KR20160001832A - 바이오차를 이용한 토양 중 항생제 이동성 저감 방법 - Google Patents
바이오차를 이용한 토양 중 항생제 이동성 저감 방법 Download PDFInfo
- Publication number
- KR20160001832A KR20160001832A KR1020140079426A KR20140079426A KR20160001832A KR 20160001832 A KR20160001832 A KR 20160001832A KR 1020140079426 A KR1020140079426 A KR 1020140079426A KR 20140079426 A KR20140079426 A KR 20140079426A KR 20160001832 A KR20160001832 A KR 20160001832A
- Authority
- KR
- South Korea
- Prior art keywords
- soil
- smz
- adsorption
- bio
- antibiotics
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K17/00—Soil-conditioning materials or soil-stabilising materials
- C09K17/14—Soil-conditioning materials or soil-stabilising materials containing organic compounds only
- C09K17/18—Prepolymers; Macromolecular compounds
- C09K17/32—Prepolymers; Macromolecular compounds of natural origin, e.g. cellulosic materials
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Soil Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
본 발명은 토양에 바이오차를 처리하는 단계를 포함하는 토양 중 항생제의 이동성을 저감시키는 방법에 관한 것이다.
본 발명에 따른 바이오차를 이용한 토양 중 항생제 이동성 저감 방법에 의하면, 항생제로 오염된 토양에서 항생제의 이동을 약 40 ~ 80% 정도로 감소시킬 수 있어, 토양에서의 항생제 이동에 의한 잠재적 위험성을 효과적으로 감소시킬 수 있다.
본 발명에 따른 바이오차를 이용한 토양 중 항생제 이동성 저감 방법에 의하면, 항생제로 오염된 토양에서 항생제의 이동을 약 40 ~ 80% 정도로 감소시킬 수 있어, 토양에서의 항생제 이동에 의한 잠재적 위험성을 효과적으로 감소시킬 수 있다.
Description
본 발명은 바이오차(Biochar) 처리된 토양에서의 항생제의 이동성을 저감하는 방법에 관한 것으로서, 보다 상세하게는 유해 식물인 가시박을 열분해시켜 수득되는 바이오차를 처리하여 토양 중 항생제 이동성을 저감시키는 방법에 관한 것이다.
최근 주의가 집중되는 환경 오염원인 의약품 잔류물(Pharmaceutical residues), 즉 항생제는 전세계적으로 하수 처리된 물, 지표수와 지하수에서 종종 관찰된다(Hu et al., 2010). 설폰아미드(Sulfonamides, SAs)는 수의산업에서 가장 빈번하게 사용되는 항생제 군 중 하나이다(Kwon et al., 2011). SAs는 프랑스에서 두 번째로 빈번하게 사용되는 항생제 그룹인 것으로 보고되었다. 독일과 영국에서는 전체 수의산업용 항생제 사용량의 11 ~ 23 %를 차지하며(Thiele-Bruhn, 2003), 미국에서는 4번째로 많이 사용되는 항생제 그룹이다(AHI, 2002). 이러한 이유로 인해, SAs는 대부분의 환경에서 검출되고 있고(Hu et al., 2010), 폐수처리시설(Wastewater Treatment Plants, WWTP)에서 방류되는 물에서 높은 농도 범위(ng/L, 때때로 10,000 ng/L에 까지 이름)로, 그리고 강과 지하수에서는 낮은 농도 범위(< 100 ng/L)로 쉽게 발견될 것이다(Kim et al., 2011). 여러 SAs중에서도, 설파메타진(sulfamethazine, SMZ)이 수의산업에서 가장 보편적으로 사용되는 약물이며, 낮은 흡착성과 높은 이동성 때문에 환경에서 빈번하게 발견되고 있다(Haller et al., 2002).
SAs는 토양 표면과 상대적으로 비반응성의 특성을 보이고, 이런 이유로 토양에서 높은 이동성을 보인다(Kim et al., 2011, 2010b; Thiele-Bruhn, 2003). 최근 연구에 의하면, SMZ 흡착이 토양의 pH, 유기 물질 함량(organic matter content), 점토 함유량(clay content), 양이온 교환능력(cation exchange capacity)과 이온 강도에 의존한다는 보고가 있었다(Kim et al.,2010a; Kurwadkar et al., 2007; Thiele-Bruhn et al., 2004). SMZ의 높은 극성, 낮은 옥탄올-물 분배 계수(octanole-water distribution coefficients, Kow), 낮은 킬레이트 결합 능력과 높은 용해성은, 모두 토양과 SMZ의 낮은 친화성에 기여한다 (Thiele-Bruhn et al., 2004). 최근에, 다양한 토양에서 SMZ의 친화성을 결정하기 위해 많은 연구가 수행되었다 (Kim et al.,2010a; Kurwadkar et al., 2007; Thiele-Bruhn et al., 2004). SMZ의 토양 광물질 분자와의 낮은 친화성으로 인해, SMZ로 오염된 토양과 수질을 처리하기 위해서는 효율적인 토양 개량제(soil amendment)를 찾는 것이 중요한 문제로 대두되고 있다.
또한, SMZ의 과도한 사용 때문에, 동물의 분뇨, 폐수 처리 공장으로부터 방류되는 물, 가축 대량 매몰지역으로부터의 침출수에서 SMZ가 발견되고 있다(Ok et al., 2011). SMZ은 토양으로 방출되는 즉시, 지하수로 유입되어, 물과 함께 흘러간다(Ok et al., 2011). SMZ은 한국, 독일, 중국, 스페인, 대만, 그리고 미국을 포함하는 많은 지역의 지하수에서 0.67 mg/L의 농도로 까지 발견되고 있다(Kim et al., 2011). 환경에서 SAs의 한 종류인 SMZ이 출현하게 되면, 항생제 내성 박테리아의 발현 및 증식을 유도할 수 있다(Heuer et al., 2011). 이것은 또한, 식물의 식물독성 (phytotoxicity)을 증가시킬 수 있으나, 단지 몇 가지 연구가 이와 관련하여 수행되었을 뿐이다(Dolliver et al., 2007).
한편, 탄소가 풍부한 바이오매스를 열분해하여 제조된 바이오차는, 토양의 비옥도를 효과적으로 증가시키고, 지구 온난화와 관련된 많은 화합물에 의한 환경 오염을 완화시키는 토양 개량제로서의 탄소 흡수원이 될 수 있다(Awad et al.,2012). 또한, 바이오차는 다양한 환경 오염원을 효과적으로 흡착할 수 있는 흡착제로 사용될 수 있음이 밝혀졌다. 다수의 조사에서 유기물 및 무기물에 의한 토양 오염을 경감시킬 수 있는 저가의 흡착제로서 바이오차의 잠재력이 밝혀졌다(Ahmad et al., 2012a; Tsang et al., 2007). 그러나 이전에 연구된 오염원의 다양한 종류 중에서, 단지 몇 가지 종류와 관련해서만 바이오차를 사용하여 다양한 pH 값과 오염 물질 농도에서 토양에 존재하는 의약품을 제거하는 것에 초점이 맞추어져 있다(Yao et al., 2012).
바이오차는 많은 종류의 원료로부터 제조할 수 있기 때문에, 유해 식물이 잠재적으로 효과적인 종일 수 있으며, 그와 같은 자원의 수집과 이용은 환경 시스템에 부가적인 이익이 된다. 가시박(Burcucumber, Sicyos angulatus L.)은 한국에서 가장 광범위하게 분포하는 유해 식물 중의 하나이다(Kil et al., 2006). 이 식물은 농업에서뿐만 아니라 자연 생태 시스템에도 해로운 영향을 미치고 있어, 국가의 생물 다양성에 심각한 위협이 되기 때문에, 한국의 환경부는 이를 조절하기 위한 규정을 채택하여 퇴치 작업을 벌이고 있다(Ahmad et al., 2013b). 하지만, 항생제로 오염된 토양과 수질을 처리하기 위한 흡착 효율이 높은 토양 개량제에 대한 개발이 이루어 지지 않고 있어 이에 대한 연구가 필요한 실정이다.
AHI, 2002. Animal Antibiotics. Animal Health Institute. Available from: http://www.ahi.org/.
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., 2012a. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536-544.
Ahmad, M., Lee, S.S., Rajapaksha, A.U., Vithanage, M., Zhang, M., Cho, J.S., Lee, S.-E., Ok, Y.S., 2013a. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 143, 615-622.
Ahmad, M., Moon, D.H., Lim, K.J., Shope, C.L., Lee, S.S., Usman, A.R.A., Kim, K.R., Park, J.H., Hur, S.O., Yang, J.E., Ok, Y.S., 2012b. An assessment of the utilization ofwaste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environ. Earth Sci. 67, 1023-1031.
Ahmad, M., Moon, D.H., Vithanage, M., Koutsospyros, A., Lee, S.S., Yang, J.E., Lee, S.E., Jeon, C., Ok, Y.S., 2013b. Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol.. http://dx.doi.org/10.1002/jctb.4157.
Awad, Y.M., Blagodatskaya, E., Ok, Y.S., Kuzyakov, Y., 2012. Effects of polyacrylamide, biopolymer and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. Eur. J. Soil. Biol. 48, 1-10.
Dolliver, H., Kumar, K., Gupta, S., 2007. Sulfamethazine uptake by plants from manure-amended soil. J. Environ. Qual. 36, 1224-1230.
Gao, J., Pedersen, J.A., 2005. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 39, 9509-9516.
Giles, C.H., D'Silva, A.P., Easton, I.A., 1974. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J. Colloid Interface Sci. 47, 766-778.
Haham, H., Oren, A., Chefetz, B., 2012. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. Environ. Sci. Technol. 46, 11870-11877.
Haller, M.Y., Muller, S.R., McArdell, C.S., Alder, A.C., Suter, M.J.F., 2002. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatographyemass spectrometry. J. Chromatogr. A 952, 111-120.
He, W., Odnevall Wallinder, I., Leygraf, C., 2001. A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corros. Sci. 43, 127-146.
Heuer, H., Schmitt, H., Smalla, K., 2011. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236-243.
Hu, X., Zhou, Q., Luo, Y., 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 158, 2992-2998.
Ishikawa, T., Trisliana, Yurenfrie, Ardianor, Gumiri, S., 2006. Dissolved organic carbon concentration of a natural water body and its relationship to water color in Central Kalimantan, Indonesia. Limnology 7, 143-146.
Jung, K., Ok, Y.S., Chang, S.X., 2011. Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil sands region in Alberta, Canada. Chemosphere 84, 457-463.
Kahle, M., Stamm, C., 2007. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68, 1224-1231.
Kil, J.H., Kong, H.Y., Koh, K.S., Kim, J.M., 2006. Management of Sicyos Angulata Spread in Korea. Neobiota. From ecology to conservation. 4th European Conference on Biological Invasions, Vienna. BfN-Skripten.
Kim, K.R., Owens, G., Kwon, S.I., So, K.H., Lee, D.B., Ok, Y.S., 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil. Pollut. 214, 163-174.
Kim, S.C., Davis, J.G., Truman, C.C., Ascough Ii, J.C., Carlson, K., 2010a. Simulated rainfall study for transport of veterinary antibiotics e mass balance analysis.J. Hazard. Mater. 175, 836-843.
Kim, S.C., Yang, J.E., Ok, Y.S., Carlson, K., 2010b. Dissolved and colloidal fraction transport of antibiotics in soil under biotic and abiotic conditions. Water Qual. Res. J. Can. 45, 275-285.
Kinniburgh, D.G., 1986. General purpose adsorption isotherms. Environ. Sci. Technol. 20, 895-904.
Knicker, H., Gonzalez-Vila, F.J., Polvillo, O., Gonzalez, J.A., Almendros, G., 2005. Fireinduced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil. Biol. Biochem. 37, 701-718.
Kurwadkar, S.T., Adams, C.D., Meyer, M.T., Kolpin, D.W., 2007. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J. Agric. Food. Chem. 55, 1370-1376.
Kwon, S.I., Owens, G., Ok, Y.S., Lee, D.B., Jeon, W.T., Kim, J.G., Kim, K.R., 2011. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manag. 31, 39-44.
Lertpaitoonpan, W., Ong, S.K., Moorman, T.B., 2009. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76, 558-564.
Luo, Q., Andrade, J.D., 1998. Cooperative adsorption of proteins onto hydroxyapatite. J. Colloid Interface Sci. 200, 104-113.
Ok, Y.S., Kim, S.C., Kim, K.R., Lee, S.S., Moon, D.H., Lim, K.J., Sung, J.K., Hur, S.O., Yang, J.E., 2011. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ. Monit. Assess. 174, 693e701.
Qiang, Z., Adams, C., 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38, 2874-2890.
Schwarz, J., Thiele-Bruhn, S., Eckhardt, K.-U., Schulten, H.-R., 2012. Sorption of sulfonamide antibiotics to soil organic sorbents: batch experiments with model compounds and computational chemistry. ISRN Soil. Sci. 2012, 10.
Shinogi, Y., Kanri, Y., 2003. Pyrolysis of plant, animal and humanwaste: physical and chemical characterization of the pyrolytic products. Bioresour. Technol. 90, 241-247.
Sparks, D.L., 1996. Methods of Soil Analysis. Part 3. Chemical methods. Soil Science Society of America, Madison, WI.
Sposito, G., 1984. The Surface Chemistry of Soils. Oxford University Press, New York.
Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., Mishra, I.M., 2006. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf. Physicochem. Eng. Asp. 272, 89-104.
Teixido M., Pignatello, J.J., Beltran, J.L., Granados, M., Peccia, J., 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 45, 10020-10027.
Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils e a review. J. Plant Nutr. Soil. Sci. 166, 145-167.
Thiele-Bruhn, S., Seibicke, T., Schulten, H.-R., Leinweber, P., 2004. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J. Environ. Qual. 33, 1331-1342.
Tsang, D.C.W., Olds, W.E., Weber, P.A., Yip, A.C.K., 2013. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere. http://dx.doi.org/10.1016/j.chemosphere.2013.09.097.
Tsang, D.W., Hu, J., Liu, M., Zhang, W., Lai, K.K., Lo, I.C., 2007. Activated carbon produced from waste wood pallets: adsorption of three classes of dyes. Water Air Soil. Pollut. 184, 141-155.
Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H., 2010. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80, 935-940.
USEPA, 1990. Toxicity Characteristic Leaching Procedure. Test methods for Evaluating Solid Waste, Physical/Chemical Methods. U.S. Environmental Protection Agency.
Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A.R., Cao, X., Yang, L., Xue, Y., Li, H., 2012. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J. Hazard. Mater. 209-210, 408-413.
본 발명이 해결하고자 하는 과제는 항생제 등으로 토양이 오염되면, 주변 토양으로 항생제가 이동하여 항생제 오염 지역이 확대될 가능성이 크며, 식물로의 항생제 흡수에 대한 잠재적 위험성이 증가하므로, 이러한 상황을 방지하기 위하여 토양에서의 항생제 이동을 저감시키는 방법을 제공하는 것이다.
전술한 기술적 과제를 달성하기 위해, 본 발명에서는 토양에 바이오차를 처리하는 단계를 포함하는 토양 중 항생제 이동성 저감 방법을 제공한다.
본 발명에 따른, 바이오차를 이용한 토양 중 항생제 이동성 저감 방법에 의하면, 항생제로 오염된 토양에서 항생제의 이동을 약 40 ~ 80% 정도로 감소시킬 수 있어, 토양에서의 항생제 이동에 의한 잠재적 위험성을 효과적으로 감소시킬 수 있다.
도 1은 가시박에서 유래한 (a) 바이오매스, (b) 바이오차-300(biochar-300) 및 (c) 바이오차-700(biochar-700)를 주사전자현미경(SEM)으로 촬영한 이미지이다.
도 2는 바이오차를 처리한 양질사토 및 사양토에서 SMZ의 실험적 및 모델화된 흡착 계수에 미치는 pH의 영향을 나타내는 그래프이다.
도 3은 토양 S1, 토양 S2, 토양 S1 + 2 % 바이오차-700 및 토양 S2 + 2 % 바이오차-700에 대한 실험 데이터를 (a) 랭뮤어(Langmuir) 모델 및 (b) 프로인들리히(Freundlich) 모델에 피팅(fitting)한 결과를 나타내는 그래프이다.
도 4는 2 중량% 바이오차-700 처리한 (a) 양질사토 및 (b) 사양토에 대한 비선형(힐(Hill) 곡선 및 프로인들리히) 및 선형 모델화된 흡착 등온선을 나타내는 그래프이다.
도 5는 바이오차의 처리 또는 미처리된 토양 컬럼으로부터 얻어진 SMZ 농도를 나타내는 그래프이다.
도 6은 바이오차의 처리 또는 미처리된 2개의 실험 토양에서 흡착된 SMZ 농도에 대하여 TCLP 추출된 함량의 차이를 나타내는 그래프이다.
도 2는 바이오차를 처리한 양질사토 및 사양토에서 SMZ의 실험적 및 모델화된 흡착 계수에 미치는 pH의 영향을 나타내는 그래프이다.
도 3은 토양 S1, 토양 S2, 토양 S1 + 2 % 바이오차-700 및 토양 S2 + 2 % 바이오차-700에 대한 실험 데이터를 (a) 랭뮤어(Langmuir) 모델 및 (b) 프로인들리히(Freundlich) 모델에 피팅(fitting)한 결과를 나타내는 그래프이다.
도 4는 2 중량% 바이오차-700 처리한 (a) 양질사토 및 (b) 사양토에 대한 비선형(힐(Hill) 곡선 및 프로인들리히) 및 선형 모델화된 흡착 등온선을 나타내는 그래프이다.
도 5는 바이오차의 처리 또는 미처리된 토양 컬럼으로부터 얻어진 SMZ 농도를 나타내는 그래프이다.
도 6은 바이오차의 처리 또는 미처리된 2개의 실험 토양에서 흡착된 SMZ 농도에 대하여 TCLP 추출된 함량의 차이를 나타내는 그래프이다.
본 발명에서는 토양에 바이오차를 처리하는 단계를 포함하는 토양 중 항생제 이동성 저감 방법을 제공한다.
본 발명의 일 태양에서, 상기 바이오차는 가시박으로부터 제조될 수 있으나, 이에 제한되지 않는다.
본 발명의 일 태양에서, 상기 바이오차는 (a) 유해 식물을 건조하는 단계, (b) 상기 건조시킨 유해 식물을 분쇄하는 단계, (c) 상기 분쇄시킨 유해 식물을 머플로(muffle furnace)에서 5 ~ 10 ℃/분의 가열속도로 가열하는 단계 및 (d) 상기 가열시킨 유해 식물을 650 ~ 750 ℃에서 열분해하는 단계를 포함하여 제조될 수 있으나, 이에 제한되지 않는다.
상기 단계 (a)는 유해 식물인 가시박을 수집해 태양광에서 건조하고, 50 ~ 90 ℃ 오븐에서 건조하는 과정으로 진행될 수 있으나, 이에 제한되지 않는다.
상기 단계 (b)는 상기 건조된 가시박을 1.0 mm 미만의 입자 크기로 분쇄시켜 진행될 수 있으나, 이에 제한되지 않는다.
바람직하게는, 상기 단계 (c)는 상기 분쇄시킨 가시박을 제한된 산소의 공급하에 머플로에서 6 ~ 8 ℃/분의 가열속도로 가열함으로써 진행될 수 있다.
본 발명의 일 태양에서, 상기 바이오차는 0.2 ~ 20 중량%로 토양에 처리할 수 있으나, 이에 제한되지 않는다.
본 발명의 일 태양에서, 상기 항생제는 설폰아미드(sulfonamide)계, 세팔로스포린(cephalosporin)계, 폴리펩티드(polypeptide)계, 폴리엔(polyene)계, 마클로라이드(macrolide)계, 테트라사이클린(tetracyclin)계, 아미노배당체(aminoglycosides)계 또는 페니실린(penicillin)계로부터 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 태양에서, 상기 항생제는 바람직하게는, 설파메타진(sulfamethazine, sulfadimidine), 설파세타미드(sulfacetamide), 설파독신(sulfadoxine), 설파디메톡신(sulfadimethoxine), 설파디아진(sulfadiazine), 설파메톡사졸(sulfamethoxazole), 설파메톡시피리다진(sulfamethoxypyridazine), 설파메톡시디아진(sulfametoxydiazine), 설파목솔(Sulfamoxole), 설피소미딘(Sulfisomidine) 및 이의 혼합물로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있고, 더욱 바람직하게는, 설파메타진일 수 있다.
상기 항생제 중, 설파메타진은 토양 및 수질 환경에서 자주 발견되는 이온화와 이동성이 높은 물질로서, pH, 이온성 분화 및 토양 유기 탄소에 의해 토양에 흡착되는 정도가 영향을 받을 수 있다.
본 발명에 따라, 항생제 오염 토양을 바이오차로 처리한 토양에서는 바이오차로 처리하지 않은 토양에서보다 침출된 SMZ의 농도가 약 5배 낮아서, 바이오차의 처리로 토양에서 SMZ 이동이 상당히 감소되는 것을 확인할 수 있었다. 또한, 본 발명에 따라 바이오차를 토양에 처리하면, 흡착된 SMZ의 최대 추출 가능량이 22%까지 감소되는 것을 확인하여, 토양의 액상에서 식물로의 화학물질의 이용성을 감소시킬 수 있다는 것을 확인할 수 있었다.
이하, 실시예를 기초로 하여 본 발명에 대하여 상세하게 설명하나, 제시된 실시예는 예시적인 것으로 본 발명의 범위를 제한하기 위한 것은 아니다.
<
실시예
>
(1) 토양의 수집 및
바이오차의
제조
한국의 강원도 정선군과 경상북도 봉화의 농경지에서 2개 종류의 토양을 수집하였다. 토양은 2mm 체에 통과시켰으며, 오븐에서 하룻밤 동안 건조하고, 사용하기 전까지 용기에 밀봉 보관하였다. 두 가지 실험 토양의 물리·화학적 특성은 표준 방법에 기초하여 분석하였다.
가시박 식물을 수집하여 일주일간 태양광에서 건조하고 60 ℃ 송풍팬 오븐에서 24시간 동안 건조하였다. 건조된 가시박을 입도 크기 1.0 mm 이하로 분쇄하였다. 바이오매스는 공기 공급이 제한된 머플로(muffle furnace, N11/H Nabertherm, Germany)에서 300 ℃ 또는 700 ℃에서 열분해하였다. 저속으로 열분해하기 위해서, 바이오매스를 분당 7 ℃의 승온 조건에서 300 ℃ 또는 700 ℃의 최고 온도까지 가열하고, 최고 온도에서 2 시간 동안 유지하여, 바이오매스를 완전히 탄화하였다. 열분해 후 생성된 바이오차는 완전히 식을 때까지 하룻밤 동안 머플로에 보관하였다. 얻어진 바이오차 생산물을 분쇄하고 체로 쳐서 2 mm 이하 크기의 바이오차를 얻었다(바이오차-300, 바이오차-700).
SMZ은 플루카사(Fluka Analytical Ltd., USA)로부터 구입하였다. 다른 화학물질은 시그마-알드리치사(Sigma Aldrich, USA)에서 분석 등급으로 구입하였다.
(2) 토양 및
바이오차의
특성 분석
토양의 pH와 전기 전도도는 토양과 탈이온수를 1 : 5(w/v)로 혼합한 현탁액에서 측정하였다. 토양 유기물은 강열감량에 의한 손실법(loss on-ignition method)으로 분석하였다(Sparks, 1996). 교환성 양이온은 pH 7로 완충된 1M 암모늄아세테이트(ammonium acetate, NH4OAc)로 추출한 후 유도결합플라즈마-발광광도계(Inductively Coupled Plasma-Optical Emission Spectrometer, ICP-OES)로 측정하였다(Ahmad et al., 2012a). 표준 조직 분류는 미국 농무부(U.S. Department of Agriculture, Soils and Agricultural Engineering, USDA)의 지침에 근거하였으며, 하기의 표 1에 나타내었다.
[표 1] 토양의 물리·화학적 특성
표 1에 나타난 바와 같이, 토양 S1 및 토양 S2는 각각 양질사토(84.1% 모래 및 6.2% 실트) 및 사양토(64.1% 모래 및 26.1% 실트)로 분류되었다. 두 가지 토양 모두 약산성이었다. 두 가지 토양에서 유효 P2O5, 총 질소 및 토양 유기 탄소(organic carbon, OC)의 농도 차이가 확연하게 관찰되었다. 토양 S2의 OC 함량은 29.4 g/kg으로 토양 S1보다 대략 7배 높은 것을 확인할 수 있었다.
바이오차의 구성 성분, 습도, 휘발성 물질, 회분 및 잔류 물질 등을 포함하는 바이오차의 구성 성분을 알아보기 위하여, 미국재료시험협회에서 제공하는 방법(American Society for Testing and Materials method D5142, ASTM)에 따라, 2 반복으로 일반 성분 분석을 수행하였다. 바이오차의 습도는 뚜껑을 닫지 않고 24시간 동안 105 ℃에서 시료를 가열하여 측정하였다. 휘발성 물질의 양을 결정하기 위해서 탈수된 시료를 닫힌 도가니에 넣고 450 ℃에서 1시간 동안 가열하였다. 이후, 750 ℃에서 1시간 동안 열린 도가니에서 가열하여 회분을 측정하였다. 휘발성 물질, 회분 및 습도를 측정한 후, 질량차를 이용하여 잔류 탄소를 계산하였다(Ahmad et al., 2013a). 바이오차의 원소 구성(C, H, N, S 및 O)은 원소분석기(elemental analyzer, Flash EA 1112 series, CE Instruments, UK)를 이용하여 무수 기준으로 결정하였다. 바이오매스와 제조된 바이오차에 대하여 주사전자현미경(Scanning electron microscopic, SEM) 분석을 실시하였다.
가시박에서 유래한 바이오매스, 바이오차-300 및 바이오차-700의 일반 성분 분석 및 원소 분석 결과를 하기의 표 2에 나타내었다.
[표 2] 바이오매스, 바이오차-300 및 바이오차-700의 일반 성분 분석 및 원소 분석 결과
표 2에 나타난 바와 같이, 바이오매스보다 바이오차-300 및 바이오차-700의 회분 함량이 높은 것을 확인할 수 있었으며, 보고된 다른 바이오차들보다 가시박 유래의 바이오차가 상대적으로 잔류 물질의 함량이 낮고, 휘발성 물질의 함량이 높은 것을 알 수 있었다(Ahmad et al., 2012a; Uchimiya et al., 2010). 토양에 휘발성 물질이 높은 함량으로 존재한다는 것은, 잔류 물질의 함량이 많은 토양과 비교하였을 때, 바이오차 자체는 빨리 분해되어 탄소 흡수능(C sink potential)이 낮아지는 반면에, 토양 미생물에 공급되는 유기물의 양이 더욱 많기 때문에 토양의 질을 향상시킬 수 있다는 것을 의미하는 것이다.
비교해 보면, 700 ℃에서 제조된 바이오차는 pH 12.56으로서, 300 ℃에서 제조된 바이오차의 pH 10.54보다 높은데, 이는 유기 매트릭스로부터 알칼리염의 잔류 축적(Shinogi and Kanri, 2003) 및 산성 기능기의 감소 때문인 것으로 추측된다. 도 1에 나타난 바와 같이, SEM 이미지는 바이오매스 및 각각의 서로 다른 온도에서 제조된 바이오차들의 형태 변화와 차이점을 보여준다. 도 1 (c)에 나타난 바와 같이, 바이오차-700의 경우에 채널(channel)의 출현과 형성, 대공극(macropore)과 소공극(micropore)이 잘 관찰되었다.
바이오차의 방향족성(H/C)과 극성(O/C)을 평가하기 위해서, 구성 원소의 몰 비율을 측정하였다(Uchimiya et al., 2010). 표 2에 나타난 바와 같이, 고온에서 제조된 바이오차-700에서의 산소(O)의 감소는 바이오차 표면에 존재하는 다양한 산성 작용기의 감소의 결과이고, 이로써 바이오차-700의 표면이 더욱 염기성이 된 것을 알 수 있었다(Ahmad et al., 2012a).
고온에서 제조된 바이오차에서 H/C 몰 비와 O/C 몰 비가 낮은 것을 확인할 수 있었다. 실험에서 바이오매스는 방향성이 높은데, 이것은 히드록실기(-OH)의 극성화된 수소와 탄소 사이의 직접적인 결합을 나타내는 것이다(Knicker et al., 2005). 산소 제거로 인한 O/C 몰 비의 감소는 바이오차 표면이 소수성이 되도록 하는 반면에, 고온 제조에 따른 H/C 몰비의 감소는 침탄(enhanced carbonization)과 방향성 증가에 기여한다(Ahmad et al., 2012a).
(3)
SMZ
의 배치 흡착 실험 및 독성 물질 추출(
toxicity
characteristic
leaching
procedure
(
TCLP
)
extraction
) 실험
바이오차로 처리 또는 미처리된 토양에서의 SMZ 흡착에 대한 pH, 반응 시간 및 SMZ 초기 주입량의 영향을 조사하기 위하여 배치 흡착 실험을 수행하였다. 실온(25 ℃)에서 2 중량%의 바이오차 및 10 mg/L의 SMZ이 첨가된 50 g/L의 토양 현탁액을 초기 pH 3 ~ 9 범위가 되도록 하고, 이후 인산염과 아세트산 완충용액(10 mM)을 이용하여 일정하게 되도록 유지하였다. 현탁액을 배양 교반기에서 100 rpm의 속도로 24시간 동안 교반하였다. 흡착 등온 실험은 초기 pH 5에서 수행하였다. 평형화된 후, pH를 측정하고, 시료를 4000 rpm에서 15분 동안 원심분리하여, 0.45 mm 폴리비닐리덴플루오라이드 필터(poly vinylidene fluoride, (PVDF) disposable filter, Whatman, UK)로 여과하고, 고성능액체크로마토그래피(high performance liquid chromatography, HPLC) 분석을 위해 애질런트 갈색 바이알(Agilent amber vials)에 수집하였다. SMZ 흡착능을 측정하기 위하여, 2.5 ~ 50 mg/L 범위의 농도를 사용하여, 50 g/L의 토양(pH 5)에서 흡착 등온 실험을 수행하였다.
토양을 공기 건조한 후, TCLP법(USEPA., 1990)으로 분석하였다. TCLP 실험은 토양에 존재하는 유·무기 오염원의 생물학적 이용능(bioavailability)과 이동 특성을 결정하기 위해서 수행한 실험이다. 토양 시료 1 g을 20 mL TCLP 용액에 넣었다. 차가운 아세트산 5.7 mL와 1 N의 수산화나트륨 63.7 mL을 증류수가 담겨져 있는 메스플라스크(volumetric flask)에 첨가하여 잘 혼합한 후에, 탈이온수를 추가로 첨가하여 1000 mL을 만들어서 추출액을 만들었다. 이 후 TCLP 용액의 pH를 측정하였다. 배치 실험과 컬럼 실험으로부터 얻어진 고형물을 1 : 20 w/v 비율로 처리하여 상온에서 18시간 동안 교반하였다. 오토샘플러(auto-sampler, SIL-10AD, Shimadzu)와 UV-VIS 검출기(SPD-10A, Shimadzu)가 장착된 HPLC 시스템(SCL-10A, Shimadzu, Tokyo, Japan)을 이용하여, TCLP 추출액과 배치 평형 용액에 포함되어 있는 SMZ를 분석하였다. 컬럼 오븐이 장착된 역상컬럼(Sunfire C18 column,4.6 mm 250 mm; Waters, Bedford, MA, USA)을 고정상(stationary phase)으로 사용하였고, HPLC 등급수(grade water)와 엽산(formic acid, 99.9:0.1 v/v) 및 HPLC 등급 아세토니트릴(acetonitrile)과 엽산(99.9:0.1 v/v)을 0.5 mL/분 속도로 하여 이동상으로 사용하였다. 주입량은 20 μL이었다. 농도 검량선(calibration)은 SMZ 표준물질로 10 mg/L 농도까지 작성하였다. 검출 한계와 정량 한계는 0.05 mg/L였다.
(4)
SMZ
의 이온 형태별 토양-물 분배 계수 측정
토양-바이오차에서의 SMZ의 양이온 형태(SMZ+), 음이온 형태(SMZ-) 및 양쪽성이온 형태(SMZ0)에 대한 유효 흡착 계수(KD , eff)와 각각의 KD 값을 측정하였다. 먼저, 세 가지의 SMZ 형태의 질량 분률을 하기의 수학식 1 내지 수학식 3에서와 같이 pH와 pKa 값의 함수로써 계산하였다(Kurwadkar et al., 2007).
[수학식 1]
[수학식 2]
[수학식 3]
여기서, pK1과 pK2의 상수 값은 각각 2.07과 7.49이며, α0, α1 및 α2는 SMZ+, SMZ- 및 SMZ0의 각각의 비율을 나타내는 것이다(Qiang and Adams, 2004). SMZ의 서로 다른 이온 형태에 대한 개별 흡착 계수는, 엑셀(MS Excel 2007, Microsoft)을 사용한 가중 평균으로 얻어진 KD 값을 이용하여 하기 수학식 4의 형태 분화 모델을 해석하여 결정하였다. 여기서, KD0, KD1 및 KD2는 서로 다른 SMZ에 대한 개별 KD 값을 나타내는 것이다.
[수학식 4]
(5) 데이터
모델링
배치 실험에서 주어진 pH에서의 유효 흡착은 비선형 랭뮤어, 프로인들리히 및 힐 등온선, 선형 핸리(Henry) 등온선과 같은 서로 다른 방정식을 사용하여 모델화하였고, 각각의 등온선의 초기 선형 구획에 대한 KD 값을 계산하였다. 등온선 모델과 연관된 매개변수는 다음과 같다.
[수학식 5] 프로인들리히 등온선(Freundlich isotherm);
[수학식 6] 랭뮤어 등온선(Langmuir isotherm);
여기서, Ce는 평형농도, qads는 토양의 kg 당 SMZ 흡착량(mg/kg), qm은 최대 흡착능과 관련된 랭뮤어 상수(mg/kg), KL은 랭뮤어 평형상수(L/㏖), KF((mg/kg)/(㏖/L)n) 및 n은 프로인들리히 상수로서, 흡착능과 흡착 강도에 관련된 비선형의 지표이다.
유기 흡착 표면에 대한 대부분의 유기 오염물질의 흡착 과정은 협동 흡착 메커니즘으로 설명되어져 왔고, 이는 하기 힐 등온선으로 표현된다(Sposito, 1984).
[수학식 7] 힐 등온선(Hill isotherm);
여기서, Qmax는 최대 흡착 능력, K는 힐 상수 그리고 n은 불균일성 정도에 따른 실험적 매개변수이다.
흡착 결과를 분석하기 위해 사용된 두 번째 접근에서, 좌표에서 나타난 등온선의 초기 선형 구획의 모델은 하기에 근거한다.
[수학식 8]
여기서, Kd는 흡착 계수(L/kg)이다. SMZ가 저농도인 경우에는, 흡착 부위의 포화가 발생하지 않아서, 선형 등온선을 나타낸다. 따라서, 표면 흡착 위치와 흡착 기질 분자의 존재도에 따라 실험 결과를 모델링할 때에 선형 또는 비선형 모델에 적합하게 된다.
(6) 토양
컬럼
실험
토양 컬럼은, 유출부에서 토양이 손실되는 것을 막기 위해서, 유출부가 나일론 메쉬로 봉입된 아크릴 실린더(acrylic cylinder, 6.0 cm × 2.8 cm ID)에 제작하였다. 바이오차로 처리/미처리된 토양을 컬럼 내부에 습식 충전하였다. 다음과 같은 세 가지 형태의 토양 컬럼을 동일하게 2개씩 제작하였다.
(a) 2% 바이오차-700 (w/w)으로 처리된 토양 S1(토양 S1 + 2 % 바이오차-700),
(b) 2% 바이오차-700 (w/w)으로 처리된 토양 S2(토양 S2 + 2 % 바이오차-700),
(c) 바이오차로 처리되지 않은 2 종류의 대조군(토양 S1, 토양 S2).
컬럼에 탑드레싱(top dressing) 방식으로 바이오차를 첨가하였다. 컬럼을 포화시켰을 때 컬럼의 공극률은 50 ~ 52%, 공극 부피는 18 ~ 20 mL로 측정되었다. 컬럼을 포화시키고 전처리하기 위해서, 약 3 공극 부피(즉, 60 mL)의 탈이온수를 중력 정상류 방식으로 주입한 후, 이를 용출시켰다. SMZ의 광분해를 방지하기 위해서 컬럼을 알루미늄 호일로 감쌌다. 실험에서 사용된 초기 SMZ 농도는 10 mg/L였다. 연동펌프(peristaltic pump, Watson, Marlow)를 사용하여 0.25 ml/분의 속도로 컬럼 내부로 SMZ 용액을 주입하였다. 시료 여과와 HPLC 분석은 상기 기재된 바와 같이 수행하였다.
토양 컬럼의 초기 설치 시에, 토양 컬럼에 3 공극 부피의 SMZ을 모두 주입하였으며, 후속 침출 실험은, 18 mm/h의 보통 강수를 나타내기 위해 12 공극 부피의 인공강우를 주입하여 수행하였다(He et al., 2001). 인공강우는 탈이온수에 다량의 염을 첨가하여 제조하였다(He et al., 2001). 컬럼 실험 동안, 완충 용액을 이용하여 실험 시스템의 pH를 조절하지는 않았고, 다양한 시간 간격으로 pH를 측정하였다. 모든 실험은 동일하게 제조한 두 개의 토양 컬럼에서 수행하였으며, 평균값을 표기하였다. 각각의 침출 실험 후에, TCLP 실험을 수행하기 위해서 토양 컬럼을 3개 시료로 나누었다(Tsang et al., 2013)
(7) 결과
1)
SMZ
흡착 및 형태 분화에 미치는
pH
의 영향 분석
예비 배치 실험에서, 바이오차-700 처리된 토양에서는 SMZ 체류가 매우 증가된 반면에, 바이오차로 처리되지 않은 토양과 바이오차-300으로 처리된 토양에서는 제한된 SMZ 흡착능을 보이는 것으로 나타났다. 개별 SMZ 형태가 전체적인 흡착에 미치는 영향을 알아보기 위해서, 형태 분화 모형(speciation model, Gao and Pedersen, 2005; Kurwadkar et al., 2007; Teixid et al., 2011)의 다중 회귀에 의한 실험적 KD 값으로부터 형태 특이적 평형 흡착 계수(SMZ+, SMZ- 및 SMZ0 각각에 대한 KD +, KD - 및 KD0값)를 계산하여 하기의 표 3에 나타내었다.
[표 3] 배치 흡착 실험에 의한 SMZ의 흡착 계수
표 3에 나타난 바와 같이, SMZ가 가지는 빠른 분해와 pH 의존성 때문에, 측정된 pH 범위에서 KD 값의 상당한 변화가 관찰되었다(Kurwadkar et al., 2007). 도 2에 나타난 바와 같이, 토양 S1 + 2 % 바이오차-700 및 토양 S2 + 2 % 바이오차-700에서 KD 값이 pH에 의존적인 것을 확인할 수 있었다. SMZ의 흡착은 pH 3에서 가장 크고, 수용성 pH의 증가에 따라 감소하였다. 토양 S1 + 2 % 바이오차-700에서 pH 3일 때, SMZ의 75 %가 흡착되었고, pH 5 ~ 7에서는 50 %였으며, pH 9로 증가했을 때는 단지 25 %를 흡착하였다. 낮은 pH에서 SMZ 흡착이 높은 것은, 우세한 양이온(SMZ+)의 양이온 교환 및 양쪽성 이온(SMZ0)의 흡착에 의한 것일 수 있다. 중성 조건하에서는 SMZ의 양쪽성 이온 형태가 우세하다. pH가 7 이상으로 증가하면, SMZ- 이온 형태로의 상당한 변화가 관찰되었다. 또한, 보고된 바에 따르면, 완충된 시료와 완충되지 않은 시료 사이에서 관찰된 경향성에 있어서 중요한 차이점이 관찰되지 않아서, 완충된 시료의 경향성을 완충되지 않은 시료에도 적용하는 것이 가능하다 (Gao and Pedersen, 2005).
광물 표면의 경우에는, 낮은 pH에서 우세한 SMZ+ 및 SMZ0 이 흡착에 주요 역할을 하는 것으로 관찰되었다(Gao and Pedersen, 2005). 하기 표 4에 나타난 바와 같이, 실험 KD 값과 모의(simulated) KD 값 사이에는 상당한 상관 관계(α = 0.01)가 있었다.
[표 4] 배치 흡착 실험에 따른 두 종류의 대조군과 2 % 바이오차-700에 의해 처리된 토양 S1 및 토양 S2 데이터에 대하여 모델 피팅하여 얻은 SMZ 흡착 등온선 매개변수
표 4에 나타난 바와 같이, 두 가지 토양에서, 선형회귀(linear regression)에 대한 R2 값은 0.999인 것으로 나타났다. pH 3에서 SMZ+ 및 SMZ0의 두 가지 형태가 우세함에 따라, 본 발명의 발명자들은 2개의 화학적 메커니즘이 흡착에 관여하고, 이러한 메커니즘이 모두 2개 토양에서의 높은 KD , eff 값(양질사토에서는 68 L/kg 및 사양토에서는 50 L/kg)에 기여할 것이라고 가정했다. 첫 번째 메커니즘은 정전기적 양이온 교환에 의한 것이고, 두 번째 메커니즘은 π-π EDA라고 하는, 바이오차의 π-전자가 풍부한 그래핀 표면과 SMZ 분자의 양성자화된 아닐린 고리의 π-π 전자 공여체-수용체 상호작용에 의한 것이다(Teixid et al., 2011). 중성 조건에서의 분배 계수는 pH 5와 7에서 유사하며, 이것은 양이온 교환이 바이오차에 대한 SMZ 흡착의 주요한 메커니즘이라는 것을 나타내는 것이다(Teixid et al., 2011). 알칼리 영역인 pH 9의 수용액 상에서는 SMZ-가 우세하여, 바이오차-700으로 처리된 토양에서 낮은 KD , eff 값이 관찰되었다. KD2 값이 모든 값들 중에서 가장 낮았고, KD1 값은 KD0 값보다 상당히 낮았다. SMZ-의 높은 수-용해성과 음이온 흡착을 위한 하전된 위치의 부재로써 낮은 KD2 값을 설명할 수 있을 것이다. 사양토는 양질사토에 비해 높은 양의 토양 유기물(soil organic matter, SOM)을 포함함에도 불구하고, 낮은 흡착능을 보여주었다. 이것은, 흡착 위치에 대하여 토양에서 높은 함량으로 존재하는 P2O5 또는 용존 유기 탄소(dissolved organic carbon, DOC)의 경쟁 때문인 것으로 추측된다(Haham et al., 2012).
2) 분배 계수 및 등온선
도 3에 나타난 바와 같이, 프로인들리히와 랭뮤어 등온선을 포함하는 몇 가지 모델이 실험데이터와 잘 맞았고, 이로부터 얻어진 흡착 등온선 모델 매개변수와 최대 흡착 강도를 표 4에 나타내었다. 얻어진 R2 값에 따르면, 힐 등온선 모델을 사용하였을 때 가장 적합하였다. 프로인들리히 모델도 R2 값이 약 0.7 ~ 0.9로서 적당한 것으로 나타났다. 프로인들리히 등온선 모델에서 1/n 값은 선형성으로부터 벗어난 정도를 나타낸다(Jung et al., 2011). 실험에서 토양 S1 + 2 % 바이오차-700 및 토양 S2 + 2 % 바이오차-700의 1/n 값은 각각 0.41 및 0.37의 낮은 값으로서, 바이오차-700을 첨가하면 초기 낮은 SMZ 농도에 대하여는 효율적으로 개선할 수 있다는 것을 시사하였다. 프로인들리히 모델의 지수는 흡착 위치의 불균일성의 정도와 연관이 있는 것으로(Srivastava et al., 2006), 바이오차로 처리된 토양에서, 높은 불균일성 정도가 관찰되었다.
흡착능(qm)은 랭뮤어 모델에서 얻었으며, 토양 S1 + 2 % 바이오차-700 (314.62 mg/kg) > 토양 S2 + 2 % 바이오차-700 (259.91 mg/kg) > 토양 S1(215.68 mg/kg) > 토양 S2(129.37 mg/kg)로 순차적인 값을 나타냈다. 이로써 바이오차로 처리한 토양에서 더 높은 흡착을 나타내는 것을 확인할 수 있었다. 유기 오염물질을 흡착하는 경우, 표면과 흡착제 사이에 협동적인 상호작용이 발생하여, 흡착 패턴이 S-곡선(Giles et al., 1974)과 일치하게 된다. 도 3에 나타난 바와 같이, 그러한 협동적 흡착이 힐 모델을 사용한 피팅 결과에서 나타났다. 바이오차-700 처리된 SMZ의 흡착 등온선은 힐 모델에 의해 가장 잘 설명되었으며, 토양 S1 + 2 % 바이오차-700 과 토양 S2 + 2 % 바이오차-700의 R2 값이 각각 0.993 및 0.959인 것으로 나타났다. 힐 피팅 결과에 의하면, 흡착된 SMZ 분자가 바이오차 표면에 일렬로 또는 무리지어 밀집되어 있을 가능성을 나타낸다(Kinniburgh, 1986). 힐 모델의 계수인 n은 협동 정도의 정량적 지표로서, n 값이 1 이상일 때 양의 협동작용인 것으로 정의할 수 있는데(Luo and Andrade, 1998), 표 4에 나타난 바와 같이, 본 실험에서 바이오차로 처리된 토양의 n 값이 1 이상으로 나타나 양의 협동 흡착 과정인 것을 확인할 수 있었다. 다른 측면에서, SMZ의 농도가 특정 역치를 초과할 때까지 SMZ 흡착을 방해하는 인산염과의 흡착 경쟁 또한 가정할 수 있다.
바이오차로 처리 또는 미처리된 토양들의 흡착 농도는 도 4에 SMZ의 평형 농도의 함수로 도시하였고(plot), 이에 상응하는 모델 매개변수 값들은 표 4에 나타내었다. 대조군 시료에서 확인한 결과, 미세한 화학적 손실만이 나타났다. 배치 등온선 실험은 완충액의 첨가 없이 pH 5에서 진행하였다.
선형 모델링을 위해서, 흡착 계수는 수학식 5에 표기된 n 값이 1(Kurwadkar et al., 2007)로 유지되는, 낮은 SMZ 농도의 등온선의 초기 부분을 사용하여 계산하였다. 표 4와 도 3에 나타난 바와 같이, 가장 높은 32.39의 KD 값이 토양 S1 + 2 % 바이오차-700에서 관찰되었으며, 가장 낮은 2.24의 KD 값이 바이오차로 처리되지 않은 토양 S2에서 관찰되었다. 이번 실험에서 얻어진 KD 값은 문헌(Kurwadkar et al., 2007)에서 보고된 KD 값과 유사한 것을 확인할 수 있었다.
바이오차로 처리되지 않은 토양 S1 및 토양 S2에서는 SMZ의 체류가 매우 제한적이었으며, 사양토(토양 S2)보다 양질사토(토양 S1)에서 더 높은 흡착 능력을 확인할 수 있었다. 이것은 토양 S2에 유기 물질 함량(organic matter content)이 더 높기 때문인 것으로 추측된다. DOC는 용액의 pH와 강한 음의 상관 관계를 가지는 것으로 알려져 있다(Ishikawa et al., 2006). 그러므로, 높은 유기 탄소 함량 상태인 경우에, DOC는, 산성 pH 조건하에서 토양 용액으로 방출될 것이다(Ahmad et al., 2012b). 방출된 DOC는 흡착 부위에서 항생제 또는 다른 미량 오염물질과 경쟁하고, 이로써 토양의 SMZ 흡착 능력의 감소를 유도한다(Lertpaitoonpan et al., 2009).
3)
SMZ
의 이동성 분석
도 5에 나타난 바와 같이, 컬럼을 통한 SMZ의 이동에서, 두 가지 토양은 약간의 차이점을 나타냈다. 먼저, 멸균수를 이용하여 컬럼을 세척한 후, SMZ를 주입하고, 인공강우로 침출시켰다. 모든 시료의 각 부분에 대하여 pH를 측정하였으며, 인공강우의 pH는 4.32이다. 배치 흡착 실험의 결과와 일치하게, 토양 컬럼의 SMZ 체류는 매우 낮았다. 바이오차 처리되지 않은 토양에서 SMZ 체류량은 사양토에서 각각 최초에 적용된 양의 80%에 해당하는 0.19 mg, 양질사토에서 최초에 적용된 양의 83%에 해당하는 0.16 mg으로 계산되었다. 이것은 자연 토양 환경에서 SMZ의 높은 이동성을 나타내는 것이다. 유사하게, 바이오차-300으로 처리된 토양에서는, S2 토양과 S1 토양으로 충전된 컬럼에서 각각 77%와 79%의 SMZ 침출을 나타내어, 토양 컬럼 내부에서의 SMZ의 이동에 있어서 감소를 나타내지 않았다. 이와는 대조적으로, 바이오차-700 처리된 토양에서 침출된 SMZ의 농도는 처리되지 않은 토양에서보다 5배 낮아서, 바이오차-700 의 적용이 SMZ 이동성에 상당한 영향을 미치는 것으로 나타났다. 모든 컬럼 실험에서, 토양 컬럼을 통해 인공강우 1 공극 부피를 주입하여 얻은 침출액의 SMZ 농도는 지속적으로 감소되었다. 바이오차 처리되지 않은 토양의 최대 C/C0(유입 SMZ 농도에 대한 유출 SMZ 농도 비율)은 바이오차 처리된 토양의 값보다 훨씬 높았다.
한편, 컬럼 실험의 결과가 배치 실험과는 다른 점도 있었다. 배치 실험에서는 바이오차-700 처리된 토양 S1에서 SMZ의 최고 흡착을 보였으나, 컬럼 연구에서는 바이오차-700 처리된 토양 2에서 최고 흡착을 보였다. 바이오차 처리되지 않은 토양의 컬럼 실험에서는 SMZ 흡착에 있어서 명확한 차이는 없었다. 배치 흡착 실험은 기본적으로 pH 5에서 진행한 반면에, 컬럼 실험은 다양한 pH 범위(pH 7.5 ~ 9)에서 수행하였다. 그러므로, 상기의 차이는 상대적으로 높은 pH의 바이오차를 완충액 없이 토양 매트릭스에 첨가하여, 이로 인해 토양 pH가 변화되었기 때문인 것으로 추측할 수 있었다. 최근 연구에 의하면, 알칼리성 pH에서, SAs의 아민 작용기와, 유기 탄소, 바이오차 또는 광물질의 H 수용체 부분 사이에 강한 수소 결합을 형성할 수 있다고 밝혀졌다(Haham et al., 2012; Teixid et al., 2011). 한편, SMZ는 6개의 수소 결합 수용체(H bond acceptors)와 3개의 수소 결합 공여체(H bond donor moieties)를 가지는 것으로 알려져 있다(Schwarz et al., 2012). 그러므로, 사양토(S2)에 OC가 풍부하기 때문에, OC의 수소 수용체 부분과 SMZ+, SMZ- 및 SMZ0들의 상호작용이 사양토의 높은 흡착 능력의 주요 원인일 수 있다.
4)
TCLP
실험 데이터
TCLP 실험은 등온선 실험 및 컬럼 실험 모두에 대하여 수행하였다. 도 6에 나타난 바와 같이, SMZ 추출 비율은 양질사토에 비하여 사양토에서 더 높았으며, 이러한 결과는 흡착 등온선 실험의 결과와 일치하였다. 토양의 DOC는 흡착 부위에서 SMZ와 경쟁하거나 SMZ 자체를 흡착하는 역할을 하여, SMZ 흡착 과정에서 2가지 역할을 하는 것으로 추측할 수 있었다(Haham et al., 2012; Lertpaitoonpan et al., 2009). 그러나, OC에의 SMZ0의 흡착은 반데르발스 상호작용에 의한 물리적 결합을 수반하는 약한 과정으로 알려져 있고, 따라서, 이러한 형태로 결합된 화합물은 흡착된 후에 언젠가 다시 침출될 것이고, 또한, 쉽게 추출될 수도 있다. 반면에, 이온성 형태의 흡착, 특히, 토양 광물질로의 흡착은 실질적으로 강한 이온 교환 과정을 통한 것이다(Haham et al., 2012). 이것은, 사양토(토양 S2)에서 감소된 SMZ 흡착과 높은 TCLP 추출률(30 ~ 40%)을 설명하는 것임을 알 수 있었다. 바이오차 처리 후의 컬럼 실험에서는 pH의 변화가 관찰되지 않았다. 침출액의 pH는 바이오차의 처리 및 미처리시에 ±0.5의 차이를 보였다. 그러나, 토양 컬럼의 pH는 약 5였고, 이러한 상태에서는 SMZ의 양쪽성 이온 형태의 거동으로 인해 흡착에 유리하다.
도 6에 나타난 바와 같이, 2 % 바이오차-700로 처리하면 TCLP법으로 추출되는 SMZ 량이 약 50% 까지 감소되는 것을 확인할 수 있었다. 또한, 바이오차-700의 처리로써, 흡착된 SMZ의 최대 추출 가능량이 22% 정도까지 감소되는 것을 확인할 수 있었다. 반면에, 초기의 낮은 SMZ 농도인 5 및 10 mg/L에서는, 최대 추출 가능량이 8 % 이하로서, 추출된 양이 적은 것을 확인할 수 있었다. 이것은 흡착 등온 실험에서 관찰된, 협동적 및 다층-흡착적인 것과 일치하는 것이다. 그러므로, 바이오차-700을 처리하면 SMZ 흡착능을 증가시킬 수 있고, 토양의 액상에서 식물로의 화학물질의 이용성을 감소시킬 수 있다는 것을 확인할 수 있었다.
Claims (6)
- 토양에 바이오차(Biochar)를 처리하는 단계를 포함하는 토양 중 항생제 이동성 저감 방법.
- 제 1항에 있어서,
상기 바이오차는 가시박(Sicyos angulatus L.)으로부터 제조된 것을 특징으로 하는 토양 중 항생제 이동성 저감 방법. - 제1항에 있어서,
상기 바이오차는
a) 유해 식물을 건조하는 단계;
b) 상기 건조시킨 유해 식물을 분쇄하는 단계;
c) 상기 분쇄시킨 유해 식물을 머플로에서 5 ~ 10 ℃/분의 가열속도로 가열하는 단계; 및
d) 상기 가열시킨 유해 식물을 650 ~ 750 ℃에서 열분해하는 단계;
를 포함하여 제조되는 것을 특징으로 하는 토양 중 항생제 이동성 저감 방법. - 제1항에 있어서,
상기 바이오차는 0.2 ~ 20 중량%로 처리하는 것을 특징으로 하는 토양 중 항생제 이동성 저감 방법. - 제1항에 있어서,
상기 항생제는 설파메타진(sulfamethazine, sulfadimidine), 설파세타미드(sulfacetamide), 설파독신(sulfadoxine), 설파디메톡신(sulfadimethoxine), 설파디아진(sulfadiazine), 설파메톡사졸(sulfamethoxazole), 설파메톡시피리다진(sulfamethoxypyridazine), 설파메톡시디아진(sulfametoxydiazine), 설파목솔(Sulfamoxole), 설피소미딘(Sulfisomidine) 및 이의 혼합물로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 토양 중 항생제 이동성 저감 방법. - 제1항에 있어서,
상기 항생제는 설파메타진(sulfamethazine, SMZ)인 것을 특징으로 하는 토양 중 항생제 이동성 저감 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140079426A KR20160001832A (ko) | 2014-06-27 | 2014-06-27 | 바이오차를 이용한 토양 중 항생제 이동성 저감 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140079426A KR20160001832A (ko) | 2014-06-27 | 2014-06-27 | 바이오차를 이용한 토양 중 항생제 이동성 저감 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20160001832A true KR20160001832A (ko) | 2016-01-07 |
Family
ID=55168590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140079426A KR20160001832A (ko) | 2014-06-27 | 2014-06-27 | 바이오차를 이용한 토양 중 항생제 이동성 저감 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20160001832A (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101697522B1 (ko) * | 2016-06-28 | 2017-01-18 | 벽산엔지니어링주식회사 | 식물반응벽체를 이용한 가축 및 유기질을 포함하는 매몰지 오염토양 친환경 정화처리시설물 및 정화방법 |
KR20180115541A (ko) | 2017-04-13 | 2018-10-23 | 주식회사 경동아그로 | 바이오차 및 미생물을 이용한 상토 조성물, 토양개량제, 유기질비료 및 그 제조 방법 |
KR20190018184A (ko) | 2017-08-14 | 2019-02-22 | 양향아 | 바이오차를 이용한 입상형 토양개량제 및 비료 조성물 및 그 제조 방법 |
KR20200081907A (ko) | 2018-12-28 | 2020-07-08 | 주식회사 유기산업 | 바이오매스로부터 제조되는 바이오차를 이용한 완효성 비료의 제조 방법 |
CN117571416A (zh) * | 2023-11-29 | 2024-02-20 | 山东星菲化学有限公司 | 一种土壤电导率标准物质及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101190282B1 (ko) | 2012-02-21 | 2012-10-12 | 광운대학교 산학협력단 | 임목부산물로부터 제조되는 중금속 오염수 처리용 바이오 차 및 그 제조방법 |
KR20130045653A (ko) | 2011-10-26 | 2013-05-06 | 강원대학교산학협력단 | 고온에서 탄화된 대두 짚 또는 땅콩 껍질로 부터 수득한 바이오 차를 이용하여 트라이클로로에틸렌을 흡착시키는 방법 |
KR20140000540A (ko) | 2012-06-25 | 2014-01-03 | 강원대학교산학협력단 | 옥수수 잔유물에서 유래한 바이오차를 이용하여 토양에서의 이산화탄소를 저감시키는 방법 |
KR20140016670A (ko) | 2012-07-31 | 2014-02-10 | 강원대학교산학협력단 | 단풍잎돼지풀에서 유래한 바이오차를 이용한 수질 중 항생물질 정화방법 |
-
2014
- 2014-06-27 KR KR1020140079426A patent/KR20160001832A/ko not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130045653A (ko) | 2011-10-26 | 2013-05-06 | 강원대학교산학협력단 | 고온에서 탄화된 대두 짚 또는 땅콩 껍질로 부터 수득한 바이오 차를 이용하여 트라이클로로에틸렌을 흡착시키는 방법 |
KR101190282B1 (ko) | 2012-02-21 | 2012-10-12 | 광운대학교 산학협력단 | 임목부산물로부터 제조되는 중금속 오염수 처리용 바이오 차 및 그 제조방법 |
KR20140000540A (ko) | 2012-06-25 | 2014-01-03 | 강원대학교산학협력단 | 옥수수 잔유물에서 유래한 바이오차를 이용하여 토양에서의 이산화탄소를 저감시키는 방법 |
KR20140016670A (ko) | 2012-07-31 | 2014-02-10 | 강원대학교산학협력단 | 단풍잎돼지풀에서 유래한 바이오차를 이용한 수질 중 항생물질 정화방법 |
Non-Patent Citations (42)
Title |
---|
AHI, 2002. Animal Antibiotics. Animal Health Institute. Available from: http://www.ahi.org/. |
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., 2012a. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536-544. |
Ahmad, M., Lee, S.S., Rajapaksha, A.U., Vithanage, M., Zhang, M., Cho, J.S., Lee, S.-E., Ok, Y.S., 2013a. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 143, 615-622. |
Ahmad, M., Moon, D.H., Lim, K.J., Shope, C.L., Lee, S.S., Usman, A.R.A., Kim, K.R., Park, J.H., Hur, S.O., Yang, J.E., Ok, Y.S., 2012b. An assessment of the utilization ofwaste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environ. Earth Sci. 67, 1023-1031. |
Ahmad, M., Moon, D.H., Vithanage, M., Koutsospyros, A., Lee, S.S., Yang, J.E., Lee, S.E., Jeon, C., Ok, Y.S., 2013b. Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol.. http://dx.doi.org/10.1002/jctb.4157. |
Awad, Y.M., Blagodatskaya, E., Ok, Y.S., Kuzyakov, Y., 2012. Effects of polyacrylamide, biopolymer and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. Eur. J. Soil. Biol. 48, 1-10. |
Dolliver, H., Kumar, K., Gupta, S., 2007. Sulfamethazine uptake by plants from manure-amended soil. J. Environ. Qual. 36, 1224-1230. |
Gao, J., Pedersen, J.A., 2005. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 39, 9509-9516. |
Giles, C.H., D'Silva, A.P., Easton, I.A., 1974. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J. Colloid Interface Sci. 47, 766-778. |
Haham, H., Oren, A., Chefetz, B., 2012. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. Environ. Sci. Technol. 46, 11870-11877. |
Haller, M.Y., Muller, S.R., McArdell, C.S., Alder, A.C., Suter, M.J.F., 2002. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatographyemass spectrometry. J. Chromatogr. A 952, 111-120. |
He, W., Odnevall Wallinder, I., Leygraf, C., 2001. A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corros. Sci. 43, 127-146. |
Heuer, H., Schmitt, H., Smalla, K., 2011. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236-243. |
Hu, X., Zhou, Q., Luo, Y., 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 158, 2992-2998. |
Ishikawa, T., Trisliana, Yurenfrie, Ardianor, Gumiri, S., 2006. Dissolved organic carbon concentration of a natural water body and its relationship to water color in Central Kalimantan, Indonesia. Limnology 7, 143-146. |
Jung, K., Ok, Y.S., Chang, S.X., 2011. Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil sands region in Alberta, Canada. Chemosphere 84, 457-463. |
Kahle, M., Stamm, C., 2007. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68, 1224-1231. |
Kil, J.H., Kong, H.Y., Koh, K.S., Kim, J.M., 2006. Management of Sicyos Angulata Spread in Korea. Neobiota. From ecology to conservation. 4th European Conference on Biological Invasions, Vienna. BfN-Skripten. |
Kim, K.R., Owens, G., Kwon, S.I., So, K.H., Lee, D.B., Ok, Y.S., 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil. Pollut. 214, 163-174. |
Kim, S.C., Davis, J.G., Truman, C.C., Ascough Ii, J.C., Carlson, K., 2010a. Simulated rainfall study for transport of veterinary antibiotics e mass balance analysis.J. Hazard. Mater. 175, 836-843. |
Kim, S.C., Yang, J.E., Ok, Y.S., Carlson, K., 2010b. Dissolved and colloidal fraction transport of antibiotics in soil under biotic and abiotic conditions. Water Qual. Res. J. Can. 45, 275-285. |
Kinniburgh, D.G., 1986. General purpose adsorption isotherms. Environ. Sci. Technol. 20, 895-904. |
Knicker, H., Gonzalez-Vila, F.J., Polvillo, O., Gonzalez, J.A., Almendros, G., 2005. Fireinduced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil. Biol. Biochem. 37, 701-718. |
Kurwadkar, S.T., Adams, C.D., Meyer, M.T., Kolpin, D.W., 2007. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J. Agric. Food. Chem. 55, 1370-1376. |
Kwon, S.I., Owens, G., Ok, Y.S., Lee, D.B., Jeon, W.T., Kim, J.G., Kim, K.R., 2011. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manag. 31, 39-44. |
Lertpaitoonpan, W., Ong, S.K., Moorman, T.B., 2009. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76, 558-564. |
Luo, Q., Andrade, J.D., 1998. Cooperative adsorption of proteins onto hydroxyapatite. J. Colloid Interface Sci. 200, 104-113. |
Ok, Y.S., Kim, S.C., Kim, K.R., Lee, S.S., Moon, D.H., Lim, K.J., Sung, J.K., Hur, S.O., Yang, J.E., 2011. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ. Monit. Assess. 174, 693e701. |
Qiang, Z., Adams, C., 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38, 2874-2890. |
Schwarz, J., Thiele-Bruhn, S., Eckhardt, K.-U., Schulten, H.-R., 2012. Sorption of sulfonamide antibiotics to soil organic sorbents: batch experiments with model compounds and computational chemistry. ISRN Soil. Sci. 2012, 10. |
Shinogi, Y., Kanri, Y., 2003. Pyrolysis of plant, animal and humanwaste: physical and chemical characterization of the pyrolytic products. Bioresour. Technol. 90, 241-247. |
Sparks, D.L., 1996. Methods of Soil Analysis. Part 3. Chemical methods. Soil Science Society of America, Madison, WI. |
Sposito, G., 1984. The Surface Chemistry of Soils. Oxford University Press, New York. |
Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., Mishra, I.M., 2006. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf. Physicochem. Eng. Asp. 272, 89-104. |
Teixido M., Pignatello, J.J., Beltran, J.L., Granados, M., Peccia, J., 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 45, 10020-10027. |
Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils e a review. J. Plant Nutr. Soil. Sci. 166, 145-167. |
Thiele-Bruhn, S., Seibicke, T., Schulten, H.-R., Leinweber, P., 2004. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J. Environ. Qual. 33, 1331-1342. |
Tsang, D.C.W., Olds, W.E., Weber, P.A., Yip, A.C.K., 2013. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere. http://dx.doi.org/10.1016/j.chemosphere.2013.09.097. |
Tsang, D.W., Hu, J., Liu, M., Zhang, W., Lai, K.K., Lo, I.C., 2007. Activated carbon produced from waste wood pallets: adsorption of three classes of dyes. Water Air Soil. Pollut. 184, 141-155. |
Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H., 2010. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80, 935-940. |
USEPA, 1990. Toxicity Characteristic Leaching Procedure. Test methods for Evaluating Solid Waste, Physical/Chemical Methods. U.S. Environmental Protection Agency. |
Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A.R., Cao, X., Yang, L., Xue, Y., Li, H., 2012. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J. Hazard. Mater. 209-210, 408-413. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101697522B1 (ko) * | 2016-06-28 | 2017-01-18 | 벽산엔지니어링주식회사 | 식물반응벽체를 이용한 가축 및 유기질을 포함하는 매몰지 오염토양 친환경 정화처리시설물 및 정화방법 |
WO2018004048A1 (ko) * | 2016-06-28 | 2018-01-04 | 벽산엔지니어링주식회사 | 식물반응벽체를 이용한 가축 및 유기질을 포함하는 매몰지 오염토양 친환경 정화처리시설물 및 정화방법 |
KR20180115541A (ko) | 2017-04-13 | 2018-10-23 | 주식회사 경동아그로 | 바이오차 및 미생물을 이용한 상토 조성물, 토양개량제, 유기질비료 및 그 제조 방법 |
KR20190018184A (ko) | 2017-08-14 | 2019-02-22 | 양향아 | 바이오차를 이용한 입상형 토양개량제 및 비료 조성물 및 그 제조 방법 |
KR20200081907A (ko) | 2018-12-28 | 2020-07-08 | 주식회사 유기산업 | 바이오매스로부터 제조되는 바이오차를 이용한 완효성 비료의 제조 방법 |
CN117571416A (zh) * | 2023-11-29 | 2024-02-20 | 山东星菲化学有限公司 | 一种土壤电导率标准物质及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vithanage et al. | Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar | |
Vithanage et al. | Acid-activated biochar increased sulfamethazine retention in soils | |
Yu et al. | Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars | |
Barnie et al. | The influence of pH, co-existing ions, ionic strength, and temperature on the adsorption and reduction of hexavalent chromium by undissolved humic acid | |
Yavari et al. | Biochar efficiency in pesticides sorption as a function of production variables—a review | |
Hildebrandt et al. | Microplastics as a Trojan horse for trace metals | |
Qi et al. | Pyrogenic carbon and its role in contaminant immobilization in soils | |
Tian et al. | Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment | |
Flores et al. | Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile | |
Zhelezova et al. | Effect of biochar amendment and ageing on adsorption and degradation of two herbicides | |
Cheng et al. | Sorption properties for black carbon (wood char) after long term exposure in soils | |
Daraei et al. | Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste | |
Zhang et al. | Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil | |
Hovsepyan et al. | Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation | |
MacLeod et al. | Influence of contact time on extractability and degradation of pyrene in soils | |
Daneshvar et al. | Acidic dye biosorption onto marine brown macroalgae: isotherms, kinetic and thermodynamic studies | |
Guthrie et al. | Determination of [13C] Pyrene sequestration in sediment microcosms using flash pyrolysis− GC− MS and 13C NMR | |
KR20160001832A (ko) | 바이오차를 이용한 토양 중 항생제 이동성 저감 방법 | |
Uchimiya et al. | Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms | |
Trigo et al. | Metolachlor sorption and degradation in soil amended with fresh and aged biochars | |
Wang et al. | Adsorption behaviors of phenanthrene and bisphenol A in purple paddy soils amended with straw-derived DOM in the West Sichuan Plain of China | |
Das et al. | Perfluorooctane sulfonate release pattern from soils of fire training areas in Australia and its bioaccumulation potential in the earthworm Eisenia fetida | |
Yavari et al. | Sorption-desorption mechanisms of imazapic and imazapyr herbicides on biochars produced from agricultural wastes | |
Pontoni et al. | Natural organic matter controls metal speciation and toxicity for marine organisms: A review | |
Poerschmann et al. | Sorption determination of phenols and polycyclic aromatic hydrocarbons in a multiphase constructed wetland system by solid phase microextraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |