KR20160000584A - Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass - Google Patents

Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass Download PDF

Info

Publication number
KR20160000584A
KR20160000584A KR1020140077795A KR20140077795A KR20160000584A KR 20160000584 A KR20160000584 A KR 20160000584A KR 1020140077795 A KR1020140077795 A KR 1020140077795A KR 20140077795 A KR20140077795 A KR 20140077795A KR 20160000584 A KR20160000584 A KR 20160000584A
Authority
KR
South Korea
Prior art keywords
biomass
bioethanol
levulinic acid
pretreatment
acid
Prior art date
Application number
KR1020140077795A
Other languages
Korean (ko)
Other versions
KR101660108B1 (en
Inventor
정한섭
장수경
김호용
여환명
최준원
최인규
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020140077795A priority Critical patent/KR101660108B1/en
Publication of KR20160000584A publication Critical patent/KR20160000584A/en
Application granted granted Critical
Publication of KR101660108B1 publication Critical patent/KR101660108B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a condition for optimally producing levulinic acid from a liquid hydrolyzate produced in a bioethanol production process while improving a yield of bioethanol production by establishing an optimal condition of a sulfuric acid pre-treatment process with respect to lignocellulosic biomass and, specifically, larch.

Description

바이오에탄올 및 레불린산 동시 생산을 위한 목질계 바이오매스에 대한 황산 전처리 최적조건 개발 {Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass}Development of optimum conditions for sulfuric acid pretreatment for woody biomass for the simultaneous production of bioethanol and levulinic acid (Simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass)

본 발명은 목질계 바이오매스로부터 바이오에탄올 및 레불린산을 동시에 생산하기 위한 목질계 바이오매스에 대한 황산 전처리 최적조건을 탐색하는 것이며, 구체적으로는 목질계 바이오매스인 낙엽송에 대한 황산 전처리 공정의 최적조건을 확립하여 바이오에탄올 생산 수율을 훼손시키지 않고 바이오에탄올 생산 공정 중 발생한 액상 가수분해물로부터 레불린산을 최적으로 생산하기 위한 조건들을 개발하는 것이다.The present invention is to search for optimal conditions for pretreatment of sulfuric acid for woody biomass for the simultaneous production of bioethanol and levulinic acid from woody biomass. Specifically, the optimum conditions for pretreatment of sulfuric acid for lignocellulosic biomass And to develop conditions for optimal production of levulinic acid from liquid hydrolysates produced during the bioethanol production process without compromising the yield of bioethanol production.

바이오매스로부터 바이오에탄올을 생산하기 위하여, 1세대 바이오매스로서 전분계 바이오매스(옥수수, 사탕수수 등 곡물)를 사용했으나 전분계 바이오매스의 경우 식량자원과의 경쟁으로 가격이 크게 상승하여 바이오에탄올의 가격 경쟁력의 위협요인이 되고 있다. 따라서 2세대 바이오매스로서 폐 목재 등의 목질계 바이오매스를 대상으로 약산으로 전처리, 당화 및 발효를 거쳐 바이오에탄올을 생산하지만, 수피가 포함된 바이오매스의 경우 약산에 의한 가수분해 효과가 상대적으로 낮고 결과적으로 바이오에탄올 생산을 위한 효소 가수분해/발효 효율이 낮은 문제점들이 있다. In order to produce bioethanol from biomass, starch-based biomass (cereal such as corn and sugar cane) was used as first-generation biomass, but in the case of starch-based biomass, prices rose significantly due to competition with food resources, It is becoming a threat to price competitiveness. Therefore, the second-generation biomass is produced by pretreating, saccharifying and fermenting the woody biomass such as waste wood to produce bioethanol. However, in the case of biomass containing bark, hydrolysis effect by weak acid is relatively low As a result, the efficiency of hydrolysis / fermentation of the enzyme for bioethanol production is low.

상세하게는 목질계 바이오매스는 구성성분 중 (셀룰로오스, 헤미셀룰로오스, 리그닌) 셀룰로오스만이 당화 및 발효 공정을 통해 바이오에탄올로 전환될 수 있고 불규칙적이고 복잡한 구조를 가지는 리그닌과 헤미셀룰로오스를 전처리 공정을 통해 제거되며, 특히, 침엽수종의 경우 추출물 등의 함량이 높아 바이오매스 전처리/효소 당화 시 분해가 상대적으로 어렵고, 리그닌 함량이 높은 수피가 포함될 경우도 상기와 같은 이유로 바이오에탄올 수율이 낮은 문제점들이 있다. 이에 따라 수피가 포함된 바이오매스의 경우 종래 약산 전처리 조건과는 차별되는 전처리 조건이 요망된다.In particular, woody biomass can be converted into bioethanol only through the saccharification and fermentation processes of cellulose (cellulose, hemicellulose, lignin), and the irregular and complicated structure of lignin and hemicellulose is removed through a pretreatment process In particular, in the case of softwood species, there is a problem that the yield of bioethanol is low because of the high content of the extract, etc., and thus the degradation during biomass pretreatment / enzyme saccharification is relatively difficult and the lignin content is high. Accordingly, in the case of the biomass containing the bark, pretreatment conditions different from the conventional weak acid pretreatment conditions are desired.

한편, 목질계 바이오매스로부터의 바이오에탄올 생산 효율을 높이기 위한 또 다른 방법으로 바이오에탄올 생산 공정에서 부산물로 폐기되는 헤미셀룰로오스 및 리그닌을 화합물이나 소재로 활용하는 기술 (바이오 리파이너리)이 유력하다.On the other hand, as another method for increasing bioethanol production efficiency from woody biomass, hemicellulose and lignin, which are discarded as by-products in the bioethanol production process, are likely to be used as compounds or materials (bio-refineries).

특허공개공보 제2013-0074904호에는 바이오매스로부터 레불린산 또는 이의 에스테르 화합물 제조용 촉매 및 이를 이용한 레불린산 또는 이의 에스테르 화합물의 제조방법이 개시되며, 이에 의하면 바이오매스로부터, 바람직하게는 바이오매스로부터 유도된 탄소수 5 또는 6 의 탄수화물로부터 레불린산 또는 이의 에스테르 화합물의 제조시 높은 전환율 및 고선택성을 나타내는 촉매 및 이를 이용한 레불린산 또는 이의 에스테르 화합물의 제조방법에 기재되어 있다. 구체적으로는 그래핀 산화물 담지체 및 상기 그래핀 산화물 담지체에 담지된 카르복실산(-COOH), 술폰산(-SO3H) 및 인산(-PO3H2)으로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함하는 촉매는 본원에서 언급된 균일 촉매인 황산과 대비될 뿐 아니라, 본원에서 추구하고자 하는 바이오에탄올과의 동시적 제조를 위한 조건이 언급되지 않는다. 현재 레불린산은 공업적으로 셀룰로오스를 무기산과 함께 가열하여 획득하고 있고, 셀룰로오스 공급원으로는 적합한 바이오매스를 사용하고 있다. 종래 바이오매스로부터 레불린산을 생산하는 방법은 모든 글루코오스를 레불린산으로 전환시키기 위해서 강한 산 가수분해 조건은 사용하였고, 이는 바이오에탄올을 생산할 때의 조건보다 강하여 두 개의 목표물질 (레불린산 및 바이오에탄올)을 하나의 공정에서 생산하고자 한 사례는 찾아볼 수 없다.Patent Publication No. 2013-0074904 discloses a catalyst for the production of levulinic acid or an ester compound thereof from biomass and a process for producing levulinic acid or an ester compound thereof using the catalyst and a method for producing the same from biomass, A catalyst exhibiting high conversion and high selectivity in the production of levulinic acid or an ester compound thereof from a carbohydrate having 5 or 6 carbon atoms, and a process for producing levulinic acid or an ester compound thereof using the same. Specifically, the graphene oxide support and at least one functional group selected from the group consisting of carboxylic acid (-COOH), sulfonic acid (-SO 3 H) and phosphoric acid (-PO 3 H 2 ) carried on the graphene oxide support Is not only contrasted with the sulfuric acid which is the homogeneous catalyst mentioned herein, but also does not mention the conditions for simultaneous production with the bioethanol to be sought here. At present, levulinic acid is industrially obtained by heating cellulose together with inorganic acid, and biomass suitable for cellulose source is used. Conventional methods for producing levulinic acid from biomass use strong acid hydrolysis conditions to convert all glucose to levulinic acid, which is stronger than the conditions for producing bioethanol, Bioethanol) in one process can not be found.

바이오매스 전처리 후 부산물로 취급되었던 액상 가수분해물에는 헤미셀룰로오스 유래 당 및 당 분해산물이 다량 포함되어 이를 활용할 필요성이 대두된다. 특히 바이오매스 전처리 생성물인 액상 가수분해물에는 유용한 공업적 중간체인 레불린산이 포함되어 있으므로, 수피가 포함된 바이오매스로부터 바이오에탄올 수율을 향상시키면서도 레불린산을 최적으로 추출할 수 있는 액상 가수분해물이 생성되도록 바이오매스 전처리 조건을 확립할 필요가 있다.Liquid hydrolysates, which were treated as by-products after pretreatment of biomass, contain a large amount of hemicellulose-derived sugars and saccharide-decomposed products, thus necessitating the utilization thereof. Particularly, since the liquid hydrolyzate as a biomass pretreatment product contains levulinic acid which is a useful industrial intermediate, a liquid hydrolyzate capable of optimally extracting levulinic acid is produced from the bark-containing biomass, while improving the bioethanol yield It is necessary to establish biomass pretreatment conditions.

본 발명의 목적은 수피가 포함된 바이오매스로부터 바이오에탄올 및 레불린산을 최적으로 추출할 수 있는 바이오매스 전처리 조건을 확립하는 것이다.An object of the present invention is to establish biomass pretreatment conditions capable of optimally extracting bioethanol and levulinic acid from bark-containing biomass.

이러한 목적은, 수피가 포함된 바이오매스를 0.5 mm 분말상태로 분쇄하고 1:20 (낙엽송 분말: 황산 용매(w/v))으로 황산과 혼합하는 단계를 포함하는 바이오매스 전처리 방법으로 달성된다. 비-제한적으로 상기 전처리 방법은, 반응온도 170-180℃, 반응시간 30분, 황산 농도 2%에서 황산 가수분해 단계를 포함한다. 본 발명에 의하면, 낙엽송의 전처리 생성물인 액상 가수분해물로부터 레불린산은 초기 낙엽송 중량 대비 10.98% 수율로 획득될 수 있다.This object is achieved by a biomass pretreatment method comprising pulverizing the bark-containing biomass into 0.5 mm powder and mixing with sulfuric acid with 1:20 (larch powder: sulfuric acid solvent (w / v)). Non-limitingly, the pretreatment method comprises a sulfuric acid hydrolysis step at a reaction temperature of 170-180 DEG C, a reaction time of 30 minutes, and a sulfuric acid concentration of 2%. According to the present invention, levulinic acid can be obtained from the liquid hydrolyzate, which is a pretreatment product of the larch, at a yield of 10.98% based on the weight of the initial larch.

도 1은 바이오에탄올 및 레불린산 생산을 위한 공정 모식도이고,
도 2는 전처리 반응온도, 반응시간, 황산 농도에 따른 전처리 후 액상 내 글루코오스 함량을 도시한 것이고,
도 3은 전처리 반응온도, 반응시간, 황산 농도에 따른 전처리 후 액상 내 5-HMF 함량을 도시한 것이고,
도 4는 전처리 반응온도, 반응시간, 황산 농도에 따른 전처리 후 액상 내 레불린산 함량을 나타낸 것이다.
1 is a process schematic diagram for the production of bioethanol and levulinic acid,
FIG. 2 shows the glucose content in the liquid phase after the pretreatment according to the pretreatment reaction temperature, the reaction time, and the sulfuric acid concentration.
FIG. 3 shows the content of 5-HMF in the liquid phase after pretreatment according to the pretreatment reaction temperature, reaction time, and sulfuric acid concentration,
FIG. 4 shows the content of levulinic acid in the liquid phase after pretreatment according to the pretreatment reaction temperature, reaction time, and sulfuric acid concentration.

본 발명은 목질계 바이오매스, 구체적으로 낙엽송에 대한 황산 전처리 공정의 최적조건을 확립하여 바이오에탄올 생산 수율을 향상시키면서도 바이오에탄올 생산 공정 중 발생한 액상 가수분해물로부터 레불린산을 최적으로 생산하기 위한 조건들을 확립하는 것이다.The present invention relates to a process for the production of levulinic acid from a liquid hydrolyzate produced during a bioethanol production process while improving the yield of bioethanol production by establishing optimal conditions for the pretreatment of sulfuric acid to lignocellulosic biomass, .

본 발명에 의한 바이오매스 전처리 과정이 도 1에 도시된다. 낙엽송으로부터 황산 전처리를 이용하여 바이오에탄올을 생산하는 과정 중 전처리 생성물로는 고형 가수분해물 및 액상 가수분해물이 생성된다. 고형 가수분해물로부터는 도시된 바와 같이 궁극적으로 바이오에탄올이 생성된다. 전기된 바와 같이 바이오매스 구성성분 중 (셀룰로오스, 헤미셀룰로오스, 리그닌) 셀룰로오스만이 당화 및 발효 공정을 통해 바이오에탄올로 전환될 수 있으므로 고형 가수분해물에는 가능한 다량의 셀룰로오스가 함유되도록 전처리 조건이 확립되어야 한다. 한편, 액상 가수분해물에는 레불린산이 함유되며, 상기 레불린산은 바이오매스 구성성분 중 글루코오스로부터 5-HMF (5-hydroxymethylfurfural)을 거쳐 생성되므로, 본 발명에서 확립하고자 하는 최적 전처리 조건이란, 고형 가수분해물에 가능한 다량의 셀룰로오스를 담보하면서도 액상가수분해물에 최대 함량의 레불린산을 포함되도록 설계되는 처리 조건들을 의미한다. 최대 함량의 레불린산을 생성할 수 있는 조건은 고형 가수분해물에 가능한 다량의 셀룰로오스를 함유하는 조건과 상충되는 조건이므로 최적 조건을 확립할 필요성이 존재한다. The biomass pretreatment process according to the present invention is shown in FIG. In the process of producing bioethanol from the larch with sulfuric acid pretreatment, solid hydrolyzate and liquid hydrolyzate are produced as pretreatment products. From the solid hydrolyzate, bioethanol is ultimately produced as shown. As described above, only cellulose (cellulose, hemicellulose, lignin) among the biomass components can be converted into bioethanol through the saccharification and fermentation process, so that the pretreatment conditions should be established so that the solid hydrolyzate contains as much cellulose as possible. On the other hand, since the liquid hydrolyzate contains levulinic acid and the levulinic acid is produced from glucose in the biomass component via 5-HMF (5-hydroxymethylfurfural), the optimum pretreatment condition to be established in the present invention is a solid hydrolyzate Refers to processing conditions designed to contain a maximum amount of levulinic acid in the liquid hydrolyzate while assuring a large amount of cellulose. There is a need to establish optimal conditions since the conditions capable of producing the maximum amount of levulinic acid are in conflict with the conditions containing as much cellulose as possible in the solid hydrolyzate.

실시예Example

목재파쇄기 (PRCS-3300ED, (주)풍림이엔지, 화성)를 이용하여 수피가 포함된 낙엽송을 칩 형태로 파쇄하였고, 칩은 다시 실험용 밀링기 (Cutting Mill pulverisette 15, FRITSCH GmbH, Germany)를 이용하여 40 mesh 이하 분말로 분쇄하였다. 완성된 분말은 필요하다면, 플라스틱 지퍼 백에 담아 10% 미만의 함수율로 상온에서 보관하였다. 전처리용 소형 반응기에 시료 0.2g과 황산 용매 4mL를 투입하여 다양한 조건(반응온도, 반응시간, 황산 농도)으로 전처리를 수행하였다.The larch with bark was crushed in chip form using a wood crusher (PRCS-3300ED, Pungrim ENG, Hwasung). The chip was again crushed using a laboratory milling machine (Cutting Mill pulverisette 15, FRITSCH GmbH, Germany) mesh. The finished powder was stored in a plastic zipper bag, if necessary, at room temperature with a water content of less than 10%. Pretreatment was carried out under various conditions (reaction temperature, reaction time, sulfuric acid concentration) by introducing 0.2 g of sample and 4 mL of sulfuric acid solvent into a pretreatment small reactor.

액상 부분 1mL를 취하여 0.45μm 막 필터 (membrane filter)로 여과한 후, 고성능 액체크로마토그래피 (HP1100, Hewlett Packard, Palo Alto, CA, USA)를 사용하여 글루코오스, 5-HMF 및 레불린산 함량을 분석하였다 (용리액: 아세토니트릴: 증류수=75:25, 칼럼: Aminex HPX-87H column (300 mm × 7.8 mm, 5 μm) 또는 Sugarpak column (300 mm × 6.5 mm), 유속: 1 mL/min, 굴절률 (RI) 검출기). 당 분해산물 정량을 위한 표준물질로서 레불린산 (Sigma-Aldrich, St. Louis, MO, USA)를 이용하여 검량선을 작성하고 이를 기준으로 농도를 계산하였다.1 mL of the liquid phase was filtered through a 0.45 μm membrane filter and analyzed for glucose, 5-HMF and levulinic acid content using high performance liquid chromatography (HP 1100, Hewlett Packard, Palo Alto, Calif., USA) A column (300 mm × 7.8 mm, 5 μm) or a Sugarpak column (300 mm × 6.5 mm), flow rate: 1 mL / min, refractive index RI) detector). Calibration curves were prepared using levulinic acid (Sigma-Aldrich, St. Louis, Mo., USA) as a reference material for the determination of per se minute seafood.

표 1에는 실시에 1에서 사용된 수피 포함 낙엽송 목분에 대한 성분분석표가 제시된다. 홀로셀룰로오스가 69.6%이고 그 중 글루코오스가 43.5%로 나타난다.Table 1 shows the component analysis table for the bark-containing larch wood flour used in Practice 1. The amount of the cellulose was 69.6% and the content of glucose was 43.5%.

구성Configuration 홀로셀룰로오스Holocellulose 리그닌Lignin 추출물extract TotalTotal GlucoseGlucose XyloseXylose GalactoseGalactose MannoseMannose ArabinoseArabinose 함량 (%)content (%) 69.6±0469.6 ± 04 43.5±0.843.5 ± 0.8 4.54±0.14.54 ± 0.1 3.66±0.13.66 ± 0.1 10.5±0.110.5 ± 0.1 1.8±0.11.8 ± 0.1 32.8±0.132.8 ± 0.1 2.6±0.02.6 ± 0.0

도 2는 전처리 반응온도, 반응시간, 황산 농도에 따른 전처리 후 액상 추출물 내 글루코오스 함량을 도시한 것이고, 글루코오스의 경우 반응온도, 반응시간, 황산 농도가 증가함에 따라 액상 내 유리되는 양이 증가하였으며, 여러 인자들 중 반응온도에 따른 변화가 가장 큰 것으로 확인되었다. 특히 인자들 범위 내에서 가장 강한 조건인 180℃/30분/2%의 경우 글루코오스 함량이 170℃/30분/2%과 큰 차이 없었고, 본 출원인은 이론에 구속되지 않고, 글루코오스로부터 레불린산으로의 전환되는 양이 급증하는 임계점으로 판단하였다 (도 2-C 참고). FIG. 2 shows the glucose content in the liquid extract after the pretreatment according to the pretreatment reaction temperature, the reaction time, and the concentration of sulfuric acid. In the case of glucose, the liberation amount in the liquid phase was increased as the reaction temperature, reaction time, Among the various factors, the change with reaction temperature was found to be the greatest. In particular, in the case of 180 ° C / 30 minutes / 2%, which is the strongest condition within the range of the factors, the glucose content was not significantly different from 170 ° C./30 minutes / 2%. Applicant has not been bound by theory, (See Fig. 2-C). ≪ tb > < TABLE >

고형추출물로부터의 바이오에탄올 생산을 고려할 때, 170℃/30분/2% 이상의 조건은 글루코오스 소실이 많아져 에탄올 수율에 영향을 줄 수 있으므로, 상기 글루코오스 임계점이 최적 조건의 후보로 판단하였다.Considering the production of bioethanol from the solid extract, the condition of 170 ° C / 30 min / 2% or more is considered to be the candidate for the optimum condition because the glucose disappearance increases and the ethanol yield is affected.

도 3은 전처리 반응온도, 반응시간, 황산 농도에 따른 전처리 후 액상 추출물 내 5-HMF 함량을 도시한 것이고, 5-HMF의 경우 반응온도, 반응시간, 황산 농도가 증가함에 따라 생성되는 양이 증가하였으나, 글루코오스로부터 레불린산으로 전환되는 중간체로서 절대 함량은 낮다 (<1%). 5-HMF도 글루코오스와 유사하게 강한 조건인 180℃/30분/2%과 170℃/30분/2%의 함량에 큰 차이가 없었으므로, 본 출원인은, 글루코오스로부터 레불린산으로의 전환되는 양이 급증하는 임계점으로 판단하였다 (도 3-C 참고).FIG. 3 shows the 5-HMF content in the liquid extract after the pretreatment according to the pretreatment reaction temperature, reaction time and sulfuric acid concentration. In the case of 5-HMF, the amount of produced 5-HMF increased with increasing reaction temperature, reaction time, , But the absolute content as an intermediate to convert from glucose to levulinic acid is low (<1%). 5-HMF showed no significant difference in the contents of 180 ° C / 30 min / 2% and 170 ° C / 30 min / 2%, which are strong conditions similar to glucose. Thus, Applicant has found that the conversion of glucose to levulinic acid (See Fig. 3-C). &Lt; tb &gt; &lt; TABLE &gt;

도 4는 전처리 반응온도, 반응시간, 황산 농도에 따른 전처리 후 액상 내 레불린산 함량을 나타낸 것이다. 레불린산의 경우 반응온도, 반응시간, 황산 농도가 증가함에 따라 액상 추출물 내 생성되는 양이 증가하였고, 특히 반응온도에 따라서는 지수적인 증가 경향을 나타낸다. 본 실시예들에서 적용된 인자들 범위의 170℃/30분/2%와 180℃/30분/2% 사이에서 약 10% (초기 낙엽송 중량 대비)의 레불린산 생산할 수 있었다. 이는 낙엽송 글루코오스 중 약 30%를 전환시킨 양에 해당되는 것이다.FIG. 4 shows the content of levulinic acid in the liquid phase after pretreatment according to the pretreatment reaction temperature, reaction time, and sulfuric acid concentration. In the case of levulinic acid, the amount produced in the liquid extract increased with increasing reaction temperature, reaction time, and sulfuric acid concentration, and showed an exponential tendency depending on the reaction temperature. It was possible to produce levulinic acid of about 10% (relative to the initial larval weight) between 170 ° C / 30 min / 2% and 180 ° C / 30 min / 2% of the range of factors applied in the examples. This corresponds to about 30% conversion of larch glucose.

이상과 같이 본 발명은 종래 별도로 분리되어 생산되던 레불린산과 바이오에탄올을 하나의 공정으로 생산하고자 하며, 이에 적합한 전처리 조건을 확립하였다. 본 발명에 의하면 종래 바이오에탄올 공정 측면에서 부산물을 활용함으로써 공정의 경제성을 높여줄 것으로 기대되고, 이를 통하여 생산된 레불린산은 종래의 공업용 레불린산보다 친환경성 (바이오에탄올 생산으로 인한 탄소고정 효과 등) 및 경제성이 확보된다. 더 나아가, 본 발명에서 개시된 전처리 조건을 사용하여 미-활용 침엽수들로부터도 바이오에탄올과 함께 레불린산을 고수율로 얻을 수 있을 것으로 기대된다.As described above, the present invention aims to produce levulinic acid and bioethanol, separately produced separately, in one process, and a suitable pretreatment condition has been established. According to the present invention, it is expected that economical efficiency of the process will be improved by utilizing by-products in the conventional bioethanol process, and the levulic acid produced through the process is more environmentally friendly than the conventional industrial levulic acid ) And economic efficiency. Further, it is expected that using the pretreatment conditions disclosed in the present invention, levulinic acid can be obtained in high yield with bioethanol from unutilized coniferous trees.

Claims (5)

바이오에탄올 및 레불린산 생성을 위한 바이오매스 전처리 방법에 있어서, 수피가 포함된 바이오매스 분말을 황산과 혼합하는 단계를 포함하며, 상기 혼합단계는 반응온도 170-180℃, 반응시간 30분, 황산 농도 2%에서 황산 가수분해 단계인 것을 특징으로 하는, 바이오에탄올 및 레불린산 생성을 위한 바이오매스 전처리 방법.A method for pretreating a biomass for the production of bioethanol and levulinic acid, the method comprising mixing a bark-containing biomass powder with sulfuric acid, wherein the mixing step is carried out at a reaction temperature of 170-180 DEG C, a reaction time of 30 minutes, Wherein the hydrolysis step is a hydrolysis step at a concentration of 2% of the biomass. 제1항에 있어서, 수피가 포함된 바이오매스 분말은 수피가 포함된 낙엽송 분말인, 바이오에탄올 및 레불린산 생성을 위한 바이오매스 전처리 방법.The method according to claim 1, wherein the biomass powder containing bark is a larch powder containing bark, and the biomass pretreatment method for producing bioethanol and levulinic acid. 제1항에 있어서, 바이오매스 분말은 직경이 평균 0.5 mm 분말상태인, 바이오에탄올 및 레불린산 생성을 위한 바이오매스 전처리 방법.The method according to claim 1, wherein the biomass powder is 0.5 mm in average diameter in diameter. 제1항에 있어서, 상기 분말은 황산과 1:20 (낙엽송 분말: 황산 용매(w/v))으로 혼합되는, 바이오에탄올 및 레불린산 생성을 위한 바이오매스 전처리 방법.The method according to claim 1, wherein the powder is mixed with sulfuric acid and 1:20 (larch powder: sulfuric acid solvent (w / v)), for biomass production of bioethanol and levulinic acid. 제1항 내지 제4항 중 어느 하나의 항에 있어서, 바이오매스의 전처리 생성물인 액상 가수분해물로부터 레불린산은 초기 바이오매스 중량 대비 10.98% 수율로 획득되는, 바이오에탄올 및 레불린산 생성을 위한 바이오매스 전처리 방법.The process according to any one of claims 1 to 4, wherein levulinic acid from the liquid hydrolyzate, which is a pretreatment product of the biomass, is obtained at a yield of 10.98% of the initial biomass weight, Mass pretreatment method.
KR1020140077795A 2014-06-25 2014-06-25 Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass KR101660108B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140077795A KR101660108B1 (en) 2014-06-25 2014-06-25 Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140077795A KR101660108B1 (en) 2014-06-25 2014-06-25 Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass

Publications (2)

Publication Number Publication Date
KR20160000584A true KR20160000584A (en) 2016-01-05
KR101660108B1 KR101660108B1 (en) 2016-09-26

Family

ID=55164542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140077795A KR101660108B1 (en) 2014-06-25 2014-06-25 Development of optimum pretreatment condition for simultaneous production of bioethanol and levulinic acid from lignocellulosic biomass

Country Status (1)

Country Link
KR (1) KR101660108B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210084263A (en) 2019-12-27 2021-07-07 고려대학교 산학협력단 System for pretreatment of biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037125B1 (en) * 2009-05-14 2011-05-26 계명대학교 산학협력단 Biomass Pretreatment Method for Preparing Bioethanol
KR20130008894A (en) * 2011-07-13 2013-01-23 단국대학교 산학협력단 Method for production of glucose from biomass and method for production of ethanol using thereof
US20130204039A1 (en) * 2012-02-02 2013-08-08 Troy M. Runge Two-stage, acid-catalyzed conversion of carbohydrates into levulinic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037125B1 (en) * 2009-05-14 2011-05-26 계명대학교 산학협력단 Biomass Pretreatment Method for Preparing Bioethanol
KR20130008894A (en) * 2011-07-13 2013-01-23 단국대학교 산학협력단 Method for production of glucose from biomass and method for production of ethanol using thereof
US20130204039A1 (en) * 2012-02-02 2013-08-08 Troy M. Runge Two-stage, acid-catalyzed conversion of carbohydrates into levulinic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210084263A (en) 2019-12-27 2021-07-07 고려대학교 산학협력단 System for pretreatment of biomass

Also Published As

Publication number Publication date
KR101660108B1 (en) 2016-09-26

Similar Documents

Publication Publication Date Title
Batista et al. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw
Michelin et al. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof
Nair et al. Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia
Kim et al. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber
Vandenbossche et al. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder
US9920388B2 (en) Process for the production of sugars from biomass
Asakawa et al. Cholinium ionic liquid/cosolvent pretreatment for enhancing enzymatic saccharification of sugarcane bagasse
Bouxin et al. Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides
Manfredi et al. Integral process assessment of sugarcane agricultural crop residues conversion to ethanol
Nair et al. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes
Jin et al. A stepwise pretreatment of sugarcane bagasse by alkaline and hydroxymethyl reagent for bioethanol production
Egüés et al. Fermentable sugars recovery from grape stalks for bioethanol production
Cuevas et al. Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones
Zhang et al. Synergistic effect of white-rot fungi and alkaline pretreatments for improving enzymatic hydrolysis of poplar wood
Liu et al. An integrated biorefinery process for co-production of xylose and glucose using maleic acid as efficient catalyst
Takata et al. Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid
Duque et al. Study of process configuration and catalyst concentration in integrated alkaline extrusion of barley straw for bioethanol production
Liu et al. Investigation of the effect of supercritical carbon dioxide pretreatment on reducing sugar yield of lignocellulose hydrolysis
Zhang et al. The effects of mild Lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood
Cheng et al. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading
Peleteiro et al. Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: A biorefinery approach
Feng et al. Combined Severity during Pretreatment Chemical and Temperature on the Saccharification of Wheat Straw using Acids and Alkalis of Differing Strength.
Huang et al. Microwave-assisted liquefaction of rape straw for the production of bio-oils
Ma et al. Multimode ultrasound and ternary deep eutectic solvent sequential pretreatments enhanced the enzymatic saccharification of corncob biomass
Harahap et al. Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 4