the stator element 4. The rotor element 3 comprises a second conductive pattern or track CT2. More specifically, a second conductive pattern CT2 is formed in the rotor element 3. The first and second conductive patterns CT1 and CT2 are formed in the stator element and the rotor element, respectively, in the radial direction RD. It is therefore preferred that the first and second conductive patterns CT1 and CT2 are located in the same radial direction RD and that the stator element 4 and the rotor element 3 are configured to be mounted concentrically around the axis A Therefore, the first and second conductive patterns CT1 and CT2 are configured to face each other through the air gap.

바람직하게는, 스테이터 요소(4)와 로터 요소(3)는 전기적으로 절연 기판과 같은 기판으로 각각 제조된다. 좀 더 자세하게는, 스테이터 요소(4)와 로터 요소(3)는 관련된 전기적 커넥터가 있는 전도성 패턴을 형성하는 구리 트레이스를 가진, 즉, 전도성 패턴이 PCB 상에 인쇄된 전도성 패턴이 있는 바람직한 인쇄 회로 기판(PCB)이다. 이는 우수한 전기적 절연은 물론 전도성 패턴을 위한 우수한 기계적 지지물을 제공한다.Preferably, the stator element 4 and the rotor element 3 are each electrically fabricated into a substrate such as an insulating substrate. More specifically, the stator element 4 and the rotor element 3 have a copper trace forming a conductive pattern with an associated electrical connector, that is, a conductive pattern having a conductive pattern printed on a PCB, (PCB). This provides excellent electrical insulation as well as excellent mechanical support for conductive patterns.

제1 전도성 패턴(CT1)과 제2 전도성 패턴(CT2)의 컨피규레이션에 대해 좀 더 자세한 사항은 도 3과 도 4를 참조하여 각각 설명될 것이다.A more detailed description of the configuration of the first conductive pattern CT1 and the second conductive pattern CT2 will be described with reference to FIGS. 3 and 4, respectively.

스테이터 요소(4)가 구동되는데, 이는 신호 생성기(6)의 형태인 에너지원에 결합되도록 구성된 와이어링(미도시)과 연결된 적어도 하나의 단자 또는 커넥터를 가진다는 것을 의미한다. 다른 한 편으로, 로터 요소(3)는 수동적인데, 즉, 로터 요소(3)는 에너지원에 연결을 위해 구성된 관련 와이어링과의 단자나 커넥터가 없다. 그 보다는, 스테이터 요소(4)의 제1 전도성 패턴(CT1)이 에너지를 받으면, 스테이터 요소(4)의 제1 전도성 패턴(CT1)과 로터 요소(3)의 제2 전도성 패턴(CT2) 사이에 발생하는 상호 인덕턴스에 의하여, 로터 요소(3)의 제2 전도성 패턴이 에너지를 받을 것이다.The stator element 4 is driven, which means that it has at least one terminal or connector connected to a wiring ring (not shown) which is configured to be coupled to an energy source in the form of a signal generator 6. On the other hand, the rotor element 3 is passive, i.e. the rotor element 3 has no terminals or connectors with the associated wiring configured for connection to the energy source. Rather, when the first conductive pattern CT1 of the stator element 4 is energized, the first conductive pattern CT1 of the stator element 4 and the second conductive pattern CT2 of the rotor element 3 Due to the mutual inductance that occurs, the second conductive pattern of the rotor element 3 will receive energy.

신호 생성 회로(6)는 실질적으로 일정한 진폭을 가진 고주파수 여기 신호(SE)를 생성함에 의해, 스테이터(4)의 제1 전도성 패턴(CT1)에 에너지를 인가하도록 구성된다. 고주파수 여기 신호는 교류(AC) 신호이다. 신호 생성 회로에 관한 좀 더 자세한 사항은 도 2를 참조하여 설명될 것이다. 제1 전도성 패턴(CT1)이 상기 고주파수 여기 신호(SE)에 의해 에너지를 받을 때, 스테이터 요소(4)의 제1 전도성 패턴(CT1)과 로터 요소(3)의 제2 전도성 패턴(CT2) 사이의 상호 인덕턴스 때문에, 제2 전도성 패턴(CT2)에서 전류가 유도될 것이고, 결과적으로, 중간 신호 (SI)가 로터 요소(3)의 제2 전도성 패턴에서 형성된다. 로터 요소(3)가 스테이터 요소(4)에 대해 움직이면, 유도 전류를 초래하는 중간 신호 (SI)는 위상 시프트되거나, 여기 신호(SE)에 대해 위상 변조될 것이고, 스테이터 요소(4)와 로터 요소(3) 사이의 상대적 변위를 나타내는 정보가 제공될 것이다. 이는 도 5a 와 도 5b를 참조하여 더욱 자세히 설명될 것이다.The signal generation circuit 6 is configured to apply energy to the first conductive pattern CT1 of the stator 4 by generating a high frequency excitation signal SE having a substantially constant amplitude. The high frequency excitation signal is an alternating current (AC) signal. More details regarding the signal generating circuit will be described with reference to FIG. Between the first conductive pattern CT1 of the stator element 4 and the second conductive pattern CT2 of the rotor element 3 when the first conductive pattern CT1 is energized by the high frequency excitation signal SE, A current will be induced in the second conductive pattern CT2 because of the mutual inductance of the rotor element 3 and consequently the intermediate signal SI is formed in the second conductive pattern of the rotor element 3. [ If the rotor element 3 moves with respect to the stator element 4 the intermediate signal SI resulting in the induced current will be phase shifted or phase modulated with respect to the excitation signal SE and the stator element 4 and the rotor element 4, And information indicating the relative displacement between the first and second sensors 3 will be provided. This will be described in more detail with reference to Figs. 5A and 5B.

스테이터 요소(4)는 신호 프로세서 회로(5)에 결합되도록 추가로 구성된다. 신호 프로세서 회로(5)는 수신 신호(SR)를 수신하도로 구성되는데, 이는 로터 요소(3)와 스테이터 요소(4)의 전송 수단과 수신 수단을 통하여, 에어갭을 너머서 로터 요소로부터 전송되고, 스테이터 요소에서 수신되는 중간 신호(SI)에 대응된다. 로터 요소로부터 스테이터 요소로의 중간 신호(SI)의 전송은 중간 신호(SI)의 어떠한 변화를 도입하지 않을 것인데, 이는 수신 신호(SR)가 중간 신호와 실질적으로 동일한 위상을 가질 것을 의미한다. 전송 수단과 수신 수단은 도 4와 도 3을 참조하여 각각 좀 더 자세히 설명될 것이다. 신호 프로세서 회로(5)는, 로터 요소(3)와 스테이터 요소(4) 사이의 상대적 각변위와 같은 상대적 변위에 관한 정보(SOUT)를 계산하고 출력하기 위해, 상기 수신 신호(SR)을 처리하도록 구성된다. 출력 정보(SOUT)는 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타내는 콰드러처 신호로 디지털 신호 또는 아날로그 신호로, 신호 프로세서 회로(5)에 의해 제공될 수 있다. 프로세서 회로(5)는 신호 생성 회로(6)로부터 레퍼런스 신호(SREF)를 수신하도록 추가로 구성된다. 신호 프로세서 회로는, 출력 정보를 제공하기 위하여, 수신 신호(SR)의 처리와 함께, 레퍼런스 신호를 사용하도록 구성된다. 신호 프로세서 회로(5) 및 신호 프로세서 회로에 의해 출력된 신호의 좀 더 자세한 사항은 도 6을 참조하여 설명될 것이다.The stator element 4 is further configured to be coupled to the signal processor circuit 5. The signal processor circuit 5 is configured to receive the received signal SR which is transmitted from the rotor element over the air gap through the transmitting means and the receiving means of the rotor element 3 and the stator element 4 And an intermediate signal SI received at the stator element. The transmission of the intermediate signal SI from the rotor element to the stator element will not introduce any change in the intermediate signal SI which means that the received signal SR has substantially the same phase as the intermediate signal. The transmitting means and the receiving means will be described in more detail with reference to FIGS. 4 and 3, respectively. The signal processor circuit 5 is adapted to process the received signal SR to calculate and output information SOUT on the relative displacement such as the relative angular displacement between the rotor element 3 and the stator element 4 . The output information SOUT may be provided by the signal processor circuit 5 as a digital signal or an analog signal as a quadrature signal indicative of the relative displacement between the rotor element and the stator element. The processor circuit 5 is further configured to receive the reference signal SREF from the signal generating circuit 6. [ The signal processor circuit is configured to use the reference signal together with the processing of the received signal SR to provide output information. More details of the signals output by the signal processor circuit 5 and the signal processor circuit will be described with reference to FIG.

실시예에 따르면, 신호 프로세서 회로(5)는 증분 신호의 형태로 출력 정보(SOUT)를 제공하도록 구성된다.According to the embodiment, the signal processor circuit 5 is arranged to provide the output information SOUT in the form of an incremental signal.

실시예에 따르면, 신호 프로세서 회로(5)는 절대 신호의 형태로 출력 정보(SOUT)를 제공하도록 구성된다.According to the embodiment, the signal processor circuit 5 is configured to provide the output information SOUT in the form of an absolute signal.

실시예에 따르면, 스테이터 요소(4)와 로터 요소(3)의 외부 지름은 10-500 mm 번위의 간격에서 선택되도록 구성된다. 예를 들어, 스테이터 요소(4)와 로터 요소(3)의 외부 지름은 약 40 mm로 선택될 수 있다.According to an embodiment, the outer diameter of the stator element 4 and the rotor element 3 is configured to be selected in a spacing of 10-500 mm. For example, the outer diameter of the stator element 4 and the rotor element 3 may be selected to be about 40 mm.

로터리 인코더(2)를 포함하는 전동 공구(1)는 전기 모터, 연소 엔진 또는 압축 공기에 의해 구동되는 전동 공구(1), 가령, 공압 전동 공구일 수 있다. 전동 공구(1)는 너트 러너, 맥동 너트 러너, 스크류드라이버, 렌지 또는 드릴을 포함하는 전동 공구의 그룹에서 선택된 전동 공구일 수 있다.The power tool 1 including the rotary encoder 2 can be an electric motor, a combustion engine or a power tool 1 driven by compressed air, for example, a pneumatic power tool. The power tool 1 may be a power tool selected from the group of power tools including a nut runner, a pulsating nut runner, a screwdriver, a range or a drill.

도 2a를 참조하면, 본 발명의 실시예에 따른 로터리 인코더를 위한 신호 생성 회로가 도시된다.Referring to FIG. 2A, a signal generating circuit for a rotary encoder according to an embodiment of the present invention is shown.

신호 생성 회로(6)는 실질적으로 일정한 진폭을 가진 고주파수 신호(AC1)를 생성하도로 구성된, AC 고주파수 오실레이터(7)라고도 불리는 교류(AC) 전력원(7)을 포함한다. 실질적으로 일정한 진폭을 가진 신호를 사용한다는 것은, 시간에 걱쳐 진폭에서 가장 작은 베리에이션, 가령, 오실레이터의 성능 제한에 의해, 또는 신호에 영향을 주는 잡음에 의해 야기되는 작은 베리에이션이 나타나는 신호, 그리고 어떠한 형태의 진폭 변조(AM) 동작을 받지 않은 신호를 의미한다. AC 전력원(7)은 고주파수 신호(AC1)의 주파수를 제어하기 위한 회로르 포함한다. AC 전력원은 주기적 파형을 가진, 실질적으로 일정한 진폭(AMP)을 가진, 고주파수 신호(AC1)를 생성하도록 구성된다. AC 전력원에 의해 생성된 고주파수 신호(AC1)는 100 KHz 내지 100 MHz의 범위의 주파수를 가진다.The signal generation circuit 6 includes an AC power source 7, also referred to as an AC high frequency oscillator 7, configured to generate a high frequency signal AC1 with a substantially constant amplitude. The use of a signal having a substantially constant amplitude means that the smallest variations in amplitude, for example, due to performance constraints of the oscillator, or signals that exhibit small variations caused by noise affecting the signal, (AM) operation of the signal. The AC power source 7 includes a circuit for controlling the frequency of the high frequency signal AC1. The AC power source is configured to generate a high frequency signal (AC1) with a substantially constant amplitude (AMP) with a periodic waveform. The high frequency signal (AC1) generated by the AC power source has a frequency in the range of 100 KHz to 100 MHz.

실시예에 따르면, 고주파수 신호(AC1)는 사인 파형으로 생성된다.According to the embodiment, the high frequency signal AC1 is generated as a sinusoidal waveform.

실시예에 따르면, AC 전력원에 의해 생성된 고주파수 신호(AC1)는 100 KHz 초과의 주파수를 가진다.According to an embodiment, the high frequency signal AC1 produced by the AC power source has a frequency in excess of 100 KHz.

실시예에 따르면, AC 전력원에 의해 생성된 고주파수 신호(AC1)는 1 MHz 초과의 주파수를 가진다.According to an embodiment, the high frequency signal AC1 produced by the AC power source has a frequency of more than 1 MHz.

실시예에 따르면, AC 전력원에 의해 생성된 고주파수 신호(AC1)는 주기적이다.According to the embodiment, the high frequency signal AC1 generated by the AC power source is periodic.

실시예에 따르면, 고주파수 신호(AC1)는 상기 언급된 주파수 범위 내의 단일 주파수와 같은 단일 주파수를 가지도록 생성된다.According to the embodiment, the high frequency signal AC1 is generated to have a single frequency such as a single frequency within the above-mentioned frequency range.

바람직한 실시예에 따르면, AC 전력원에 의해 생성된 고주파수 신호(AC1)는 1 MHz 내지 10 MHz의 범위, 가령, 2.5 MHz의 주파수를 가진다. 바람직하게는, 고주파수 신호(AC1)의 주파수는, 전동 공구의 내부 또는 외부에 위치된 전/자기적 구성에 의해 생성된 신호와 같은, 전동 공구의 근처에 존재하는 다른 신호의 주파수로부터 제거되도록 마련된다. 이에 의해 센싱 프로세스에 대한 이들 신호의 영향을 효과적으로 감소시킨다. 또한, 이는 전동 공구의 내부 또는 외부의 다른 구성에 영향을 줄 수 있는 로터리 인코더에 의해 생성된 장애를 감소시킨다. 변형예에 따르면, 장애를 추가로 최소화시키기 위해, 스프레드 스펙트럼 변조가 신호(AC1)에 가해질 수 있다.According to a preferred embodiment, the high frequency signal AC1 generated by the AC power source has a frequency in the range of 1 MHz to 10 MHz, for example 2.5 MHz. Preferably, the frequency of the high frequency signal AC1 is adapted to be removed from the frequency of other signals present in the vicinity of the power tool, such as a signal generated by a pre / magnetic configuration located inside or outside the power tool do. Thereby effectively reducing the influence of these signals on the sensing process. This also reduces the disturbances generated by the rotary encoder, which can affect other configurations inside or outside the power tool. According to a variant, spread spectrum modulation may be applied to the signal AC1 to further minimize the disturbance.

신호 생성 회로(6)는 AC 고주파수 오실레이터(7)에 결합된 위상 시프터 회로(8)를 포함한다. 위상 시프터 회로(8)는 AC 고주파수 오실레이터(7)에 의해 생성된 고주파수 신호(AC1)를 수신하도록 구성된다. 위상 시프터 회로(8)는 고주파수 신호(AC1)에 기초하여, 멀티-위상 신호, 즉, 각각 복수의 위상을 가진 복수의 고주파수 신호(AC2, AC3)를 포함하는 신호를 생성하고 출력하도록 구성된다. 바람직하게는, 복수의 위상은 서로 상이하다.The signal generation circuit 6 includes a phase shifter circuit 8 coupled to the AC high frequency oscillator 7. [ The phase shifter circuit 8 is configured to receive the high frequency signal AC1 generated by the AC high frequency oscillator 7. [ The phase shifter circuit 8 is configured to generate and output a signal including a multi-phase signal, that is, a plurality of high frequency signals AC2 and AC3 each having a plurality of phases, based on the high frequency signal AC1. Preferably, the plurality of phases are different from each other.

도 2를 참조하여 설명된 예시에서, 위상 시프터 회로(8)는 두 개의 고주파수 신호(AC2 및 AC3)를 생성하고 출력하도록 구성되는데, 여기서, 고주파수 신호(AC3)는 고주파수 신호(AC2)와 콰드러처에 있다. 용어 "콰드러처(quadrature)"는 신호(AC3)가 고주파수 신호(AC1)에 대해 위상 시프트되는 것을 정의하는데 사용된다. 좀 더 자세히 말하면, 신호의 콰드러처 신호는 90° (n/2 또는 λ/4)만큼 위상에 있어서 분리된다. 따라서, 신호(AC3)는 고주파수 신호(AC1)에 대해 90°만큼 위상 시프트된다. 콰드러처 신호(AC3)를 출력하는 것은 별론으로 하고, 콰드러처 회로(8)는 고주파수 신호(AC1)에 대응되는, 즉 위상 시프트가 없는 고주파수 신호(AC2)도 출력하도록 구성된다.In the example described with reference to Figure 2, the phase shifter circuit 8 is configured to generate and output two high frequency signals AC2 and AC3, where the high frequency signal AC3 is a high frequency signal AC2, I am in the office. The term "quadrature" is used to define that the signal AC3 is phase shifted with respect to the high frequency signal AC1. More precisely, the quadrature signal of the signal is separated by 90 ° (n / 2 or? / 4) in phase. Thus, the signal AC3 is phase-shifted by 90 degrees with respect to the high-frequency signal AC1. The quadrature circuit 8 is configured to output the quadrature signal AC3, and the quadrature circuit 8 is also configured to output the high frequency signal AC2 corresponding to the high frequency signal AC1, that is, without the phase shift.

위상 시프터 회로(8)는 도 2를 참조하여 설명된 예시와 상이하게 구성될 수 있다는 것도 유의해야 한다. 예를 들어, 위상 시프터 회로(8)는, 가령 각각 상이한 위상을 가진 3개 또는 6개의 고주파수 신호와 같은 복수의 위상을 가진 두 개 이상의 고주파수 신호를 생성하도록 구성될 수 있다. 또한, 복수의 고주파수 신호의 위상들 사이의 위상 분리는 90°과 상이할 수 있다. 예를 들어, 위상 시프터 회로(8)는 3개의 고주파수 신호를 생성하고 출력할 수 있는데, 그 중 하나는 고주파수 신호(AC1)에 대해 0°위상 시프트를 가지고, 그 중 하나는 고주파수 신호(AC1)에 대해 120°위상 시프트를 가지며, 그 중 하나는 고주파수 신호(AC1)에 대해 240°위상 시프트를 가진다.It should also be noted that the phase shifter circuit 8 may be configured differently from the example described with reference to Fig. For example, the phase shifter circuit 8 may be configured to generate two or more high frequency signals having a plurality of phases, such as three or six high frequency signals each having a different phase, for example. In addition, the phase separation between the phases of the plurality of high frequency signals may differ from 90 degrees. For example, the phase shifter circuit 8 can generate and output three high frequency signals, one of which has a 0 DEG phase shift relative to the high frequency signal AC1, one of which is the high frequency signal AC1, Phase shift, one of which has a 240 [deg.] Phase shift relative to the high frequency signal AC1.

더구나, 위상 시프터 회로에 의해 생성된 복수의 고주파수 신호의 위상은 기하형상적인 시리즈, 즉, 일정한 각 위상 시프트의 배수를 형성할 필요는 없다.In addition, the phases of the plurality of high frequency signals generated by the phase shifter circuit need not form a geometric series, that is, a multiple of a constant phase shift.

도 2를 참조하여 설명되는 예시를 더욱 참조하면, 신호 생성 회로(6)는, 위상 시프터 회로(8)에 결합되도록 구성된 두 개의 코일 구동부(9, 10)를 더 포함한다. 두 개의 코일 구동부의 제1 코일 구동부(9)는 신호(AC2)를 수신하도록 구성된다. 두 개의 코일 구동부의 제2 코일 구동부(10)는 신호(AC3)를 수신하도록 구성된다. 제1 코일 구동부(9)는 제1 여기 신호(E1) 및 제2 여기 신호(E2)를 생성하고 출력하도록 구성된다. 제2 코일 구동부(10)는 제3 여기 신호(E3) 및 제4 여기 신호(E4)를 생성하고 출력하도록 구성된다. 상기 제1, 제2, 제3 및 제4 여기 신호는 멀티-위상 여기 신호, 즉, 각각의 여기 신호가 복수의 위상들의 위상을 가지는 복수의 여기 신호를 형성하고, 상기 각각의 위상들은 고주파수 신호(AC1)로부터 기설정된 수의 각도로 위상 시프트된 위상이다. 제1 여기 신호(E1)는 신호(AC2)에 해당하는 실질적으로 일정한 진폭을 가진 고주파수 신호이다. 제2 여기 신호(E2)는 신호(AC2)의 위상 시프트된 버전에 해당하는 실질적으로 일정한 진폭을 가진 고주파수 신호인데, 여기서, 제2 여기 신호(E2)는 신호(AC2)에 대해 180°위상 시프트된다. 제3 여기 신호(E3)는 신호(AC3)에 해당하는 실질적으로 일정한 진폭을 가진 고주파수 신호이다. 제4 여기 신호(E4)는 신호(AC3)의 위상 시프트된 버전에 해당하는 실질적으로 일정한 진폭을 가진 고주파수 신호인데, 여기서, 제4 여기 신호(E4)는 신호(AC3)에 대해 180°위상 시프트된다. 따라서, 제1 여기 신호(E1)에 대해, 제3 여기 신호(E3)는 90°위상 천이되고, 제2 여기 신호(E2)는 180°위상 천이되며, 제4 여기 신호(E4)는 270°위상 천이된다. 이는, 제1, 제2, 제3 및 제4 여기 신호를 포함하는 멀티-위상 신호의 위상은, 위상에 있어서 90°만큼 연속적으로 증가하는데, 즉 E1-E3-E2-E4의 순서로 90°만큼 점차적으로 증가한다는 것을 의미한다. 또한, 이는 제3 여기 신호(E3)가 제1 여기 신호(E1)와 콰드러처 위상에 있고, 제2 여기 신호(E2)가 제3 여기 신호(E3)와 콰드러처 위상에 있고, 제4 여기 신호(E4)가 제2 여기 신호(E2)와 콰드러처 위상에 있다는 것을 의미한다. 신호 생성 회로(6)의 두 개의 코일 구동부는 차동 증폭 회로일 수 있고, 두 개의 출력 중 하나는 반대 극성을 가질 수 있다.2, the signal generation circuit 6 further includes two coil drive units 9 and 10 that are configured to be coupled to the phase shifter circuit 8. In this case, The first coil driver 9 of the two coil drivers is configured to receive the signal AC2. The second coil driver 10 of the two coil drivers is configured to receive the signal AC3. The first coil driver 9 is configured to generate and output a first excitation signal E1 and a second excitation signal E2. The second coil driver 10 is configured to generate and output the third excitation signal E3 and the fourth excitation signal E4. The first, second, third and fourth excitation signals form a multi-phase excitation signal, i. E., A plurality of excitation signals, each excitation signal having a phase of a plurality of phases, Is a phase-shifted phase from a predetermined number of angles AC1. The first excitation signal E1 is a high frequency signal having a substantially constant amplitude corresponding to the signal AC2. The second excitation signal E2 is a high frequency signal having a substantially constant amplitude corresponding to the phase shifted version of the signal AC2 where the second excitation signal E2 is phase shifted by 180 degrees relative to the signal AC2 do. The third excitation signal E3 is a high frequency signal having a substantially constant amplitude corresponding to the signal AC3. The fourth excitation signal E4 is a high frequency signal with a substantially constant amplitude corresponding to the phase shifted version of the signal AC3 where the fourth excitation signal E4 is phase shifted 180 degrees relative to the signal AC3 do. Thus, for the first excitation signal E1, the third excitation signal E3 is 90 ° phase shifted, the second excitation signal E2 is 180 ° phase shifted, and the fourth excitation signal E4 is 270 ° Phase shift. This means that the phases of the multi-phase signals comprising the first, second, third and fourth excitation signals are continuously increased by 90 ° in phase, i.e. 90 ° in the order of E1-E3-E2-E4 As shown in FIG. This is because the third excitation signal E3 is in the quadrature phase with the first excitation signal E1 and the second excitation signal E2 is in the quadrature phase with the third excitation signal E3, 4 excitation signal E4 is in quadrature phase with the second excitation signal E2. The two coil drivers of the signal generation circuit 6 may be differential amplifier circuits, and one of the two outputs may have the opposite polarity.

신호 생성 회로(6)는, 멀티-위상 여기 신호의 형태인 상기 여기 신호를 스테이터 요소(4)의 제1 전도성 패턴으로 제공하여, 스테이터 요소(4)의 제1 전도성 패턴의 에너지 인가 또는 여기를 야기하기 위하여, 스테이터 요소(4)에 결합되도록 구성된다. 신호 생성 회로(6)에 의해 생성된 신호가 스테이터 요소로 어떻게 전파되는지에 대한 더욱 자세한 사항은 도 3을 참조하여 설명될 것이다.The signal generating circuit 6 provides the excitation signal in the form of a multi-phase excitation signal in a first conductive pattern of the stator element 4 so as to energize or excite the first conductive pattern of the stator element 4 To be connected to the stator element (4). More details on how the signal generated by the signal generating circuit 6 is propagated to the stator element will be described with reference to Fig.

도 2를 참조하여 예시된 신호 생성 회로(6)는 상이하게 구성될 수 있다는 것에 유의한다. 예를 들어, 신호 생성 회로(6)는 스테이터 요소(4)로 제공될 더 적거나 더 많은 출력 신호(E1-E4)를 생성하도록 구성될 수 있다. 신호 생성 회로가 설명된 예시보다 더 적거나 더 많은 출력 신호, 즉 여기 신호(E1-E4)를 생성하도로 구성되는 경우, 신호 생성기는 더 적거나 더 많은 코일 구동부를 포함할 수 있다. 본 발명의 실시예에 따른 예시로서, 신호 생성 회로는 생성된 여기 신호당 하나의 코일 구동부를 포함한다. 실시예에 따르면, 신호 생성 회로는 0°위상을 가진 여기 신호, 120°위상을 가진 여기 신호 및 240°위상 시프트를 가진 여기 신호를 생성하고 출력하도록 구성된다. 이러한 실시예에서, 신호 생성기는 3개의 코일 구동부를 포함하여, 즉, 하나당 여기 신호를 생성한다. 또한, 신호 생성 회로(6)는 신호 생성 회로(6)에 의해 출력된 신호를 증폭하도록 구성된 전력 증폭 회로를 포함할 수 있다.Note that the signal generating circuit 6 illustrated with reference to FIG. 2 may be configured differently. For example, the signal generating circuit 6 may be configured to generate less or more output signals E1-E4 to be provided to the stator element 4. [ If the signal generation circuit is configured to produce fewer or more output signals than the illustrated example, i.e., the excitation signals (El-E4), the signal generator may include fewer or more coil drivers. As an example according to an embodiment of the present invention, the signal generating circuit includes one coil driver per generated excitation signal. According to an embodiment, the signal generating circuit is configured to generate and output an excitation signal having a 0 DEG phase, an excitation signal having a 120 DEG phase, and an excitation signal having a 240 DEG phase shift. In this embodiment, the signal generator includes three coil drivers, i. E., Generates an excitation signal per one. Further, the signal generation circuit 6 may include a power amplification circuit configured to amplify the signal output by the signal generation circuit 6.

도 3a를 참조하여, 본 발명의 실시예에 따른 유도성 로터리 인코더의 스테이터 요소가 설명된다.Referring to FIG. 3A, a stator element of an inductive rotary encoder according to an embodiment of the present invention is described.

도 1를 참조하여 예시된, 로터리 인코더(2)와 같은 로터리 인코더의 스테이터 요소(4)는 일련의 구동 코일(SDC1-SDC8, ... , SDCk-3, SDCk-2, SDCk-1, SDCk, 즉. SDCl-SDCk)의 형태로, 제1 전도성 패턴(CT1)과 같은 제1 전도성 패턴을 포함한다. 따라서, 일련의 구동 코일은 k개의 구동 코일을 포함한다. 일련의 구동 코일(SDC1-SDCk)은 등거리로 배열되는데, 즉, 일련의 구동 코일의 각각의 구동 코일과 인접한 구동 코일의 거리는 동일하다. 일련의 구동 코일(SDC1-SDCk)은, 도 1을 참조하여 예시된 바와 같이, 환형 디스크 모양의 스테이터 요소에 통합되어 배열되는 것과 같이, 스테이터 요소(4)의 원주 방향을 따라 스테이터 요소(4)에 배열된다. 이는, 일련의 구동 코일(SDC1-SDCk)이 스테이터 요소(4)의 원주 방향을 따라 연장되는 측정 경로를 형성하기 위해 배열된다는 것을 의미한다. 일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일은, 스테이터 요소(4)의 중심으로부터 기설정된 제1 반경 방향 거리(RD1)에서 스테이터 요소에 배열되고, 이는 스테이터 요소(4)의 제2 반경 방향 거리(RD2)까지 외부로 연장된다. 일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일은 스테이터 요소의 주요 연장 방향에 정렬된 주요 연장 방향으로 배열되는데, 즉, 측정 경로가 연장되는 스테이터 요소(4)의 주요 연장 방향으로 형성된 평면에서 연장되기 위해 배열된다.The stator element 4 of the rotary encoder, such as the rotary encoder 2, illustrated with reference to Figure 1, comprises a series of drive coils (SDC1-SDC8, ..., SDCk-3, SDCk-2, SDCk- , I.e., SDCl-SDCk), and a first conductive pattern, such as the first conductive pattern CT1. Thus, the series of drive coils includes k drive coils. The series of drive coils SDC1-SDCk are arranged equidistantly, that is, the distance between each drive coil of a series of drive coils and the adjacent drive coils is the same. A series of drive coils SDC1-SDCk are arranged on the stator element 4 along the circumferential direction of the stator element 4, such as arranged integrally with the annular disk-shaped stator element, . This means that a series of drive coils SDC1-SDCk are arranged to form a measurement path extending along the circumferential direction of the stator element 4. [ Each drive coil of a series of drive coils SDC1-SDCk is arranged on the stator element at a first predetermined radial distance RD1 from the center of the stator element 4, And extends outward to the radial distance RD2. Each of the drive coils of the series of drive coils SDC1-SDCk is arranged in a main extension direction aligned with the main extension direction of the stator elements, that is to say a plane formed in the main extension direction of the stator element 4, / RTI >

일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일은 나선형 또는 구불구불한 와인딩을 포함하여, 내부/외부로 나선형 패턴으로 배열된 루프를 형성한다. 바람직하게는, 내부/외부로 나선형 패턴의 모양은, 스테이터 요소의 반경 방향을 따라 실질적으로 연장되는 내부/외부로 나선형 패턴의 측면은 스테이터 요소의 반경 방향과 실질적으로 정렬되도록 구성된다. 즉, 실질적으로 직선 모양이어서, 스테이터 요소의 실질적으로 환형 방향으로 연장되는 내부/외부로 나선형 패턴의 측면이 실질적으로 스테이터 요소의 환형의 곡률과 실질적으로 매칭되는 곡률을 가져서, 즉, 스테이터 요소의 환형 방향으로 연장되는 내부/외부로 나선형 패턴의 측면이, 스테이터 요소의 곡률과 실질적으로 매칭되기 위해, 스테이터 요소의 반경 방향 외부로 만곡된다. 또한, 이는 스테이터 요소의 환형 방향으로 연장되는 내부/외부로 나선형 패턴의 측면의 각각의 측면의 각각의 세그먼트가 스테이터 요소의 중심으로부터 실질적으로 동일한 반경 거리에 배열된다는 것을 의미한다. 와인딩은 두 개의 말단점을 가지고, 이는 각각 스테이터 요소(4)의 단자에 결합되도록 구성된다. 일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일의 와인딩은 기설정된 턴수를 가진다. 바람직하게는, 각각의 와인딩에서 기설정된 턴수는 2-5 턴이다.Each drive coil of a series of drive coils SDC1-SDCk includes a spiral or serpentine winding to form a loop arranged in a spiral pattern inward / outward. Preferably, the shape of the inner / outer helical pattern is configured such that the side of the helical pattern extending substantially along the radial direction of the stator element is substantially aligned with the radial direction of the stator element. That is, the side surface of the helical pattern, which is substantially straight, extending in the substantially annular direction of the stator element, has a curvature substantially matching the annular curvature of the stator element, Direction of the stator element is curved outwardly in the radial direction of the stator element so as to substantially match the curvature of the stator element. This also means that each segment of each side of the inner / outer helical pattern side that extends in the annular direction of the stator element is arranged at substantially the same radial distance from the center of the stator element. The winding has two end points, each of which is configured to be coupled to the terminal of the stator element 4. [ The winding of each drive coil of the series of drive coils SDC1-SDCk has a preset number of turns. Preferably, the predetermined number of turns in each winding is 2-5 turns.

구동 코일(SDC1)과 같은, 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일은 기설정된 크기를 가진 영역(AR1)을 둘러싼다. 상기 영역(AR1)은 와인딩과 같은 전도성 요소의 임의의 형태로 자유롭게 구성된다.Each of the drive coils of the series of drive coils SDC1-SDCk of the stator element 4, such as the drive coil SDC1, surrounds the area AR1 having a predetermined size. The region AR1 is freely configured in any form of a conductive element such as a winding.

스테이터 요소(4)는 도 1 또는 도 2를 참조하여 예시된 신호 생성 회로(6)와 같은 신호 생성 회로에 결합되도록 구성된다. 스테이터 요소(4)는 도 1 또는 도 6을 참조하여 예시된 신호 프로세서 회로(5)와 같은 신호 프로세서 회로에 결합되도록 구성된다. 좀 더 자세히는, 스테이터 요소(4)는 적어도 하나의 입/출력 단자(M1)를 통해 신호 생성 회로(6)와 신호 프로세서 회로(5)에 결합되도록 구성된다. 이는, 스테이터 요소(4)가 신호 생성 회로(6)로부터 실질적으로 일정한 진폭을 가진 멀티-위상 고주파수 여기 신호와 같은 여기 신호(SE)의 형태인 정보를 수신하도록 인에이블되고, 스테이터 요소(4)의 수신 수단을 통해 수신된, 상호 유도에 의한 로터 요소(3)의 제2 전도성 패턴(CT2)에서 야기된, 중간 신호(SI)에 대응되는 수신 신호(SR)에 대한 정보를 전송하는 것과 같이, 정보를 신호 프로세서 회로에 전송하도록 인에이블된다는 것을 의미한다.The stator element 4 is configured to be coupled to a signal generating circuit, such as the signal generating circuit 6 illustrated with reference to FIG. 1 or FIG. The stator element 4 is configured to be coupled to a signal processor circuit, such as the signal processor circuit 5 illustrated with reference to FIG. 1 or FIG. More specifically, the stator element 4 is configured to be coupled to the signal generating circuit 6 and the signal processor circuit 5 via at least one input / output terminal M1. This allows the stator element 4 to be enabled to receive information in the form of an excitation signal SE, such as a multi-phase high frequency excitation signal having a substantially constant amplitude from the signal generation circuit 6, (SR) corresponding to the intermediate signal (SI) caused by the second conductive pattern (CT2) of the rotor element (3) by way of mutual induction, which is received via the receiving means , And is enabled to transmit information to the signal processor circuitry.

스테이터 요소(4)는 복수의 주변부, 즉 단자를 더 포함하는데, 레퍼런스(PT1, PT2)를 가진 두 개의 주변부 단자는 도 3에 도시되고, 이는 스테이터 요소(4)의 주변부 주위에 배열된다. 이들 주변부 단자는 스테이터 요소(4)의 일련의 구동 코일의 각각의 구동 코일로 여기 신호를 제공 또는 공급하도록 구성된다.The stator element 4 further comprises a plurality of peripheries, i.e. terminals, two peripheral terminals with references PT1 and PT2 are shown in Fig. 3, arranged around the periphery of the stator element 4. Fig. These peripheral terminals are configured to provide or supply an excitation signal to each of the drive coils of the series of drive coils of the stator element 4.

일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일은, 도 3의 원으로 도시된 두 개의 단자 또는 리드를 가지고 구성된다. 각각의 구동 코일의 말단점에서의 두 단자는 스테이터 요소(4)의 두 개의 단자에 결합되도록 구성된다. 이는 고주파수 멀티-위상 여기 신호(E1-E4)의 위상을 가진 고주파수 여기 신호(SE), 또는 좀 더 자세히는 도 1 또는 도 2를 참조하여 예시된 바와 같이, 신호 생성 회로(6)에 의해 생성된 특정 위상을 가진 여기 신호(E1-E4) 중 하나를 각각의 구동 코일에 제공할 수 있도록 한다.Each drive coil of the series of drive coils SDC1-SDCk is configured with two terminals or leads shown in the circle in Fig. The two terminals at the end of each drive coil are configured to be coupled to the two terminals of the stator element 4. This is generated by the signal generating circuit 6, as illustrated by the high frequency excitation signal SE having the phase of the high frequency multi-phase excitation signal E1-E4, or more specifically with reference to FIG. 1 or FIG. To provide one of the excitation signals (E1-E4) with a particular phase to each drive coil.

바람직한 실시예에 따라서, 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)은 주기적으로 반복되는 위상 패턴(P1)을 형성하도록 구성되는데, 이는 스테이터 요소(4)의 측정 경로를 따라 반복되는 n번이고, 여기서 n은 0 이상의 정수이며, 스테이터 요소(4)의 측정경로를 따라 반복되는 위상 패턴(P1)이 반복되는 횟수를 표시한다. 이는, 스테이터 요소의 일련의 구동 코일의 구동 코일의 연속적인 기설정된 수와 같은 연속적인 복수의 구동 코일(SDC1-SDCk)이 위상 패턴을 형성한다는 것을 의미하고, 가령, 측정 경로를 따라 반복된 n번인 위상 패턴(P1)이어서 일련의 구동 코일은 위상 패턴(P1-Pn)을 포함하도록 배열된다. 예시로서, n이 0인 경우에, 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)은 0번 반복되는 단상 패턴(P1)을 형성하도록 구성되며, 즉, 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)은 스테이터 요소의 측정 경로를 따라 단상 패턴(P1)으로 배열된다. 또 다른 예시로서, n이 2인 경우에, 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)은 스테이터 요소(4)의 측정 경로를 따라 두번 반복되는 위상 패턴(P1)을 형성하도록 구성되며, 즉, 반복되는 위상 패턴은 위상 패턴(P1) 자체를 포함하여, 스테이터 요소(4)의 측정 경로를 따라 세번 나타난다.According to a preferred embodiment, a series of drive coils SDC1-SDCk of the stator element 4 is configured to form a periodic repetitive phase pattern P1, which is repeated along the measurement path of the stator element 4. [ where n is an integer greater than or equal to zero and indicates the number of times the repeated phase pattern P1 along the measurement path of the stator element 4 is repeated. This means that a continuous plurality of drive coils (SDC1-SDCk), such as a consecutive predetermined number of drive coils of a series of drive coils of the stator elements, form a phase pattern, for example, The burn-in phase pattern P1 is followed by a series of drive coils arranged to include the phase patterns P1-Pn. By way of example, when n is zero, a series of drive coils SDC1-SDCk of the stator element 4 are configured to form a single-phase pattern P1 repeated zero times, i. E. A series of stator elements 4 The driving coils SDC1 to SDCk of the stator elements are arranged in the single-phase pattern P1 along the measuring path of the stator element. In another example, when n is 2, a series of drive coils (SDC1-SDCk) of the stator element 4 are configured to form a phase pattern P1 that repeats twice along the measurement path of the stator element 4 That is, the repeated phase pattern appears three times along the measuring path of the stator element 4, including the phase pattern P1 itself.

위상 패턴의 구동 코일에는, 고주파수 멀티위상 여기 신호(SE) 또는 좀 더 자세히는, 복수의 여기 신호(E1-E4)를 가진 멀티-위상 고주파수 여기 신호(SE)의 하나의 여기 신호(E1-E4)의 위상이 공급되어서, 위상 패턴의 인접한 구동 코일이 위상 패턴의 이웃하는 구동 코일에 대해 위상이 분리된 고주파수 멀티-위상 여기 신호(SE)의 위상을 수신한다. 또한, 이는 위상 패턴의 구동 코일에 공급될 여기 신호의 위상이 위상 패턴을 형성하는 구동 코일의 연속적인 순서로 위상이 증가되는 것과 같이 위상 시프트된다고도 표현될 수 있다.(E1-E4) of the multi-phase high frequency excitation signal SE having the high frequency multi-phase excitation signal SE or more specifically, the plurality of excitation signals E1-E4 ) Is supplied so that the adjacent drive coils of the phase pattern receive the phase of the high frequency multi-phase excitation signal SE phase-separated with respect to the neighboring drive coils of the phase pattern. It can also be expressed that the phase of the excitation signal to be supplied to the drive coil of the phase pattern is phase-shifted as the phase is increased in the continuous order of the drive coils forming the phase pattern.

도시된 예시에서, 일련의 구동 코일의 4개의 연속적인 구동 코일(SDC1-SDC4, SDC5-SDC8, ... , SDCk-3-SDCk)은 반복되는 위상 패턴을 형성하는데, 이는 7번 반복되는, 즉, n은 7이다. 좀 더 자세히는, 구동 코일(SDC1-SDC4)는 위상 패턴(P1)을 형성하고, 구동 코일(SDC5-SDC8)은 위상 패턴(P1)의 제1 주기 반복되는 위상 패턴(P2)을 형성하며, 구동 코일(SDCk-3-SDCk)은 위상 패턴(P1)의 nth-1 반복되는 위상 패턴(Pn)을 형성하여서, 일련의 구동 코일은 P1을 포함하여, 주기적으로 반복되는 위상 패턴(P1)의 n번 반복을 형성한다.In the example shown, four consecutive drive coils (SDC1-SDC4, SDC5-SDC8, ..., SDCk-3-SDCk) of a series of drive coils form a repeating phase pattern, That is, n is 7. More specifically, the drive coils SDC1-SDC4 form a phase pattern P1, the drive coils SDC5-SDC8 form a first period repeating phase pattern P2 of the phase pattern P1, drive coils (SDCk-3-SDCk) is hayeoseo form a phase pattern (Pn) is repeated n th -1 of the phase pattern (P1), a set of the drive coils, a phase pattern is periodically repeated, including P1 (P1) Lt; / RTI >

바람직한 실시예에 따르면, 반복되는 위상 패턴은 로터 요소(3)의 측정 경롤르 따라 7번 반복된 것과 같이, 로터 요소(3)의 측정 경로를 따라 n번 반복되는 4-위상 콰드러처 패턴이다.According to a preferred embodiment, the repeated phase pattern is a four-phase quadrature pattern which is repeated n times along the measuring path of the rotor element 3, such as seven iterations along the measuring surface of the rotor element 3 .

이러한 실시예에서, 4-위상 콰드러처 패턴이 구성되어서, 4-위상 콰드러처 패턴을 형성하는 4개의 연속적인 구동 코일에는, 0°위상, 90°위상, 180°위상 및 270°위상의 형태로 멀티-위상 여기 신호의 위상이 각각 제공된다. 이는, 4-위상 콰드러처 패턴의 순서에서 첫 번째인 구동 코일(SDC1)에, 도 2를 참조하여 예시된 여기 신호(E1)와 같은 0°위상을 가진 여기 신호가 공급될 것이고, 4-위상 콰드러처 패턴의 순서에서 두 번째인 구동 코일(SDC2)에, 도 2를 참조하여 예시된 여기 신호(E3)와 같은 90°위상을 가진 여기 신호가 공급될 것이며, 4-위상 콰드러처 패턴의 순서에서 세 번째인 구동 코일(SDC3)에, 도 2를 참조하여 예시된 여기 신호(E2)와 같은 180°위상을 가진 여기 신호가 공급될 것이고, 4-위상 콰드러처 패턴의 순서에서 네 번째인 구동 코일(SDC4)에, 도 2를 참조하여 예시된 여기 신호(E2)와 같은 270°위상을 가진 여기 신호가 공급될 것을 의미한다. 로터리 인코더(2)가 전동 공구의 전기 모터의 샤프트의 회전 변위를 센싱하도록 구성되는 경우에, 4-위상 콰드러처 패턴의 수, 즉, 주기는 전기 모터의 주기의 수와 동기화되는 것이 바람직하다.In this embodiment, a four-phase quadrature pattern is configured so that four consecutive drive coils forming a four-phase quadrature pattern have 0 DEG phase, 90 DEG phase, 180 DEG phase and 270 DEG phase Phases of the multi-phase excitation signal are provided, respectively. This will be achieved by supplying an excitation signal having a 0 [deg.] Phase, such as the excitation signal E1 illustrated with reference to Fig. 2, to the first drive coil SDC1 in the order of the 4-phase quadrature pattern, An excitation signal having a 90-degree phase such as the excitation signal E3 illustrated with reference to Fig. 2 will be supplied to the drive coil SDC2, which is the second in the order of the phase quadrature pattern, The drive coil SDC3, which is the third in the order of the patterns, will be supplied with an excitation signal having a phase of 180 [deg.] Like the excitation signal E2 illustrated with reference to Fig. 2, and in the order of the 4-phase quadrature pattern The fourth excitation coil SDC4 is supplied with an excitation signal having a 270 phase such as the excitation signal E2 illustrated with reference to Fig. In the case where the rotary encoder 2 is configured to sense the rotational displacement of the shaft of the electric motor of the power tool, the number of four-phase quadrature patterns, i.e. the period, is preferably synchronized with the number of cycles of the electric motor .

다른 실시예에서, 주기적으로 반복되는 위상 패턴(P1)은 3-위상 패턴으로 제공된다. 3-위상 패턴은 일련의 구동 코일(SDC1-SDCk)의 3개의 연속적인 구동 코일로 형성된다. 3 위상 패턴은 n 번 반복되도록 배열된다. 3-위상 패턴을 형성하는 3개의 연속적인 구동 코일의 순서에서 첫 번째인 구동 코일(SDC1)에, 도 2를 참조하여 예시된 여기 신호(E1)와 같은 0°위상을 가진 여기 신호가 공급되도록 배열되고, 3-위상 패턴을 형성하는 3개의 연속적인 구동 코일의 순서에서 두 번째인 구동 코일(SDC2)에 120°위상을 가진 여기 신호가 공급되도록 배열되며, 3-위상 패턴을 형성하는 3개의 연속적인 구동 코일의 순서에서 세 번째인 구동 코일(SDC3)에 240°위상을 가진 여기 신호가 공급되도록 배열된다.In another embodiment, the periodically repeated phase pattern P1 is provided in a three-phase pattern. The three-phase pattern is formed by three consecutive drive coils of a series of drive coils (SDC1-SDCk). The 3-phase pattern is arranged to repeat n times. So that excitation signals having a phase of 0 DEG, such as the excitation signal E1 exemplified with reference to Fig. 2, are supplied to the first drive coil SDC1 in the sequence of three consecutive drive coils forming the three-phase pattern Arranged to be supplied with an excitation signal having a phase of 120 ° to the second drive coil SDC2 in the order of three consecutive drive coils forming a three-phase pattern, and three And an excitation signal having a phase of 240 [deg.] Is supplied to the driving coil SDC3, which is the third in the sequence of the continuous driving coils.

일련의 구동 코일(SDC1-SDCk)의 연속적인 구동 코일의 임의의 수는 주기적으로 반복되는 위상 패턴(P1)을 형성하도록 배열될 수 있다는 것에 유의해야 한다. 주기적으로 반복되는 위상 패턴에 포함된 각각의 구동 코일에, 다양한 여기 신호, 즉, 신호 생성 회로의 적용과 컨피규레이션에 의존하여, 상기 예시된 여기 신호와 상이한 위상을 가진 여기 신호가 공급되도록 배열될 수 있다는 것에 유의해야 한다.It should be noted that any number of consecutive drive coils of a series of drive coils SDC1-SDCk may be arranged to form a periodic repetitive phase pattern P1. Each excitation coil included in the periodically repeated phase pattern can be arranged to be supplied with excitation signals having different phases from the excitation signals exemplarily, depending on the various excitation signals, i.e. the application and configuration of the signal generation circuit .

실시예에 따른 스테이터 요소(4)는 균형있는 수신 코일(SRC)의 형태인 수신 수단을 더 포함한다. 균형있는 수신 코일(SRC)는 로터 요소(3)의 전송 수단으로부터 전송된 신호에 대응되는 신호인 수신 신호(SR)를 수신하는데, 상기 전송된 신호는 로터 요소(3)의 제2 전도성 패턴(CT2) 내로 유도된 신호, 즉 도 1을 참조하여 예시된 바와 같은 중간 신호(SI)이다. 로터 요소(3)의 전송 수단은 도 4를 참조하여 더욱 자세히 설명될 것이다. 좀 더 자세히, 스테이터 요소(4)의 균형있는 수신 코일(SRC)은 제1 균형있는 수신 코일 섹션(SRCA) 및 제2 균형있는 수신 코일 섹션(SRCB)의 형태인 두 개의 균혀있는 수신 코일 섹션을 포함한다. 제1 및 제2 균형있는 수신 코일 섹션은, 각각의 제1 및 제2 균형있는 수신 코일 섹션내에 유도된 전류가 서로에 대해 반대 방향으로 흐르도록 구성된다. 이는, 제1 균형있는 수신 코일 섹션(SRCA)에 유도된 전류가 제2 균형있는 수신 코일 섹션(SRCB)에 유도된 전류에 대해 반대 방향으로 흐른다는 것을 의미한다. 제1 균형있는 수신 코일 섹션(SRCA)은 제3 반경 거리(RD3)에서 스테이터 요소(4)의 중심 주위에 동심원으로 배열되도록 구성된다. 제2 균형있는 수신 코일 섹션(SRCB)은 제4 반경 거리(RD4)에서 스테이터 요소(4)의 중심 주위에 동심원으로 배열되도록 구성된다. 제1 및 제2 균형있는 수신 코일 섹션(SRCA, SRCB)은 각각 환형 모양을 가진 나선형 또는 구불구불한 와인딩의 형태이다.The stator element 4 according to the embodiment further comprises receiving means in the form of a balanced receive coil (SRC). The balanced receiving coil SRC receives a received signal SR which is a signal corresponding to the signal transmitted from the transmitting means of the rotor element 3 which is transmitted to the second conductive pattern of the rotor element 3 CT2, i. E. An intermediate signal SI as illustrated with reference to Fig. The transfer means of the rotor element 3 will be described in more detail with reference to Fig. More precisely, the balanced receiving coil (SRC) of the stator element (4) comprises two balanced receiving coil sections in the form of a first balanced receiving coil section (SRCA) and a second balanced receiving coil section . The first and second balanced receiving coil sections are configured such that the currents induced in each of the first and second balanced receiving coil sections flow in opposite directions with respect to each other. This means that the current induced in the first balanced receive coil section SRCA flows in the opposite direction to the current induced in the second balanced receive coil section SRCB. The first balanced receiving coil section SRCA is configured to be arranged concentrically about the center of the stator element 4 at the third radial distance RD3. The second balanced receiving coil section SRCB is configured to be concentrically arranged around the center of the stator element 4 at the fourth radial distance RD4. The first and second balanced receiving coil sections SRCA and SRCB are each in the form of a spiral or serpentine winding with an annular shape.

스테이터 요소(4)의 구동 코일의 와인딩은 구리 또는 전도성 특징이 있는 다른 적절한 재료로 제조되는 것이 바람직하다. 와인딩의 전도체 너비는 약 12 ㎛일 수 있다.The winding of the drive coil of the stator element 4 is preferably made of copper or other suitable material with a conductive characteristic. The conductor width of the winding may be about 12 탆.

실시예에 따르면, 스테이터 요소(4)의 외부 지름은 40 mm와 같은 10-500 mm를 포함하는 지름의 범위에서 선택된다.According to an embodiment, the outer diameter of the stator element 4 is selected in the range of diameters including 10-500 mm, such as 40 mm.

도 3을 참조로 예시된 스테이터 요소(4)는 도 1을 참조하여 기술된 것과 유사하고, 또한, 스테이터 요소(4)는 PCB와 같은 전기적으로 절연 기판으로 제조되는 것이 바람직하다는 것에 유의한다.It should be noted that the stator element 4 illustrated with reference to Fig. 3 is similar to that described with reference to Fig. 1, and also that the stator element 4 is preferably made of an electrically insulating substrate such as a PCB.

도 4를 참조하여, 본 발명의 실시예에 따른 유도성 로터리 인코더의 로터 요소가 설명된다.Referring to Figure 4, a rotor element of an inductive rotary encoder according to an embodiment of the present invention is described.

도 1을 참조하여 예시된, 유도성 로터리 인코더(2)와 같은 유도성 로터리 인코더의 로터 요소(3)는 일련의 수신 코일(RRC1, RRC2, ... , RRCi, 즉, RRC1-RRCi)의 형태로, 제1 전도성 패턴(CT2)와 같인 제2 전도성 패턴을 포함한다. 따라서, 로터 요소(3)의 일련의 수신 코일(RRC1-RRCi)은 i개의 수신 코일을 포함한다.The rotor element 3 of an inductive rotary encoder, such as the inductive rotary encoder 2 illustrated with reference to Figure 1, comprises a series of receiving coils (RRC1, RRC2, ..., RRCi, i.e., RRC1-RRCi) And a second conductive pattern, such as the first conductive pattern CT2. Thus, the series of receive coils RRC1-RRCi of the rotor element 3 includes i receive coils.

일련의 수신 코일(RRC1-RRCi)은 등거리로 배열되는데, 즉, 일련의 수신 코일의 각각의 수신 코일과 인접한 수신 코일의 거리는 동일하다. 일련의 수신 코일(RRC1-RRCi)은, 도 1을 참조하여 예시된 바와 같이, 환형 디스크 모양의 로터 요소에 통합되어 배열되는 것과 같이, 로터 요소(3)의 원주 방향을 따라 로터 요소(3)에 배열된다. 이는, 일련의 수신 코일(RRC1-RRCi)이 스테이터 요소(4)의 원주 방향을 따라 연장되는 측정 경로를 형성하기 위해 배열된다는 것을 의미한다.The series of receiving coils RRC1-RRCi are arranged equidistantly, that is, the distance between each receiving coil of a series of receiving coils and the adjacent receiving coil is the same. A series of receiving coils RRC1-RRCi are arranged in the rotor element 3 along the circumferential direction of the rotor element 3, such as is arranged integrally with an annular disk-shaped rotor element, . This means that a series of receiving coils RRC1-RRCi are arranged to form a measuring path extending along the circumferential direction of the stator element 4. [

일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일은, 로터 요소(3)의 중심으로부터 기설정된 제1 반경 방향 거리(RD1)에서 로터 요소에 배열되고, 이는 로터 요소(3)의 제2 반경 방향 거리(RD2)까지 외부로 연장된다. 상기 수신 코일이 연장되는 상기 제1 및 제2 반경 거리는 도 3을 참조하여 예시된 스테이터 요소와 같은 스테이터 요소(4)의 구동 코일이 연장되는제1 및 제2 반경 거리와 일치한다.Each receiving coil of the series of receiving coils RRC1-RRCi is arranged on the rotor element at a first predetermined radial distance RD1 from the center of the rotor element 3, And extends outward to the radial distance RD2. The first and second radial distances at which the receiving coils extend coincide with the first and second radial distances at which the driving coils of the stator element 4, such as the stator element illustrated with reference to Fig. 3, extend.

일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일은 로터 요소(3)의 주요 연장 방향에 정렬된 주요 연장 방향으로 배열되는데, 즉, 로터 요소(3)의 주요 연장 방향으로 형성된 평면에서 연장되기 위해 배열된다. 이는, 로터 요소(3)의 제2 전도성 패턴(CT2) 또는 측정 경로가 스테이터 요소(4)의 제1 전도성 패턴(CT1) 또는 측정 경로와 마주하도록 구성되는 것이 바람직하다는 의미이다.Each receiving coil of the series of receiving coils RRC1-RRCi is arranged in a main extending direction aligned with the main extending direction of the rotor element 3, i.e. extending in a plane formed in the main extending direction of the rotor element 3 Lt; / RTI > This means that the second conductive pattern CT2 of the rotor element 3 or the measuring path is preferably configured to face the first conductive pattern CT1 or measurement path of the stator element 4. [

로터 요소(3)의 수신 코일(RRC1)과 같은, 일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일은, 나선형이거나 구불구불한 와인딩을 가진 와인딩을 포함하여, 도 4에서 도면 번호 L1, L2로 참조된, 별개의 균형있는, 루프 요소를 형성한다. 각각의 수신 코일(RRC1-RRCi)의 두 개의 루프 요소는 두 개의 루프 요소 사이에서 나아가는 와인딩에 의해 뒤얽혀 있다(intertwined). 수신 코일(RRC1)이 두 개의 균형있는 뒤얽힌 루프 요소(RRC1:L1, RRC1:L2)를 각각 포함하고, 수신 코일(RRC2)가 두 개의 균형있는 뒤얽힌 루프 요소(RRC2:L1, RRC2:L2)를 포함하는 예시가 도 4에 도시된다. 상기 두 개의 루프 요소의 각각은 도 3을 참조하여 예시된 스테이터 요소(4)의 구동 코일(SDC1-SDCk)의 내부/외부로 나선형 패턴과 유사한 내부/외부로 나선형 패턴으로 더욱 배열되는데, 즉, 만곡된 측면 섹션과 직선 측면 섹션을 각각 가진 패턴을 포함하기 위해 구성된다. 와인딩은 관련 말단을 가진 두 개의 말단점을 가지는데, 이들 각각은 인접한 와인딩 즉, 로터 요소(3)의 인접한 수신 코일의 단자에 결합되도록 구성된다. 따라서, 로터 요소(3)의 일련의 수신 코일(RRC1-RRCi)은 직렬로 연결되도록 구성된다.Each receiving coil of a series of receiving coils RRC1-RRCi, such as the receiving coil RRC1 of the rotor element 3, comprises a winding with spiral or serpentine winding, Form a separate balanced, loop element, referred to as L2. The two loop elements of each receive coil (RRC1-RRCi) are intertwined by the winding going between the two loop elements. The receiving coil RRC1 includes two balanced entangled loop elements RRC1: L1 and RRC1: L2, respectively, and the receiving coil RRC2 comprises two balanced entangled loop elements RRC2: L1, RRC2: L2 An example involving is shown in FIG. Each of the two loop elements is further arranged in an inner / outer helical pattern similar to a spiral pattern into / out of the drive coils (SDC1-SDCk) of the stator element 4 illustrated with reference to Figure 3, And is configured to include a pattern having a curved side section and a straight side section, respectively. The windings have two end points with associated ends, each of which is configured to be coupled to the terminals of adjacent windings, i.e., adjacent receiver coils of the rotor element 3. Thus, the series of receiving coils RRC1-RRCi of the rotor element 3 are configured to be connected in series.

일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일의 와인딩은 기설정된 수의 턴수를 가진다. 바람직하게는, 각각의 와인딩에서 기설정된 턴수는 2-5 턴이다.The winding of each of the receiving coils of the series of receiving coils RRC1 to RRCi has a predetermined number of turns. Preferably, the predetermined number of turns in each winding is 2-5 turns.

수신 코일(RRC1)과 같은, 로터 요소(3)의 일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일의 각각의 루프 요소는 영역(A1:1, A1:2)을 둘러싸고, 이들 각각은 와인딩과 같은 임의의 전도성 요소의 형태로 자유롭게 구성된 기설정된 크기를 가진다. 좀 더 자세하게는, 각각의 와인딩, 즉, 로터 요소(3)의 수신 코일의 제1 루프는 영역(A1:1)을 둘러싸고, 각각의 와인딩, 즉, 로터 요소(3)의 수신 코일의 제2 루프는 영역(A1:2)을 둘러싼다.Each loop element of each receiving coil of a series of receiving coils RRC1-RRCi of the rotor element 3, such as the receiving coil RRC1, surrounds the areas A1: 1, A1: 2, And has a predetermined size that is freely configured in the form of any conductive element, such as a winding. More specifically, a first loop of each winding, i. E. The receiving coil of the rotor element 3, surrounds the area A1: The loop surrounds the area A1: 2.

로터 요소(3)의 일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일은, 일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일의 제1 및 제2 루프 요소의 로터 요소(3)의 주요 연장 방향으로 형성된 평면에서의 연장이 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)의 두 개의 인접한 구동 코일의 연장과 일치하도록 더욱 구성된다. 이는, 로터 요소(3)의 일련의 수신 코일(RRC1)의 각각의 수신 코일의 제1 및 제2 루프 요소인 각각의 루프 요소가, 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)의 상기 두 개의 인접한 구동 코일 사이의 영역을 포함하는, 두 개의 인접한 구동 코일에 의해 걸친 영역에 걸친다는 것을 의미한다.Each receiving coil of the series of receiving coils RRC1-RRCi of the rotor element 3 is connected to the rotor element 3 of the first and second loop elements of each receiving coil of the series of receiving coils RRC1- The extension in the plane formed in the main extending direction of the stator element 4 coincides with the extension of two adjacent driving coils of the series of driving coils SDC1-SDCk of the stator element 4. [ This means that each loop element which is the first and second loop elements of the respective receiving coils of a series of receiving coils RRC1 of the rotor element 3 is connected to a series of driving coils SDC1 to SDCk of the stator element 4. [ Lt; RTI ID = 0.0 > of the < / RTI > two adjacent drive coils of the first drive coil.

더구나, 로터 요소(3)의 일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일의 두 개의 루프 요소의 각각 사이에 있어서, 로터 요소(3)의 측정 경로를 따른 거리 및 일련의 수신 코일(RRC1)의 각각의 수신 코일 사이에 있어서, 로터 요소(3)의 측정 경로를 따른 거리는 일련의 구동 코일(SDC1-SDCk)의 각각의 구동 코일 사이에 있어서, 스테이터 요소(4)의 측정 경로를 따른 거리와 대응된다. 이는, 로터 요소(3)가 로터 요소(3)의 측정 경로를 따라 움직일 때, 로터 요소(3)의 일련의 수신 코일의 각각의 수신 코일의 각각의 루프 요소는 스테이터 요소(4)의 일련의 구동 코일(SDC1-SDCk)의 두 개의 인접한 구동 코일과 주기적으로 마주할 것이라는 점을 의미한다.Furthermore, between each of the two loop elements of the respective receiving coils of the series of receiving coils (RRC1-RRCi) of the rotor element 3, the distance along the measuring path of the rotor element 3 and the distance The distance along the measuring path of the rotor element 3 between each of the receiving coils of the stator element 4 and between the respective receiving coils of the stator elements 4, RRC1, RRC1, Correspond to distances. This means that when the rotor element 3 moves along the measuring path of the rotor element 3, each loop element of each receiving coil of the series of receiving coils of the rotor element 3, Quot; means that it will periodically face two adjacent drive coils of drive coils SDC1-SDCk.

로터 요소(3)의 수신 코일인, 각각의 와인딩을 결합하여 형성하는 제1 루프 요소와 제2 루프 요소에서의 와인딩의 방향은, 로터 요소(3)의 측정 경로를 따라 i-1 번 반복되는 교호하는 2-위상 패턴을 제공하기 위해 구성되고, 여기서, i는 1 이상의 범위의 정수이다. 이는, i가 1과 동일한 경우에, 교호하는 2-위상 패턴을 형성하는 수신 코일(RRC1)만이 로터 요소(3)의 측정 경로를 따라 존재하고, i가 3과 동일한 경우에, 수신 코일(RRC1, RRC2 및 RRC3)이 로터 요소(3)의 측정 경로를 따라 존재하여, 반복되는 2-위상 패턴이 수신 코일(RRC1)에 의해 형성된 2-위상 패턴과 별도로, RRC2 및 RRC3의 형태로 두 번 반복되는 것을 의미한다. 좀 더 자세히는, 인접한 루프 요소, 즉, 일련의 수신 코일(RRC1-RRCi)의 각각의 수신 코일의 제1 및 제2 루프 요소는 위상에서 안티-위상, 즉 180°로 구성된다. 이는, 수신 코일의 제2 루프 요소와 일련의 수신 코일(RRC1-RRCi)의 연속하는 제1 루프 요소의 형태로 인접한 루프 요소들이 안티-위상인 것을 의미한다. 또한, 수신 코일의 제1 루프 요소 및 일련의 수신 코일의 이전 수신 코일의 제2 루프 요소의 형태인 인접한 루프 요소들은 안티-위상이다. 교호하는 2-위상 패턴에 의해, 인접한 루프 요소들 내의 공통 배경의 교호하는 전자기장에 의해 유도된 전류 때문에, 공통 배경의 교호하는 전자기장의 형태인 전자기적 간섭의 영향은 인접한 루프 요소들이 안티위상이므로 서로 상쇄될 것이다. 이는, 여기 신호를 제1 전도성 패턴에 제공함에 의해 유도된 전류에 대한 경우가 아닐 것인데, 왜냐하면, 여기 신호의 컨피규레이션과 스테이터 요소의 제1 전도성 패턴에 의한 수신 코일의 각각의 루프 요소가 상이한 위상을 가진 전류에 의해 유도될 것이기 때문이다. 실시예에 따른 로터 요소(3)는 균형있는 구동 코일(RDC)의 형태인 전송 수단을 더 포함한다. 이러한 실시예에 따르면, 스테이터 요소(4)는 도 3을 참조하여 더욱 자세히 설명되는 바와 같이, 균형있는 수신 코일의 형태인 수신 수단으로 구성된다. 로터 요소(3)의 균형있는 구동 코일(RDC)은 로터 요소(3)의 제2 전도성 패턴(CT2)에 결합되도록 구성되어서, 중간 신호(SI)가 스테이터 요소(4)의 제1 전도성 패턴(CT1)의 에너지 인가 때문에 로터 요소(3)의 제2 전도성 패턴에서 생성될 때, 이러한 중간 신호는 로터 요소(3)의 균형있는 구동 코일내로 전파될 것이어서, 신호, 즉 수신 신호(SR)가 스테이터 요소(4)의 균형있는 수신 코일(SRC) 내에서 생성된다.The direction of winding in the first loop element and the second loop element which combine the respective windings, which are the receiving coils of the rotor element 3, is repeated i-1 times along the measuring path of the rotor element 3 Phase pattern, where i is an integer in the range of one or greater. This means that when i is equal to 1, only receiving coils RRC1 forming an alternating 2-phase pattern are present along the measuring path of the rotor element 3 and i is equal to 3, the receiving coils RRC1 , RRC2 and RRC3 are present along the measurement path of the rotor element 3 so that the repeated two-phase pattern is repeated twice in the form of RRC2 and RRC3, separate from the two-phase pattern formed by the receiving coil RRC1 . More specifically, the first and second loop elements of each of the adjacent loop elements, i. E., The receive coils of a series of receive coils (RRC1-RRCi) are configured in anti-phase, i.e., 180, in phase. This means that adjacent loop elements in the form of a first loop element of the second loop element of the receive coil and a series of receive coils RRC1-RRCi are anti-phase. Also, adjacent loop elements in the form of a first loop element of the receive coil and a second loop element of the previous receive coil of the series of receive coils are anti-phase. Due to the alternating two-phase pattern, the effect of electromagnetic interference, which is a form of alternating electromagnetic fields of a common background, due to the current induced by the alternating electromagnetic fields of the common background in adjacent loop elements, Will be offset. This will not be the case for the current induced by providing an excitation signal to the first conductive pattern because the configuration of the excitation signal and the respective loop elements of the receiving coil by the first conductive pattern of the stator element have different phases Will be induced by the exciting current. The rotor element 3 according to the embodiment further comprises transfer means in the form of a balanced drive coil (RDC). According to this embodiment, the stator element 4 consists of receiving means in the form of balanced receiving coils, as will be explained in more detail with reference to Fig. The balanced drive coil RDC of the rotor element 3 is adapted to be coupled to the second conductive pattern CT2 of the rotor element 3 such that the intermediate signal SI is applied to the first conductive pattern Such that the intermediate signal is propagated into the balanced drive coil of the rotor element 3 when the signal is generated in the second conductive pattern of the rotor element 3 due to the application of the energy, Is generated in the balanced receive coil (SRC) of the element (4).

좀 더 자세히는, 로터 요소(3)의 균형있는 구동 코일(RDC)는 제1 균형있는 구동 코일 섹션(RDCA)과 제2 균형있는 구동 코일 섹션(RDCB)의 형태인 두 개의 균형있는 구동 코일 섹션을 포함한다. 제1 및 제2 균형있는 구동 코일 섹션은, 각각의 제1 및 제2 균형있는 구동 코일 섹션내에 유도된 전류가 서로에 대해 반대 방향으로 흐르도록 구성된다. 이는, 제1 균형있는 구동 코일 섹션(RDCA)에 유도된 전류가 제2 균형있는 구동 코일 섹션(RDCB)에 유도된 전류에 대해 반대 방향으로 흐른다는 것을 의미한다. 제1 균형있는 구동 코일 섹션(RDCA)은 제3 반경 거리(RD3), 즉, 도 3을 참조하여 예시된 스테이터 요소와 같은 스테이터 요소(4)의 제1 균형있는 수신 코일 섹션(SRCA)의 반경 거리와 같은 거리에서 로터 요소(3)의 중심 주위에 동심원으로 배열되도록 구성된다. 제2 균형있는 구동 코일 섹션(RDCB)은 제4 반경 거리(RD4), 즉, 스테이터 요소(4)의 제2 균형있는 수신 코일 섹션(SRCB)의 반경 거리와 같은 거리에서에서 로터 요소(3)의 중심 주위에 동심원으로 배열되도록 구성된다. 이는, 로터 요소(3)의 제1 균형있는 구동 코일 섹션(RDCA)이, 스테이터 요소(4)의 제1 균형있는 수신 코일 섹션(SRCA)과 마주하도록 배열되고, 로터 요소(3)의 제2 균형있는 구동 코일 섹션(RDCB)이, 스테이터 요소(4)의 제2 균형있는 수신 코일 섹션(SRCB)과 마주하도록 배열되어서, 로터 요소(3)의 균형있는 구동 코일(RDC)에 에너지가 인가되면 상호 인덕턴스가 발생한다는 것을 의미한다. 이는, 균형있는 구동 코일(RDC), 그리고 이에 의해 로터 요소(3)의 균형있는 구동 코일 섹션들(RDCA, RDCB)이 상기 중간 신호(SI)에 의해 에너지 인가될 때, 상기 중간 신호(SI)는, 로터 요소(3)의 균형있는 구동 코일 섹션들(RDCA, RDCB)과 스테이터 요소(4)의 균형있는 수신 코일 섹션들(SRCA,SCRB) 사이의 상호 유도적 커플링 때문에, 스테이터 요소(4)의 균형있는 수신 코일 섹션들(SRCA, SRCB)로 전송될 것이다. 이는 신호, 즉 수신 신호(SR)는 스테이터 요소(4)의 균형있는 수신 코일(SRC)에서 생성되는데, 수신 신호(SR)는 전송된 중간 신호(SI)에 대응되고, 로터 요소(3)의 균형있는 구동 코일(RDC) 및 스테이터 요소(4)의 균형있는 수신 코일(SRC)를 통해 각각 수신된다.More specifically, the balanced drive coil (RDC) of the rotor element (3) comprises two balanced drive coil sections (RDCB) in the form of a first balanced drive coil section (RDCA) and a second balanced drive coil section . The first and second balanced drive coil sections are configured such that the currents induced in each of the first and second balanced drive coil sections flow in opposite directions with respect to each other. This means that the current induced in the first balanced drive coil section RDCA flows in the opposite direction to the current induced in the second balanced drive coil section RDCB. The first balancing drive coil section RDCA has a third radial distance RD3, i.e. the radius of the first balanced received section SRCA of the stator element 4, such as the stator element illustrated with reference to Figure 3, Are arranged concentrically about the center of the rotor element 3 at a distance equal to the distance. The second balancing drive coil section RDCB is located at a distance equal to the fourth radial distance RD4, i.e. the radial distance of the second balanced receiving coil section SRCB of the stator element 4, As shown in FIG. This is because the first balanced drive coil section RDCA of the rotor element 3 is arranged to face the first balanced received coil section SRCA of the stator element 4 and the second balanced drive coil section SRCA of the rotor element 3 A balanced drive coil section RDCB is arranged to face the second balanced receive coil section SRCB of the stator element 4 so that when energy is applied to the balanced drive coil RDC of the rotor element 3 Which means that mutual inductance occurs. This means that when the balanced drive coil RDC and thereby the balanced drive coil sections RDCA and RDCB of the rotor element 3 are energized by the intermediate signal SI, Due to the mutual inductive coupling between the balanced drive coil sections RDCA and RDCB of the rotor element 3 and the balanced receive coil sections SRCA and SCRB of the stator element 4, ) Balanced receiving coil sections SRCA, SRCB. This is because the signal, i.e. the received signal SR, is generated in the balanced receive coil SRC of the stator element 4, which corresponds to the transmitted intermediate signal SI, Balanced reception coil (RDC) and a balanced reception coil (SRC) of the stator element 4, respectively.

실시예에 따르면, 로터 요소(3)는, 일련의 수신 코일(RRC1-RRCi), 균형있는 구동 코일 섹션들(RDCA, RDCB)이 있는 균형있는 구동 코일(RDC) 및 적어도 하나의 커패시터 구성(미도시)에 의해 형성된 LC 밴드 패스 필터를 포함한다. 상기 LC 밴드 패스 필터는 상기 고주파수 여기 신호(E1-E4)의 주파수와 실질적으로 동일한 중심 주파수를 가지도록 구성된다. 상기 적어도 하나의 커패시터 구성은 상기 LC 밴드 패스 필터의 필터 특성에 의해 필터링되는 밴드 잡음의 감쇠를 제공하도록 구비된다.According to an embodiment, the rotor element 3 comprises a series of receiving coils RRC1 - RRCi, a balanced drive coil RDC with balanced drive coil sections RDCA, RDCB and at least one capacitor arrangement Lt; RTI ID = 0.0 > (LC) < / RTI > bandpass filter. The LC bandpass filter is configured to have a center frequency substantially equal to the frequency of the high frequency excitation signal (E1-E4). The at least one capacitor arrangement is adapted to provide attenuation of the band noise filtered by the filter characteristic of the LC bandpass filter.

실시예에 따르면, 로터 요소(3)는, 내장된 커패시턴스 물질(ECM)을 사용하여 로터 요소(3) 내에 내장되는, 적어도 하나의 커패시턴스 층(미도시)을 포함한다. 일련의 수신 코일(RRC1-RRCi)와 균형있는 구동 코일(RDC)와 함께, 적어도 하나의 커패시턴스 층은 상기 언급된 LC 밴드 패스 필터를 형성한다. 필터링 커패시터 기능이 적어도 하나의 커패시턴스 층의 형태로 로터 요소(3) 내에 내장되기 때문에, 스트레스나 핸들링에 의한 기계적 손상 위험은 크게 줄어든다.According to an embodiment, the rotor element 3 comprises at least one capacitance layer (not shown) embedded in the rotor element 3 using an embedded capacitance material (ECM). With a series of receiving coils (RRC1-RRCi) and balanced drive coils (RDC), at least one of the capacitance layers forms the LC bandpass filter mentioned above. Since the filtering capacitor function is embedded in the rotor element 3 in the form of at least one capacitance layer, the risk of mechanical damage due to stress or handling is greatly reduced.

실시예에 따르면, 로터 요소(3)의 외부 지름은 40 mm와 같이 10-500 mm를 포함하는 지름의 범위에서 선택된다.According to an embodiment, the outer diameter of the rotor element 3 is selected in the range of diameters including 10-500 mm, such as 40 mm.

도 1을 참조하여 기술된 것과 유사한, 도 3을 참조로 예시된 로터 요소는 PCB와 같이 전기적으로 절연 기판으로 제조되는 것이 바람직하다는 것에 유의한다.It should be noted that the rotor element illustrated with reference to FIG. 3, similar to that described with reference to FIG. 1, is preferably made of an electrically insulating substrate such as a PCB.

도 5a를 참조하여, 본 발명의 실시예에 따라 스테이터 요소와 로터 요소 사이에 상대적 움직임이 있을 때, 로터 요소 의 전도성 패턴에서 생성된 파형이 설명된다.Referring to Figure 5A, the waveforms produced in the conductive pattern of the rotor element are described when there is relative movement between the stator element and the rotor element in accordance with an embodiment of the present invention.

설명을 위해, 도 5a는, 일련의 구동 코일(SDC1-SDCk)의 형태인 제1 전도성 패턴을 가진 정지된 스테이터 요소(4)의 선형 컨피규레이션과 함께, 거기에 중첩된 일련의 수신 코일(RRC1-RRCi)의 형태인 제2 전도성 패턴을 가진 상대적으로 움직이는 로터 요소(3)의 선형 컨피규레이션을 도시한다. 로터 요소(3)는 방향(MV)로 스테이터 요소(4)에 대해 왕복하여 움직인다. 따라서, 도 5a는, 정지된 스테이터 요소에 대해 로터 요소가 선형으로 움직이면, 선형 유도성 인코더로부터 출력된 파형이 있는 선형 유도성 인코더를 도시한다. 그러나, 출력 파형에 대해, 로터 요소의 상대적 움직임이 있으면, 동일한 원리가 선형 및 로터리 인코더에 적용된다.5A shows a linear configuration of a stationary stator element 4 having a first conductive pattern in the form of a series of drive coils SDC1-SDCk, along with a series of receive coils RRC1- Lt; / RTI > shows a linear configuration of a relatively moving rotor element 3 having a second conductive pattern in the form of a first conductive pattern RRCi. The rotor element 3 moves reciprocally with respect to the stator element 4 in the direction MV. Thus, Figure 5a shows a linear inductive encoder with a waveform output from a linear inductive encoder if the rotor element moves linearly relative to a stationary stator element. However, for an output waveform, if there is a relative movement of the rotor elements, the same principle applies to the linear and rotary encoders.

설명을 위해, 로터 요소와 스테이터 요소의 일부분만 도 5a에 도시된다. 도 5a에 도시된 로터 요소의 일부분은 로터 요소(3)의 일련의 수신 코일의 두 개의 연속적인 수신 코일(RRC1-RRC2)을 포함하는데, 두 개의 수신 코일(RRC1-RRC2)의 각각은, 예를 들어 도 4를 참조하여 예시된 바와 같이, 제1 및 제2 루프 뒤얽힌 루프(RRC1:L1, RRC1:L2 및 RRC2:L1, RRC2:L2)를 각각 포함한다. 도 5adp 도시된 스테이터 요소의 일부분은 스테이터 요소(4)의 일련의 수신 코일(SDC1-SDCk)의 8개의 연속적인 구동 코일(SDC1-SDC8)을 포함한다.For purposes of illustration, only a portion of the rotor element and the stator element are shown in Figure 5A. A portion of the rotor element shown in Figure 5A comprises two consecutive receiving coils RRC1-RRC2 of a series of receiving coils of the rotor element 3, each of the two receiving coils RRC1- (RRC1: L1, RRC1: L2 and RRC2: L1, RRC2: L2), respectively, as illustrated with reference to FIG. A portion of the stator element shown in Figure 5adp includes eight consecutive drive coils (SDC1-SDC8) of a series of receive coils (SDC1-SDCk) of the stator element 4. [

도 2를 참조하여 좀 더 자세히 예시된 신호 생성 회로(6)로부터 제공된 도 5a에 도시된 여기 신호(SE)는 도 5a를 참조하여 설명된 예시에서, 4개의 고주파수 여기 신호를 가진 멀티-위상 고주파수 여기 신호(SE)로서, 각각은 실질적으로 일정한 진폭 및 기설정된 위상의 수를 가진다. 좀 더 자세히는, 멀티-위상 고주파수 신호(SE)는 0°위상을 가진 고주파수 여기 신호(E1), 90°위상을 가진 고주파수 여기 신호(E3), 180°위상을 가진 고주파수 여기 신호(E2) 및 270°위상을 가진 고주파수 여기 신호(E4)를 포함한다.The excitation signal SE shown in Fig. 5A provided from the signal generation circuit 6 illustrated in more detail with reference to Fig. 2, in the example described with reference to Fig. 5A, is a multi-phase high frequency As the excitation signal SE, each has a substantially constant amplitude and a predetermined number of phases. More specifically, the multi-phase high frequency signal SE includes a high frequency excitation signal E1 with a 0 degree phase, a high frequency excitation signal E3 with a 90 degree phase, a high frequency excitation signal E2 with a 180 degree phase, And a high-frequency excitation signal E4 having a 270 [deg.] Phase.

도 5a를 참조한 예시에서, 스테이터 요소의 일련의 구동 코일은 4개의 연속적이 구동 코일을 포함하여, 주기적으로 반복되는 위상 패턴(P1)으로 배열된다. 이는, 연속적인 순서(SDC1-SDC4)에서 제1, 제2, 제3 및 제4 구동 코일은 반복되는 위상 패턴(P1)을 형성하는데, 이는 구동 코일(SDC5-SDC8)의 형태인 제1 반복(P2)으로 반복된다.In the example with reference to Fig. 5a, the series of drive coils of the stator element comprises four consecutive drive coils, arranged in a periodically repeated phase pattern P1. This means that the first, second, third and fourth drive coils form a repetitive phase pattern P1 in successive sequences (SDC1-SDC4), which is the first iteration in the form of drive coils (SDC5-SDC8) (P2).

멀티-위상 여기 신호(SE)의 여기 신호(E1-E4)는, 도 5a를 참조한 예시에서, 스테이터 요소의 구동 코일에 제공되도록 구비되어서, 반복 위상 패턴(P1)의 각각의 반복(P1-P2)의 연속적인 순서에서 첫 번째인 제1 구동 코일(SDC1, SDC5)에 여기 신호(E1)가 공급되고, 반복 위상 패턴(P1)의 각각의 반복(P1-P2)의 연속적인 순서에서 두 번째인 제2 구동 코일(SDC2, SDC6)에 여기 신호(E3)가 공급되며, 반복 위상 패턴(P1)의 각각의 반복(P1-P2)의 연속적인 순서에서 세 번째인 제3 구동 코일(SDC3, SDC7)에 여기 신호(E2)가 공급되고, 반복 위상 패턴(P1)의 각각의 반복(P1-P2)의 연속적인 순서에서 네 번째인 제4 구동 코일(SDC4, SDC8)에 여기 신호(E4)가 공급된다.The excitation signals E1-E4 of the multi-phase excitation signal SE are adapted to be provided to the drive coils of the stator element in the example with reference to Figure 5a so that each repetition of the repetitive phase pattern P1 The excitation signal E1 is supplied to the first driving coils SDC1 and SDC5 which are the first in the continuous sequence of the repetitive phase patterns P1 and P2, The excitation signal E3 is supplied to the second drive coils SDC2 and SDC6 and the third drive coils SDC3 and SDC3 which are the third in the sequence of each repetition P1- The excitation signal E2 is supplied to the fourth drive coils SDC4 and SDC8 and the fourth drive coils SDC4 and SDC8 which are fourth in the sequence of the repetitions P1 to P2 of the repetitive phase patterns P1, .

도 5a를 참조하여 설명된 예시에서, 로터 요소는, 도시된 수신 코일(RRC1, RRC2)의 각각의 제1 및 제2 루프(RRC1:L1, RRC1:L2, RRC2:L1, RRC2:L2)가 스테이터 요소의 두 개의 연속적인 구동 코일과 마주하도록, 스테이터 요소에 대해 위치된다. 좀 더 자세히는, 제1 수신 코일(RRC1)의 제1 루프(RRC1:L1)는 제1 및 제2 연속적인 구동 코일(SDC1, SDC2)과 각각 마주하고, 제1 수신 코일(RRC1)의 제2 루프(RRC1:L2)는 제3 및 제4 연속적인 구동 코일(SDC3, SDC4)과 각각 마주하며, 제2 수신 코일(RRC2)의 제1 루프(RRC2:L1)는 제5 및 제6 연속적인 구동 코일(SDC5, SDC6)과 각각 마주하고, 제2 수신 코일(RRC2)의 제2 루프(RRC2:L2)는 제7 및 제8 연속적인 구동 코일(SDC7, SDC8)과 각각 마주한다. 제1 및 제2 수신 코일은 각자의 구동 코일에 오버랩하면서 위치되어서, 도 4를 참조하여 설명된, 각각의 수신 코일(RRC1, RRC2)의 표시 번호(L1 및 L2)가 있는 제1 및 제2 루프 요소는 두 개의 연속적인 구동 코일에 마주하는데, 즉, 각각의 수신 코일은 4개의 연속적인 구동 코일의 상단에 중심에 위치된다.In the example described with reference to Fig. 5A, the rotor element has a first and a second loop (RRC1: L1, RRC1: L2, RRC2: L1, RRC2: L2) of each of the illustrated receive coils RRC1, RRC2 Is positioned relative to the stator element to face two successive drive coils of the stator element. More specifically, the first loop RRC1 (L1) of the first receiving coil RRC1 faces the first and second continuous driving coils SDC1 and SDC2, respectively, and the first receiving coil RRC1 The first loop RRC2: L1 of the second receiving coil RRC2 faces the third and fourth consecutive driving coils SDC3 and SDC4, respectively, while the second loop RRC2: And the second loop RRC2: L2 of the second receiving coil RRC2 faces the seventh and eighth consecutive driving coils SDC7 and SDC8, respectively. The first and second receiving coils are positioned overlapping with their respective driving coils so that the first and second receiving coils RRC1 and RRC2 having the display numbers L1 and L2 of the respective receiving coils RRC1 and RRC2, The loop element faces two consecutive drive coils, i.e. each receive coil is centered on the top of four consecutive drive coils.

상기 설명된 바와 같이 여기 신호(SE)가 스테이터 요소의 일련의 구동 코일에 제공되어서, 상호 유도 때문에 스테이터 요소의 구동 코일과 로터 요소의 수신 코일 사이의 전류는 로터 요소의 수신 코일 내에서 유도되어서, 중간 신호(SI)가 로터 요소(3)의 수신 코일 내에 형성되는 결과를 초래한다. 이러한 중간 신호는 도 4를 참조하여 좀 더 자세히 설명되는 바와 같이, 나중에 로터 요소의 균형있는 구동 코일에서 스테이터 요소의 균형있는 수신 코일로 전송될 것이다. 이는 결과적으로, 중간 신호(SI)에 대응되는 수신 신호(SR)가 스테이터 요소, 즉, 스테이터 요소의 균형있는 수신 코일 내에서 생성된다. 이전에 기술된 스테이터 요소와 로터 요소 및 멀티-위상 여기 신호와 중간 신호의 컨피규레이션 때문에, 따라서, 수신 신호(SR)가 멀티-위상 여기 신호의 위상의 합산에 대응되는 위상을 가질 것이다. 수신 신호(SR)의 상기 위상은, 로터 요소가 스테이터 요소에 대해 움직이면서, 위상 시프트될 것인데, 즉, 수신 신호의 위상은 로터 요소와 스테이터 요소 사이의 상대적 위치에 기초하여, 멀티-위상 고주파수 여기 신호(SE)의 고주파수 여기 신호의 각각에 대해 왕복 방향(SRM)을 따라 움직인다.As described above, the excitation signal SE is provided to the series of drive coils of the stator element such that the current between the drive coil of the stator element and the receive coil of the rotor element is induced in the receive coil of the rotor element, Resulting in the intermediate signal SI being formed in the receiving coil of the rotor element 3. [ This intermediate signal will then be transmitted from the balanced drive coil of the rotor element to the balanced receive coil of the stator element, as will be described in more detail with reference to Fig. As a result, the received signal SR corresponding to the intermediate signal SI is generated in the stator element, that is, in the balanced receiving coil of the stator element. Due to the configuration of the previously described stator element and rotor element and the multi-phase excitation signal and the intermediate signal, therefore, the received signal SR will have a phase corresponding to the sum of the phases of the multi-phase excitation signal. The phase of the received signal SR will be phase shifted, with the rotor element moving relative to the stator element, i.e., the phase of the received signal, based on the relative position between the rotor element and the stator element, (SRM) for each of the high-frequency excitation signals of the high-frequency signal SE.

따라서, 멀티-위상 여기 신호의 고주파수 여기 신호의 가령, 어느 하나의 위상에 대한 수신 신호(SR)의 위상은 전기 각도로 표현된 각변위에 관하여, 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타낼 것이다. 전기 각도로 표현된 각 변위는 적어도 스테이터 요소의 측정 경로를 따라 배열된 주기적으로 반복되는 위상 패턴의 수에 대한 정보를 사용하여 기계 각도로 번역될 수 있다. 주기적으로 반복되는 위상 패턴의 각각의 반복은 전기 주기를 형성한다. 따라서, 전기 주기는 스테이터 요소에 대한 로터 요소의 전체 기계적 회전의 일부로 변역되는데, 여기서, 상기 일부는 전기 주기의 수, 즉, 주기적으로 반복되는 위상 패턴의 주기적 반복의 수에 의해 결정된다.Thus, for example, the phase of the received signal (SR) for any one phase of the high frequency excitation signal of the multi-phase excitation signal will represent the relative displacement between the rotor element and the stator element, with respect to the angular displacement expressed in terms of the electrical angle . The angular displacement expressed in electrical angles can be translated into a machine angle using information on the number of periodically repeated phase patterns arranged at least along the measurement path of the stator element. Each iteration of the periodically repeated phase pattern forms an electrical period. Thus, the electrical period is transformed into a portion of the total mechanical rotation of the rotor element relative to the stator element, where the fraction is determined by the number of electrical periods, i.e. the number of periodic iterations of the periodically repeated phase pattern.

도 5a를 더욱 참조하여 설명된 예시에서, 로터 요소는 스테이터 요소에 대해 위치되어서, 수신 신호(SR)가 멀티-위상 고주파수 여기 신호(SE)의 고주파수 여기 신호(E1)에 대해 45°위상 시프트, 즉, 위상 차이가(PD)가 45°를 가지도록 한다. 이는, 로터 요소가 스테이터 요소에 대해 위치되어서, 로터 요소의 수신 코일(RRC1)의 제1 루프(RRC1:L1)가 구동 코일(SDC1)의 중심에 대해 45°위치되도록 하는데, 즉, 도 5a에서 예시된 바와 같이, 제1 루프의 중심은 구동 코일(SDC1)와 구동 코일(SDC2) 사이에 위치된다는 것을 의미한다. 이는, 제1 루프(RRC1:L1)의 중심이 구동 코일(SDC1)의 중심에 정렬될 때, 즉, 제1 루프(RRC1:L1)이 SDC1의 상단에 가운데에 있을 때, 로터 요소와 스테이터 요소 사이의 상대적 위치에 비해, 로터 요소는 45 전기 각도 이동되어 위치된다는 것을 의미하고, 상대적 위치에 대해, 수신 신호(SR)는 여기 신호(E1)와 위상에 있는데, 즉, E1과 SR 사이의 위상 차이(PD)는 0도이다. 로터가 스테이터 요소에 대해 이동되었는지, 또는 로터가 정지되는지 또는 일시적으로 정지 위치에 있는지를 결정하기 위하여, 이전에 검출된 위상 차이가 사용될 수 있다. 예시로서, 이전의 위상 차이가 0 전기 각도이고, 전류 위상 차이가 45 전기 각도인 경우에, 로터 요소는 스테이터 요소에 대해 45 전기 각도로 움직였다고 결론지을 수 있다. 스테이터 요소에 대한 로터 요소의 왕복 모션을 검출하기 위해, 이전에 결정된 위상 시프트와 관련하여 위상 시프트에서의 증가 또는 감소가 사용된다.5A, the rotor element is positioned relative to the stator element such that the received signal SR is 45 DEG phase shifted relative to the high frequency excitation signal E1 of the multi-phase high frequency excitation signal SE, That is, the phase difference PD is set to 45 degrees. This ensures that the rotor element is positioned relative to the stator element such that the first loop (RRC1: L1) of the receiving coil RRC1 of the rotor element is positioned at 45 [deg.] With respect to the center of the driving coil SDC1, As illustrated, the center of the first loop means that it is located between the drive coil SDC1 and the drive coil SDC2. This means that when the center of the first loop RRC1: L1 is aligned with the center of the drive coil SDC1, i.e. when the first loop RRC1: L1 is centered on the top of the SDC1, The received signal SR is in phase with the excitation signal E1, that is, the phase between E1 and SR (i.e., the phase between E1 and SR) The difference (PD) is 0 degrees. The previously detected phase difference may be used to determine whether the rotor has moved relative to the stator element, or whether the rotor is stationary or temporarily in the stop position. By way of example, if the previous phase difference is a 0 electrical angle and the current phase difference is 45 electrical degrees, then the rotor element may conclude that it moved at an electrical angle of 45 relative to the stator element. In order to detect the reciprocating motion of the rotor element relative to the stator element, an increase or decrease in the phase shift is used in relation to the previously determined phase shift.

예를 들어, 스테이터 요소가 주기적으로 반복되는 위상 패턴(P1)의 6번의 반복을 포함한다면, 즉, 반복 위상 패턴(P1)이 P1 자신을 포함하여 스테이터 요소의 측정 경로를 따라 7번 나타난다면, 0°에서 360°즉, 0°에서 0°까지의 위상 차이의 진행이 전기 각도에서 360°의 상대적 각변위에 대응될 것이고, 이는 스테이터 요소에 대한 로터 요소의 전체 기계적 회전의 7번째인 일부의 상대적 각변위에 해당된다.For example, if the stator element includes six iterations of the periodic repeating phase pattern P1, i.e., the repeating phase pattern P1 appears seven times along the measuring path of the stator element, including P1 itself, The progression of the phase difference from 0 DEG to 360 DEG, i.e. from 0 DEG to 0 DEG, will correspond to a relative angular displacement of 360 DEG from the electrical angle, which corresponds to the seventh portion of the total mechanical rotation of the rotor element relative to the stator element Relative angular displacement.

로터 요소와 스테이터 요소의 상대적 위치에 의존하는 멀티-위상 고주파수 여기 신호(SE)를 사용하여 에너지 인가에 기인한 수신 신호(SR)와 관련한, 상기 기술된 결과 파형은 도 5b에도 나타나는데, 설명을 위해, 도 5a를 참조하여 기술된 것과 유사한 방식으로 정지된 스테이터 요소(4)의 선형 컨피규레이션과 상대적으로 움직이는 로터 요소(3)를 도시하고, 여기서, 스테이터 요소, 로터 요소 및 여기 신호는 도 5a를 참조하여 기술된 것과 유사하게 구성된다. 그러나, 도 5b에서, 로터 요소는 스테이터 요소에 대해 135°전기 각도 움직였다. 이는, 수신 신호(SR)가 135°위상 시프트되었고, 즉, 멀티-위상 고주파수 신호(SE)의 고주파수 여기 신호(E1)의 위상에 대해 135°인 위상 차이(PD)를 가지는 것에 의해 알 수 있다. 좀 더 자세히는, 도 5b에 도시된 로터 요소(3)는 스테이터 요소(4)에 대해 움직여서, 제1 수신 코일(RRC1)의 제1 루프(RRC1:L1)가 제2 및 제3 연속적인 구동 코일(SDC2, SDC3)에 각각 마주하고, 제1 수신 코일(RRC1)의 제2 루프(RRC1:L2)가 제4 및 제5 연속적인 구동 코일(SDC4, SDC5)에 각각 마주하고, 제2 수신 코일(RRC2)의 제1 루프(RRC2:L1)가 제6 및 제7 연속적인 구동 코일(SDC6, SDC7)에 각각 마주하고, 제2 수신 코일(RRC2)의 제2 루프(RRC2:L2)가 제8 및 제9 연속적인 구동 코일(SDC8, SDC9)에 각각 마주한다.The resulting waveforms described above with respect to the received signal SR due to energization using a multi-phase high frequency excitation signal SE dependent on the relative position of the rotor element and the stator element are also shown in Figure 5b, , The rotor element 3 moving relative to the linear configuration of the stationary stator element 4 in a manner similar to that described with reference to Figure 5a, wherein the stator element, the rotor element and the excitation signal refer to Figure 5a Lt; / RTI > However, in Figure 5b, the rotor element moved 135 ° electrical angle relative to the stator element. This can be seen by having the received signal SR have a phase shift of 135 °, i.e. having a phase difference PD of 135 ° with respect to the phase of the high frequency excitation signal E 1 of the multi-phase high frequency signal SE . More specifically, the rotor element 3 shown in Figure 5b moves relative to the stator element 4 so that the first loop RRC1 (L1) of the first receiving coil RRC1 is driven by the second and third consecutive drives The second loop RRC1: L2 of the first receiving coil RRC1 faces the fourth and fifth continuous driving coils SDC4 and SDC5, respectively, and the second reception The first loop RRC2 of the coil RRC2 faces the sixth and seventh consecutive driving coils SDC6 and SDC7 and the second loop RRC2 L2 of the second receiving coil RRC2 Eighth and ninth consecutive drive coils SDC8 and SDC9, respectively.

로터 요소 및/또는 스테이터 요소는 도 5a와 도 5b를 참조하여 설명된 예시와 상이하게 구성될 수 있다는 것에 유의해야 한다. 예를 들어, 반복되는 위상 패턴에 포함된 구동 코일의 수는 더 많거나 더 적은 구동 코일을 포함할 수 있다. 각각의 구동 코일에는 서로 다른 여기 신호가 제공될 수 있다. 예시로서, 반복되는 위상 패턴은 3개의 연속 구동 코일을 포함할 수 있는데, 상기 구동 코일에는 구동 코일 또는 반복되는 위상 패턴의 연속적인 순서로 0°위상, 120°위상 및 240°위상으로 공급된다. 또한, 신호(E1)말고 또 다른 신호가 레퍼런스 신호로서 사용될 수 있는데, 가령, 신호(E1-E4) 중 어느 것이 사용될 수 있다. 또한, 변형예는 가령, 도 1 내지 도 4를 참조하여 상기 기술된 하나 이상의 서로 다른 실시예와 함께 기술된 하나 이상의 특징을 포함할 수 있다.It should be noted that the rotor element and / or the stator element may be configured differently from the example described with reference to Figures 5A and 5B. For example, the number of drive coils included in the repeated phase pattern may include more or less drive coils. Different excitation signals may be provided for each drive coil. By way of example, the repeated phase pattern may include three consecutive drive coils, which are supplied in 0 占 phase, 120 占 phase, and 240 占 phase in a continuous sequence of drive coils or repeating phase patterns. Further, another signal other than the signal E1 may be used as the reference signal, for example, any of the signals E1-E4 may be used. In addition, variations may include, for example, one or more features described in conjunction with one or more of the other embodiments described above with reference to Figures 1-4.

더구나, 도 5a와 5b를 참조하여 설명된 예시는 선형 레이아웃에서 로터 요소와 스테이터 요소의 일부만을 각각 도시한다는 것에 유의해야 한다. 따라서, 로터 요소와 스테이터 요소는 로터리 변위 센서를 제공하기 위해 환형 방식으로 구성될 수 있다. 또한, 로터 요소는 도 5a 및 5b에 도시된 것보다 더 많은 수신 코일을 포함할 수 있고, 스테이터 요소는 도 5a 및 5b에 도시된 것보다 더 많은 구동 코일을 포함할 수 있다. 또한, 예를 들어, 구동 코일/수신 코일의 수 및 반복되는 위상 패턴(P1)에 포함된 구동 코일의 수와 관련된 스테이터 요소와 로터 요소의 컨피규레이션에 의존하여, 스테이터 요소에 대한 로터 요소의 기계적 회전당 전기적 주기의 수는 상이할 수 있는데, 가령, 반복되는 위상 패턴이 0번 반복되면, 즉, 반복 P2, P3등 없이, 오직 위상 패턴(P1) 자체만 스테이터 요소의 측정 경로를 따라 나타난다면, 스테이터 요소에 대한 로터 요소의 기계적 회전당 전기적 주기의 대응되는 수는 하나일 것이다.It should be further noted that the example described with reference to Figures 5a and 5b shows only a portion of the rotor element and the stator element in the linear layout, respectively. Thus, the rotor element and the stator element can be configured in an annular fashion to provide a rotary displacement sensor. In addition, the rotor element may include more receiver coils than shown in Figures 5A and 5B, and the stator element may include more drive coils than those shown in Figures 5A and 5B. Further, depending on the configuration of the stator element and the rotor element, for example, related to the number of drive coils / receiver coils and the number of drive coils included in the repeated phase pattern Pl, the mechanical rotation of the rotor element relative to the stator element The number of electrical charge cycles can be different, for example, if only the phase pattern P1 itself appears along the measurement path of the stator element, if the repeated phase pattern is repeated 0 times, i.e. without repeating P2, P3, The corresponding number of electrical cycles per mechanical rotation of the rotor element for the stator element will be one.

도 6a를 참조하여, 본 발명의 실시예에 따른 유도성 로터리 인코더를 위한 신호 프로세서 회로가 설명된다.6A, a signal processor circuit for an inductive rotary encoder according to an embodiment of the present invention is described.

신호 프로세서 회로(5)는 도 1 또는 도 3을 참조하여 예시된 스테이터 요소(4)와 같은 스테이터 요소에 결합되도록 구성된다. 좀 더 자세히는, 신호 프로세서 회로(5)는 도 3을 참조하여 예시된 적어도 하나의 주요 단자(M1)와 같은 적어도 하나의 주요 단자를 통해 스테이터 요소에 결합되도록 구성된다.The signal processor circuit 5 is configured to couple to a stator element such as the stator element 4 illustrated with reference to Fig. 1 or Fig. More specifically, the signal processor circuit 5 is configured to couple to the stator element via at least one main terminal, such as at least one main terminal M1 illustrated with reference to Fig.

신호 프로세서 회로(6)는, 로터 요소(3)의 제1 전도성 패턴이 여기되면, 로터 요소의 제2 전도성 패턴(CT2)에서 유도된 중간 신호(SI)에 대응되는 수신 신호(SR)을 수신하도록 구성된다. 좀 더 자세히는, 도 3 및 도 4를 참조하여 좀 더 자세힌 기술되는 바와 같이, 수신 신호(SR)는 로터 요소로부터 전송되고, 스테이터 요소에 의해 수신된 중간 신호(SI)에 대응된다.The signal processor circuit 6 receives the received signal SR corresponding to the intermediate signal SI derived from the second conductive pattern CT2 of the rotor element when the first conductive pattern of the rotor element 3 is excited . More specifically, as will be described in more detail with reference to Figures 3 and 4, the received signal SR is transmitted from the rotor element and corresponds to the intermediate signal SI received by the stator element.

신호 프로세서 회로(6)는, 여기 신호(SE) 또는 좀 더 자세히는 멀티-위상 여기 신호(SE)의 여기 신호(E1-E4) 중 하나 에 대응되는 레퍼런스 신호(SREF)를 수신하도록 더욱 구성된다. 멀티위상 여기 신호의 여기 신호(E1-E4) 중 어느 것은 레퍼런스 신호(SREF)로서 사용될 수 있다는 것도 이해해야 한다.The signal processor circuit 6 is further configured to receive a reference signal SREF corresponding to one of the excitation signals E1-E4 of the excitation signal SE or more specifically the multi-phase excitation signal SE . It should also be understood that any of the excitation signals E1-E4 of the multi-phase excitation signal can be used as the reference signal SREF.

신호 프로세서(5)는, 수신 신호(SR)에 기초하여 증폭된 신호(SI)를 제공하기 위하여, 수신 신호(SR)를 증폭하도록 마련된 차동 전치증폭 회로(11)를 포함한다. 전치-증폭 회로에는 신호 프로세서 회로에 포함된 밴드 패스 필터 회로(12)에 결합되도록 구성되고, 수신 신호(SR)의 증폭된 버전인 상기 증폭된 신호(SI)를 밴드 패스 필터 회로(12)에 전송한다.The signal processor 5 includes a differential preamplifier circuit 11 provided to amplify the received signal SR so as to provide an amplified signal SI based on the received signal SR. The preamplifier circuit is connected to the bandpass filter circuit 12 included in the signal processor circuit and supplies the amplified signal SI as an amplified version of the received signal SR to the bandpass filter circuit 12 send.

밴드 패스 필터 회로는 신호 생성 회로(6)에 의해 생성된 여기 신호(SE)의 주파수와 실질적으로 동일한 중심 주파수를 가지도록 구성된다. 이는, 밴드 패스 필터 회로 중심 주파수 근처의 주파수 성분은 밴드 패스 필터 회로의 출력으로 통과되고, 나머지 주파수 성분은 감소, 즉, 실질적으로 필터링 될 것이라는 점을 의미한다. 따라서, 여기 신호(SE)의 주파수 근처의 주파수를 가진 밴드 패스 필터 회로에 의해 수신된 증폭된 신호(SI)의 주요 주파수 성분은 밴드 패스 필터 회로에 의해 출력될 것이지만, 나머지 주파수 성분은 매우 감쇠될 것이다.The band pass filter circuit is configured to have a center frequency substantially equal to the frequency of the excitation signal SE generated by the signal generation circuit 6. [ This means that the frequency component near the bandpass filter circuit center frequency will be passed to the output of the bandpass filter circuit and the remaining frequency components will be reduced, i.e. substantially filtered. Therefore, the main frequency component of the amplified signal SI received by the band-pass filter circuit having a frequency near the frequency of the excitation signal SE will be output by the band-pass filter circuit, but the remaining frequency components are very attenuated will be.

밴드 패스 필터 회로(12)는 필터링된 신호(S2)를 제공하기 위해 위상 검출 회로(13)에 결합되도록 더욱 구비되는데, 상기 필터링된 신호는 상기 언급된 증폭된 신호(SI)에 대해 밴드 패스 필터(12)에 의해 수행된 밴드 패스 필터링 프로세스의 결과 신호이다.The bandpass filter circuit 12 is further provided to be coupled to the phase detection circuit 13 for providing a filtered signal S2 which is applied to the bandpass filter < RTI ID = 0.0 > (12). ≪ / RTI >

위상 검출 회로(13)는 상기 언급된 필터링된 신호(S2)와 레퍼런스 신호(SREF)를 수신하도록 구성된다.The phase detection circuit 13 is configured to receive the above-mentioned filtered signal S2 and the reference signal SREF.

위상 검출 회로는 복조기나 디코더로 구성된다. 위상 검출 회로(13)는 공지된 주파수 및 여기 신호(SE)에 대응되는 위상 관계를 가진 레퍼런스 신호를 사용하여 작동되도록 구성된다. 좀 더 자세히는, 위상 검출 회로는 레퍼런스 신호(SREF)와 필터링된 신호(S2) 사이의 위상 차이를 검출하고 출력하도록 구성되는데, 위상 검출 회로에 의해 검출되고 출력되는 상기 위상 차이는 스테이터 요소(4)와 로터 요소(3) 사이의 상대적 변위를 나타낸다.The phase detection circuit is composed of a demodulator and a decoder. The phase detection circuit 13 is configured to operate using a reference signal having a phase relation corresponding to a known frequency and an excitation signal SE. More specifically, the phase detection circuit is configured to detect and output the phase difference between the reference signal SREF and the filtered signal S2, wherein the phase difference detected and output by the phase detection circuit is determined by the phase difference between the stator element 4 ) And the rotor element (3).

바람직하게는, 위상 검출 회로(13)는, 수신된 레퍼런스 신호(SREF)와 필터링된 신호(S2)에 기초하여, 도 1을 참조하여 설명된, 상기 수신된 신호(SR)와 상기 여기 신호(SE)의 위상 차이를 나타내는 두 개의 콰드러처 신호(I1 및 Q1)의 형태로 정보(OUT)를 각각 생성하고 출력하는 인-페이즈/콰드러쳐(in-phase/quadrature(I/Q) 복조기 또는 I/Q 디코더 회로를 포함한다. 바람직하게는, I/Q 복조기는, I1 및 Q1 신호의 신호 베리에이션을 각각 억제하기 위하여, 로우 패스 필터링을 제공하는 적어도 하나의 로우 패스 필터를 더 포함한다. 로우 패스 필터링은 고주파수 여기 신호를 필터링 함에 의해 변위 센싱의 정확도를 높인다.Preferably, the phase detection circuit 13 detects the phase difference between the received signal SR and the excitation signal SIRF, described with reference to FIG. 1, based on the received reference signal SREF and the filtered signal S2. Phase / quadrature (I / Q) demodulator (I / Q) demodulator that generates and outputs information OUT in the form of two quadrature signals I1 and Q1, respectively, Or an I / Q decoder circuit. Preferably, the I / Q demodulator further comprises at least one low-pass filter that provides low-pass filtering to suppress signal variation of the I1 and Q1 signals, respectively. Low pass filtering increases the accuracy of displacement sensing by filtering the high frequency excitation signal.

I/Q 복조 회로는 가령, 두 개의 복조기를 포함할 수 있는데, 이 중 하나는 인-페이즈 신호(I1)를 생성하고, 이 중 하나는 콰드러처-페이즈 신호(Q1)를 생성한다. 인-페이즈(I1) 신호를 생성하도록 구성된 복조기는 0°위상을 사용하여 작동될 수 있고, 콰드러처-페이즈 신호(Q1)를 생성하도록 구성된 복조기는 90°위상을 사용하여 작동될 수 있다.The I / Q demodulation circuit may comprise, for example, two demodulators, one of which produces an in-phase signal I1, one of which produces a quadrature-phase signal Q1. A demodulator configured to generate an in-phase (I1) signal may be operated using a 0 [deg.] Phase and a demodulator configured to generate a quadrature-phase signal (Q1) may be operated using a 90 [deg.] Phase.

신호 프로세서 회로(5)는 아날로그-투-디지털 컨버터(ADC)(14)를 더 포함할 수 있다. ADC(14)는 위상 검출 회로(13)로부터 출력된 신호를 수신하고, 위상 검출 회로(13)로부터 수신된 신호의 아날로그-투-디지털 전환을 제공하기 위하여, 위상 검출 회로에 결합되도록 구성된다. ADC(14)는 12-비트 ADC로서 구성될 수 있고, 또는 애플리케이션에 의존하여 서로 다른 비트 레졸루션을 사용하여 작동되도록 구성될 수 있다. 따라서, ADC(14)는 입력으로서 수신된 신호(I1, Q1)의 디지털화된 버전(I2, Q2)을 출력하도록 구성된다.The signal processor circuit 5 may further include an analog-to-digital converter (ADC) The ADC 14 is configured to receive the signal output from the phase detection circuit 13 and to couple to the phase detection circuit to provide an analog-to-digital conversion of the signal received from the phase detection circuit 13. [ The ADC 14 may be configured as a 12-bit ADC, or it may be configured to operate using different bit resolutions depending on the application. Thus, the ADC 14 is configured to output a digitized version (I2, Q2) of the received signal (I1, Q1) as an input.

상기 기술된 신호 프로세서 회로는 도 6을 참조하여 기술된 신호 프로세서와 상이하게 구성될 수 있다는 것에 유의해야 한다. 예를 들어, 신호 프로세서 회로는 필터와 증폭기와 같은 구성을 더 많이 또는 더 적게 포함할 수 있다.It should be noted that the signal processor circuit described above can be configured differently from the signal processor described with reference to Fig. For example, the signal processor circuit may include more or less configurations such as filters and amplifiers.

로터 요소(3)와 스테이터 요소(4) 사이의 결과적인 상대적 변위(D)를 분명하게 결정하기 위하여, 역탄젠트 함수, 즉, "아크탄젠트" 함수가 사용될 수 있는데, 방정식(1)에 의해 주어진다.In order to clearly determine the resulting relative displacement D between the rotor element 3 and the stator element 4, an inverse tangent function, i.e. an "arctangent" function may be used, given by equation (1) .

Figure pct00001
Figure pct00001

방정식(1)에서, (1) 항 I1은 인-페이즈 신호(I1)이고, 항 Q1은 위상 검출 회로(13)에 의해 출력된 콰드러처-페이즈 신호(Q1)이다. 방정식(1)과 관련하여 좀 더 자세히는, 상대적 변위(D)는 I1 신호의 절대값이 신호(Q1)의 절대값 보다 더 큰지에 따라 상이하게 파생된다. 어떻게 상대적 변위(D)가 파생되는지와 관련된 표현이 방정식 (1)에 포함되어서, 아크탄젠트 함수는 0°내지 90°의 범위 내의 파라미터에 대한 단일 값을 제공하기 때문에, 방정식 (1)의 항의 실제 값과 독립적으로 D의 단일 값을 파생할 수 있는 조건이다. 인-페이즈와 콰드러처 신호(I1, Q1)은 각각 아래의 방정식 2와 3에 의해 표현될 수 있다.In equation (1), (1) item I1 is the in-phase signal I1, and item Q1 is the quadrature-phase signal Q1 output by the phase detection circuit 13. More specifically with respect to equation (1), the relative displacement (D) is derived differently depending on whether the absolute value of the I1 signal is greater than the absolute value of the signal (Q1). Since the expression relating to how the relative displacement D is derived is included in equation (1), the arc tangent function provides a single value for a parameter in the range of 0 [deg.] To 90 [deg.], It is a condition that can derive a single value of D independent of the value. The in-phase and quadrature signals I1 and Q1 can be expressed by the following equations 2 and 3, respectively.

Figure pct00002
Figure pct00002

방정식 (2)와 (3)의 항 fc는 가령 E1과 같은 SREF로 사용되는 신호와 함께 위상에 있는 신호를 표시하고, 이는 SREF와 동일한 주파수를 가진다. 각각 인-페이즈 신호(I1)와 콰드러처 신호(Q1)와 관련된 방정식 (2)와 (3)에서, 항 SR은 가령, 도 1, 5a, 5b 및 6 중 어느 것을 차조하여 상기 자세히 설명된 수신 신호(SR)을 표시한다. 따라서, 수신 신호(SR)는, 스테이터 요소의 제1 전도성 패턴(CT1)에 제공되면, 로터 요소(3)의 제2 전도성 패턴(CT2) 내에 유도된 여기 신호의 위상 합산으로 생성되는 생성된 중간 신호(SI)에 대응된다. 방정식 (2)와 (3)에서 항 t는 시간을 표시한다. 상기 기술된 4-위상 패턴이 상기 기술된 바와 같이, 4개의 여기 신호, 하나는 0°위상, 하나는 90°위상, 하나는 180°위상 하나는 270°위상을 포함하는 멀티-위상 여기 신호의 여기 신호에 의해 에너지 인가되어 실행되는 경우에, 수신 신호(SR)는 방정식 (4)에 의해 주어진다.The term fc in equations (2) and (3) represents a signal in phase with a signal used for SREF, such as E1, which has the same frequency as SREF. In the equations (2) and (3) associated with the in-phase signal I1 and quadrature signal Q1, respectively, the term SR may be expressed, for example, in any of Figures 1, 5a, 5b and 6, And displays the received signal SR. Thus, the received signal SR, when provided in the first conductive pattern CT1 of the stator element, is generated by the phase sum of the excitation signal induced in the second conductive pattern CT2 of the rotor element 3, And corresponds to the signal SI. In equations (2) and (3), the term t denotes time. As described above, the four-phase pattern can be divided into four excitation signals, one for the 0 DEG phase, one for the 90 DEG phase, one for the 180 DEG phase and one for the 270 DEG phase When energized by the excitation signal and executed, the received signal SR is given by equation (4).

Figure pct00003
Figure pct00003

방정식 (4)에서, 항 AD는 스테이터 요소(4)와 로터 요소(3) 사이의 거리를 표시하고, 또한, 도 1을 참조하여 예시된 바와 같인 축 방향 거리(AD)라고도 한다. 방정식 (4)의 항

Figure pct00004
는 전기 주기 내의 스테이터 요소와 로터 요소 사이의 각변위, 즉, 상기 기술된 주기적으로 반복되는 위상 패턴 P1의 주기 내의 스테이터 요소와 로터 요소 사이의 각변위를 나타낸다. 도 3 및 도 4를 참조하여 예시된 스테이터 요소와 로터 요소에서, 스테이터 요소에 대해 로터 요소의 각각의 전체 기계적 회전에 대한 7개의 전기적 주기가 있는데, 즉, 주기적으로 반복되는 위상 패턴은 7번 반복된다.In equation (4), the term AD denotes the distance between the stator element 4 and the rotor element 3 and is also referred to as the axial distance AD as exemplified with reference to Fig. The term in equation (4)
Figure pct00004
Represents an angular displacement between the stator element and the rotor element in the period of the electric cycle, i.e., the angular displacement between the stator element and the rotor element in the period of the above-described periodically repeated phase pattern P1. In the stator element and the rotor element illustrated with reference to Figures 3 and 4, there are seven electrical cycles for each total mechanical rotation of the rotor element relative to the stator element, i.e., the periodically repeated phase pattern is repeated seven times do.

따라서, 수신 신호(SR)는 종속적인데, 즉, 멀티-위상 여기 신호의 컨피규레이션, 로터 요소와 스테이터 요소 사이의 거리(AD) 및 상기 언급된 스테이터 요소와 로터 요소 사이의 각변위

Figure pct00005
에 종속하는 함수 f 이다.Thus, the received signal SR is dependent, i.e. the configuration of the multi-phase excitation signal, the distance AD between the rotor element and the stator element, and the angular displacement between the aforementioned stator element and rotor element
Figure pct00005
Is a function f that depends on.

방정식 (1) 내지 (4)의 여러 항은 시간 종속적, 즉, 시간 t에 종속적이라는 점에 유의해야 한다. 예시로서, 항 E1-E4,

Figure pct00006
, Q1 및 I1은 시간 t에 종속적이다. 로터 요소가 일시적 정지 위치와 같은 정지 위치에 있을 때가 아니라, 로터 요소가 움직이는 경우에, 항
Figure pct00007
만 시간 t에 따라 가변한다는 것에 유의한다.It should be noted that the various terms in equations (1) to (4) are time-dependent, i.e., time-dependent. By way of example, the terms E1-E4,
Figure pct00006
, Q1 and I1 depend on time t. When the rotor element moves, not when the rotor element is at the same stop position as the temporary stop position,
Figure pct00007
Note that it only varies with time t.

도 7a를 참조하여, 본 발명의 실시예에 따른, 유도성 로터리 인코더를 사용하여, 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법의 순서도의 설명이 제공된다.Referring to FIG. 7A, there is provided a description of a flowchart of a method for sensing displacement between two relatively moving portions of a power tool, using an inductive rotary encoder, in accordance with an embodiment of the present invention.

제1 방법 단계 S100에서, 고주파수 여기 신호가 생성된다. 바람직하게는, 실질적으로 일정한 진폭을 가진 고주파수 여기 AC 신호는 스테이터 요소에 결합된 신호 생성 회로에 의해 생성된다. 바람직하게는, 신호 생성 회로에 의해 생성된 고주파수 신호는 복수의 위상을 포함하는 멀티-위상 고주파수 여기 신호인데, 즉 멀티-위상 고주파수 신호는 복수의 기설정된 위상들 중의 위상과 같은 복수의 위상들 중의 위상을 각각 가진 복수의 고주파수 여기 신호를 포함한다. 신호 생성 회로는 도 2를 참조하여 설명되는 바와 같이 구성되는 것이 바람직하다. 단계 S100 이후에, 이후의 방법 단계 S110가 수행된다.In a first method step SlOO, a high frequency excitation signal is generated. Advantageously, a high frequency excitation AC signal having a substantially constant amplitude is generated by a signal generating circuit coupled to the stator element. Preferably, the high frequency signal generated by the signal generating circuit is a multi-phase high frequency excitation signal comprising a plurality of phases, i.e. the multi-phase high frequency signal is a signal of a plurality of phases And a plurality of high frequency excitation signals each having a phase. The signal generating circuit is preferably configured as described with reference to Fig. After step S100, a subsequent method step S110 is performed.

방법 단계 S110에서, 고주파수 AC 신호는 스테이터 요소의 제1 전도성 패턴에 제공된다. 스테이터 요소의 제1 전도성 패턴에 제공된 고주파수 AC 신호는 실질적으로 일정한 진폭을 가지도록 더욱 구성된다. 좀 더 자세히는, 도 2를 참조하여 예시된 신호 생성기(6)와 같은, 고주파수 AC 여기 신호를 생성하는 신호 생성기는 스테이터 요소의 주변 단자에 결합되도록 구성되는데, 상기 단자는, 도 1 또는 도 3을 참조하여 예시된 제1 전도성 패턴에 결합되는 것과 같이, 제1 전도성 패턴(CT1)에 결합되도록 구성된다. 이는, 신호 생성기(6)가 상기 고주파수 AC 여기 신호를 스테이터 요소의 제1 전도성 패턴에 제공할 수 있다는 것을 의미한다. 방법 단계 S110 이후에, 이후 방법 단계 S120이 수행된다.In method step S110, a high frequency AC signal is provided in the first conductive pattern of the stator element. The high frequency AC signal provided to the first conductive pattern of the stator element is further configured to have a substantially constant amplitude. More specifically, a signal generator, such as the signal generator 6 illustrated with reference to FIG. 2, for generating a high frequency AC excitation signal is configured to couple to a peripheral terminal of the stator element, Such as to be coupled to the first conductive pattern illustrated with reference to the first conductive pattern < RTI ID = 0.0 > CT1. ≪ / RTI > This means that the signal generator 6 can provide the high frequency AC excitation signal to the first conductive pattern of the stator element. After method step S110, thereafter, method step S120 is performed.

방법 단계 S120에서, 중간 신호가 로터 요소의 제2 전도성 패턴(CT2) 내에서 생성된다. 좀 더 자세히는, 도 1을 참조하여 예시된 중간 신호(SI)와 같은 중간 신호는, 스테이터 요소의 제1 전도성 패턴과 로터 요소의 제2 전도성 패턴 사이에서 발생하는 상호 유도 때문에, 도 1 및 도 3을 참조하여 예시된 로터 요소(3)와 같은 로터 요소의 제2 전도성 패턴 내에서 생성된다. 상기 중간 신호(SI)는 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타낸다. 방법 단계 S120 이후에, 본 방법은 종료된다.In method step S120, an intermediate signal is generated within the second conductive pattern CT2 of the rotor element. More specifically, an intermediate signal, such as the intermediate signal SI illustrated with reference to FIG. 1, is generated by the first conductive pattern of the stator element and the second conductive pattern of the rotor element, Such as the rotor element 3 illustrated with reference to FIG. The intermediate signal SI represents the relative displacement between the rotor element and the stator element. After method step S120, the method ends.

도 7b는 유도성 로터리 인코더를 사용하여, 전동 공구의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 셍싱하기 위한 방법의 좀 더 세부적인 실시예르 나타낸다.Figure 7b shows a more detailed embodiment of a method for forcing a displacement between two relatively moving parts of a power tool using an inductive rotary encoder.

본 실시예에 따른 방법은 연속으로 수행될 3개의 방법 단계 S200, S210 및 S220을 포함한다. 상기 방법 단계 S200, S210 및 S220는 도 7a를 참조하여 설명된 방법 단계 S100, S110 및 S120에 각각 대응된다. 도 7b를 참조하면, 방법 단계 S220 이후에, 방법 단계 S230이 수행된다. 방법 단계 S230에서, 중간 신호(SI)는 로터 요소(3)로부터 전송된다. 좀 더 자세히는, 중간 신호는, 도 4를 참조하여 예시된 바와 같은 균형있는 구동 코일(RDC)을 사용하여 로터 요소(3)로부터 전송된다. 로터 요소(3)의 균형있는 구동 코일(RDC)은 로터 요소(3)의 제2 전도성 패턴에 결합하도록 구성된다. 이는, 로터 요소(3)의 균형있는 구동 코일(RDC)이 구성되어서, 로터 요소(3)의 제2 전도성 패턴(CT2)에서 전류가 유도되고, 상기 여기 신호의 제공 될 때, 제2 전도성 패턴(CT2)의 결과적인 중간 신호(SI)가 로터 요소(3)의 균형있는 구동 코일(RDC)에 제공될 것이라는 점을 의미한다. 로터 요소(3)는 일련의 수신 코일(RRC1-RRCi)에 의해 형성된 LC 밴드 패스 필터, 균형있는 구동 코일(RDC) 및 적어도 하나의 커패시터를 포함하는 것이 바람직하다. 상기 LC 밴드 패스 필터 중심 주파수는 스테이터 요소의 제1 전도성 패턴에 제공되는 상기 멀티-위상 고주파수 여기 신호의 주파수와 실질적으로 동일하다. 방법 단계 S230 이후에, 방법 단계 S240이 수행된다.The method according to the present embodiment includes three method steps S200, S210 and S220 to be performed continuously. The method steps S200, S210 and S220 correspond to the method steps S100, S110 and S120 respectively described with reference to Fig. 7A. Referring to FIG. 7B, after method step S220, method step S230 is performed. In method step S230, the intermediate signal SI is transmitted from the rotor element 3. More specifically, the intermediate signal is transmitted from the rotor element 3 using a balanced drive coil (RDC) as illustrated with reference to Fig. A balanced drive coil (RDC) of the rotor element (3) is configured to engage the second conductive pattern of the rotor element (3). This constitutes a balanced drive coil (RDC) of the rotor element 3 such that when a current is induced in the second conductive pattern CT2 of the rotor element 3 and the excitation signal is provided, The resulting intermediate signal SI of the rotor element CT2 will be provided to the balanced drive coil RDC of the rotor element 3. [ The rotor element 3 preferably comprises an LC bandpass filter formed by a series of receive coils RRC1-RRCi, a balanced drive coil RDC and at least one capacitor. The LC bandpass filter center frequency is substantially equal to the frequency of the multi-phase high frequency excitation signal provided in the first conductive pattern of the stator element. After method step S230, method step S240 is performed.

방법 단계 S240에서, 중간 신호에 대응되는 수신 신호(SR)는 스테이터 요소에서 수신된다. 좀 더 자세히는, 로터 요소(3)의 균형있는 구동 코일(RDC)로부터 전송된 중간 신호(SI)를 얻어서, 도 3을 참조하여 예시된 균형있는 수신 코일(SRC)에 의해 스테이터 요소(4)에서 생성될 수신 신호(SR)을 야기한다. 로터 요소(3)의 균형있는 구동 코일(RDC)에 제공된 중간 신호(SI)는 상호 유도에 의해, 스테이터 요소(4)의 균형있는 수신 코일(SRC)내로 전파되어서, 스테이터 요소에서 생성될 상기 수신 신호(SR)를 야기한다. 방법 단계 S240 이후에, 방법 단계 S250이 수행된다.In method step S240, the received signal SR corresponding to the intermediate signal is received at the stator element. More specifically, the intermediate signal SI transmitted from the balanced drive coil RDC of the rotor element 3 is obtained, and the stator element 4 is balanced by the balanced receive coil SRC illustrated with reference to Fig. (SR) to be generated in the receiver. The intermediate signal SI provided to the balanced drive coil RDC of the rotor element 3 is propagated by mutual induction into the balanced receive coil SRC of the stator element 4, Signal (SR). After method step S240, method step S250 is performed.

방법 단계 S250에서, 수신 신호(SR)가 프로세스된다. 좀 더 자세히는, 수신 신호는 도 6을 참조하여 예시된 신호 프로세서 회로(6)와 같은 신호 프로세서 회로에서 수신된다. 신호 프로세서 회로(6)는 수신 신호(SR)와 레퍼런스 신호(SREF) 사이의 위상 차이를 결정하기 위해, 수신 신호(SR)를 프로세스하도록 구성되는데, 상기 위상 차이는 로터 요소와 스테이터 요소의 상대적 변위를 나타낸다. 레퍼런스 신호는 고주파수 여기 신호(SE) 또는 멀티-위사 고주파수 여기 신호(SE)로서 구성될 경우 고주파수 여기 신호(SE)의 좀 더 적절한 하나의 여기 신호(E1-E4)를 포함한다. 신호 프로세서 회로는 로터 요소(3)와 스테이터 요소(4) 사이의 상대적 변위를 결정하기 위해, 수신된 신호의 콰드러처 변조에 의해, 레퍼런스로서 레퍼런스 신호(SREF)를 사용함에 기초하여, 수신 신호를 프로세스하도록 구비될 수 있다. 이는 도 6을 참조하여 더욱 자세히 설명된다. 방법 단계 S250 이후에, 본 방법은 종료되거나, 방법 단계 S200으로 부터 반복될 수 있다.In method step S250, the received signal SR is processed. More specifically, the received signal is received in a signal processor circuit such as the signal processor circuit 6 illustrated with reference to FIG. The signal processor circuit 6 is configured to process the received signal SR to determine a phase difference between the received signal SR and the reference signal SREF, . The reference signal includes a more appropriate one excitation signal E1-E4 of the high frequency excitation signal SE when constructed as a high frequency excitation signal SE or a multi-weathing high frequency excitation signal SE. The signal processor circuit is operable to determine a relative displacement between the rotor element 3 and the stator element 4 based on quadrature modulation of the received signal and on the basis of using the reference signal SREF as a reference, As shown in FIG. This will be described in more detail with reference to FIG. After the method step S250, the method may end or may be repeated from the method step S200.

바람직한 실시예에 따르면, 방법 단계 S200는 복수의 위상을 가진 주기적 멀티-위상 고주파수 여기 신호와 같은 멀티-위상 고주파수 여기 신호를 생성하는 단계를 포함한다. 멀티-위상 여기 신호는 도 2를 참조하여 예시된 바와 같이, 복수의 위상들의 위상을 각각 가진 복수의 고주파수 여기 신호(E1-E4)를 포함한다. 본 실시예에 따르면, 방법 단계 S210는 주기적으로 반복되는 위상 패턴(P1)을 형성하는 구동 코일을 제공하는 단계를 포함하는데, 상기 주기적으로 반복되는 위상 패턴은 측정 경로를 따라 n번 반복되어서, 주기적으로 반복되는 위상 패턴의 구동 코일에 멀티-위상 고주파수 여기 신호의 복수의 위상들의 위상이 각각 공급된다. 이는 도 3을 참조하여 더욱 상세히 설명된다.According to a preferred embodiment, method step S200 includes generating a multi-phase high frequency excitation signal such as a periodic multi-phase high frequency excitation signal having a plurality of phases. The multi-phase excitation signal includes a plurality of high frequency excitation signals E1-E4 each having a phase of a plurality of phases, as illustrated with reference to Fig. According to the present embodiment, method step S210 includes providing a drive coil that forms a periodically repeated phase pattern P1, wherein the periodically repeated phase pattern is repeated n times along the measurement path, Phase high-frequency excitation signal is supplied to the driving coils of the repeating phase pattern, respectively. This will be described in more detail with reference to FIG.

예시로서, 단계 S200에서 생성된 상기 기술된 멀티-위상 여기 신호는, 서로 다른 위상을 각각 가진 4개의 고주파수 여기 신호를 포함하기 위해 생성될 수 있다. 본 예시에서, 스테이터 요소의 일련의 구동 코일은 4개의 연속적인 구동 코일을 포함하는 주기적으로 반복되는 위상 패턴을 형성하도록 구성되는데, 4개의 연속적인 구동 코일의 첫 번째 순서에 있는 제1 구동 코일은 0°위상을 가진 멀티-위상 고주파수 여기 신호의 여기 신호가 공급되도록 구비되고, 4개의 연속적인 구동 코일의 두 번째 순서에 있는 제2 구동 코일은 90°위상을 가진 멀티-위상 고주파수 여기 신호의 여기 신호가 공급되도록 구비되고, 즉, 제1 구동 코일에 공급된 여기 신호에 대해 90°위상 시프트되고, 4개의 연속적인 구동 코일의 세 번째 순서에 있는 제3 구동 코일은 180°위상을 가진 여기 신호가 공급되도록 구비되고, 4개의 연속적인 구동 코일의 네 번째 순서에 있는 제4 구동 코일은 270°위상을 가진 여기 신호가 공급되도록 구비된다. 이러한 위상 패턴은 스테이터 요소의 측정 경로를 따라 반복되도록 구비되어서, 위상 패턴이 상기 기술된 위상 패턴의 n번 반복 P1-Pn을 형성하기 위해 n번 반복된다.As an example, the multi-phase excitation signal described above generated in step S200 may be generated to include four high frequency excitation signals each having a different phase. In this example, a series of drive coils of the stator element are configured to form a periodically repeated phase pattern comprising four consecutive drive coils, the first drive coils in the first order of the four consecutive drive coils Phase excitation signal of the multi-phase high frequency excitation signal having a phase of 0 DEG, and the second drive coil in the second order of the four consecutive drive coils is provided to excite the excitation signal of the multi- Signal is supplied, i. E., Shifted 90 DEG with respect to the excitation signal supplied to the first drive coil, and the third drive coil in the third order of the four consecutive drive coils is excited by the excitation signal with 180 DEG phase And the fourth drive coil in the fourth order of the four consecutive drive coils is provided to be supplied with an excitation signal having a phase of 270 degrees. This phase pattern is provided to repeat along the measurement path of the stator element, so that the phase pattern is repeated n times to form n repetitions P1-Pn of the phase pattern described above.

또 다른 예시로서, 단계 S200에서 생성된 상기 기술된 멀티-위상 여기 신호는 위상을 각각 가진 3개의 고주파수 여기 신호를 포함하기 위해 생성될 수 있다. 본 예시에서, 스테이터 요소의 일련의 구동 코일은 3개의 연속적인 구동 코일을 포함하는 주기적으로 반복되는 위상 패턴을 형성하기 위해 구성되는데, 3개의 연속적인 구동 코일의 첫 번째 순서에 있는 제1 구동 코일은 0°위상을 가진 멀티-위상 고주파수 여기 신호의 여기 신호가 공급되도록 구비되고, 3개의 연속적인 구동 코일의 두 번째 순서에 있는 제2 구동 코일은 120°위상을 가진 여기 신호가 공급되도록 구비되고, 즉, 제1 구동 코일에 공급된 여기 신호에 대해 120°위상 시프트되고, 3개의 연속적인 구동 코일의 세 번째 순서에 있는 제3 구동 코일은 240°위상을 가진 여기 신호가 공급되도록 구비된다. 이러한 위상 패턴은 스테이터 요소의 측정 경로를 따라 반복되도록 구비되어서, 위상 패턴이 상기 기술된 위상 패턴의 n번 반복 P1-Pn을 형성하기 위해 n번 반복된다.As another example, the described multi-phase excitation signal generated in step S200 may be generated to include three high frequency excitation signals each having a phase. In this example, a series of drive coils of the stator element are configured to form a periodically repeated phase pattern comprising three consecutive drive coils, the first drive coil in the first order of three consecutive drive coils Phase high frequency excitation signal having a phase of 0 DEG and the second drive coil in the second order of the three consecutive drive coils is provided to be supplied with an excitation signal having a phase of 120 DEG That is, the excitation signal supplied to the first drive coil, and the third drive coil in the third order of the three consecutive drive coils is provided to supply an excitation signal having a phase of 240 °. This phase pattern is provided to repeat along the measurement path of the stator element, so that the phase pattern is repeated n times to form n repetitions P1-Pn of the phase pattern described above.

많은 수정예와 변형예가 첨부된 청구항에서 정의된 발명의 범위에서 벗어나지 않고 당업자에 의해 명백할 것이다. 예시는 본 발명의 원리 및 그 실제 응용예를 가장 잘 설명하기 위해 선택되고 기술되어서, 당업자가 다양한 예시와 다양한 수정예를 특정 사용예로 적합하게 본 발명을 이해할 수 있도록 한다.Many modifications and variations will be apparent to those skilled in the art without departing from the scope of the invention as defined in the appended claims. The examples are chosen and described best in order to best explain the principles of the invention and its practical application, so that those skilled in the art will be able to understand various embodiments and various modifications as are suited to the specific use.

Claims (32)

전동 공구(1)를 위한 변위 센서(2)에 있어서, 상기 변위 센서(2)는,
측정 경로를 따라 상대적 움직임을 위해 구성된 스테이터 요소(4)와 로터 요소(3)를 포함하되, 상기 스테이터 요소는 제1 전도성 패턴(CT1)을 포함하고, 상기 로터 요소는 제2 전도성 패턴(CT2)을 포함하며, 제1 전도성 패턴 및 제2 전도성 패턴은 상호 유도적으로 결합되고, 제1 전도성 패턴은 여기 신호(SE)를 수신하도록 구성되며, 제2 전도성 패턴은 제1 전도성 패턴과 제2 전도성 패턴 사이의 상호 유도에 의해 야기되어 제2 전도성 패턴내에서 중간 신호(SI)를 생성하도록 구성되고, 상기 중간 신호는 스테이터 요소와 로터 요소 사이의 상대적 변위를 나타내는데,
여기 신호는 일정한 진폭을 가진 고주파수 여기 신호(SE)인 것을 특징으로 하는 변위 센서.
A displacement sensor (2) for a power tool (1), wherein the displacement sensor (2)
And a rotor element (3) configured for relative movement along a measurement path, the stator element including a first conductive pattern (CT1), the rotor element comprising a second conductive pattern (CT2) Wherein the first conductive pattern and the second conductive pattern are mutually inductively coupled and wherein the first conductive pattern is configured to receive the excitation signal SE and the second conductive pattern comprises a first conductive pattern and a second conductive pattern, (SI) in a second conductive pattern caused by mutual induction between the patterns, the intermediate signal representing a relative displacement between the stator element and the rotor element,
Wherein the excitation signal is a high frequency excitation signal (SE) having a constant amplitude.
제 1 항에 있어서, 여기 신호는 100 KHz - 100 MHz의 주파수 범위에서 선택된 주파수를 가진 신호인 것을 특징으로 하는 변위 센서.The displacement sensor according to claim 1, wherein the excitation signal is a signal having a frequency selected from a frequency range of 100 KHz to 100 MHz. 제 1 항에 있어서, 여기 신호는 1 MHz - 10 MHz의 주파수 범위에서 선택된 주파수를 가진 신호인 것을 특징으로 하는 변위 센서.The displacement sensor according to claim 1, wherein the excitation signal is a signal having a frequency selected from a frequency range of 1 MHz to 10 MHz. 제 1 항 내지 제 3 항에 있어서, 상기 여기 신호(SE)는 복수의 고주파수 여기 신호들(E1-E4)을 포함하는 멀티-위상 여기 신호로 구성되고, 각각의 여기 신호들은 복수의 위상을 가지는 것을 특징으로 하는 변위 센서.4. The method according to any one of claims 1 to 3, wherein the excitation signal SE is composed of a multi-phase excitation signal comprising a plurality of high frequency excitation signals (E1-E4), each excitation signal having a plurality of phases And a displacement sensor. 제 4 항에 있어서, 멀티-위상 여기 신호는 0도 위상, 90도 위상, 180도 위상 및 270도 위상을 포함하는 4개의 위상을 가진 4-위상 여기 신호인 것을 특징으로 하는 변위 센서.5. The displacement sensor of claim 4, wherein the multi-phase excitation signal is a four-phase excitation signal having four phases including a zero degree phase, a 90 degree phase, a 180 degree phase, and a 270 degree phase. 제 4 항에 있어서, 멀티-위상 여기 신호는 0도 위상, 120도 위상 및 240도 위상을 포함하는 세 개의 위상을 가진 3-위상 여기 신호인 것을 특징으로 하는 변위 센서.5. The displacement sensor of claim 4, wherein the multi-phase excitation signal is a three-phase excitation signal having three phases including a zero degree phase, a 120 degree phase, and a 240 degree phase. 제 4 항 내지 제 6 항 중 어느 한 항에 있어서, 스테이터 요소의 제1 전도성 패턴은 스테이터 요소의 측정 경로를 따라 연장되는 일련의 구동 코일(SDC1-SDCk)을 포함하고, 일련의 구동 코일(SDC1-SDCk)은 측정 경로를 따라 n번 반복되는, 주기적으로 반복되는 위상 패턴(PI)으로 배열되며, 멀티-위상 신호의 위상이 주기적으로 반복되는 위상 패턴의 각각의 구동 코일에 공급되는 것을 특징으로 하는 변위 센서.7. A stator according to any one of the claims 4 to 6, characterized in that the first conductive pattern of the stator element comprises a series of drive coils (SDC1-SDCk) extending along the measuring path of the stator element and a series of drive coils -SDCk) is arranged in a periodically repeated phase pattern (PI) repeated n times along the measurement path, and the phase of the multi-phase signal is supplied to each drive coil of a periodic repeated phase pattern Displacement sensor. 제 7 항에 있어서, 주기적으로 반복되는 위상 패턴의 구동 코일의 연이은 순서로 점차적으로 증가하는 멀티-위상 여기 신호의 위상이 주기적으로 반복되는 위상 패턴의 각각의 구동 코일에 제공되도록 구성되는 것을 특징으로 하는 변위 센서.8. A method as claimed in claim 7, characterized in that the phase of the gradually increasing multi-phase excitation signal in the sequence of the drive coils of the periodically repeated phase pattern is configured to be provided to each drive coil of the periodically repeated phase pattern Displacement sensor. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 로터 요소의 제2 전도성 패턴은 직렬로 연결되고 로터 요소의 측정 경로를 따라 연장된 일련의 균형있는 수신 코일(RRC1-RRCi)을 포함하되, 로터 요소의 상기 측정 경로는 스테이터 요소의 측정 경로와 대면하는 것을 특징으로 하는 변위 센서.9. A method according to any one of the preceding claims, wherein the second conductive pattern of the rotor element comprises a series of balanced receiving coils (RRC1-RRCi) connected in series and extending along the measuring path of the rotor element, Wherein the measuring path of the rotor element faces the measuring path of the stator element. 제 8 항에 있어서, 일련의 수신 코일들(RRC1-RRCi)의 각각의 수신 코일(RRC1-RRCi)은 측정 경로를 따라 i-1번 반복된, 주기적으로 반복되는 균형있는 2-위상 패턴을 형성되어서, 일련의 수신 코일들의 각각의 수신 코일의 인접한 루프(L1, L2)들이 안티-위상이 되는 것을 특징으로 하는 변위 센서.9. The method of claim 8 wherein each receive coil (RRC1-RRCi) of a series of receive coils (RRC1-RRCi) forms a periodically repeating balanced two-phase pattern repeated i-1 times along the measurement path So that adjacent loops (L1, L2) of each receiving coil of the series of receiving coils are anti-phase. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서, 로터 요소는 균형있는 구동 코일(RDC)을 더 포함하되, 균형있는 구동 코일은 제2 전도성 패턴에 결합되어서, 균형있는 구동 코일과 균형있는 수신 코일 사이에 형성된 상호 유도에 의해, 스테이터 요소의 균형있는 수신 코일(SRC)로 중간 신호를 전송하도록 구성되는 것을 특징으로 하는 변위 센서.11. A motor according to any one of the preceding claims, wherein the rotor element further comprises a balanced drive coil (RDC), the balanced drive coil being coupled to the second conductive pattern, Is configured to transmit an intermediate signal to a balanced receive coil (SRC) of the stator element by mutual induction formed between the coils. 제 11 항에 있어서, 각각의 균형있는 구동 코일(RDC)과 균형있는 수신 코일(SRC)은 각각 두 개의 코일 섹션(RDCA-RDCB, SRCA-SRCB)을 포함하되, 상기 두 개의 코일 섹션은 두 개의 코일 섹션에서의 전류 흐름이 로터 요소와 스테이터 요소의 측정 경로를 따라 서로에 대해 반대 방향으로 각각 흐르도록 구성되는 것을 특징으로 하는 변위 센서.12. The method of claim 11 wherein each balanced drive coil (RDC) and balanced receive coil (SRC) comprises two coil sections (RDCA-RDCB, SRCA-SRCB) Wherein the current flow in the coil section is configured to flow in opposite directions to each other along the measurement path of the rotor element and the stator element. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서, 스테이터 요소의 제1 전도성 패턴에 결합된 신호 생성 회로(6)를 더 포함하되, 상기 신호 생성 회로는 여기 신호를 생성하고, 상기 제1 전도성 패턴에 에너지를 인가하기 위해 제1 전도성 패턴으로 여기 신호를 제공하도록 구성되는 것을 특징으로 하는 변위 센서.13. A device according to any one of the preceding claims, further comprising a signal generating circuit (6) coupled to a first conductive pattern of the stator element, the signal generating circuit generating an excitation signal, And to provide an excitation signal to the first conductive pattern to apply energy to the pattern. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서, 단상 신호 프로세서 회로(5)를 더 포함하되, 신호 프로세서 회로는 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타내는 출력 신호(SOUT)를 제공하기 위하여, 스테이터 요소에서 수신되는 중간 신호(SI)에 대응되는 단상 수신 신호(SR)를 수신하고 처리하도록 구성되는 것을 특징으로 하는 변위 센서.14. A device according to any one of the preceding claims, further comprising a single-phase signal processor circuit (5), wherein the signal processor circuit is arranged to provide an output signal (SOUT) representative of the relative displacement between the rotor element and the stator element And receive and process a single-phase received signal (SR) corresponding to an intermediate signal (SI) received at the stator element. 제 14 항에 있어서, 신호 프로세서 회로는 상기 출력 신호(SOUT)를 제공하기 위하여, 단상 수신 신호(SR)와 여기 신호(SE)에 대응되는 레퍼런스 신호(SREF) 사이의 위상 차이를 검출하기 위하여, 단상 수신 신호(SR)를 처리하도록 구성된 위상 검출 회로(13)를 포함하는 것을 특징으로 하는 변위 센서.15. A method according to claim 14, wherein the signal processor circuit is arranged to detect the phase difference between the single-phase received signal (SR) and the reference signal (SREF) corresponding to the excitation signal (SE) And a phase detection circuit (13) configured to process the single-phase received signal (SR). 제 15 항에 있어서, 위상 검출 회로는, 상기 수신 신호(SR)와 상기 레퍼런스 신호(SREF)의 위상 차이를 나타내는 두 개의 콰드러처(quadrature) 신호(I1 및 Q1)를 출력하도록 구성된 I/Q 복조 회로인 것을 특징으로 하는 변위 센서.The phase detector of claim 15, wherein the phase detection circuit comprises: an I / Q (I / Q) configured to output quadrature signals (I1 and Q1) representative of the phase difference between the received signal (SR) and the reference signal Wherein the demodulation circuit is a demodulation circuit. 제 1 항 내지 제 16 항 중 어느 한 항에 있어서, 로터 요소는 전동 공구의 제1 움직이는 부분에 부착되도록 구성되고, 스테이터 요소는 전동 공구의 제2 정지된 부분에 부착되도록 구성되는 것을 특징으로 하는 변위 센서.17. A rotor according to any one of claims 1 to 16, characterized in that the rotor element is configured to be attached to a first moving part of the power tool, and the stator element is configured to be attached to a second stationary part of the power tool Displacement sensor. 제 1 항 내지 제 17 항 중 어느 한 항에 있어서, 로터 요소와 스테이터 요소는 환형 디스크로 형성되는 것을 특징으로 하는 변위 센서.18. The displacement sensor according to any one of claims 1 to 17, wherein the rotor element and the stator element are formed as annular discs. 제 1 항 내지 제 18 항 중 어느 한 항에 있어서, 로터 요소와 스테이터 요소는, 각각 제1 전도성 패턴과 제2 전도성 패턴을 형성하는 전도성 트레이스가 있는 인쇄 회로 기판(PCB)으로 형성되는 것을 특징으로 하는 변위 센서.19. A rotor according to any one of the preceding claims, characterized in that the rotor element and the stator element are formed from a printed circuit board (PCB) having conductive traces, each forming a first conductive pattern and a second conductive pattern Displacement sensor. 제 1 항 내지 제 19 항 중 어느 한 항에 있어서, 로터 요소는 잡음 억제를 제공하도록 구성된 적어도 하나의 커패시턴스 구성을 포함하는 것을 특징으로 하는 변위 센서.20. The displacement sensor according to any one of claims 1 to 19, wherein the rotor element comprises at least one capacitance configuration configured to provide noise suppression. 제 1 항 내지 제 19 항 중 어느 한 항에 있어서, 로터 요소는 잡음 억제를 제공하기 위하여, 적어도 하나의 커패시터를 형성하는 적어도 하나의 커패시턴스 층을 포함하는 것을 특징으로 하는 변위 센서.20. A displacement sensor according to any one of the preceding claims, wherein the rotor element comprises at least one capacitance layer forming at least one capacitor to provide noise suppression. 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법에 있어서, 상기 방법은,
- 여기 신호(SE)를 생성하는 단계와,
- 스테이터 요소(4)의 제1 전도성 패턴(CT1)에 여기 신호를 제공하는 단계와,
- 제1 전도성 패턴과 제2 전도성 패턴 사이의 상호 유도에 의하여, 로터 요소(3)의 제2 전도성 패턴(CT2) 내에서 중간 신호(SI)를 생성하는 단계 - 상기 중간 신호는 로터 요소와 스테이터 요소 사이의 상대적 변위를 나타냄 - 를 포함하되,
여기 신호를 생성하는 단계는 일정한 진폭을 가진 고주파수 여기 신호를 생성하는 단계를 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
A method for sensing a displacement between two relatively moving parts of a power tool (1), the method comprising:
- generating an excitation signal SE,
- providing an excitation signal to the first conductive pattern (CT1) of the stator element (4)
- generating an intermediate signal (SI) within the second conductive pattern (CT2) of the rotor element (3) by mutual induction between the first conductive pattern and the second conductive pattern, Representing the relative displacement between the elements,
Wherein the step of generating an excitation signal comprises generating a high frequency excitation signal having a constant amplitude. 2. The method of claim 1, wherein the step of generating the excitation signal comprises generating a high frequency excitation signal having a constant amplitude.
제 22 항에 있어서,
- 스테이터 요소에서 중간 신호(SI)에 대응되는 단상 수신 신호(SR)를 수신하는 단계와,
- 로터 요소와 스테이터 요소 사이의 상대적 변위를 결정하기 위하여, 단상 수신 신호를 처리하는 단계를 더 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
23. The method of claim 22,
- receiving a single-phase received signal (SR) corresponding to an intermediate signal (SI) in the stator element,
- processing the single-phase received signal to determine the relative displacement between the rotor element and the stator element. ≪ RTI ID = 0.0 > Way.
제 23 항에 있어서,
- 로터 요소와 스테이터 요소 사이의 상대적 변위를 결정하기 위하여, 수신 신호를 처리하는 단계는, 여기 신호(SE)에 대응되는 레퍼런스 신호(SREF)와 수신 신호(SR) 사이의 위상 차이를 검출하기 위해 단상 수신 신호를 처리하는 단계를 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
24. The method of claim 23,
The step of processing the received signal to determine the relative displacement between the rotor element and the stator element comprises the steps of detecting the phase difference between the reference signal SREF corresponding to the excitation signal SE and the received signal SR And processing the single-phase received signal. 2. A method for sensing displacement between two relatively moving parts of a power tool (1).
제 22 항 내지 제 24 항 중 어느 한 항에 있어서,
- 제2 전도성 패턴에 결합된 로터 요소의 균형있는 구동 코일(RDC)로부터의 중간 신호를 전송하는 단계를 더 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
25. The method according to any one of claims 22 to 24,
- transferring an intermediate signal from a balanced drive coil (RDC) of the rotor element coupled to the second conductive pattern, characterized in that it comprises the steps of: - transferring an intermediate signal from a balanced drive coil Lt; / RTI >
제 25 항에 있어서,
- 로터 요소의 균형있는 구동 코일(RDC)에 상호 유도적으로 결합된 스테이 터 요소의 균형 있는 수신 코일(SRC)에서, 로터 요소의 균형있는 구동 코일로부터 전송되는, 중간 신호(SI)에 대응되는 단상 수신 신호(SR)를 수신하는 단계를 더 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
26. The method of claim 25,
- in a balanced receiving coil (SRC) of the stator element coupled inductively to a balanced drive coil (RDC) of the rotor element, a signal corresponding to the intermediate signal (SI), transmitted from the balanced drive coil of the rotor element Further comprising the step of receiving a single phase receive signal (SR). ≪ Desc / Clms Page number 12 >
제 22 항 내지 제 26 항 중 어느 한 항에 있어서, 여기 신호를 생성하는 단계는 일정한 진폭과 복수의 위상을 가진 고주파수 멀티-위상 여기 신호를 생성하는 단계를 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.27. A method as claimed in any one of claims 22 to 26, wherein generating the excitation signal comprises generating a high frequency multi-phase excitation signal having a constant amplitude and a plurality of phases A method for sensing a displacement between two relatively moving parts of a moving object. 제 27 항에 있어서, 멀티-위상 여기 신호는 0도 위상, 90도 위상, 180도 위상 및 270도 위상을 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.28. A method as claimed in claim 27, wherein the multi-phase excitation signal comprises a zero degree phase, a 90 degree phase, a 180 degree phase and a 270 degree phase, the displacement between the two relatively moving parts of the power tool Lt; / RTI > 제 27 항에 있어서, 멀티-위상 여기 신호는 0도 위상, 120도 위상 및 240도 위상을 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.28. A method as claimed in claim 27, wherein the multi-phase excitation signal comprises a 0 degree phase, a 120 degree phase and a 240 degree phase, for sensing the displacement between two relatively moving parts of the power tool (1) Way. 제 27 항 내지 제 29 항 중 어느 한 항에 있어서,
- 스테이터 요소의 측정 경로를 따라 연장되는 일련의 구동 코일(SDC1-SDCk)을 배열하여, 측정 경로를 따라 n번 반복되는 주기적으로 반복되는 위상 패턴(P1)으로 스테이터 요소의 제1 전도성 패턴을 형성하는 단계와,
- 멀티위상 신호의 위상을 주기적으로 반복되는 위상 패턴의 각각의 구동 코일에 공급하는 단계를 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
30. The method according to any one of claims 27 to 29,
- arranging a series of drive coils (SDC1-SDCk) extending along the measurement path of the stator element to form a first conductive pattern of the stator element in a periodically repeated phase pattern (P1) repeated n times along the measurement path , ≪ / RTI &
- supplying a phase of the multi-phase signal to each drive coil of a periodically repeated phase pattern, characterized in that it comprises a step for sensing the displacement between two relatively moving parts of the power tool (1) .
제 22 항에 있어서,
- 밴드 밖의 잡음을 감쇠시키기 위하여, LC 밴드 패스 필터를 사용하여 중간 신호를 필터링하는 단계를 더 포함하는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
23. The method of claim 22,
- filtering the intermediate signal using an LC bandpass filter to attenuate noise outside the band, characterized in that it comprises the steps of: Way.
제 22 항 내지 제 31 항 중 어느 한 항에 있어서,
- 스테이터 요소를 전동 공구의 정지된 부분에 결합하는 단계와,
- 로터 요소를 전동 공구의 움직이는 부분에 결합하는 단계를 더 포함하되,
상기 움직이는 부분은 상기 정지된 부분에 대하여 움직이는 것을 특징으로 하는 전동 공구(1)의 두 개의 상대적으로 움직이는 부분들 사이의 변위를 센싱하기 위한 방법.
32. The method according to any one of claims 22 to 31,
- coupling the stator element to the stationary portion of the power tool,
- coupling the rotor element to the moving part of the power tool,
Characterized in that said moving part is moved with respect to said stationary part. ≪ Desc / Clms Page number 13 >
KR1020167000093A 2013-06-07 2014-06-05 Rotary encoder KR102182787B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1350697-7 2013-06-07
SE1350697 2013-06-07
PCT/EP2014/061744 WO2014195424A1 (en) 2013-06-07 2014-06-05 Rotary encoder

Publications (2)

Publication Number Publication Date
KR20160018658A true KR20160018658A (en) 2016-02-17
KR102182787B1 KR102182787B1 (en) 2020-11-25

Family

ID=50972667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167000093A KR102182787B1 (en) 2013-06-07 2014-06-05 Rotary encoder

Country Status (7)

Country Link
US (1) US9933283B2 (en)
EP (1) EP3004808B1 (en)
JP (1) JP6416234B2 (en)
KR (1) KR102182787B1 (en)
CN (1) CN105393090B (en)
BR (1) BR112015030585B1 (en)
WO (1) WO2014195424A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393644B2 (en) * 2015-03-26 2018-09-19 三菱重工工作機械株式会社 Electromagnetic induction type position detector and electromagnetic induction type position detection method
EP3299771B1 (en) * 2016-09-22 2020-04-29 Sagentia Limited Inductive sensor arrangement
WO2018205261A1 (en) * 2017-05-12 2018-11-15 Texas Instruments Incorporated Methods and apparatus to determine a position of a rotatable shaft of a motor
EP3622256A4 (en) 2017-05-12 2020-05-13 Texas Instruments Incorporated Capacitive-sensing rotary encoders and methods
DE102017211490A1 (en) * 2017-07-06 2019-01-10 Robert Bosch Gmbh Angle of rotation sensor assembly, LiDAR system, working device and operating method for a LiDAR system
DE102017211491A1 (en) 2017-07-06 2019-01-10 Robert Bosch Gmbh Angle of rotation sensor assembly, LiDAR system, working device and operating method for a LiDar system
DE102017211493A1 (en) * 2017-07-06 2019-01-10 Robert Bosch Gmbh Angle of rotation sensor assembly, LiDAR system and working device
CN111623805A (en) * 2020-06-18 2020-09-04 苏州希声科技有限公司 Ultrasonic rotary encoder suitable for micro-shaft rotation measurement
CN112393679B (en) * 2021-01-11 2021-05-18 北京瑞控信科技有限公司 Angle measuring device based on eddy current
EP4341045A1 (en) * 2021-05-17 2024-03-27 Atlas Copco Industrial Technique AB A power tool with wireless signal transfer capability
CN113884000A (en) * 2021-09-30 2022-01-04 王元西 High-precision ultra-low power consumption angular position sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238781A (en) * 1979-02-09 1980-12-09 Westinghouse Electric Corp. Capacitive angular displacement transducer for remote meter reading
JPH11223505A (en) * 1997-12-03 1999-08-17 Mitsutoyo Corp Induction type position measurement device
JP2006331223A (en) * 2005-05-27 2006-12-07 Yoshikawa Rf System Kk Reader/writer device and data carrier system
US20080223942A1 (en) * 2007-03-07 2008-09-18 Mitsubishi Heavy Industries, Ltd. Absolute value scale and absolute value calculating method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654242B2 (en) * 1987-04-30 1994-07-20 株式会社エスジ− Position detector
JP2001086708A (en) * 1999-09-17 2001-03-30 Hitachi Koki Co Ltd Number-of-revolution detecting device for motor
JP2003004036A (en) * 2001-06-19 2003-01-08 Ntn Corp Bearing equipped with rotary sensor and power tool utilizing the bearing
JP4476717B2 (en) * 2004-06-30 2010-06-09 オークマ株式会社 Electromagnetic induction type position sensor
FR2888319B1 (en) * 2005-07-07 2008-02-15 Nanotec Solution Soc Civ Ile METHOD FOR NON-CONTACT MEASUREMENT OF RELATIVE DISPLACEMENT OR RELATIVE POSITIONING OF A FIRST OBJECT IN RELATION TO A SECOND OBJECT INDUCINGLY.
US8450893B2 (en) * 2008-11-06 2013-05-28 Aisan Kogyo Kabushiki Kaisha Motor structure with planar coil type rotation detector
JP5091905B2 (en) * 2008-11-06 2012-12-05 愛三工業株式会社 Motor structure with resolver
US8269487B2 (en) * 2008-11-11 2012-09-18 Aisan Kogyo Kabushiki Kaisha Sheet coil type resolver
US20100148802A1 (en) * 2008-12-15 2010-06-17 Fanuc Ltd Capacitance-type encoder
JP5189510B2 (en) 2009-01-22 2013-04-24 愛三工業株式会社 Position sensor
US8729887B2 (en) * 2009-11-09 2014-05-20 Aisan Kogyo Kabushiki Kaisha Rotation angle sensor
JP2011257311A (en) * 2010-06-10 2011-12-22 Nec Corp Measurement instrument, measurement method, and measurement program
JP5249289B2 (en) * 2010-07-08 2013-07-31 愛三工業株式会社 Rotational position sensor
JP5948620B2 (en) * 2011-09-16 2016-07-06 株式会社ミツトヨ Inductive detection type rotary encoder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238781A (en) * 1979-02-09 1980-12-09 Westinghouse Electric Corp. Capacitive angular displacement transducer for remote meter reading
JPH11223505A (en) * 1997-12-03 1999-08-17 Mitsutoyo Corp Induction type position measurement device
JP2006331223A (en) * 2005-05-27 2006-12-07 Yoshikawa Rf System Kk Reader/writer device and data carrier system
US20080223942A1 (en) * 2007-03-07 2008-09-18 Mitsubishi Heavy Industries, Ltd. Absolute value scale and absolute value calculating method

Also Published As

Publication number Publication date
JP2016526166A (en) 2016-09-01
JP6416234B2 (en) 2018-10-31
CN105393090B (en) 2018-10-09
CN105393090A (en) 2016-03-09
US20160091343A1 (en) 2016-03-31
KR102182787B1 (en) 2020-11-25
BR112015030585A2 (en) 2020-10-27
WO2014195424A1 (en) 2014-12-11
EP3004808B1 (en) 2018-05-16
EP3004808A1 (en) 2016-04-13
BR112015030585B1 (en) 2022-05-17
US9933283B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
KR102182787B1 (en) Rotary encoder
JP4476717B2 (en) Electromagnetic induction type position sensor
CN109073416B (en) Rotation angle sensor
CN109073419B (en) Rotation angle sensor
US9222804B2 (en) System and method for position sensing
KR102444618B1 (en) Bearing with angular movement sensor
CN106255889B (en) Rotary sensing system employing inductive sensors and rotating axial target surface
EP3187819B1 (en) Rotation-detecting apparatus
JP6791741B2 (en) Electronic absolute encoder
EP2853861B1 (en) Position detection device
US20230273080A1 (en) Torque Sensing Device and Method
JP2021025851A (en) Rotation sensor
US20020043115A1 (en) Rotation sensor
Reddy et al. Low cost planar coil structure for inductive sensors to measure absolute angular position
JP6608830B2 (en) Rotation detector
EP2881745B1 (en) Inductive rotational speed sensors
JP4336070B2 (en) Rotary position detector
EP3517896B1 (en) Contactless radial position sensor having improved response behavior to target defects
CN113358009A (en) Hybrid position sensor
JP2011226877A (en) Location sensor
JP5135277B2 (en) Rotary position detector
JP2011220851A (en) Rotation angle sensor
JP2005055409A (en) Rotation sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant