KR20160010720A - Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells - Google Patents

Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells Download PDF

Info

Publication number
KR20160010720A
KR20160010720A KR1020140090426A KR20140090426A KR20160010720A KR 20160010720 A KR20160010720 A KR 20160010720A KR 1020140090426 A KR1020140090426 A KR 1020140090426A KR 20140090426 A KR20140090426 A KR 20140090426A KR 20160010720 A KR20160010720 A KR 20160010720A
Authority
KR
South Korea
Prior art keywords
dye
solar cell
sensitized solar
present
organic
Prior art date
Application number
KR1020140090426A
Other languages
Korean (ko)
Other versions
KR101654304B1 (en
Inventor
서용석
김지헌
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020140090426A priority Critical patent/KR101654304B1/en
Publication of KR20160010720A publication Critical patent/KR20160010720A/en
Application granted granted Critical
Publication of KR101654304B1 publication Critical patent/KR101654304B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

The present invention relates to a dye exhibiting multiple resonance light scattering in photoelectrode at electrode and high light collection efficiency at light scattering wavelength range. The present invention further relates to a dye-sensitized solar cell with increased efficiency. The organic dyes of the present invention exhibits more enhanced mole absorption coefficient, short-circuit current, and photoelectricity conversion efficiency in comparison with an existing organic dye used in the dye-sensitized solar cell, thereby remarkably increasing efficiency of the solar cell. In addition, it is possible to produced dye-sensitized solar cell with excellent long-term stability owing to the organic dyes of the present invention. It is also possible to produce a solar cell with high photoelectricity conversion efficiency by using titanium dioxide produced by electrostatic spraying technology using the organic dyes.

Description

전극에서의 광전극의 다중공진 광산란과 광산란 파장대에서 높은 집광효율을 보이는 염료 및 효율이 향상된 염료감응 태양전지{ Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells}TECHNICAL FIELD The present invention relates to a dye-sensitized solar cell, and more particularly, to a dye-sensitized solar cell having a high efficiency of light collection at a light scattering wavelength band and multiple resonance light scattering of a photo-

본 특허는 염료 감응 태양전지에 사용되는 유기 염료의 합성 방법과 소자를 제작하는 방법에 관한 것으로, 보다 상세하게는 높은 분자 흡광 계수를 가지는 유기 염료와 광전극의 다중 공진 광산란의 조화를 통해서 우수한 광전기 변환효율 및 수명 특성을 나타낼 수 있는 염료 감응 태양전지 및 이의 제조 방법에 관한 것이다. The present invention relates to a method of synthesizing an organic dye used in a dye-sensitized solar cell and a method of fabricating the same, and more particularly, to a dye-sensitized solar cell comprising an organic dye having a high molecular extinction coefficient and a multi- A dye-sensitized solar cell capable of exhibiting conversion efficiency and lifetime characteristics, and a method for producing the same.

최근 전세계적으로 직면하고 있는 에너지 문제를 해결하기 위하여 기존의 화석 연료를 대체할 수 있는 다양한 자연 에너지(풍력, 수력, 지열, 태양에너지 등)를 개발하기 위한 발명가 진행되고 있다. 특히 태양에너지는 자원이 무한하고 환경 친화적이어서 이를 이용한 에너지 생산 기술은 21세기의 과학 기술 중 가장 중요하고 핵심적인 도전이다.현재 상업적으로 이용하는 태양전지는 무기 실리콘 반도체를 기반으로 하는 기술이다. 그러나 실리콘 수요의 폭발적인 증가로 인해 현재 가격이 굉장히 올라가는 실정이다. 이에 유기 태양전지는 광전기 변환 소자부분에서 중요하게 발명되고 있다. 그 중 염료 감응 태양전지는 1991년도 그라첼 발명팀에 의해 염료 감응 나노입자 산화 티타늄 태양전지가 개발된 이후 제조단가가 현저히 낮은 소자를 만들 수 있다는 가능성 때문에 고가의 실리콘 태양전지를 대체할 수 있는 광전 소자로 많은 관심을 받아왔다.염료 감응 태양전지는 대부분 다섯 가지 구성요소로 이루어져있다. 1) 광음극, 2) 다공성 금속 산화물 필름, 3) 염료, 4) 전해질/정공 이동물질, 5) 대전극. 하기 도 1은 염료 감응 태양전지의 구조와 작동 원리를 나타낸 모식도이다.In order to solve the energy problems facing the world in recent years, inventors have been working on developing various natural energy (wind, hydro, geothermal, solar energy, etc.) that can replace existing fossil fuels. In particular, solar energy is an infinite resource and environmentally friendly, so energy production technology is one of the most important and key challenges of 21st century science technology. Currently, commercial solar cells are technologies based on inorganic silicon semiconductors. However, due to the explosive increase in demand for silicon, the current price is very high. Therefore, organic solar cells are importantly invented in the photoelectric conversion element part. Among them, the dye-sensitized solar cell was developed by the Gratel Invention Team in 1991. Since the dye-sensitized nanoparticle titanium oxide solar cell was developed, it is possible to manufacture a device with a significantly lower manufacturing cost, Dye-sensitized solar cells are composed of five components in most cases. 1) photocathode, 2) porous metal oxide film, 3) dye, 4) electrolyte / hole transfer material, and 5) 1 is a schematic diagram showing the structure and operation principle of a dye-sensitized solar cell.

도 11

Figure pat00001

Figure pat00001

상기 도 1을 참조하여 염료 감응 태양전지의 작동 원리를 살펴보면, 표면에 염료가 흡착된 n형 나노입자 반도체 산화물 전극으로 태양광이 입사되면 염료는 전자-정공쌍을 생성하며, 여기 상태의 전자는 반도체 산화물의 전도대로 주입된다. 주입된 전자는 투명 전도체로 전달되고 회부회로를 통해 대전극으로 이동된다. 한편 산화된 염료는 산화-환원 전해질에 의해 전자를 받아 다시 환원되고 산화된 전해질은 대전극의 계면에 도달한 전자를 받아 다시 환원되어 작동 과정이 완성된다. 지금까지 염료 감응 태양전지에 사용되는 염료로서 루테늄 착물들이 가장 널리 사용되어 왔고, 몇몇 루테늄 착물들은 11%이상의 광전기 변환효율을 보여주었다. 그러나 루테늄 착물을 이용한 염료 감응 태양전지는 값비싼 루테늄 금속과 합성, 정제방법의 어려움 때문에 많은 제약을 가지고 있었다.일반적으로, 염료는 넓은 범위의 빛의 흡수, 높은 분자 흡광 계수, 적절한 에너지 준위, 장기 안정성, 집합 저항성 등이 필요하다. 특히 전자 공여체,Π결합 유닛,전자 수용체의 기본적인 구조로 이루어져 있는 유기염료는 화학구조의 다양성, 높은 분자 흡광 계수, 흡수 파장 제어의 용이성, 단순한 합성 공정 등의 장점을 가지고 있다. 결과적으로 많은 발명자들이 상기의 장점을 가지는 금속이 결여된 유기염료에 많은 관심을 가지게 되었고 이에 대한 발명가 중점적으로 이루어지고 있다. 그러나 이제까지 알려진 대부분의 유기염료는 루테늄 금속 착물 염료에 비해 낮은 변환효율을 나타내고 있어서 전자 공여체, Π 결합 유닛, 전자 수용체의 구조를 변화시킴으로써 향상된분자 흡광 계수를 가지며 높은 광전기 변환효율을 나타내는 새로운 염료의 개발이 절실히 요구되고 있는 실정이다. 일반적으로 염료 감응 태양전지의 광음극은 대부분 FTO기판 위에 나노 결정구조를 가진 이산화 티타늄을 코팅하여 사용한다. 이러한 나노 결정 이산화 티타늄은 몇 가지 조건을 갖추어야 한다. 첫째로, 염료의 흡착을 위해 넓은 표면적을 가져야 하며, 둘째로, 결정 입계의 수를 줄여 전자를 빠르게 이동시킬 수 있어야 한다. 셋째로, 적절한 크기와 구조를 통해 광산란을 유도할 수 있어야 하고 마지막으로, 전해질이 적절하게 침투할 수 있는 공극을 가져야 한다. 현재, 다분산크기 구조를 가지는 이산화 티타늄 (hierarchically-structured TiO2, HS- TiO2)이 상기의 조건을 모두 갖추고 있는 구조로 많은 관심을 받고 있다. 이러한 이산화 티타늄 구조를 만드는 방법은 졸-겔법, 용매열 반응, 가수분해 반응, 정전기 분무 등이 있다.특히, 정전기 분무를 통한 이산화 티타늄 제조 방법은 값싸고 단순한 공정과 FTO기판 위에 직접 올릴 수 있다는 장점 때문에 최근에 많은 발명가 진행 되고 있다. Referring to FIG. 1, the operation principle of the dye-sensitized solar cell will be described. When solar light is incident on an n-type nanoparticle semiconductor oxide electrode having a dye adsorbed on a surface thereof, the dye generates electron-hole pairs. And is injected into the conduction band of the semiconductor oxide. The injected electrons are transferred to the transparent conductor and moved to the counter electrode through the excitation circuit. On the other hand, the oxidized dye receives electrons by the oxidation-reduction electrolyte and is reduced again. The oxidized electrolyte receives electrons reaching the interface of the counter electrode and is reduced again to complete the operation. Ruthenium complexes have been the most widely used dyes for dye-sensitized solar cells, and some ruthenium complexes show a photoelectric conversion efficiency of more than 11%. However, dye-sensitized solar cells using ruthenium complexes have many limitations due to the difficulty of synthesis and purification with expensive ruthenium metals. In general, dyes generally have a wide range of light absorption, high molecular extinction coefficient, Stability, and set resistance. In particular, organic dyes composed of the basic structure of electron donor, Π bonding unit and electron acceptor have advantages such as diversity of chemical structure, high molecular extinction coefficient, ease of absorption wavelength control, and simple synthesis process. As a result, many inventors have become interested in organic dyes lacking the above-mentioned metals, and inventors have been focusing on them. However, most of the organic dyes known so far have lower conversion efficiency than ruthenium metal complex dyes, and thus the development of new dyes exhibiting high photoelectric conversion efficiency with an improved molecular extinction coefficient by changing the structures of electron donors, Π bond units and electron acceptors This is a desperate need. In general, photocathodes of dye-sensitized solar cells are mostly coated with titanium dioxide having a nanocrystal structure on an FTO substrate. These nanocrystalline titanium dioxide have to meet several conditions. First, it must have a large surface area for dye adsorption, and second, it should be able to transfer electrons quickly by reducing the number of grain boundaries. Third, it must be able to induce light scattering through the proper size and structure, and finally, it must have pores that allow the electrolyte to penetrate properly. At present, there is much interest in a structure in which a TiO 2 (HS-TiO 2 ) having a polydisperse size structure satisfies all of the above conditions. The titanium dioxide structure can be prepared by sol-gel method, solvent thermal reaction, hydrolysis reaction, electrostatic spraying, etc. Particularly, titanium dioxide manufacturing method by electrostatic spraying is advantageous in that it is cheap and simple process, Therefore, many inventions are progressing recently.

본 특허는 유기 염료의 필요조건을 충족시키기 위한 다양한 구조의 전자 공여체를 고안하고 적절한 Π 결합 유닛을 적용하여 현저히 향상된 광전기 변환효율을 제공하는 것을 목적으로 한다. 본 발명의 또 다른 목적은 태양전지의 장기 안정성을 유지시켜주는 유기 염료와 제조 방법을 제공하는 것을 목적으로 한다. 본 발명의 또 다른 목적은 상기 유기 염료와 정전기 분무를 통해 제작된 이산화 티타늄 전극을 적용하는 태양전지의 제조 방법을 제공하는 것을 목적으로 한다. This patent is directed to devising electron donors of various structures to meet the requirements of organic dyes and to provide a significantly improved photoelectric conversion efficiency by applying suitable? Coupling units. It is another object of the present invention to provide an organic dye and a method for producing the same that maintain long-term stability of a solar cell. It is still another object of the present invention to provide a method of manufacturing a solar cell to which the titanium dioxide electrode fabricated through the electrostatic spraying with the organic dye is applied.

대한민국 공개특허 10-2013-0062234Korean Patent Publication No. 10-2013-0062234 대한민국 공개특허10-2012-0088963Korean Patent Publication No. 10-2012-0088963

"Dye-sensitized Solar Cells (Fundamental Sciences. Chemistry)" (2010, K. Kalyanasundram EPFL press)"Dye-sensitized Solar Cells (Fundamental Sciences. Chemistry)" (2010, K. Kalyanasundram EPFL press)

종래의 염료감응형 태양전지에서는 염료의 흡광및 광전변환효율이 낮을뿐 아니라 침투된 빛의 단일성 흡수에 그치는 관P로 높은 효율을 기대할 수가 없었다. 이에 본 발명에서는 홉광계수가 매우 높으며 동시에 흡광스페트럼범위가 매우 넓어서 효율적으로 광전변환을 이끌어 낼 수 있는 새로운 염료를 제조하고 동시에 전극에서산화티타늄 입자의 크기를 조절함으로써 넓은 범위에 걸쳐 광산란이 일어나게하여 광의 흡수도를 높이는 공정을 이용한 효율 높은 염료감응형 태양전지를 제조하는 공정을 개발하고 동시에 효율적인 태양전지를 제조하고자 한다.In conventional dye-sensitized solar cells, the efficiency of dye absorption and photoelectric conversion is low, and a high efficiency can not be expected for a tube P which only absorbs unevenness of penetrated light. In the present invention, a new dye capable of efficiently photoelectrically converting the HOP light with a high HSP and a very wide range of the absorption spectrum can be produced, and at the same time, the size of the titanium oxide particle can be controlled at the electrode, A process for manufacturing a dye-sensitized solar cell with high efficiency using a process for increasing the light absorption is developed and at the same time, an efficient solar cell is manufactured.

본 발명은 신규한 유기 염료 및 이의 제조방법과 염료 감응 태양전지의 제작 방법에 관한 것으로 유기 염료는 전자 공여체로서 트리페닐아민 유도체를, 중간 연결부분에 티오펜계 유닛을, 전자 수용체로써 시아노아크릴산을 사용하여 합성하였다. 본 발명에 따른 염료 감응 태양전지는 신규한 유기 염료의 가시광선 영역 흡수와 광전극의 다중 공진 광산란의 조화를 통해서 종래의 유기 염료로 제작된 염료 감응 태양전지보다 향상된 집광 효율과 전하 수집 능력을 보여주며 이로 인해 단락 전류(Jsc)를 크게 향상시켜 광전기 변환 효율을 증가시킬 수 있다. 본 발명의 유기 염료들은 염료 감응 태양전지에 사용된 종래의 유기 염료보다 향상된 몰 흡광계수, 단락 전류 및 광전기 변환효율을 나타내어 태양전지의 효율을 획기적으로 향상시킬 수 있으며 본 발명의 유기 염료들을 통해서 매우 우수한 장기 안정성을 가지는 염료 감응 태양전지를 제조할 수 있었으며 유기 염료들과 정전기 분무 기술로 제조된 이산화 티타늄을 사용하여 높은 광전기 변환효율을 가지는 태양전지를 제조하는 방법을 제공하고자 한다.The present invention relates to a novel organic dye, a process for producing the same, and a process for producing a dye-sensitized solar cell, wherein the organic dye comprises a triphenylamine derivative as an electron donor, a thiophene- Were synthesized. The dye-sensitized solar cell according to the present invention exhibits enhanced light-collecting efficiency and charge collecting ability as compared with the conventional dye-sensitized solar cell manufactured through the organic dye through the visible light region absorption of the novel organic dye and the multiple resonance light scattering of the photo- Thereby greatly increasing the short-circuit current (J sc ) and increasing the photoelectric conversion efficiency. INDUSTRIAL APPLICABILITY The organic dyes of the present invention exhibit an improved molar extinction coefficient, short circuit current and photoelectric conversion efficiency compared with the conventional organic dyes used in dye-sensitized solar cells, thereby remarkably improving the efficiency of a solar cell. A dye-sensitized solar cell having excellent long-term stability can be manufactured, and a method for manufacturing a solar cell having high photoelectric conversion efficiency by using organic dyes and titanium dioxide produced by electrostatic spraying technology.

본 발명을 통해 제작된 태양전지와 합성된 염료는 염료 감응 태양전지의 광전기 변환효율을 크게 향상시킬 수 있고 태양전지의 장기 안정성을 유지 할 수 있어 유연(플렉시블) 태양전지에도 이용 가능한 우수한 유기 염료가 될 것이며 에너지 수확용 태양전지에 널리 이용될 수 있다.
The solar cell and the dye synthesized through the present invention can greatly improve the photoelectric conversion efficiency of the dye-sensitized solar cell and can maintain the long-term stability of the solar cell, and thus excellent organic dyes usable in flexible (solar) And can be widely used in solar cells for energy harvesting.

도 1은 염료감응태양전지 원리의 모식도이다
도2는 본 발명으로 제조된 염료태양감응전지 및 N719염료를 사용한 염료감응 태양전지의 광전류와 전압의 상관관계를 보여주는 그라프이다
도3은 본 발명으로 제조된 염료태양감응전지 및 N719염료를 사용한 염료감응 태양전지의 시간에 따른 효율 변환을 보여주는 그라프이다
1 is a schematic diagram of a dye-sensitized solar cell principle
FIG. 2 is a graph showing the correlation between the photocurrent and the voltage of the dye-sensitized solar cell using the dye-sensitized solar cell and the N719 dye prepared according to the present invention
3 is a graph showing the time-dependent efficiency conversion of the dye-sensitized solar cell using the dye solar-sensitive cell and the N719 dye produced by the present invention

최근 전세계적으로 직면하고 있는 에너지 문제를 해결하기 위하여 기존의 화석 연료를 대체할 수 있는 다양한 자연 에너지(풍력, 수력, 지열, 태양에너지 등)를 개발하기 위한 발명가 진행되고 있다. 특히 태양에너지는 자원이 무한하고 환경 친화적이어서 이를 이용한 에너지 생산 기술은 21세기의 과학 기술 중 가장 중요하고 핵심적인 도전이다.현재 상업적으로 이용하는 태양전지는 무기 실리콘 반도체를 기반으로 하는 기술이다. 그러나 실리콘 수요의 폭발적인 증가로 인해 현재 가격이 굉장히 올라가는 실정이다. 이에 유기 태양전지는 광전기 변환 소자부분에서 중요하게 발명되고 있다. 그 중 염료 감응 태양전지는 1991년도 그라첼 발명팀에 의해 염료 감응 나노입자 산화 티타늄 태양전지가 개발된 이후 제조단가가 현저히 낮은 소자를 만들 수 있다는 가능성 때문에 고가의 실리콘 태양전지를 대체할 수 있는 광전 소자로 많은 관심을 받아왔다.염료 감응 태양전지는 대부분 다섯 가지 구성요소로 이루어져있다. 1) 광음극, 2) 다공성 금속 산화물 필름, 3) 염료, 4) 전해질/정공 이동물질, 5) 대전극. 하기 도 1은 염료 감응 태양전지의 구조와 작동 원리를 나타낸 모식도이다. 본 발명의 또 다른 목적들은 아래 실시예를 통해서 보다 명확히 설명된다. 그러나 하기한 실시예는 본 발명의 한 예일 뿐 본 발명이 이에 국한 되는 것은 아니다.
In order to solve the energy problems facing the world in recent years, inventors have been working on developing various natural energy (wind, hydro, geothermal, solar energy, etc.) that can replace existing fossil fuels. In particular, solar energy is an infinite resource and environmentally friendly, so energy production technology is one of the most important and key challenges of 21st century science technology. Currently, commercial solar cells are technologies based on inorganic silicon semiconductors. However, due to the explosive increase in demand for silicon, the current price is very high. Therefore, organic solar cells are importantly invented in the photoelectric conversion element part. Among them, the dye-sensitized solar cell was developed by the Gratel Invention Team in 1991. Since the dye-sensitized nanoparticle titanium oxide solar cell was developed, it is possible to manufacture a device with a significantly lower manufacturing cost, Dye-sensitized solar cells are composed of five components in most cases. 1) photocathode, 2) porous metal oxide film, 3) dye, 4) electrolyte / hole transfer material, and 5) 1 is a schematic diagram showing the structure and operation principle of a dye-sensitized solar cell. Other objects of the present invention will be more clearly understood from the following examples. However, the following embodiments are only examples of the present invention, and the present invention is not limited thereto.

전술한 목적을 달성하기 위하여, 본 발명는 화학식 1로 표시되는 새로운 유기 염료를 제조하였다.
In order to achieve the above object, the present invention provides a novel organic dye represented by the general formula (1).

Figure pat00002
Figure pat00002

상기 화학식에서 R1은 Wherein R < 1 &

Figure pat00003
,
Figure pat00004
,
Figure pat00005
, 또는 이들의 조합이다. 상기 화학식에서 R2는
Figure pat00003
,
Figure pat00004
,
Figure pat00005
, Or a combination thereof. In the above formula, R2 is

Figure pat00006
,
Figure pat00007
,
Figure pat00008
, 또는 이들의 조합이다. 상기화학식에서 R3
Figure pat00006
,
Figure pat00007
,
Figure pat00008
, Or a combination thereof. In the above formula, R < 3 &

-H , -F 또는 이들의 조합이다. -H , -F, or a combination thereof.

본 발명은 상기 화학식 1의 유기 염료와 정전 분무기술을 적용한 다분산크기 구조를가지는 이산화 티타늄 (HS-TiO2)을 포함하는 것을 특징으로 하는 광전기 변환소자를 제공하며 상기 광전기 변환소자를 포함하는 것을 특징으로 하는 염료 감응 태양전지를 제공한다.The present invention provides a photoelectric conversion element comprising the organic dye of Formula 1 and titanium dioxide (HS-TiO 2 ) having a polydisperse size structure to which the electrostatic spraying technique is applied, wherein the photoelectric conversion element And a dye-sensitized solar cell.

상기 목적을 달성하기 위하여 본 발명에서는 강한 전자 공여 특성과 염료의 집합 특성을 막아주는 비평면 분자구조를 가지는 트리페닐아민 유도체를 전자 공여체로 사용하였다. 또한 전자 공여 특성과 집합특성을 발명하기 위하여 상기 트리페닐아민에 메톡시기와 에틸헥실옥시기를 도입하였다. 본 발명은 높은 분자 흡광계수와 넓은 흡수 파장을 위하여 티오펜과 축합된 티오펜의 결합 유닛을 도입하였다. 특히, 축합된 티오펜은 그들의 평면 구조 때문에 유기 염료의 Π-공액결합 길이를 늘려줄 수 있으며, 티오펜 유닛에 연결된 알킬기는 염료의 집합 특성을 막아주고 태양전지의 장기 안정성을 유지시킬 수 있다.유기 염료의 용해도와 집합 특성을 발명하기 위하여 티오펜 유닛에 부틸기, 헥실기, 옥틸기를 각각 도입하였다.본 발명는 이산화 티타늄에 흡착시키고 전자의 이동을 빠르게 하기 위한 전자 수용체로써 시아노아세트산을 사용하였다. 화학식 1의 화합물은 (1) 하기 화학식 2의 화합물을 하기 화학식 3의 화합물과 스즈키 커플링 반응시켜 하기 화학식 4의 화합물을 제조하고, (2) 화학식 4의 화합물을 다이메틸포름아마이드(DMF) 중에서 포스포로스 옥시클로라이드(POCl3)와 반응시켜 하기 화학식 5의 화합물을 제조하고, (3) 화학식 5의 화합물을 아세토니트릴 중에서 피페리딘 존재하에서 시아노아세트산과 반응시킴으로써 제조될 수 있다. 그 구체적인 일례는 반응식 1로서 나타낼 수 있다.
In order to achieve the above object, a triphenylamine derivative having a non-planar molecular structure is used as an electron donor, which prevents strong electron donating property and dye aggregation property. Also, a methoxy group and an ethylhexyloxy group were introduced into the above triphenylamine in order to invent an electron donating property and an aggregation property. The present invention introduces a thiophene-condensed thiophene bonding unit for a high molecular extinction coefficient and a broad absorption wavelength. In particular, condensed thiophenes can increase the? -Conjugation length of organic dyes due to their planar structure, and alkyl groups linked to thiophene units can block the aggregation characteristics of dyes and maintain long-term stability of the solar cells. A butyl group, a hexyl group, and an octyl group were introduced into the thiophene unit, respectively, in order to invent the solubility and aggregation characteristics of the dye. The present invention uses cyanoacetic acid as an electron acceptor for adsorbing on titanium dioxide and accelerating electron transfer. (1) reacting a compound of the formula (2) with a compound of the formula (3) to give a compound of the formula (4), (2) reacting the compound of the formula (4) in dimethylformamide (3) reacting the compound of formula (5) with cyanoacetic acid in the presence of piperidine in acetonitrile, by reaction with phosphorous oxychloride (POCl 3 ). A specific example thereof can be shown as Reaction 1.

Figure pat00009
Figure pat00009

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

반응식 1Scheme 1

Figure pat00013

Figure pat00013

합성의 상세조건은 다음과 같다. 2-(5-bromo-4-hexylthiophen-2-yl)-5-(4-hexylthiophen-2-yl)thieno[3,2-b]thiophene과 4-(diphenylamino)phenyl boronic acid, Pd(pph3)4 및, 2N K2CO3 수용액을 무수 테트라하이드로퓨란(THF) 중에서 혼합한 후 아르곤 분위기하에서 24시간 동안 환류시켰다. 결과로 수득된 반응 혼합물을 물에 넣어 1시간 동안 교반시킨 후 다이클로로메탄으로 추출한다. 추출된 유기층을 브린 용액과 물로 세척하고 마그네슘 설페이트에 교반시킨다. 결과로 수득된 용액을 실리카 겔 크로마토그래피로 정제하여 하기 화합물 1을 얻었다. 얻은 화합물 1에 대해 질량 분석을 수행한 결과 m/z=715 임을 확인했다.The detailed conditions of synthesis are as follows. 2- (5-bromo-4- hexylthiophen-2-yl) -5- (4-hexylthiophen-2-yl) thieno [3,2-b] thiophene and 4- (diphenylamino) phenyl boronic acid, Pd (pph 3 ) 4 and 2N K 2 CO 3 were mixed in anhydrous tetrahydrofuran (THF) and refluxed under an argon atmosphere for 24 hours. The resulting reaction mixture is stirred in water for 1 hour and extracted with dichloromethane. The extracted organic layer is washed with brine solution and water and stirred with magnesium sulfate. The resulting solution was purified by silica gel chromatography to give the following compound 1. As a result of mass spectrometry on compound 1 obtained, it was confirmed that m / z = 715.

화합물 1Compound 1

Figure pat00014

Figure pat00014

상기 화합물 1을 다이메틸포름아마이드(DMF)중에서 포스포로스 옥시클로라이드(POCl3)와 반응시킨다. 반응물은 60℃에서 12시간 동안 교반시킨다. 결과로 수득된 반응 혼합물을 1M 소듐아세테이트 수용액에 넣고 1시간 동안 반응시킨 후 다이클로로메탄으로 추출한다. 추출된 유기층을 브린용액과 물로 세척하고 소듐 설페이트에 교반시킨다. 결과로 수득된 잔류물을 실리카 겔 크로마토그래피로 정제하여 하기 화합물 2를 얻었다. 얻은 화합물 2에 대해 질량 분석을 수행한 결과 m/z=743 임을 확인했다.The compound 1 is reacted with phosphorus oxychloride (POCl 3 ) in dimethylformamide (DMF). The reaction is stirred at 60 < 0 > C for 12 hours. The resulting reaction mixture is poured into a 1M aqueous solution of sodium acetate and reacted for 1 hour and then extracted with dichloromethane. The extracted organic layer is washed with brine solution and water and stirred with sodium sulfate. The resulting residue was purified by silica gel chromatography to give the following compound 2. Mass spectrometry of the obtained compound 2 confirmed that m / z = 743.

화합물 2Compound 2

Figure pat00015
Figure pat00015

상기 화합물 2를 아세토니트릴 중에서 시아노아세트산과 피페리딘을 혼합한 후 12시간 동안 환류시켰다. 반응이 끝난 후 얻어진 반응물을 페트롤리움 에테르와 아세토니트릴로 여러 번 세척하여 하기 화합물 3을 얻었다. 얻은 화합물 3에 대해 질량 분석을 수행한 결과 m/z=810 임을 확인했다.Compound 2 was mixed with cyanoacetic acid and piperidine in acetonitrile and refluxed for 12 hours. After the completion of the reaction, the obtained reaction product was washed several times with petroleum ether and acetonitrile to obtain the following compound 3. Mass spectrometry of the obtained compound 3 confirmed that m / z = 810.

화합물 3Compound 3

Figure pat00016
Figure pat00016

2-(5-bromo-4-hexylthiophen-2-yl)-5-(4-hexylthiophen-2-yl)thieno[3,2-b]thiophene과 4-(bis(4-methoxyphenyl)amino)phenylboronic acid, Pd(pph3)4 및, 2N K2CO3 수용액을 무수 테트라하이드로퓨란(THF) 중에서 혼합한 후 아르곤 분위기하에서 24시간 동안 환류시켰다. 결과로 수득된 반응 혼합물을 물에 넣어 1시간 동안 교반시킨 후 다이클로로메탄으로 추출한다. 추출된 유기층을 브린 용액과 물로 세척하고 마그네슘 설페이트에 교반시킨다. 결과로 수득된 용액을 실리카 겔 크로마토그래피로 정제하여 하기 화합물 1을 얻었다. 얻은 화합물 1에 대해 질량 분석을 수행한 결과 m/z=775 임을 확인했다.(4-hexylthiophen-2-yl) thieno [3,2-b] thiophene and 4- (bis (4- methoxyphenyl) amino) phenylboronic acid , Pd (pph 3 ) 4 and 2N K 2 CO 3 were mixed in anhydrous tetrahydrofuran (THF) and refluxed under an argon atmosphere for 24 hours. The resulting reaction mixture is stirred in water for 1 hour and extracted with dichloromethane. The extracted organic layer is washed with brine solution and water and stirred with magnesium sulfate. The resulting solution was purified by silica gel chromatography to give the following compound 1. The obtained compound 1 was subjected to mass spectrometry and it was confirmed that m / z = 775.

화합물 4Compound 4

Figure pat00017
Figure pat00017

상기 화합물을 다이메틸포름아마이드(DMF)중에서 포스포로스 옥시클로라이드(POCl3)와 반응시킨다. 반응물은 65℃에서 24시간 동안 교반시킨다. 결과로 수득된 반응 혼합물을 1M 소듐아세테이트 수용액에 넣고 1시간 동안 반응시킨 후 다이클로로메탄으로 추출한다. 추출된 유기층을 브린 용액과 물로 세척하고 소듐 설페이트에 교반시킨다. 결과로 수득된 잔류물을 실리카 겔 크로마토그래피로 정제하여 하기 화합물 5를 얻었다. 얻은 화합물 5에 대해 질량 분석을 수행한 결과 m/z=803 임을 확인했다.The compound is reacted with phosphorous oxychloride (POCl 3 ) in dimethylformamide (DMF). The reaction is stirred at 65 < 0 > C for 24 hours. The resulting reaction mixture is poured into a 1M aqueous solution of sodium acetate and reacted for 1 hour and then extracted with dichloromethane. The extracted organic layer is washed with brine solution and water and stirred with sodium sulfate. The resulting residue was purified by silica gel chromatography to give the following compound 5. The resultant compound 5 was analyzed by mass spectrometry to find that m / z = 803.

화합물 5Compound 5

Figure pat00018
Figure pat00018

상기 화합물을 아세토니트릴 중에서 시아노아세트산과 피페리딘을 혼합한 후 12시간 동안 환류시켰다. 반응이 끝난 후 얻어진 반응물을 페트롤리움 에테르와 아세토니트릴로 여러 번 세척하여 하기 화합물 6을 얻었다. 얻은 화합물 6에 대해 질량 분석을 수행한 결과 m/z=870 임을 확인했다.The compound was mixed with cyanoacetic acid and piperidine in acetonitrile and refluxed for 12 hours. After the completion of the reaction, the obtained reaction product was washed several times with petroleum ether and acetonitrile to obtain the following compound 6. The obtained compound 6 was subjected to mass spectrometry and it was confirmed that m / z = 870.

화합물 6Compound 6

Figure pat00019
Figure pat00019

본 발명는 상기 화학식 1의 염료를 사용하는 것 이외에 종래의 염료를 이용하여 염료 감응 태양전지를 제조하는 방법들이 적용될 수 있다. 제조된 염료 감응 태양전지 소자는 정전기 분무 기술로 제조된 다분산크기 구조를 가지는 이산화 티타늄 (HS-TiO2)을 이용하여 투명 전극을 제조하고, 이어서 이 전극에 본 발명의 유기 염료를 흡착시킨 것이 좋다. 새로운 유기염료 구조를 갖는 화학식 1로 표시되는 화합물을 정전기 분무 기술로 제작된 다분산크기 구조를 가지는 (HS-TiO2) 전극에 흡착시켜 기존 염료감응태양전지보다 우수한 효율을 나타내는 소자를 제작하였고 본 발명을 완성하게 되었다. 본 발명에 따른 유기 염료의 광전기 특성을 평가하기 위해, 13μm 다분산크기 구조를 가지는 티타늄 입자로 이루어진 (HS-TiO2) 투명층을 이용하여 염료 감응 태양전지를 제조하였다. 상세하게는 10wt% P-25(Degussa) 나노 결정 이산화 티나늄을 에탄올에 분산시킨 후 제분공정을 수행하였다. 분산된 이산화 티타늄 용액을 고압 전원이 연결된 실린지 인퓨전 펌프에 채운다. FTO유리기판 위에 정전기 분무 기술을 통하여 이산화 티타늄을 코팅시킨다. 전기장은 1.5kV cm-1, 용액 주입 속도는 40μL min-1로 고정한다. 그 후 공기 중에서 500℃, 30분 동안 소결시키고 80℃, 10분 동안 압착시킨다. 상기 정전기 분무 기술로 만들어진 광음극의 후처리를 위해 이산화 티타늄 투명층을 0.1몰 사염화 티타늄 (TiCl4) 수용액에 80℃, 20분 동안 함침시키고 물로 씻어낸 후 450℃, 30분 동안 소결시켰다. 얻어진 이산화 티타늄 전극을 제조된 화합물 3용액과 화합물 6용액(0.3mM in ethanol containing 1.5mM DCA)에 각각 넣고 4시간 동안 유지시켰다. 유기 염료가 흡착된 이산화 티타늄 전극들은 에탄올로 씻어내고 질소 흐름 안에서 말렸다. 염료가 흡착된 이산화 티타늄 전극과 백금 대전극은 전극 사이의 접착제로써 열접착 필름 (Surlyn, Dupont 1702, 25μm-thick)을 사용하여 샌드위치 타입으로 조립하였다. 그 후에, 아세토니트릴 과 발레로니트릴 (85/15 v/v) 혼합용액에 0.65mM 1-부틸-3-메틸이미다졸리움 아이오다이드, 0.1M 리튬아이오다이드, 0.03M 아이오딘, 0.5M 터트-부틸피리딘을 넣어 만든 전해질을 전지에 주입하여 염료 감응 태양전지를 제조하였다. 신규 유기 염료들의 광전기 특성을 비교하기 위하여 현재 가장 많이 사용되는 하기 화학식 6의 루테늄 착물 염료인 N719(Solaronix)를 이용하여 소자를 제작하였다.In addition to using the dye of Formula 1, the present invention can also be applied to methods for preparing dye-sensitized solar cells using conventional dyes. The fabricated dye-sensitized solar cell device was prepared by preparing a transparent electrode using titanium dioxide (HS-TiO 2 ) having a polydisperse size structure manufactured by an electrostatic spraying technique and then adsorbing the organic dye of the present invention on the electrode good. We have fabricated a device that exhibits better efficiency than conventional dye-sensitized solar cells by adsorbing a compound represented by Formula 1 having a novel organic dye structure onto a (HS-TiO 2 ) electrode having a polydisperse size structure formed by an electrostatic spraying technique. Thereby completing the invention. In order to evaluate the photoelectric characteristics of the organic dye according to the present invention, a dye-sensitized solar cell was prepared using a (HS-TiO 2 ) transparent layer made of titanium particles having a 13 μm polydispersity size structure. Specifically, 10 wt% P-25 (Degussa) nanocrystalline titanium dioxide was dispersed in ethanol and milled. The dispersed titanium dioxide solution is filled into a syringe infusion pump connected to a high-voltage power source. FTO glass substrate is coated with titanium dioxide through electrostatic spraying technique. The electric field is fixed at 1.5 kV cm -1 and the solution injection rate is set at 40 μL min -1 . It is then sintered in air at 500 ° C for 30 minutes and squeezed at 80 ° C for 10 minutes. For the post-treatment of the photocathode made by the electrostatic spraying technique, the titanium dioxide transparent layer was impregnated in an aqueous solution of 0.1 molar titanium tetrachloride (TiCl 4 ) at 80 ° C for 20 minutes, rinsed with water, and sintered at 450 ° C for 30 minutes. The resulting titanium dioxide electrode was placed in a solution of compound 3 and compound 6 (0.3 mM in ethanol containing 1.5 mM DCA), respectively, and maintained for 4 hours. Titanium dioxide electrodes with organic dye adsorption were washed with ethanol and dried in a nitrogen stream. The dye-adsorbed titanium dioxide electrode and the platinum counter electrode were sandwich-typed using a thermal adhesive film (Surlyn, Dupont 1702, 25 μm-thick) as an adhesive between the electrodes. Subsequently, 0.65 mM 1-butyl-3-methylimidazolium iodide, 0.1M lithium iodide, 0.03M iodine, 0.5M iodine, and 0.5M iodine were added to a mixed solution of acetonitrile and valeronitrile (85/15 v / v) The dye-sensitized solar cell was prepared by injecting an electrolyte prepared by adding tert-butylpyridine into a cell. In order to compare the photoelectric characteristics of the novel organic dyes, a device was fabricated using N719 (Solaronix), which is the most widely used ruthenium complex dye of the following formula (6).

Figure pat00020
Figure pat00020

N719 염료를 이용한 염료 감응 태양전지는 상기 유기 염료로 제작한 소자와 같은 방법으로 제작하였다. 염료 감응 태양전지의 광전기 변환 효율은 태양으로부터 태양전지에 도달하는 총에너지에 대한 생성된 전기 에너지로 표시되며 하기식으로 나타낸다.The dye-sensitized solar cell using the N719 dye was fabricated in the same manner as the device made from the organic dye described above. The photoelectric conversion efficiency of a dye-sensitized solar cell is represented by the generated electric energy with respect to the total energy reaching the solar cell from the sun, and is expressed by the following equation.

η = Pmax/Pin = (Jsc*Voc*FF)/Pin η = P max / P in = (J sc * V oc * FF) / P in

단락 전류 (Jsc) 는 회로가 단락된 상태에서 빛을 받았을 때 나타나는 전류밀도이다. 이 값은 빛의 세기, 빛의 파장 영역, 입사광에 의해 여기된 전자와 정공이 손실되지 않고 전지 내부에서 외부 회로 쪽으로 보내지는가에 의존된다. 개방 전압 (Voc)은 회로가 개방된 상태에서 빛을 받았을 때 태양전지의 양단에 형성되는 전위차로써 염료 감응 태양전지는 대개 이산화 티타늄의 페르미레벨과 전해질의 산화 환원 에너지 준위의 차이에 의해서 결정되므로 이 차이가 큰 전해질을 사용하면 높은 개방 전압 값이 얻어진다. 충진률 (FF)은 최대 전력점에서의 전류밀도와 전압값의 곱 (Jmax x Vmax)을 단락전류와 개방 전압의 곱 (Jsc x Voc)으로 나눈 값이다. The short-circuit current (J sc ) is the current density that appears when the circuit receives light in the short-circuited state. This value depends on the intensity of the light, the wavelength region of the light, and whether electrons and holes excited by the incident light are not lost and sent toward the external circuit inside the cell. The open-circuit voltage (V oc ) is a potential difference formed at both ends of the solar cell when light is received when the circuit is opened. The dye-sensitized solar cell is usually determined by the difference between the Fermi level of titanium dioxide and the redox energy level of the electrolyte A high open-circuit voltage is obtained when an electrolyte having a large difference is used. The filling rate (FF) is calculated by multiplying the product of the current density at the maximum power point and the voltage value (J max x V max ) by the short-circuit current and the open-circuit voltage J sc x V oc ).

염료 감응 태양전지의 광전지 성능은 450W 크세논 광원을 사용하여 측정하였으며, 그 결과를 하기 표 1과 도 2에 나타내었다.
The photocell performance of the dye-sensitized solar cell was measured using a 450 W xenon light source, and the results are shown in Table 1 and FIG.


SensitizerSensitizer

VV OCOC ( V ) (V)

JJ SCSC (  ( mAmA cmcm -2 -2 ))

FFFF

η(η ( efficiencyefficiency ) ( % )) (%)

N719N719

0.7670.767

19.519.5

0.6540.654

9.779.77

화합물 3Compound 3

0.6870.687

20.920.9

0.6390.639

9.189.18

화합물 6Compound 6

0.6910.691

21.6221.62

0.6310.631

9.429.42

도 22

Figure pat00021

Figure pat00021

상기 표 1과 도 2에서 나타난 바와 같이 표준 AM 1.5 조건하에서 화합물 3으로 제작된 태양전지는 단락 전류 20.9 mA cm-2, 개방 전압 0.687 V, 충진률 0.639, 광전기 변환효율 9.18%를 보였으며, 화합물 6으로 제작된 태양전지는 21.62 mA cm-2, 개방 전압 0.691 V, 충진률 0.631, 광전기 변환효율 9.42%를 기록하였다. 특히 단락 전류는 현재 발표된 모든 염료들 중에서 가장 높은 값을 나타내었다. 또한 화합물 6의 메톡시기는 전자를 공여해주는 능력이 우수하여 화합물 3 보다 더 높은 단락 전류 값을 보여주었다. 상기에 나타난 바와 같이 화합물 3과 화합물 6의 매우 높은 단락 전류는 신규 유기 염료가 가지고 있는 넓은 빛의 파장, 높은 분자 흡수 계수, 적절한 에너지 준위와 다분산크기 구조를 가지는 이산화 티타늄 전극의 광산란의 조화에 의해 구현 되었다.염료 감응 태양전지의 장기 안정성 시험은 표준AM 1.5 조건하에서 50℃에서 800시간 동안 측정되었으며 그 결과를 하기 도3에 나타내었다.
As shown in Table 1 and FIG. 2, the solar cell fabricated with Compound 3 under the standard AM 1.5 conditions showed a short circuit current of 20.9 mA cm -2 , an open circuit voltage of 0.687 V, a filling ratio of 0.639, and a photoelectric conversion efficiency of 9.18% 6 was 21.62 mA cm -2 , the open circuit voltage was 0.691 V, the filling rate was 0.631, and the photoelectric conversion efficiency was 9.42%. In particular, the short circuit current showed the highest value among all dyes presently announced. Also, the methoxy group of Compound 6 showed a higher short circuit current value than Compound 3 because of its excellent ability to donate electrons. As shown above, the very high short-circuit currents of Compound 3 and Compound 6 are due to the broad wavelength of light of the novel organic dye, the high molecular absorption coefficient, the harmonization of the light scattering of the titanium dioxide electrode having the appropriate energy level and the polydisperse size structure The long term stability test of the dye-sensitized solar cell was carried out at 50 DEG C for 800 hours under standard AM 1.5 conditions, and the results are shown in FIG.

도 33

Figure pat00022
Figure pat00022

상기 도3에서 나타난 바와 같이 화합물 3과 화합물 6으로 제작된 태양전지는 N719염료로 제작된 태양전지에 비해 매우 우수한 장기 안정성을 보여준다. 상기 도3에서 나타난 바와 같이 800시간 후에 N719로 제작된 태양전지는 초기 효율의 54%, 화합물 3으로 제작된 태양전지는 초기 효율의 81%, 화합물 6으로 제작된 태양 전지는 초기 효율의 82% 값을 보여주고 있다. 따라서 본 발명의 신규한 염료들은 염료 감응 태양전지의 광전기 변환효율을 크게 향상시킬 수 있고 태양전지의 장기 안정성을 유지 할 수 있어 유연(플렉시블) 태양전지에도 이용 가능한 우수한 유기 염료가 될 것이다. As shown in FIG. 3, the solar cell made of the compound 3 and the compound 6 has a very excellent long-term stability compared to the solar cell made of the N719 dye. As shown in FIG. 3, the solar cell produced with N719 after 800 hours had an initial efficiency of 54%, the solar cell made with compound 3 had 81% of the initial efficiency, the solar cell made with compound 6 had 82% Value. Therefore, the novel dyes of the present invention can greatly improve the photoelectric conversion efficiency of the dye-sensitized solar cell, maintain long-term stability of the solar cell, and become excellent organic dyes usable in flexible solar cells.

Claims (4)

하기 화학식으로 표시되는 염료감응태양전지용 유기 염료.
Figure pat00023

상기 화학식에서 R1은
Figure pat00024
,
Figure pat00025
,
Figure pat00026
, 또는 이들의 조합이다. 상기 화학식에서 R2는
Figure pat00027
,
Figure pat00028
,
Figure pat00029
, 또는 이들의 조합이다. 상기화학식에서 R3-H , -F 또는 이들의 조합이다.
An organic dye for a dye-sensitized solar cell, which is represented by the following formula:
Figure pat00023

Wherein R < 1 &
Figure pat00024
,
Figure pat00025
,
Figure pat00026
, Or a combination thereof. In the above formula, R2 is
Figure pat00027
,
Figure pat00028
,
Figure pat00029
, Or a combination thereof. In the above formula, R 3 is -H , -F or a combination thereof.
가시광역 및 원적외선 영영에서 광산란을 일으킬 수 있도록 정전기 분무로 이산화티타늄 용액을 방사하여 전극입자의 크기를 조절하는 방법.
A method of controlling the size of electrode particles by radiating titanium dioxide solution by electrostatic spraying so as to cause light scattering in visible and far infrared rays.
상기 청구항 1의 유기염료가 상기 청구항 2의 전극표면에 흡착되어 청구항 2의 투명전극에서 산란된 빛들이 염료의 흡수 파장대와 일치함으로써 다중광산란을 이용하여 흡광효율을 높이도록 제작된 유기감응태양전지.
The organic photovoltaic cell according to claim 1, wherein the organic dye of claim 1 is adsorbed on the surface of the electrode of claim 2 so that the scattered light of the transparent electrode of claim 2 coincides with the absorption wavelength band of the dye to increase the light absorption efficiency by using multiple light scattering.
상기 청구항 1의 유기염료의 제조방법과 이 염료를 사용하는 장시간 효율이 높은 태양전지의 제조방법


A process for producing the organic dye according to claim 1 and a method for producing a solar cell having high efficiency for a long time using the dye


KR1020140090426A 2014-07-17 2014-07-17 Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells KR101654304B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140090426A KR101654304B1 (en) 2014-07-17 2014-07-17 Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140090426A KR101654304B1 (en) 2014-07-17 2014-07-17 Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells

Publications (2)

Publication Number Publication Date
KR20160010720A true KR20160010720A (en) 2016-01-28
KR101654304B1 KR101654304B1 (en) 2016-09-06

Family

ID=55309757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140090426A KR101654304B1 (en) 2014-07-17 2014-07-17 Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells

Country Status (1)

Country Link
KR (1) KR101654304B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190113413A (en) * 2018-03-28 2019-10-08 영남대학교 산학협력단 Compound for organic dyes of dye-sensitized solar cell and dye-sensitized solar cell comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240117B (en) * 2008-02-04 2010-11-10 中国科学院长春应用化学研究所 Pure organic dyestuff and dyestuff sensitization solar energy battery prepared therefrom
KR20120088963A (en) 2011-02-01 2012-08-09 주식회사 동진쎄미켐 Dye-sensitized solar cell having high efficiency and method for preparing the same
KR20120113880A (en) * 2011-04-06 2012-10-16 에스에프씨 주식회사 Organic dye and dye-sensitized solar cell
CN101570644B (en) * 2009-06-05 2012-12-12 中国科学院长春应用化学研究所 Pure organic dye adopting multiple heterocycles and derivants thereof as conjugated unit and dye-sensitized solar cell prepared thereby
KR20130062234A (en) 2011-12-02 2013-06-12 주식회사 동진쎄미켐 Novel organic dye and preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240117B (en) * 2008-02-04 2010-11-10 中国科学院长春应用化学研究所 Pure organic dyestuff and dyestuff sensitization solar energy battery prepared therefrom
CN101570644B (en) * 2009-06-05 2012-12-12 中国科学院长春应用化学研究所 Pure organic dye adopting multiple heterocycles and derivants thereof as conjugated unit and dye-sensitized solar cell prepared thereby
KR20120088963A (en) 2011-02-01 2012-08-09 주식회사 동진쎄미켐 Dye-sensitized solar cell having high efficiency and method for preparing the same
KR20120113880A (en) * 2011-04-06 2012-10-16 에스에프씨 주식회사 Organic dye and dye-sensitized solar cell
KR20130062234A (en) 2011-12-02 2013-06-12 주식회사 동진쎄미켐 Novel organic dye and preparation thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Dye-sensitized Solar Cells (Fundamental Sciences. Chemistry)" (2010, K. Kalyanasundram EPFL press)
Jihun Kim외, Resonant Multiple Light Scattering for Enhanced Photon Harvesting in Dye-Sensitized Solar Cells, Adv. Mater. 2014, 26, pp. 5192-5197(2014.5.28.자 온라인 공지)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190113413A (en) * 2018-03-28 2019-10-08 영남대학교 산학협력단 Compound for organic dyes of dye-sensitized solar cell and dye-sensitized solar cell comprising the same

Also Published As

Publication number Publication date
KR101654304B1 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
Zhang et al. Molecular engineering of potent sensitizers for very efficient light harvesting in thin-film solid-state dye-sensitized solar cells
Wang et al. Ionic conductor with high conductivity as single-component electrolyte for efficient solid-state dye-sensitized solar cells
Shi et al. All-solid-state dye-sensitized solar cells with alkyloxy-imidazolium iodide ionic polymer/SiO2 nanocomposite electrolyte and triphenylamine-based organic dyes
Hua et al. Effects of various π-conjugated spacers in thiadiazole [3, 4-c] pyridine-cored panchromatic organic dyes for dye-sensitized solar cells
Baik et al. Synthesis and photovoltaic properties of novel organic sensitizers containing indolo [1, 2-f] phenanthridine for solar cell
Santhosh et al. Novel indole-based photosensitizers coupled with PEG-HEC quasi-solid-state electrolyte to improve energy conversion and stability of organic dyes based-dye sensitized solar cells
Michaleviciute et al. Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell
Chen et al. Axial-symmetric conjugated group promoting intramolecular charge transfer performances of triphenylamine sensitizers for dye-sensitized solar cells
Raja et al. Improving the efficiency of dye-sensitized solar cells via the impact of triphenylamine-based inventive organic additives on biodegradable cellulose polymer gel electrolytes
Gangadhar et al. An investigation into the origin of variations in photovoltaic performance using D–D–π–A and D–A–π–A triphenylimidazole dyes with a copper electrolyte
CN101497746A (en) Organic dye containing thiophen ethylene and dye sensitization solar cell prepared thereby
Kim et al. Thiophene-fused coplanar sensitizer for dye-sensitized solar cells
KR101760492B1 (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
KR101654304B1 (en) Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells
KR101267658B1 (en) Dye for dye-sensitized solarcell, preparation method of the same and dye-sensitized solar cell comprising the same
KR101264082B1 (en) Photosensitizer containing benzothiazole for photovoltaic cell, and photovoltaic cell including the same
KR20080018238A (en) Coumarin-containing dyes for dye-sensitized solar cells
Lakshmi et al. Lawsone dye complex: an efficient sensitizer for Dye Sensitized Solar Cell
Can et al. Push-pull type material having spirobifluorene as π-spacer for dye sensitized solar cells
KR20080103683A (en) Novel julolidine-based dye and preparation thereof
Heo et al. Donor-π-Acceptor Type Diphenylaminothiophenyl Anthracene-mediated Organic Photosensitizers for Dye-sensitized Solar Cells
CN101497745B (en) Organic dye and dye-sensitized solar cell prepared thereby
KR20080019669A (en) Phenothiazine-containing dyes for dye-sensitized solar cells
KR20100128094A (en) Novel julolidine-based dye and preparation thereof
ES2708762T3 (en) Organic dye for a solar cell sensitized by dye

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant