KR20150141075A - Solid electrolytic capacitor containing a multi-layered adhesion coating - Google Patents

Solid electrolytic capacitor containing a multi-layered adhesion coating Download PDF

Info

Publication number
KR20150141075A
KR20150141075A KR1020140069626A KR20140069626A KR20150141075A KR 20150141075 A KR20150141075 A KR 20150141075A KR 1020140069626 A KR1020140069626 A KR 1020140069626A KR 20140069626 A KR20140069626 A KR 20140069626A KR 20150141075 A KR20150141075 A KR 20150141075A
Authority
KR
South Korea
Prior art keywords
nanometers
anode
resin
layer
dielectric
Prior art date
Application number
KR1020140069626A
Other languages
Korean (ko)
Inventor
아오키 키요푸미
노보리오 히로마사
타츠노 쥬냐
이나자와 코지
Original Assignee
에이브이엑스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이브이엑스 코포레이션 filed Critical 에이브이엑스 코포레이션
Priority to KR1020140069626A priority Critical patent/KR20150141075A/en
Publication of KR20150141075A publication Critical patent/KR20150141075A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/032Inorganic semiconducting electrolytes, e.g. MnO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present invention provides a solid electrolytic capacitor which comprises: an anode body; a dielectric substance located on and/or in the anode body; an adhesion coating placed on the dielectric substance; and a solid electrolyte placed on the adhesion coating including the dielectric substance and a conductive polymer. The adhesion coating is multi-layered and used by combining nano-projections of a plurality of discrete manganese oxides such as discrete manganese with a resin layer.

Description

다층 접착 코팅을 포함하는 고체 전해 커패시터{SOLID ELECTROLYTIC CAPACITOR CONTAINING A MULTI-LAYERED ADHESION COATING}SOLID ELECTROLYTIC CAPACITOR CONTAINING A MULTI-LAYERED ADHESION COATING < RTI ID = 0.0 >

본 발명은 미국 가출원 61/822,514 (2013년 5월 13일 출원)에 대해 우선권으로 갖는다.The present invention is a priority application to U.S. Provisional Application No. 61 / 822,514 filed on May 13, 2013.

고체 전해 커패시터(예: 탄탈럼 커패시터)는 전자 회로의 소형화에 주된 기여를 했으며 극한 환경에 회로를 적용하는 것을 가능하게 했다. 기존의 고체 전해 커패시터는 금속 도선 둘레에 금속 분말(예: 탄탈럼)을 가압하고, 가압된 부분을 소결하고, 소결된 애노드를 양극산화처리한 후, 고체 전해질을 도포함으로써 형성될 수 있다. 본질적으로 전도성을 갖는 폴리머는 그것의 이점인 낮은 등가 직렬 저항 (“ESR”) 및 “비연소/비점화” 실패 모드 때문에 고체 전해질로서 종종 사용된다. 이러한 전해질은 촉매제와 도펀트(dopant)가 존재하는 상태에서 모노머(monomer)의 원위치에서의 중합 반응을 통해 형성될 수 있다. 또는, 기제조된 전도성 폴리머 슬러리 또한 사용될 수 있다. 어떻게 형성되었는지와 상관 없이, 전도성 폴리머 전해질의 문제점 중 하나는 애노드의 포어(pore)들을 침투하고 균일하게 코팅하기가 어렵다는 것이다. 이것은 전해질과 유전체 사이의 접촉 지점을 줄일 뿐 아니라 장착 또는 사용 시 유전체로부터 폴리머가 원활히 박리되도록 한다. 이러한 문제점들의 결과로, 종래의 전도성 폴리머 커패시터에서는 초저 ESR 및/또는 누설 전류 값들을 얻기가 종종 어렵다.Solid electrolytic capacitors (eg, tantalum capacitors) have made a major contribution to the miniaturization of electronic circuits and made it possible to apply the circuitry in extreme environments. Conventional solid electrolytic capacitors can be formed by pressing a metal powder (e.g., tantalum) around a metal conductor, sintering the pressed portion, anodizing the sintered anode, and then applying a solid electrolyte. Polymers that are inherently conductive are often used as solid electrolytes because of their advantages, low equivalent series resistance (" ESR ") and " non-combustion / non-ignition " failure modes. Such an electrolyte can be formed through polymerization reaction in situ of a monomer in the presence of a catalyst and a dopant. Alternatively, the prepared conductive polymer slurry may also be used. Regardless of how it is formed, one of the problems with conducting polymer electrolytes is that it is difficult to penetrate and uniformly coat the pores of the anode. This not only reduces the point of contact between the electrolyte and the dielectric, but also allows the polymer to smoothly peel off from the dielectric during mounting or use. As a result of these problems, it is often difficult to obtain very low ESR and / or leakage current values in conventional conductive polymer capacitors.

따라서, 전도성 폴리머 고체 전해질을 포함하는 향상된 전해 커패시터에 대한 필요성이 존재한다.Thus, there is a need for an improved electrolytic capacitor comprising a conductive polymer solid electrolyte.

본 발명의 최상의 모드를 포함하는, 당업자를 겨냥해 기재된 본 발명의 완전하고 가능케 하는 기재는 본 명세서의 나머지 부분에서 아래 첨부된 도면을 참조로 더 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따라 형성될 수 있는 커패시터의 일 실시예를 개략적으로 도시한 도면이다.
본 명세서 및 도면에서 동일한 부호의 반복 사용은 본 발명에서 동일하거나 유사한 특징 또는 요소를 나타내기 위한 목적으로 사용되었다.
BRIEF DESCRIPTION OF THE DRAWINGS The complete and enabling description of the invention, which is intended for a person of ordinary skill in the art, including the best mode of the invention, is described in more detail in the remainder of the specification with reference to the accompanying drawings.
Figure 1 is a schematic illustration of one embodiment of a capacitor that may be formed in accordance with one embodiment of the present invention.
Repeated use of the same symbols in the present specification and drawings is used for the purpose of indicating the same or similar features or elements in the present invention.

본 발명의 일 실시예에 따르면, 애노드 몸체, 상기 애노드 몸체 위에 놓이는 유전체, 상기 유전체 위에 놓이는 접착 코팅, 및 상기 유전체와 상기 접착 코팅 위에 놓이는 고체 전해질을 포함하는 고체 전해 커패시터가 제공된다. 상기 접착 코팅은 불연속 프리 코팅층 및 수지층을 포함하고, 상기 불연속 프리 코팅층은 복수의 이산형(discrete) 산화 망간 나노프로젝션들(nanoprojection)을 포함한다. 상기 고체 전해질은 전도성 폴리머층을 포함한다.According to one embodiment of the present invention, there is provided a solid electrolytic capacitor comprising an anode body, a dielectric overlying the anode body, an adhesive coating overlying the dielectric, and a solid electrolyte overlying the dielectric and the adhesive coating. The adhesive coating comprises a discontinuous precoat layer and a resin layer, wherein the discontinuous precoat layer comprises a plurality of discrete manganese oxide nanoprojections. The solid electrolyte comprises a conductive polymer layer.

본 발명의 또 다른 일 실시예에 따르면, 고체 전해 커패시터 형성 방법이 제공된다. 상기 방법은 애노드 몸체와 유전체를 포함하는 애노드를 다층 접착 코팅과 접촉시키는 단계를 포함하는데, 상기 단계는 상화 망간 전구체를 포함하는 상기 애노드에 용액을 가하고, 복수의 이산형 산화 망간 나노프로젝션들을 형성하도록 상기 전구체를 열분해 전환함으로써 불연속 프리 코팅층을 형성하는 단계, 및 천연 또는 합성 수지를 포함하는 상기 애노드에 용액을 가함으로써 수지층을 형성하는 단계를 포함한다. According to another embodiment of the present invention, a method of forming a solid electrolytic capacitor is provided. The method includes contacting an anode comprising an anode body and a dielectric with a multilayer adhesive coating, wherein the solution is applied to the anode comprising a manganese precursor precursor and forming a plurality of discrete manganese oxide nano projections Forming a discontinuous precoat layer by thermally decomposing the precursor; and forming a resin layer by applying a solution to the anode including the natural or synthetic resin.

본 발명의 그 외 특징 및 측면들은 하기에서 더 상세히 설명할 것이다.
Other features and aspects of the present invention will be described in more detail below.

당업자는 본 명세서의 내용이 실시예들을 설명할 목적으로 쓰였을 뿐, 본 발명의 범위를 한정하기 위한 것이 아님을 이해해야 할 것이다. It will be understood by those skilled in the art that the content herein is for the purpose of describing the embodiments only and is not intended to limit the scope of the invention.

일반적으로, 본 발명은 애노드 몸체, 상기 애노드 몸체 위에 및/또는 안에 위치하는 유전체, 상기 유전체 위에 놓이는 접착 코팅, 및 상기 유전체 및 전도성 폴리머를 포함하는 접착 코팅 위에 놓이는 고체 전해질을 포함하는 고체 전해 커패시터에 관한 것이다. 특히, 상기 접착 코팅은 다층으로서, 복수의 이산형 산화 망간(예: 이산화 망간)의 나노프로젝션들과 수지층을 조합하여 사용한다. 본 발명의 발명자들은 이러한 독특한 구성을 통해, 접착 코팅은 그 결과로 얻게 되는 커패시터의 전기적 성능을 상당히 향상시킬 수 있다는 것을 발견했다. 가령, 이에 한정된 것은 아니나, 상기 이산형 나노프로젝션들이 크기가 작기 때문에 애노드 몸체의 작은 포어 안으로 용이하게 침투될 수 있고, 이것은 종래의 전도성 폴리머에서는 불가능한 것이었다. 나노프로젝션들은 유전체에 증착되면, 그것이 형성됨에 따라 전도성 폴리머층 안에 내장될 수 있는데, 이는 상기 유전체와 전도성 폴리머층 간의 접착력을 향상시킨다. 또한, 상기 수지층은 고온에서 비교적 안정적인 물질을 포함하는데, 이 때문에 상기 수지층은 다양한 서로 다른 조건에서 커패시터를 사용 시 나노프로젝션들과 전도성 폴리머층 둘 다를 고정시키고(anchor) 안정화시키는 메커니즘으로서의 역할을 할 수 있다. 따라서, 상기 프리 코팅 및 수지층들의 조합은 전도성 폴리머층의 박리 가능성을 줄이기 위한 독특하고 효과적인 다층 접착 코팅을 제공하는데, 이는 누설 전류와 ESR을 최소화함과 동시에 커패시턴스를 궁극적으로 향상시킬 수 있다.Generally, the present invention relates to a solid electrolytic capacitor comprising an anode body, a dielectric disposed on and / or within the anode body, an adhesive coating overlying the dielectric, and a solid electrolyte overlying the adhesive coating comprising the dielectric and conductive polymer . In particular, the adhesive coating is a multi-layered, nano-projection of a plurality of discrete manganese oxide (e.g., manganese dioxide) and a resin layer are used in combination. The inventors of the present invention have found through this unique arrangement that the adhesive coating can significantly improve the electrical performance of the resulting capacitor. For example, but not limited to, the discrete nanoprojections may be easily penetrated into the small pores of the anode body because of their small size, which is not possible with conventional conductive polymers. Nano projections, when deposited on a dielectric, can be embedded in the conductive polymer layer as it is formed, which improves the adhesion between the dielectric and the conductive polymer layer. In addition, the resin layer contains a relatively stable material at high temperatures, so that the resin layer serves as a mechanism to anchor and stabilize both the nanoprojections and the conductive polymer layer when using the capacitor in a variety of different conditions can do. Thus, the combination of pre-coating and resin layers provides a unique and effective multilayer adhesive coating to reduce the possibility of delamination of the conductive polymer layer, which can ultimately improve capacitance while minimizing leakage current and ESR.

본 발명의 다양한 실시예들을 하기에서 더 상세히 설명할 것이다.
Various embodiments of the present invention will now be described in more detail.

I. I. 애노드Anode

애노드는 그램 당 약 2,000 마이크로패럿*볼트 (“μF*V/g”) 내지 약 350,000 μF*V/g의 비전하를 갖는 분말로부터 형성될 수 있다. 알려진 바와 같이, 비전하는 사용된 양극산화처리된 전압을 커패시턴스에 곱한 후, 그 결과 값을 양극산화처리된 전극 몸체의 중량으로 나눠서 계산한다. 특정 실시예들에서는, 상기 분말은 약 70,000 μF*V/g 이상의 높은 비전하, 어떤 실시예들에서는 약 80,000 μF*V/g 이상, 또 어떤 실시예들에서는 약 90,000 μF*V/g 이상, 어떤 실시예들에서는 약 10,000 내지 약 30,000 μF*V/g, 또 어떤 실시예들에서는 약 120,000 내지 약 250,000 μF*V/g의 높은 비전하를 가질 수 있다. 비전하가 높은 분말은 대체로 밀도 높은 패킹 구조를 갖게 되는데, 그럼에도 불구하고 본 발명의 발명자들은 본 발명의 다층 접착 코팅을 사용해 전도성 폴리머가 애노드의 포어들 내부로 용이하게 침투할 수 있다는 것을 발견했다. 물론, 상기 분말은 약 70,000 μF*V/g 이하, 어떤 실시예들에서는 약 60,000 μF*V/g 이상, 어떤 실시예들에서는 약 50,000 μF*V/g 이상, 어떤 실시예들에서는 약 2,000 내지 약 40,000 μF*V/g, 또 어떤 실시예들에서는 약 5,000 내지 약 35,000 μF*V/g의 낮은 비전하를 가질 수도 있다.The anode may be formed from a powder having a specific electric charge of about 2,000 microfarads * volts ("μF * V / g") to about 350,000 μF * V / g per gram. As is known, the capacitance is multiplied by the used anodizing voltage used for vision, and the result is divided by the weight of the anodized electrode body. In certain embodiments, the powder has a high specific charge of greater than about 70,000 μF * V / g, in some embodiments greater than about 80,000 μF * V / g, and in some embodiments greater than about 90,000 μF * V / In certain embodiments from about 10,000 to about 30,000 μF * V / g, and in some embodiments from about 120,000 to about 250,000 μF * V / g. The inventors of the present invention have nevertheless discovered that the conductive polymer can easily penetrate into the pores of the anode using the multilayer adhesive coating of the present invention, although non-conductive high powders have a generally dense packing structure. Of course, the powder may be present in an amount of about 70,000 μF * V / g or less, in some embodiments about 60,000 μF * V / g or more, in some embodiments about 50,000 μF * About 40,000 μF * V / g, and in some embodiments about 5,000 to about 35,000 μF * V / g.

상기 분말은 개별 입자 및/또는 그러한 입자들의 덩어리들을 포함할 수 있다. 상기 분말을 형성하기 위한 화합물에는 밸브 금속(valve metal)(예: 산화가 가능한 금속) 또는 탄탈럼, 니오븀, 알루미늄, 하프늄, 그 합금, 그 산화물, 그 질화물 등의 밸브 금속-기반 화합물이 포함될 수 있다. 가령, 상기 밸브 금속 조성물은 니오븀 대 산소의 원자비가 1:1.0±1.0, 어떤 실시예들에서는 1:1.0±0.3, 어떤 실시예들에서는 1:1.0±0.1 및 어떤 실시예들에서는 1:1.0±0.05인 전기적으로 전도성을 갖는 산화 니오븀을 포함할 수 있다. 가령, 상기 산화 니오븀은 NbO0 .7, NbO1 .0, NbO1 .1 및 NbO2일 수 있다. 이러한 밸브 금속 산화물의 예들은 Schnitter의 미국 특허 공개 번호 2005/0019581; Schnitter 의 미국 특허 공개 번호 2005/0103638; Thomas 의 미국 특허 공개 번호 2005/0013765 뿐만 아니라 Fife의 미국 특허 번호 6,322,912; Fife 의 미국 특허 번호 6,416,730; Fife의 미국 특허 번호 6,527,937; Kimmel 의 미국 특허 번호 6,576,099; Fife 의 미국 특허 번호 6,592,740; Kimmel 의 미국 특허 번호 6,639,787; 및 Kimmel외의 미국 특허 번호 7,220,397에 기재되었다. The powder may comprise individual particles and / or agglomerates of such particles. The compound for forming the powder may include valve metal-based compounds such as valve metals (e.g., oxidizable metals) or tantalum, niobium, aluminum, hafnium, alloys thereof, oxides thereof, have. For example, the valve metal composition may have an atomic ratio of niobium to oxygen of 1: 1.0 ± 1.0, in some embodiments 1: 1.0 ± 0.3, in some embodiments 1: 1.0 ± 0.1, and in some embodiments 1: 1.0 ± 0.05 < / RTI > of electrically conductive niobium oxide. For example, the niobium oxide can be 0 .7 NbO, NbO 1 .0, 1 .1 NbO and NbO 2. Examples of such valve metal oxides are disclosed in Schnitter U.S. Patent Publication No. 2005/0019581; Schnitter et al. , U. S. Patent Publication No. 2005/0103638; US Patent Publication No. 2005/0013765 to Thomas et al. , As well as US Patent No. 6,322,912 to Fife ; Fife et al. , U.S. Patent No. 6,416,730; US Patent No. 6,527,937 to Fife ; Kimmel et al. , U.S. Patent No. 6,576,099; Fife et al. , U.S. Patent No. 6,592,740; Kimmel et al. , U.S. Patent No. 6,639,787; And Kimmel et al. , U. S. Patent No. 7,220, 397.

상기 분말의 겉보기 밀도(또는 스콧(Scott) 밀도)는 필요에 따라 다양할 수 있으나, 일반적으로는 세제곱 센티미터 당 약 1 내지 약 8 그램 (g/cm3), 어떤 실시예에서는 약 2 내지 약 7 g/cm3, 어떤 실시예에서는 약 3 내지 약 6 g/cm3 일 수 있다. 바람직한 수준의 패킹 및 겉보기 밀도를 달성하기 위해, 입자들 (또는 덩어리들)의 크기와 형태는 주의 깊게 제어될 수 있다. 가령, 입자들의 형태는 대체로 구형 또는 결절형(nodular)일 수 있다. 상기 입자들의 평균 크기는 약 0.1 내지 약 20 마이크로미터(micrometer), 어떤 실시예들에서는 약 0.5 내지 약 15 마이크로미터, 그리고 어떤 실시예들에서는 약 1 내지 약 10 마이크로미터일 수 있다.The apparent density of the powder (or Scott (Scott) density), but can vary as needed, generally cubic about 1 to about 8 grams (g / cm 3), in some embodiments from about 2 to about 7 per cm g / cm 3, some embodiments may be from about 3 to about 3. 6 g / cm. In order to achieve the desired level of packing and bulk density, the size and shape of the particles (or chunks) can be carefully controlled. For example, the shape of the particles may be generally spherical or nodular. The average size of the particles may be from about 0.1 to about 20 micrometers, in some embodiments from about 0.5 to about 15 micrometers, and in some embodiments from about 1 to about 10 micrometers.

상기 분말은 공지된 기술로 형성될 수 있다. 가령 전구체 탄탈럼 분말은 탄탈럼 염 (예: 칼륨 플루오탄탈레이트 (K2TaF7), 나트륨 플루오탄탈레이트 (Na2TaF7), 탄탈럼 펜타클로라이드 (TaCl5) 등)을 환원제 (예: 수소, 나트륨, 칼륨, 마그네슘, 칼슘 등)로 환원함으로써 형성될 수 있다. 이러한 분말들은 약 700℃ 내지 약 1400℃, 어떤 실시예들에서는 약 750℃ 내지 약 1200℃, 또 어떤 실시예들에서는 약 800℃ 내지 약 1100℃의 온도에서 하나 또는 다수의 열 처리 단계들을 거쳐 다양한 방식으로 뭉쳐질 수 있다. 열처리는 불활성 또는 환원 분위기에서 발생할 수 있다. 가령, 열처리는 분말을 부분적으로 소결하고 불순물(예: 불소의 함량이 줄어들도록 수소 또는 수소-방출 화합물 (예: 암모늄 클로라이드, 칼슘 하이드라이드, 마그네슘 하이드라이드 등)을 포함하는 분위기에서 발생할 수 있다. 필요 시, 마그네슘과 같은 게터 물질 (getter material)의 존재하에 응집(agglomeration)이 수행될 수도 있다. 열처리 후, 고반응성의 거친 덩어리들은 점진적인 공기의 진입에 의해 부동태화될 수 있다. 그 외 적합한 응집 기술들로는 Rao의 미국 특허 번호 6,576,038; Wolf 의 6,238,456; Pathare 의 5,954,856; Rerat의 5,082,491; Getz의 4,555,268; Albrecht 의 4,483,819; Getz 의 4,441,927; 및 Bates 의 4,017,302 등이 있다. The powder may be formed by a known technique. For example, a precursor tantalum powder may be prepared by dissolving a tantalum salt (e.g., potassium fluorotantalate (K 2 TaF 7 ), sodium fluorotantalate (Na 2 TaF 7 ), tantalum pentachloride (TaCl 5 ) , Sodium, potassium, magnesium, calcium, etc.). These powders may be subjected to one or more heat treatment steps at a temperature of from about 700 ° C to about 1400 ° C, in some embodiments from about 750 ° C to about 1200 ° C, and in some embodiments from about 800 ° C to about 1100 ° C, Can be assembled in a way. The heat treatment may occur in an inert or reducing atmosphere. For example, heat treatment can occur in an atmosphere that partially sinters the powder and contains hydrogen or hydrogen-releasing compounds (e.g., ammonium chloride, calcium hydride, magnesium hydride, etc.) to reduce impurities (e.g., fluorine content). If necessary, agglomeration may be performed in the presence of a getter material such as magnesium, etc. After the heat treatment, the highly reactive rough lumps can be passivated by progressive air ingress. Technologies include Rao 's U.S. Patent No. 6,576,038, Wolf et al , 6,238,456, Pathare et al. , 5,954,856, Rerat , 5,082,491, Getz , 4,555,268, Albrecht et al. , 4,483,819, Getz et al. , 4,441,927, and Bates et al. , 4,017,302, and the like.

입자들의 바람직한 크기 및/또는 형태는 분말 형성 (예: 환원 과정) 및/또는 응집(예: 온도, 분위기 등)에 관계되는 파라미터와 같은 공지된 다양한 공정 파라미터들을 제어함으로써 달성 가능하다. 전구체 분말을 바람직한 크기로 가는 밀링 기술(milling technique) 또한 사용될 수 있다. 바람직한 입자 특성들을 달성하기 위해 다양한 밀링 기술들 중 어느 것이라도 사용될 수 있다. 가령, 분말은 시초에 유체 매체(예: 에탄올, 메탄올, 플루오르화 액체 등)에 분산되어 슬러리를 형성할 수 있다. 그런 다음, 상기 슬러리는 밀(mill)에서 분쇄 매체(예: 탄탈럼과 같은 금속 볼)와 결합될 수 있다. 분쇄 매체의 개수는 밀의 크기에 따라 일반적으로 달라질 수 있는데, 약 100 내지 약 2000, 어떤 실시예에서는 약 600 내지 약 1000개 일 수 있다. 출발 분말, 유체 매체와 분쇄 매체는 어떤 비율로도 결합될 수 있다. 가령, 분쇄 매체에 대한 출발 분말의 비율은 약 1:5 내지 약 1:50 일 수 있다. 마찬가지로, 출발 분말의 부피에 대한 유체 매체의 부피의 비율은 약 0.5:1 내지 약 2:1 일 수 있고, 어떤 실시예에서는 약 0.5:1 내지 약 1:1 일 수 있다. 본 발명에서 사용될 수 있는 밀의 예는 미국 특허 번호 5,522,558; 5,232,169; 6,126,097; 및 6,145,765에 기재되어 있다. 밀링(milling)은 목표 크기를 달성하는데 필요한 기설정된 시간 동안 발생할 수 있다. 가령, 밀링 시간은 약 30 분 내지 약 40 시간, 어떤 실시예에서는 약 1 시간 내지 약 20시간, 어떤 실시예에서는 약 5 시간 내지 약 15 시간일 수 있다. 밀링은 실온 또는 상승된 온도를 비롯한 어떠한 바람직한 온도에서도 수행될 수 있다. 밀링 후, 유체 매체는 분말로부터 공기건조, 가열, 여과, 증발 등에 의해 분리 또는 제거될 수 있다. The desired size and / or shape of the particles is achievable by controlling various known process parameters such as parameters related to powder formation (e.g., reduction process) and / or agglomeration (e.g., temperature, A milling technique to achieve a desired size of the precursor powder may also be used. Any of a variety of milling techniques may be used to achieve desirable particle properties. For example, the powder may be initially dispersed in a fluid medium (e.g., ethanol, methanol, fluorinated liquid, etc.) to form a slurry. The slurry can then be combined with a grinding media (e.g., a metal ball such as tantalum) in a mill. The number of milling media may generally vary depending on the size of the mill, from about 100 to about 2000, in some embodiments from about 600 to about 1000. The starting powder, fluid medium and grinding media can be combined in any ratio. For example, the ratio of the starting powder to the milling media may be from about 1: 5 to about 1: 50. Likewise, the ratio of the volume of the fluid medium to the volume of the starting powder may be from about 0.5: 1 to about 2: 1, and in some embodiments from about 0.5: 1 to about 1: 1. Examples of mills that can be used in the present invention are described in U.S. Patent Nos. 5,522,558; 5,232,169; 6,126,097; And 6,145,765. Milling can occur for a predetermined amount of time required to achieve the target size. For example, the milling time may be from about 30 minutes to about 40 hours, in some embodiments from about 1 hour to about 20 hours, in some embodiments from about 5 hours to about 15 hours. The milling may be carried out at any desired temperature, including room temperature or elevated temperature. After milling, the fluid medium may be separated or removed from the powder by air drying, heating, filtration, evaporation, and the like.

분말의 특성들을 개선하기 위해 본 발명에는 그 외 여러 종래 처리 방법들이 사용될 수 있다. 가령, 특정 실시예들에 있어서, 입자들은 수성 산(예: 인산) 등의 도펀트가 존재하는 상태에서 소결 억제제(sinter retardant)들과 처리될 수 있다. 첨가된 도펀트의 양은 분말의 표면적에 부분적으로 달려 있으나, 일반적으로는 약 200 백만분율(“ppm”) 이하이다. 도펀트는 열처리 단계(들) 전, 도중 및/또는 후에 첨가될 수 있다. Various other conventional processing methods can be used in the present invention to improve the properties of the powder. For example, in certain embodiments, the particles may be treated with sinter retardants in the presence of a dopant such as an aqueous acid (e.g., phosphoric acid). The amount of dopant added is dependent in part on the surface area of the powder, but is generally less than about 200 million parts per million (ppm). The dopant may be added before, during, and / or after the heat treatment step (s).

입자들은 또한, 연성을 향상시키고 애노드 내의 누설 전류를 줄이기 위해 하나 이상의 탈산 처리를 받을 수 있다. 가령, 입자들은 미국 특허 번호 4,960,471에 기재된 것과 같은 게터 물질(예: 마그네슘)에 노출될 수 있다. 상기 게터 물질의 양은 중량비 약 2% 내지 약 6%로 존재할 수 있다. 탈산이 발생하는 온도는 다양할 수 있으나, 일반적으로는 약 700℃ 내지 약 1600℃, 어떤 실시예에서는 약 750℃ 내지 약 1200℃, 어떤 실시예에서는 약 800℃ 내지 약 1000℃의 범위에서 발생할 수 있다. 탈산 처리(들)의 총 시간은 약 20분 내지 약 3 시간의 범위를 가질 수 있다. 탈산은 또한 바람직하게는 불활성 분위기(예: 아르곤)에서 발생한다. 탈산 처리(들)가 끝난 후에는, 마그네슘이나 다른 게터 물질이 일반적으로 증발하고 용광로의 차가운 벽에 침전물을 형성하게 된다. 그러나, 게터 물질의 제거를 확실시하기 위해, 미세한 응집체들 및/또는 거친 응집체들은 질산, 플루오르화수소산(hydrofluoric acid) 등과 함께 하나 이상의 산 침출 단계들을 거칠 수 있다.The particles may also be subjected to one or more deoxidation treatments to enhance ductility and reduce leakage current in the anode. For example, the particles may be exposed to getter materials such as those described in U.S. Patent No. 4,960,471. The amount of the getter material may be present in a weight ratio of from about 2% to about 6%. The temperature at which the deoxidation occurs can vary, but can generally range from about 700 ° C to about 1600 ° C, in some embodiments from about 750 ° C to about 1200 ° C, and in some embodiments from about 800 ° C to about 1000 ° C have. The total time of the deacidification treatment (s) may range from about 20 minutes to about 3 hours. Deoxidation also preferably occurs in an inert atmosphere (e.g., argon). After the deoxidation treatment (s), magnesium and other getter materials generally evaporate and form precipitates on the cold walls of the furnace. However, to assure removal of the getter material, the fine aggregates and / or coarse aggregates may undergo one or more acid leaching steps together with nitric acid, hydrofluoric acid, and the like.

애노드의 조성을 원활히 하기 위해, 특정 구성 요소들을 분말에 추가적으로 포함시킬 수 있다. 가령, 선택적으로는, 입자들이 애노드 몸체를 형성하도록 가압될 때 서로 충분히 접착하도록 하기 위해 바인더 및/또는 윤활제가 분말에 혼합될 수 있다. 적합한 바인더는 가령 폴리(비닐 부티랄); 폴리(비닐 아세테이트); 폴리(비닐 알코올); 폴리(비닐 피롤리돈); 카르복시메틸셀룰로오스 등과 같은 셀룰로오스 폴리머, 메틸 셀룰로오스, 에틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 및 메틸 하이드록시에틸 셀룰로오스; 아택틱(혼성) 폴리프로필렌, 폴리에틸렌; 폴리에틸렌 글리콜(예: 다우 케미컬의 카보왁스); 폴리스티렌, 폴리(부타디엔/스티렌); 폴리아미드, 폴리이미드, 및 폴리아크릴아미드, 고분자량 폴리에테르; 에틸렌 옥사이드와 프로필렌 옥사이드의 공중합체; 폴리테트라플루오르에틸렌, 폴리비닐리덴 플루오라이드, 및 플루오르-올레핀 공중합체 등과 같은 플루오르폴리머; 나트륨 폴리아크릴레이트, 폴리(저 알킬 아크릴레이트), 폴리(저 알킬 메타크릴레이트)와 같은 나르륨 폴리아크릴레이트, 저 알킬 아크릴레이트 및 마테크릴레이트 공중합체; 및 스테아르산 및 그 외 비누 지방산, 식물성 왁스, 마이크로왁스(정제한 파라핀)와 같은 지방산 및 왁스를 포함할 수 있다. 상기 바인더는 용제에 용해되고 분산될 수 있다. 실시예에 따른 용제는 물, 알코올 등을 포함할 수 있다. 활용되는 경우, 바인더 및/또는 윤활제의 비율은 총 질량의 중량부당 약 0.1% 내지 약 8% 범위를 가질 수 있다. 그러나, 바인더 및/또는 윤활제는 본 발명에서 반드시 요구되는 것은 아님을 이해해야 할 것이다.To facilitate the composition of the anode, certain components may be additionally included in the powder. For example, optionally, the binder and / or lubricant may be mixed into the powder to allow the particles to adhere sufficiently to one another when pressed to form the anode body. Suitable binders include, for example, poly (vinyl butyral); Poly (vinyl acetate); Poly (vinyl alcohol); Poly (vinylpyrrolidone); Cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, and methylhydroxyethylcellulose; Atactic (hybrid) polypropylene, polyethylene; Polyethylene glycols such as Carbo waxes from Dow Chemical; Polystyrene, poly (butadiene / styrene); Polyamides, polyimides, and polyacrylamides, high molecular weight polyethers; Copolymers of ethylene oxide and propylene oxide; Fluoropolymers such as polytetrafluoroethylene, polyvinylidene fluoride, and fluoro-olefin copolymers; Sodium polyacrylate, poly (lower alkyl acrylate), poly (lower alkyl methacrylate); low alkyl acrylates and methacrylate copolymers; And fatty acids such as stearic acid and other soap fatty acids, vegetable waxes, micro waxes (refined paraffin), and waxes. The binder may be dissolved and dispersed in a solvent. The solvent according to an embodiment may include water, alcohol, and the like. When utilized, the proportion of binder and / or lubricant may range from about 0.1% to about 8% per weight of total mass. However, it should be understood that binders and / or lubricants are not necessarily required in the present invention.

결과로 생성되는 분말은 임의의 기존의 분말 가압 장치를 사용하여 펠렛(pellet)을 형성하도록 압축될 수 있다. 가령, 다이(die)와 하나 이상의 펀치(punch)를 포함하는 단일 스테이션 압축 프레스인 프레스 몰드(press mold)가 사용될 수 있다. 또는, 다이와 단일 저 펀치만을 사용하는 앤빌(anvil) 유형의 압축 프레스 몰드가 사용될 수 있다. 단일 스테이션 압축 프레스 몰드는 단일 작용, 이중 작용, 플로팅 다이(floating die), 이동반(movable platen), 반대램(opposed ram), 나사(screw), 임팩트(impact), 고온 프레싱(hot pressing), 압인(coining) 또는 사이징(sizing) 등과 같은 다양한 기능을 갖는 캠(cam), 토글(toggle)/너클(knuckle) 및 편심(eccentric)/크랭크(crank) 프레스 등의 몇몇 기본적인 유형으로 제공될 수 있다. 분말은 애노드 납(예: 탄탈럼 와이어) 둘레에 압축될 수 있다. 또는, 상기 애노드 납은 애노드 몸체의 가압 및/또는 소결 후, 상기 애노드 몸체에 부착(예: 용접) 될 수 있음을 이해해야 할 것이다. The resulting powder may be compressed to form a pellet using any conventional powder pressurizing device. For example, a press mold may be used which is a single station compression press including a die and one or more punches. Alternatively, an anvil type compression press mold using only a die and a single low punch may be used. Single station compression press molds can be used as single acting, double acting, floating die, movable platen, opposed ram, screw, impact, hot pressing, May be provided in several basic types such as cam, toggle / knuckle and eccentric / crank press with various functions such as coining or sizing, . The powder may be compressed around the anode lead (e.g., tantalum wire). Alternatively, it should be understood that the anode lead may be attached (e.g., welded) to the anode body after pressing and / or sintering of the anode body.

압축 후, 상기 펠렛을 특정 온도(예: 약 150℃ 내지 약 500℃)에서 몇분간 가열함으로써 어떤 바인더/윤활제라도 제거할 수 있다. 또는, Bishop 의 미국 특허 번호 6,197,252에 기재된 것과 같이 펠렛을 수용액과 접촉시킴으로써 바인더/윤활제를 제거할 수 있다. 그런 다음, 상기 펠렛은 다공성의 일체형 덩어리를 형성하도록 소결된다. 가령, 일 실시예에 따르면, 상기 펠렛은, 진공 상태 또는 불활성 분위기에서, 약 1200℃ 내지 약 2000℃의 온도, 어떤 실시예에서는 약 1500℃ 내지 약 1800℃에서 소결될 수 있다. 소결 후, 상기 펠렛은 입자들 간의 결합의 성장으로 인해 수축한다. 소결 후 펠렛의 프레스 밀도(pressed density)는 다양할 수 있으나, 일반적으로는 세제곱 센터미터 당 약 2.0 내지 약 7.0 그램, 어떤 실시예에서는 약 2.5 내지 약 6.5 그램, 또 어떤 실시예에서는 약3.0 내지 약 6.0 그램일 수 있다. 프레스 밀도는 물질의 양을, 가압된 펠렛의 용량으로 나눔으로써 결정된다. After compression, any binder / lubricant can be removed by heating the pellet at a certain temperature (e.g., from about 150 캜 to about 500 캜) for several minutes. Alternatively, the binder / lubricant may be removed by contacting the pellet with an aqueous solution as described in U.S. Patent No. 6,197,252 to Bishop et al . The pellets are then sintered to form a porous, integral mass. For example, according to one embodiment, the pellets may be sintered in a vacuum or inert atmosphere at a temperature of from about 1200 ° C to about 2000 ° C, in some embodiments from about 1500 ° C to about 1800 ° C. After sintering, the pellets shrink due to the growth of bonds between the particles. The pressed density of the pellets after sintering may vary but is generally from about 2.0 to about 7.0 grams per cubic centimeter, in some embodiments from about 2.5 to about 6.5 grams, and in some embodiments from about 3.0 to about 7.0 grams per cubic centimeter 6.0 grams. Press density is determined by dividing the amount of material by the capacity of the pressurized pellet.

애노드 또한 탄소 및 산소 함량이 비교적 낮을 수 있다. 가령, 애노드의 탄소 함량은 50ppm 이하일 수 있고, 어떤 실시예에서는 10ppm 이하일 수 있다. 마찬가지로, 애노드의 산소 함량은 0.15 ppm/μC/g 이하일 수 있고, 어떤 실시예에서는 1.10 ppm/μC/g 이하일 수 있다. 산소 함량은 LECO 산소 분석기(Oxygen Analyzer)에 의해 측정될 수 있고, 산소 함량은 탄탈럼 표면 상의 자연 산소와 탄탈럼 입자 내의 대량 산소(bulk oxygen)를 포함한다. 대량 산소 함량은 탄탈럼의 결정 격자 주기에 의해 제어되는데, 이는 용해 한도가 달성될 때까지 탄탈럼 내 산소 함량이 증가함에 따라 선형으로 증가한다. 이 방법은Journal of Materials Science: Materials In Electronics (1998) 309-311에 실렸던, Pozdeev-Freeman외의 "고체 탄탈럼 커패시터들의 다공성 애노드 내의 임계 산소 함량(Critical Oxygen Content In Porous Anodes Of Solid Tantalum Capacitors)"에 기재된 방법으로, 탄탈럼 결정 격자 주기를 측정하기 위해 X-선 회절 분석(XRDA)이 사용되었다. 소결된 탄탈럼 내의 산소는 얇은 자연 표면 산화물로 한정될 수 있는 반면, 탄탈럼의 대량(bulk)은 실질적으로 산소를 포함하지 않는다.The anode may also have a relatively low carbon and oxygen content. For example, the carbon content of the anode can be less than or equal to 50 ppm, and in some embodiments less than or equal to 10 ppm. Likewise, the oxygen content of the anode can be less than or equal to 0.15 ppm / μC / g, and in some embodiments less than or equal to 1.10 ppm / μC / g. The oxygen content can be measured by a LECO Oxygen Analyzer and the oxygen content includes bulk oxygen in the tantalum particles and natural oxygen on the tantalum surface. The bulk oxygen content is controlled by the crystal lattice period of the tantalum, which increases linearly with increasing oxygen content in the tantalum until the solubility limit is reached. This method is described in Pozdeev-Freeman et al., &Quot; Critical Oxygen Content In Porous Anodes of Solid Tantalum Capacitors in Solid Tantalum Capacitors ", published in Journal of Materials Science: Materials In Electronics (1998) 309-311 In the manner described, X-ray diffraction analysis (XRDA) was used to measure the tantalum crystal lattice period. Oxygen in the sintered tantalum can be confined to thin natural surface oxides, while the bulk of the tantalum is substantially free of oxygen.

애노드의 두께는 커패시터의 전기적 성능을 향상시키도록 선택될 수 있으나, 반드시 요구되는 것은 아니다. 가령, 애노드의 두께는 약 4 밀리미터(millimeters) 이하일 수 있으며, 어떤 실시예에서는 약 0.05 내지 약 2 밀리미터, 또 어떤 실시예에서는 약 0.1 내지 약 1 밀리미터 일 수 있다. 애노드의 형태 또한 결과적인 커패시터의 전기적 특성을 향상시키도록 선택될 수 있다. 가령, 애노드의 형태는 곡선형, 시누소이드형(sinusoidal), 직사각형, U-자형, V-자형 등일 수 있다. 애노드는 또한 하나 이상의 고랑(furrow), 홈(groove), 오목한 부분(depression), 또는 파인 부분(indentation)들을 포함함으로써 용량에 대한 표면적을 증가시켜 ESR을 최소화하고 커패시턴스의 주파수 반응을 연장한다는 점에서 “세로로 홈이 새겨진(fluted)” 형태를 가질 수 있다. 이렇듯 “세로로 홈이 새겨진” 애노드에 대해서는 Hahn 의 미국 특허 출원 공개 번호 2005/0270725 뿐만 아니라, Webber 의 미국 특허 번호 6,191,936; Maeda 의 5,949,639; 및 Bourgault 의 3,345,545에 기재되었다.The thickness of the anode may be selected to enhance the electrical performance of the capacitor, but is not required. For example, the thickness of the anode can be less than about 4 millimeters, in some embodiments from about 0.05 to about 2 millimeters, and in some embodiments from about 0.1 to about 1 millimeter. The shape of the anode can also be selected to improve the electrical properties of the resulting capacitor. For example, the shape of the anode may be curved, sinusoidal, rectangular, U-shaped, V-shaped, and the like. The anode also includes one or more furrows, grooves, depressions, or indentations to increase the surface area for capacitance, thereby minimizing ESR and extending the frequency response of the capacitance Quot; fluted " form. ≪ / RTI > Such an " vertically grooved " anode is described in US Patent Application Publication No. 2005/0270725 to Hahn et al ., As well as in Webber et al. , U.S. Patent Nos. 6,191,936; Maeda et al. , 5,949, 639; And 3,345,545 to Bourgault et al .

IIII . 유전체. dielectric

애노드는 유전체로도 코팅된다. 유전체는 유전체층이 애노드 위에 및/또는 안에 형성되도록, 소결된 애노드를 양극적으로 산화(“양극산화처리”)함으로써 형성될 수 있다. 가령, 탄탈럼 (Ta) 애노드는 양극산화처리되어 탄탈럼 5산화물 (tantalum pentoxide, Ta2O5)이 될 수 있다. 일반적으로, 양극산화처리는 애노드를 전해질 안에 담지되는 것과 같이 애노드에 용액을 초기에 가하는 것에 의해 수행된다. 물(탈이온화수) 등의 용제가 일반적으로 사용된다. 이온 전도성을 향상시키기 위해, 용제에서 분리되어 이온을 형성할 수 있는 화합물이 사용될 수 있다. 이러한 화합물의 예로는 전해질과 관련해 하기에서 설명할 산(acid) 등이 있다. 가령, 산(예: 인산)은 양극산화처리 용액의 약 0.01 wt.% 내지 약 5wt.%, 어떤 실시예에서는 약 0.05 wt.% 내지 약 0.8 wt.%, 또 어떤 실시예에서는 약0.1wt.% 내지 약0.5wt.%를 구성할 수 있다.The anode is also coated with a dielectric. The dielectric can be formed by oxidizing (" anodizing ") the sintered anode dynamically so that a dielectric layer is formed on and / or within the anode. For example, the tantalum (Ta) anode may be anodized to form tantalum pentoxide (Ta 2 O 5 ). In general, the anodizing treatment is performed by initially applying a solution to the anode such that the anode is supported in the electrolyte. And a solvent such as water (deionized water) is generally used. To improve the ionic conductivity, compounds capable of forming ions separated from the solvent may be used. Examples of such compounds include the acids described below with respect to the electrolytes. For example, the acid (e.g., phosphoric acid) may be present in an amount of from about 0.01 wt.% To about 5 wt.%, In some embodiments from about 0.05 wt.% To about 0.8 wt.%, And in some embodiments, from about 0.1 wt. % To about 0.5 wt.%.

유전체층을 형성하도록 양극산화처리 용액에는 전류가 흐르게 된다. 형성 전압의 값은 유전체층의 두께를 관리한다. 가령, 전원 공급은 요구되는 전압에 도달할 때까지 정전류 모드(galvanostatic mode)에 초기에 설정될 수 있다. 그런 다음, 바람직한 유전체 두께가 애노드 전체 표면에 형성되도록 전원 공급이 정전류 모드로 전환될 수 있다. 물론, 펄스 또는 정전위 스텝법 등과 같은 그 외 공지된 방법도 사용될 수 있다. 양극산화가 발생하는 전압은 일반적으로 약 4 내지 약 250V, 어떤 실시예에서는 약 9 내지 약 200V, 또 어떤 실시예에서는 약 20 내지 약 150V의 범위를 가질 수 있다. 산화 시, 양극산화 용액은 약 30℃ 이상, 어떤 실시예에서는 약 40℃ 내지 약 200℃, 또 어떤 실시예에서는 약 50℃ 내지 약 100℃의 상승된 온도에서 유지될 수 있다. 양극산화는 주위 온도 이하에서도 일어날 수 있다. 결과로 형성되는 유전체층은 애노드의 표면 및 그 포어(pore) 안에 형성될 수 있다.An electric current flows in the anodizing treatment solution so as to form the dielectric layer. The value of the forming voltage controls the thickness of the dielectric layer. For example, the power supply may be initially set in the galvanostatic mode until the required voltage is reached. Then, the power supply can be switched to the constant current mode so that a desired dielectric thickness is formed on the entire surface of the anode. Of course, other known methods such as pulse or constant-potential step method and the like can also be used. The voltage at which anodization occurs may generally range from about 4 to about 250 V, in some embodiments from about 9 to about 200 V, and in some embodiments from about 20 to about 150V. Upon oxidation, the anodizing solution may be maintained at an elevated temperature of about 30 ° C or higher, in some embodiments about 40 ° C to about 200 ° C, and in some embodiments about 50 ° C to about 100 ° C. Anodic oxidation may occur below ambient temperature. The resulting dielectric layer can be formed on the surface of the anode and in its pores.

필요한 경우, 바람직한 유전체 두께를 달성하기 위해 양극산화의 각 단계를 하나 이상의 주기로 반복할 수도 있다. 게다가, 제1 및/또는 제2 단계 후 애노드를 다른 용제(예: 물)로 헹구거나 세척하여 전해질을 제거할 수도 있다. If desired, each step of the anodization may be repeated in one or more cycles to achieve the desired dielectric thickness. In addition, the electrolyte may be removed by rinsing or rinsing the anode with another solvent (e.g., water) after the first and / or second step.

IIIIII . 접착 코팅. Adhesive coating

상술한 바와 같이, 커패시터의 접착 코팅은 다층으로서, 불연속 프리 코팅층 및 본질적으로 연속 또는 불연속 상태로 존재할 수 있는 수지층을 포함한다. 이러한 층들의 특정 배열은 필요에 따라 다양할 수 있다. 일 실시예에 따르면, 가령, 프리 코팅은 상기 유전체 상에 초기에 형성되고, 그런 다음 상기 수지층은 상기 팅된 유전체에 도포될 수 있다. 이러한 실시예들에서, 상기 프리 코팅층은 유전체 위에 놓이고 상기 수지층은 상기 프리 코팅층 위에 놓이고 상기 프리 코팅층 및/또는 상기 유전체와 접촉할 수 있다. 수지층의 존재에도 불구하고, 상기 프리 코팅층의 코팅된 나노프로젝션들은 전도성 폴리머층 안에 여전히 내장될 수 있다고 간주된다. 또 다른 실시예에서, 상기 수지층은 상기 유전체에 초기에 도포될 수 있고, 그런 다음 상기 프리층은 그 위에 형성될 수 있다. 이러한 실시예들에서, 상기 수지층은 상기 유전체 위에 놓이고 상기 프리 코팅층은 상기 수지층 위에 놓인다. 이러한 층들의 다양한 실시예들은 하기에서 더 상세히 설명할 것이다. As discussed above, the adhesive coating of the capacitor is a multilayer, comprising a discontinuous precoat layer and a resin layer that may be present in an essentially continuous or discontinuous state. The specific arrangement of these layers may vary as needed. According to one embodiment, for example, a pre-coating may be initially formed on the dielectric, and then the resin layer may be applied to the zoned dielectric. In these embodiments, the precoat layer is over a dielectric and the resin layer is over the precoat layer and may contact the precoat layer and / or the dielectric. Despite the presence of a resin layer, it is believed that the coated nanoprojections of the precoat layer can still be embedded in the conductive polymer layer. In yet another embodiment, the resin layer may be applied to the dielectric in the beginning, and then the free layer may be formed thereon. In these embodiments, the resin layer is over the dielectric and the precoat layer is over the resin layer. The various embodiments of these layers will be described in more detail below.

A. 프리 코팅층A. Precoat layer

프리 코팅층은 애노드 몸체의 작은 포어들 안으로 침투하여 전도성 폴리머층 안에 결국 내장될 수 있는 복수의 이산형 산화 망간 나노프로젝션(예: 이산화 망간)을 포함한다. 프리 코팅층이 연속층 보다는 이산형 나노프로젝션들로서 형성되기 때문에, 전도성 폴리머 또한 직접 또는 다른 층을 통해 유전체의 상당 부분과 직접 접촉할 수 있다. 전도성 폴리머와 유전체간의 비교적 넓은 직접 접촉은 ESR을 더 감소시킬 수 있다. 커패시터의 전체적인 성능에 악영향을 주지 않으면서 바람직한 결과를 얻기 위해, 나노프로젝션들의 평균 크기(예: 직경)는 접착력은 향상시키되, 애노드의 포어들 안으로 침투하지 못할 정도로 커지지는 않도록 된다. 이러한 면에서, 나노프로젝션들은 일반적으로 약 5 나노미터(nanometers) 내지 약 500 나노미터의 평균 크기, 어떤 실시예에서는 약 6 나노미터에서 약 250 나노미터, 또 어떤 실시예에서는 약 8 나노미터에서 약 150 나노미터, 또 어떤 실시예에서는 약 10 나노미터에서 약 110 나노미터의 평균 크기를 갖는다. “평균 직경”이라는 용어는 가령, 위에서 봤을 때 나노프로젝션들의 주요 축에 대한 평균 값 (최대 직경)을 가리킬 수 있다. 이러한 직경은 가령 광자 상관 분광학(photon correlation spectroscopy), 동적 광산란(dynamic light scattering), 준탄성 광산란(quasi-elastic light scattering) 등의 공지된 기술을 사용하여 달성 가능하다. 다양한 입자 크기 분석기들이 이러한 방식으로 직경을 측정하기 위해 사용될 수 있다. 일 예로는 Corouan VASCO 3 입자 크기 분석기가 있다. 나노프로젝션들은 또한 좁은 입도 분포를 가질 수 있는데, 그러한 경우 커패시터의 특성을 더 향상시킬 수 있으나, 여기에 한정되는 것은 아니다. 가령, 약 50% 이상, 어떤 실시예에서는 약 70% 이상, 또 어떤 실시예에서는 약 90% 이상의 나노프로젝션들이 상술한 범위 내의 평균 크기를 가질 수 있다. 특정한 크기를 갖는 나노프로젝션들의 개수는 상술한 기술을 사용하여 결정될 수 있는데, 이때 퍼센트 용적은 특정한 흡광단위(absorbance unit, “au”)를 갖는 입자들의 수와 상관 관계가 있을 수 있다.The precoat layer includes a plurality of discrete manganese oxide nanoprojections (e.g., manganese dioxide) that can penetrate into the small pores of the anode body and eventually be embedded in the conductive polymer layer. Because the precoat layer is formed as discrete nano-projections rather than a continuous layer, the conductive polymer can also be in direct contact with a significant portion of the dielectric, either directly or through another layer. A relatively large direct contact between the conductive polymer and the dielectric can further reduce the ESR. To obtain the desired results without adversely affecting the overall performance of the capacitor, the average size (e.g., diameter) of the nano projections is such that the adhesion is improved but not so large that it can not penetrate into the pores of the anode. In this regard, nano-projections generally have an average size of from about 5 nanometers to about 500 nanometers, in some embodiments from about 6 nanometers to about 250 nanometers, and in some embodiments from about 8 nanometers to about 8 nanometers 150 nanometers, and in some embodiments from about 10 nanometers to about 110 nanometers. The term " average diameter " may, for example, indicate an average value (maximum diameter) for the major axis of the nanoprojections as viewed from above. Such a diameter is achievable using known techniques such as photon correlation spectroscopy, dynamic light scattering, quasi-elastic light scattering, and the like. A variety of particle size analyzers can be used to measure the diameter in this manner. An example is the Corouan VASCO 3 particle size analyzer. Nanoprojections may also have a narrow particle size distribution, in which case the properties of the capacitor may be further improved, but are not limited thereto. For example, nanoprojections greater than about 50%, in some embodiments greater than about 70%, and in some embodiments greater than about 90%, may have an average size within the ranges described above. The number of nanoprojections having a particular size can be determined using the techniques described above, where the percent volume can be correlated to the number of particles having a specific absorbance unit (" au ").

나노프로젝션들의 크기와 더불어, 유전체 상의 나노프로젝션들의 표면 커버리지(surface coverage)는 바람직한 전기적 성능을 달성하는데 도움이 되도록 선택적으로 제어될 수 있다. 다시 말해, 표면 커버리지가 너무 낮을 경우에는 전도성 폴리머층이 유전체에 더 잘 접착할 수 있는 능력을 제한할 수 있는 반면, 커버리지가 너무 클 경우에는 커패시터의 ESR에 악영향을 줄 수 있다. 이러한 관점에서, 나노프로젝션들의 표면 커버리는 일반적으로 약 0.1% 내지 약40%, 어떤 실시예에서는 약 0.5% 내지 약 30%, 또 어떤 실시예에서는 약 1% 내지 약 20%가 된다. 표면 커버리지의 정도는 다양한 방법으로 계산할 수 있는데, 가령 “실제 커패시턴스” 값을 “정상 커패시턴스” 값으로 나눈 후 100을 곱하는 방법이 있다. 상기 “정상 커패시턴스”은 나노프로젝션들을 형성한 후 전도성 폴리머 용액으로 애노드를 침투시킴으로써 결정되는 반면, 상기 “실제 커패시턴스”은 나노프로젝션들을 형성하고, 전도성 폴리머 용액으로 애노드를 침투시키고, 애노드의 내부로부터 전도성 폴리머 용액을 세척한 후, 애노드를 건조시켜서 습기를 제거한 후 결정된다.In addition to the size of the nano-projections, the surface coverage of the nano-projections on the dielectric can be selectively controlled to help achieve the desired electrical performance. In other words, if the surface coverage is too low, the ability of the conductive polymer layer to better adhere to the dielectric can be limited, whereas if the coverage is too large, the ESR of the capacitor may be adversely affected. In this regard, the surface roughness of nanoprojections generally ranges from about 0.1% to about 40%, in some embodiments from about 0.5% to about 30%, and in some embodiments from about 1% to about 20%. The degree of surface coverage can be calculated in various ways, for example by dividing the "actual capacitance" value by the "normal capacitance" value and multiplying by 100. The "actual capacitance" is determined by penetrating the anode into the conductive polymer solution after forming the nanoprojections, while the "actual capacitance" forms the nanoprojections, penetrates the anode with the conductive polymer solution, After washing the polymer solution, the anode is dried and dehumidified and then determined.

본 발명의 프리 코팅층을 형성하기 위해 다양한 종류의 기술들이 사용될 수 있다. 공지된 바와 같이, 산화 망간(예: 이산화 망간)은 일반적으로 Sturmer 의 미국 특허 번호 4,945,452에 기재된 바와 같은 전구체의 열분해(pyrolytic decomposition) (예: 망간 질산염(manganese nitrate)(Mn(No3)2))를 통해 일반적으로 형성된다. 가령, 유전체-코팅된 애노드 몸체는 전구체를 포함하는 용액과 접촉된 후 (예: 딥핑(dipping), 담그기, 분사 등) 산화물로 변형되도록 가열될 수 있다. 필요에 따라, 복수의 도포 단계들이 사용될 수도 있다. 애노드 몸체가 산화 망간 전구체 용액과 접촉하는 시간은 필요에 따라 다양할 수 있다. 가령, 애노드 몸체는 약 10초 내지 약 10분의 시간 동안 상술한 용액 안에 딥핑될 수 있다. Various types of techniques may be used to form the precoat layer of the present invention. As is well known, manganese oxide (e.g., manganese dioxide) is generally prepared by pyrolytic decomposition of precursors such as those described in Sturmer et al. , U.S. Patent No. 4,945,452 (e.g., manganese nitrate (Mn (No 3 ) 2 )). ≪ / RTI > For example, the dielectric-coated anode body may be heated to contact the solution comprising the precursor (e.g., dipping, dipping, spraying, etc.) and then deforming into an oxide. If desired, a plurality of application steps may be used. The time for the anode body to contact the manganese oxide precursor solution can vary as needed. For example, the anode body may be dipped into the above-described solution for a time of about 10 seconds to about 10 minutes.

산화 망간 전구체 용액은 선택적으로 계면활성제를 포함할 수 있다. 이러한 계면활성제는 표면 장력을 감소시킴으로써 애노드 몸체 내부로의 용액의 침투력을 향상시킬 수 있는 것으로 알려져 있으나 여기에 한정되는 것은 아니다. 특히 적합한 비이온 계면활성제로는 폴리글리콜 에테르(예: 폴리옥시에틸렌 알킬 에테르), 노닐페녹시폴리-(에틸렌옥시)에탄올(예: Igepal CO-630); 이소옥틸페녹시-폴리에톡시에탄올(예: Triton X-100), 벤질에테르옥틸페놀-에틸렌 옥사이드 응축액 (예: Triton CF-10), 3,6-디메틸-4-옥틴-3,6-디올(예: Surfynol 82) 등이 있다. 커패시터의 그 외 특성들에 악영향을 주지 않으면서 산화 망간 전구체의 침투력의 바람직한 향상을 달성하기 위해서는, 계면활성제의 농도가 특정 범위 내로 제어되는 것이 일반적으로 바람직하다. 가령, 애노드 몸체가 담지되는 용액은 약 0.01 wt.% 내지 약 30wt.%, 어떤 실시예에서는 약 0.05wt.% 내지 약 25wt.%, 또 어떤 실시예에서는 약 0.1wt.% 내지 약 20wt.% 범위의 계면활성제를 포함할 수 있다. 마찬가지로, 전구체(들)(예: 망간 질산염)는 용액의 약 1wt.% 내지 약 55wt.%, 어떤 실시예에서는 약 2wt.% 내지 약 15wt.%, 또 어떤 실시예에서는 약 5wt.% 내지 약 10wt.% 범위를 구성할 수 있다. 물 등의 캐리어(carrier) 또한 용액에 사용될 수 있다. 가령 본 발명의 수용액은 약 30wt.% 내지 약 95wt.%, 어떤 실시예에서는 약 40wt.% 내지 약 99wt.%, 또 어떤 실시예에서는 약 50wt.% 내지 95wt.%의 물을 포함할 수 있다. 상기 용액 내 구성 요소들의 실제 양은 입자 크기 및 애노드 내 입자들의 분포, 분해가 발생하는 온도, 분산제(dispersant)의 정체(identity), 및 캐리어의 정체 등과 같은 요소에 따라 달라질 수 있다.The manganese oxide precursor solution may optionally contain a surfactant. Such a surfactant is known to improve the penetration of solution into the anode body by reducing the surface tension, but is not limited thereto. Particularly suitable nonionic surfactants include polyglycol ethers such as polyoxyethylene alkyl ethers, nonylphenoxy poly- (ethyleneoxy) ethanol (e.g., Igepal CO-630); (E.g., Triton X-100), benzyl ether octylphenol-ethylene oxide condensate (e.g., Triton CF-10), 3,6-dimethyl-4-octyne-3,6-diol (Eg, Surfynol 82). It is generally preferred that the concentration of the surfactant is controlled to within a certain range in order to achieve a desirable improvement in the penetration power of the manganese oxide precursor without adversely affecting other properties of the capacitor. For example, the solution in which the anode body is supported may contain from about 0.01 wt.% To about 30 wt.%, In some embodiments from about 0.05 wt.% To about 25 wt.%, And in some embodiments from about 0.1 wt.% To about 20 wt. Lt; RTI ID = 0.0 > surfactant. ≪ / RTI > Likewise, the precursor (s) (e.g., manganese nitrate) may be present in an amount from about 1 wt% to about 55 wt%, in some embodiments from about 2 wt% to about 15 wt%, and in some embodiments from about 5 wt% 10 wt%. Carriers such as water can also be used in the solution. For example, the aqueous solution of the present invention may comprise from about 30 wt% to about 95 wt%, in some embodiments from about 40 wt% to about 99 wt%, and in some embodiments from about 50 wt% to 95 wt% . The actual amount of constituents in the solution may vary depending on such factors as the particle size and distribution of particles in the anode, the temperature at which decomposition occurs, the identity of the dispersant, and the identity of the carrier.

필요 시, 애노드 몸체는 산화 망간 전구체 용액과의 접촉 전에 발생하는 전처리(pretreatment) 단계에서 가습 분위기(humidified atmosphere)와 접촉될 수 있다. 본 발명의 발명자들은 일정 양의 수증기가 있으면 이산화 망간의 열분해 전환 반응을 늦춤으로써 분산된 나노프로젝션들을 형성하도록 할 수 있다는 사실을 믿고 있으나, 여기에 한정되는 것은 아니다. 가령, 전처리 단계에서, 애노드 몸체는 공기 세제곱미터 당 약 1 내지 30 그램, 어떤 실시예에서는 약 4내지 약 25g/m3, 또 어떤 실시예에서는 약 5 내지 약 20g/m3의 습도를 갖는 분위기에 노출될 수 있다. 마찬가지로, 상대 습도는 약 30% 내지 약 90%, 어떤 실시예에서는 약 40% 내지 약 85%, 또 어떤 실시예에서는 약 50% 내지 약 80%의 범위를 가질 수 있다. 가습 분위기의 온도는 가령 약 10℃ 내지 약 50℃, 어떤 실시예에서는 약 15℃ 내지 약 45℃, 또 어떤 실시예에서는 약 20℃ 내지 약 40℃ 등의 다양한 범위를 가질 수 있다. 전처리 단계를 비롯해, 애노드 몸체는 산화 망간 전구체 용액과의 접촉 후 발생하는 중간처리 단계에서도 가습 분위기와 접촉될 수도 있다. 중간처리 단계에서의 가습 분위기는 전처리 단계의 가습 분위기와 동일하거나 다른 조건들을 가질 수 있으나, 일반적으로는 상술한 범위를 갖는다.If desired, the anode body may be in contact with a humidified atmosphere at a pretreatment step that occurs prior to contact with the manganese oxide precursor solution. The inventors of the present invention believe, but are not limited to, that the presence of a certain amount of water vapor can retard the thermal decomposition reaction of manganese dioxide to form dispersed nanoprojections. For example, in the pre-treatment step, the anode body is about 1 to 30 grams per cubic meters of air, some embodiments, from about 4 to about 25g / m 3, In addition, in some embodiments the atmosphere having a humidity of about 5 to about 20g / m 3 Lt; / RTI > Likewise, the relative humidity may range from about 30% to about 90%, in some embodiments from about 40% to about 85%, and in some embodiments from about 50% to about 80%. The temperature of the humidifying atmosphere may range from about 10 째 C to about 50 째 C, in some embodiments from about 15 째 C to about 45 째 C, and in some embodiments from about 20 째 C to about 40 째 C. In addition to the pretreatment step, the anode body may also be in contact with the humidifying atmosphere in the intermediate treatment step that occurs after contact with the manganese oxide precursor solution. The humidifying atmosphere in the intermediate treatment step may have the same or different conditions as the humidifying atmosphere of the pre-treatment step, but generally has the above-mentioned range.

관계없이, 바람직한 시간 동안 전구체 용액과 일단 접촉한 후에는, 상기 부분은 전구체(예: 망간 질산염)를 산화물로 열분해 전환하기에 충분한 온도로 가열된다. 가열은 용광로에서 가령 약 150℃ 내지 약 300℃, 어떤 실시예에서는 약 180℃ 내지 약 290℃, 또 어떤 실시예에서는 약 190℃ 내지 약 260℃의 온도에서 발생할 수 있다. 가열은 습하거나 건조한 분위기에서 수행될 수 있다. 특정 실시예에서는, 가령, 가습 분위기에서 가열이 수행될 수도 있는데, 이는 상술한 전처리 및 중간처리 단계들에 사용된 분위기들과는 동일하거나 다르되, 상술한 조건들을 대체로 벗어나지는 않는다. 변환에 필요한 시간은 용광로 온도, 열전달률 및 분위기에 달려있으나, 대체로 약 3 내지 5분이 된다. 열분해 전환 후, 누설 전류가 종종 높을 수 있는데, 이는 이산화 망간 증착 시 유전체 필름이 겪은 손상 때문이다. 이러한 누설을 줄이기 위해, 커패시터는 공지된 기술에 따라 양극산화 바스(anodization bath)에 의해 개량될 수 있다. 가령, 커패시터를 상술한 바대로 전해질 안에 담근 후 DC 전류를 흐르게 할 수 있다. Regardless, once contact with the precursor solution for a desired amount of time, the portion is heated to a temperature sufficient to thermally decompose the precursor (e.g., manganese nitrate) into an oxide. The heating may occur in the furnace at a temperature of, for example, from about 150 ° C to about 300 ° C, in some embodiments from about 180 ° C to about 290 ° C, and in some embodiments from about 190 ° C to about 260 ° C. The heating may be carried out in a humid or dry atmosphere. In certain embodiments, for example, heating in a humidifying atmosphere may be performed, which is the same as or different from the atmospheres used in the pretreatment and intermediate processing steps described above, and does not substantially depart from the above-described conditions. The time required for the conversion depends on the furnace temperature, the heat transfer rate and the atmosphere, but is generally about 3 to 5 minutes. After pyrolysis conversion, the leakage current can often be high, due to damage experienced by the dielectric film during manganese dioxide deposition. To reduce this leakage, the capacitors can be improved by an anodization bath according to known techniques. For example, the capacitor can be immersed in the electrolyte as described above before allowing the DC current to flow.

B, 수지층B, the resin layer

수지층은 고체 또는 자연적으로 중합체이거나, 중합되거나, 경화되거나 경화될 수 있는 반고체 물질인 천연 또는 합성 수지를 일반적으로 포함할 수 있다. 수지가 자연적으로 비교적 절연성을 갖는 것이 바람직하다. 본 명세서에서, “비교적 절연성을 갖는”다라는 것은 전도성 폴리머층을 1차적으로 형성하는 전도성 폴리머에 비해 저항력이 있는 것을 일반적으로 의미한다. 가령, 어떤 실시예에 따르면, 비교적 절연성을 갖는 수지는 20℃에서, 약 1000Ω-cm 이상, 어떤 실시예에서는 약 10,000 Ω-cm 이상, 어떤 실시예에서는 약 1 ×105 Ω-cm 이상, 또 어떤 실시예에서는 약 1 ×1010 Ω-cm 이상의 저항력을 가질 수 있다. 사용될 수 있는 적합한 수지의 예에는 폴리우레탄, 폴리스티렌, 불포화 또는 포화 지방산 에스테르(예: 글리세리드) 등이 포함되나 여기에 한정되지 않는다. 가령, 적합한 지방산 에스테르에는 라우르산 에스테르, 미르스트산, 팔미트산, 스테아르산, 엘레오스테아르산, 올레산, 리놀레산, 리놀렌산, 알로이리트산, 쉘롤산 등이 포함되나 여기에 한정되지는 않는다. 이러한 지방산 에스테르는 비교적 복잡한 조합을 사용해 “건성유(drying oil)”을 형성할 때 특히 유용한 것으로 밝혀졌는데, 이는 결과적으로 형성된 필름이 안정된 층 안으로 빠르게 중합될 수 있도록 한다. 이러한 건성유에는 글리세롤 백본(backbone)에, 하나, 두 개, 및 세 개의 에스테르화된 지방 아실 잔여물을 갖는 모노-, 디-, 및/또는 트리-글리세리드 등이 포함될 수 있다. 가령, 사용될 수 있는 적합한 건성유에는 올리브유, 아마인유, 피마자유, 동유, 대두유, 및 셸락(shellac)이 포함될 수 있으나 여기에 한정되지 않는다. 다양한 지방족 및 지환식 하이드록시산(예: 알로이리트산 및 셸산)의 에스테르를 포함하는 것으로 간주되는 셸락이 특히 적합하다. 상술한 수지 물질 및 그 외 수지 물질들은 Fife외의 미국 특허 번호 6,674,635에 상세히 기재되어 있다.The resin layer may generally comprise a natural or synthetic resin which is a solid or naturally polymeric, semi-solid material that can be polymerized, cured or cured. It is preferable that the resin naturally has a relatively insulative property. As used herein, " relatively insulative " generally means that it is more resistant than a conductive polymer that primarily forms a conductive polymer layer. For example, according to some embodiments, a relatively resin having an insulating property is at 20 ℃, about 1000Ω-cm or more, in some embodiments, from about 10,000 Ω-cm or more, in some embodiments, about 1 × 10 5 Ω-cm or more, and In some embodiments, it may have a resistivity of at least about 1 x 10 < 10 > ohm-cm. Examples of suitable resins that may be used include, but are not limited to, polyurethanes, polystyrenes, unsaturated or saturated fatty acid esters (e.g., glycerides), and the like. For example, suitable fatty acid esters include, but are not limited to, lauric acid esters, myristic acid, palmitic acid, stearic acid, eleostearic acid, oleic acid, linoleic acid, linolenic acid, allureitic acid, These fatty acid esters have been found to be particularly useful when forming a " drying oil " using relatively complex combinations, which allows the resulting film to polymerize rapidly into a stable layer. Such drying oils may include mono-, di-, and / or tri-glycerides with one, two, and three esterified fatty acyl residues in the glycerol backbone. For example, suitable drying oils that may be used include, but are not limited to, olive oil, linseed oil, castor oil, tung oil, soybean oil, and shellac. Especially suitable are shellac, which is considered to include esters of various aliphatic and alicyclic hydroxy acids (such as allylic acid and shell acid). The above resin materials and other resin materials are described in detail in US Patent No. 6,674,635 to Fife et al .

사용되었을 때, 상술한 지방산 에스테르는 자연적으로 존재하거나 자연 물질로부터 정제된 것일 수 있다. 가령, 대두유는 석유탄화수소와의 용제 추출에 의한 정제 또는 나사 프레스 공정(screw press operations)을 통해 대두로부터 수득된다. 추출 후, 수득된 대두유는 1차적으로는 올레산, 리놀레산, 및 리놀렌산의 트리글리세리드로 구성된다. 반면에, 동유(tung oil)는 이러한 정제가 필요 없는 건성유인 경우가 많다. 몇몇 경우에 있어서, 알코올과 반응시킴으로써 지방산 혼합물을 더 에스테르화하는 것이 바람직할 수 있다. 이러한 지방산/알코올 에스테르 파생물들은 지방산과 반응할 수 있는 임의의 알코올을 사용해 일반적으로 수득될 수 있다. 가령, 어떤 실시예들에서는, 8탄소 원자 미만의 1수산기 및/또는 다가 알코올, 그리고 어떤 실시예들에서는, 5 탄소 원자 미만의 1수산기 및/또는 다가 알코올들이 본 발명에서 사용될 수 있다. 본 발명의 특정 실시예들에는 프로필렌 글리콜, 헥실렌 글리콜 등의 다양한 글리콜 뿐만 아니라 메탄올, 에탄올, 부탄올의 사용이 포함된다. 일 특정 실시예에 따르면, 셸락을 상술한 바와 같이 알코올과 혼합함으로써 셸락을 에스테르화할 수 있다. 구체적으로, 셸락은 어느 정도 에스테르화된 지방산 혼합물 복합체를 포함하는 것으로 간주되는 곤충의 수지 배설물이다. 따라서, 알코올과 혼합되면, 셸락의 지방산 그룹들은 알코올과의 반응을 통해 더 에스테르화된다.When used, the fatty acid esters described above may be naturally occurring or purified from natural sources. For example, soybean oil is obtained from soybeans through purification by solvent extraction with petroleum hydrocarbons or by screw press operations. After extraction, the obtained soybean oil is primarily composed of triglycerides of oleic acid, linoleic acid, and linolenic acid. On the other hand, tung oil is often dry oil that does not require such purification. In some cases, it may be desirable to further esterify the fatty acid mixture by reacting with an alcohol. These fatty acid / alcohol ester derivatives can generally be obtained using any alcohol capable of reacting with fatty acids. For example, in some embodiments, less than 8 carbon atoms of a hydroxyl and / or polyhydric alcohol, and in some embodiments less than 5 carbon atoms, hydroxyl and / or polyhydric alcohols may be used in the present invention. Specific embodiments of the present invention include the use of methanol, ethanol, butanol as well as various glycols such as propylene glycol, hexylene glycol and the like. According to one particular embodiment, the shellac may be esterified by mixing the shellac with an alcohol as described above. Specifically, shellac is a resinous excrement of insects that is considered to contain a somewhat esterified fatty acid mixture complex. Thus, when mixed with alcohol, the fatty acid groups of the shellac are more esterified through reaction with the alcohol.

수지층은 다양한 다른 방법들로 형성될 수 있다. 가령, 일 실시예에 따르면, 애노드는 목적하는 수지(들)의 용액 안에 담지될 수 있다. 이러한 용액은 선택된 보호 수지(protective resin)를 물 또는 비수성 용제 등의 용제에 용해함으로써 형성될 수 있다. 몇몇 적합한 비수성 용제들에는 프로필렌 글리콜, 헥실렌 글리콜, 디(에틸렌 아세테이트)글리콜 등과 같은 다양한 글리콜 뿐만 아니라 메탄올, 에탄올, 부탄올이 포함될 수 있으나 여기에 한정되지 않는다. 특히 바람직한 비수성 용제들은 끓는점이 약 80℃을 초과하는 것들로서, 어떤 실시예들에서는 끓는점이 약 120℃, 또 어떤 실시예들에서는 약 150℃를 초과하는 것들이 될 수 있다. 상술한 바와 같이, 비수성 용제를 사용하여 용액을 형성하게 되면 그러한 수지 물질들이 활용될 때 지방산들이 더 에스테르화되는 결과를 가져온다. 애노드는 바람직한 두께에 따라 한번 이상 용액에 담지될 수 있다. 가령, 어떤 실시예들에서는, 2 내지 10개 층의 다수의 수지층들이 사용될 수 있고, 또 어떤 실시예들에서는 3 내지 7개층이 사용될 수 있다. 각 층은 가령 약 100 나노미터 이하의 목표 두께를 가질 수 있고, 어떤 실시예에서는 약 30 나노미터 이하, 또 어떤 실시예들에서는 약 10 나노미터 이하의 목표 두께를 가질 수 있다. 담그기 외에도, 스퍼터링(sputtering), 스크린 프린팅(screen printing), 전기 이동 코팅(electrophoretic coating), 전자 빔 증착(electron beam deposition), 진공 증착(vacuum deposition), 분사 등의 기존의 도포 방법들 또한 사용될 수 있음을 이해해야 할 것이다. The resin layer may be formed by various other methods. For example, according to one embodiment, the anode may be supported in a solution of the desired resin (s). Such a solution can be formed by dissolving a selected protective resin in a solvent such as water or a non-aqueous solvent. Some suitable non-aqueous solvents include, but are not limited to, various glycols such as propylene glycol, hexylene glycol, di (ethylene acetate) glycol and the like, as well as methanol, ethanol, butanol. Particularly preferred non-aqueous solvents are those having a boiling point in excess of about 80 占 폚, in some embodiments having a boiling point of about 120 占 폚, and in some embodiments, greater than about 150 占 폚. As described above, the formation of a solution using a non-aqueous solvent results in the fatty acids being more esterified when such resin materials are utilized. The anode can be supported on the solution more than once according to the desired thickness. For example, in some embodiments, a plurality of resin layers of 2 to 10 layers may be used, and in some embodiments, 3 to 7 layers may be used. Each layer may have a target thickness of, for example, less than or equal to about 100 nanometers, and in some embodiments less than or equal to about 30 nanometers, and in some embodiments less than or equal to about 10 nanometers. In addition to dipping, conventional coating methods such as sputtering, screen printing, electrophoretic coating, electron beam deposition, vacuum deposition, spraying, etc. can also be used You will have to understand.

수지층 형성 후, 애노드 부분은 가열되거나 경화될 수 있다. 가열은 도포 시 사용된 임의의 용제의 증발을 용이하게 할 수 있으며 수지 물질들의 에스테르화 및/또는 중합 반응을 도울 수도 있다. 에스테르화 및/또는 중합 반응을 용이하게 하기 위해, 경화제(curing agent)도 수지층에 첨가될 수 있다. 가령, 셸락과 사용될 수 있는 경화제로는 황산이 있을 수 있다. 가열이 발생하는 시간과 온도는 일반적으로 활용된 특정 수지 물질에 따라 달리진다. 일반적으로, 각 층은 약 30℃ 내지 약 300℃, 어떤 실시예에서는 약 50℃ 내지 약 150℃의 온도에서, 약 1분 내지 약 60분, 어떤 실시예에서는 약 15분 내지 약 30분의 시간 동안 건조된다. 또한, 각 수지층의 도포 후 반드시 가열을 활용해야 하는 것은 아님을 이해해야 한다. After the resin layer formation, the anode portion can be heated or cured. The heating may facilitate evaporation of any solvent used in the application and may assist in the esterification and / or polymerization of the resin materials. In order to facilitate the esterification and / or polymerization reaction, a curing agent may also be added to the resin layer. For example, there may be sulfuric acid as a hardener that can be used with shellac. The time and temperature at which heating takes place generally depends on the particular resin material utilized. Generally, each layer is heated at a temperature of from about 30 DEG C to about 300 DEG C, in some embodiments from about 50 DEG C to about 150 DEG C, for a time of from about 1 minute to about 60 minutes, in some embodiments from about 15 minutes to about 30 minutes Lt; / RTI > It should also be understood that it is not necessary to utilize heating after application of each resin layer.

IVIV . 고체 전해질. Solid electrolyte

상술한 바와 같이, 고체 전해질은 나노프로젝션들과 유전체와 직접 또는 수지층을 거쳐 위에 놓이고 접착하는 전도성 폴리머층을 포함한다. 전도성 폴리머는 일반적으로 π-결합되고 산화 또는 환원 후 적어도 약 1μS/cm의 전기적 전도성과 같이 산화 또는 환원 후 전기적으로 전도성을 갖는다. 이렇게 π-결합된 전도성 폴리머들에는 가령 폴리헤테로사이클(예: 폴리피롤, 폴리티오펜, 폴리아닐린 등), 폴리아세틸렌, 폴리-p-페닐렌, 폴리페놀레이트 등이 있다. 일 실시예에 따르면, 가령, 폴리머는 대체로 아래와 같은 구조를 갖는 치환된 폴리티오펜이다:As discussed above, solid electrolytes include nano-projections and dielectric and a conductive polymer layer that overlies and bonds directly or through the resin layer. Conductive polymers are generally? -Linked and have electrical conductivity after oxidation or reduction, such as an electrical conductivity of at least about 1 μS / cm after oxidation or reduction. Such π-bonded conductive polymers include, for example, polyheterocycles (eg, polypyrrole, polythiophene, polyaniline, etc.), polyacetylene, poly-p-phenylene and polyphenolate. According to one embodiment, for example, the polymer is a substituted polythiophene, generally having the structure:

Figure pat00001
Figure pat00001

여기서, T는 O 또는 S이고;Wherein T is O or S;

D는 선택적으로 치환된 C1 내지 C5 알킬렌기(예: 메틸렌, 에틸렌, n-프로필렌, n-부틸렌, n-펜틸렌 등)이고;D is an optionally substituted C 1 to C 5 alkylene group (e.g., methylene, ethylene, n-propylene, n-butylene, n-pentylene, etc.);

R7은 선형 또는 분지형의, 선택적으로 치환된 C1 내지 C18 알킬기(예: 메틸, 에틸, n-또는 이소-프로필, n-, 이소-, sec- 또는 tert-부틸, n-펜틸, 1-메틸부틸, 2-메틸부틸, 3-메틸부틸, 1-에틸프로필, 1,1-디메틸프로필, 1,2-디메틸프로필, 2,2-디메틸프로필, n-헥실, n-헵틸, n-옥틸, 2-에틸헥실, n-노닐, n-데실, n-운데실, n-도데실, n-트리데실, n-테트라데실, n-헥사데실, n-옥타데실 등);R7 is a linear or branched, optionally substituted C 1 to C 18 alkyl group such as methyl, ethyl, n- or iso-propyl, n-, iso-, sec- or tert- Methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, n-hexyl, n- Octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl, n-octadecyl and the like;

선택적으로 치환된 C5 내지 C12 시클로알킬기(예: 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실 등); 선택적으로 치환된 C5 내지 C14 아릴기(예: 페닐, 나프틸 등); 선택적으로 치환된 C7 내지 C18 아랄킬기(예: 벤질, o-, m-, p-톨릴, 2, 3-, 2, 4-, 2,5-, 2-6, 3-4-, 3,5-크실릴, 메시틸 등); 선택적으로 치환된 C1 내지 C4 하이드록시알킬기, 또는 하이드록실기이고;Optionally substituted C 5 to C 12 cycloalkyl group substituted with (e.g., such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo-nonyl, bicyclo-decyl); An optionally substituted C 5 to C 14 aryl group (e.g., phenyl, naphthyl, etc.); An optionally substituted C 7 to C 18 aralkyl group such as benzyl, o-, m-, p-tolyl, 2,3-, 2,4-, 2,5-, 2-6, 3-4-, Xylyl, mesityl, etc.); An optionally substituted C 1 to C 4 hydroxyalkyl group, or a hydroxyl group;

q는 0 내지 8, 어떤 실시예에서는 0 내지 2, 및 일 실시예에서는 0의 정수이고;q is an integer from 0 to 8, in some embodiments from 0 to 2, and in one embodiment 0;

n은 2 내지 5,000, 어떤 실시예에서는 4 내지 2,000, 및 일 실시예에서는 5 내지 1,000이다. “D” 또는 “R7”기들의 치환기들의 예로는 가령 알킬, 시클로알킬, 아릴, 아랄킬, 알콕시, 할로겐, 에테르, 티오에테르, 디술파이드, 술폭사이드, 술폰, 술포네이트, 아미노, 알데하이드, 케토, 카르복시산 에스테르, 카르복시산, 카르보네이트, 카르복실레이트, 시아노, 알킬실란 및 알콕시실란 그룹, 카르복실아미드 그룹 등이 포함된다.n is from 2 to 5,000, in some embodiments from 4 to 2,000, and in one embodiment from 5 to 1,000. Examples of the substituent of the group "D" or "R 7" is for example, alkyl, cycloalkyl, aryl, aralkyl, alkoxy, halogen, ether, thioether, disulfide, sulfoxide, sulfone, sulfonate, amino, aldehyde, keto , Carboxylic acid esters, carboxylic acids, carbonates, carboxylates, cyano, alkylsilanes and alkoxysilane groups, carboxylamide groups and the like.

특히 적합한 티오펜 폴리머들로는 “D”가 선택적으로 치환된 C2 내지 C3 알킬렌기인 티오펜 폴리머들이 있다. 가령, 폴리머는 대체로 아래와 같은 구조를 갖는 선택적으로 치환된 폴리(3,4-에틸렌디옥시티오펜)이다:Particularly suitable thiophene polymers include those in which " D " is an optionally substituted C 2 To C 3 alkylene group, there are thiophene polymer. For example, the polymer is generally an optionally substituted poly (3,4-ethylenedioxythiophene) having the structure:

Figure pat00002
Figure pat00002

상술한 바와 같은 전도성 폴리머를 형성하는 방법은 공지된 기술이다. 가령, Merker외의 미국 특허 번호 6,987,663에서는 모노머 전구체에서, 치환된 폴리티오펜을 형성하는 다양한 방법들이 기재되어 있다. 모노머 전구체는 가령 아래와 같은 구조를 가질 수 있다:The method of forming the conductive polymer as described above is a known technique. For example, US Patent No. 6,987,663 to Merker et al . Discloses various methods of forming substituted polythiophenes in monomer precursors. The monomer precursor may, for example, have the following structure:

Figure pat00003
Figure pat00003

여기서, T, D, R7, 및 q는 상술한 바와 같다. 특히 적합한 티오펜 모노머들로는 “D”가 선택적으로 치환된 C2 내지 C3 알킬렌기인 티오펜 모노머들이 있다. 가령, 선택적으로 치환된 3,4-알킬렌디옥시티오펜은 대체로 아래와 같은 구조를 갖는 것이 사용될 수 있다:Here, T, D, R 7 , and q are as described above. Particularly suitable thiophene monomers include thiophene monomers wherein " D " is an optionally substituted C 2 to C 3 alkylene group. For example, an optionally substituted 3,4-alkylenedioxythiophene may be used which has the following structure:

Figure pat00004
Figure pat00004

여기서, R7 및 q는 상술한 바와 같다. 일 특정 실시예에 따르면, “q”는 0이다. 상업적으로 적합 3,4-에틸렌디옥시티오펜의 예로는 Clevios™ M로 명명된Heraeus Precious Metals GmbH & Co. KG에서 제조된 것이 있다. 또 다른 적합한 모노머들도 Blohm 의 미국 특허 번호 5,111,327 및 Groenendaal외의 미국 특허 번호 6,635,729에 기재되어 있다. 이러한 모노머들의 파생물, 가령 상기 모노머들의 2량체 또는 3량체들도 사용될 수 있다. 더 고분자의 파생물들, 즉 상기 모노머들의 4량체, 5량체 등은 본 발명에 사용하기에 적합하다. 파생물은 동일하거나 다른 모노머 단위로 구성될 수 있고, 순수한 형태로 사용될 수도 있고 다른 모노머들과 혼합하여 사용될 수도 있다. 이러한 전구체들의 산화된 형태 또는 환원된 형태 또한 사용될 수 있다.Here, R7 and q are as described above. According to one particular embodiment, " q " is zero. A commercially suitable example of 3,4-ethylenedioxythiophene is Heraeus Precious Metals GmbH ≪ / RTI > Other suitable monomers are also described in U.S. Patent No. 5,111,327 to Blohm et al . And U.S. Patent No. 6,635,729 to Groenendaal et al . Derivatives of such monomers, such as dimers or trimer of the above monomers, may also be used. Derivatives of the higher polymers, i.e., tetramers, pentamers, etc. of the above monomers are suitable for use in the present invention. Derivatives may be composed of the same or different monomer units, and may be used in pure form or in combination with other monomers. Oxidized forms or reduced forms of these precursors may also be used.

전도성 폴리머는 원위치(in situ)에서 형성되거나 기중합된 후 분산제의 형태로 애노드 몸체에 도포될 수도 있다. 원위치에서 중합된 층을 형성하기 위해, 모노머는 선택적으로는 산화 촉매제가 있는 상태에서 화학적으로 중합될 수 있다. 산화 촉매제는 일반적으로 철(III), 구리(II), 크로뮴(VI), 세륨(IV), 망간(IV), 망간(VII), 또는 루테늄(III) 양이온 등과 같은 전이 금속 양이온(cation)을 포함한다. 전도성 폴리머에 여분의 전하를 제공하고 폴리머의 전도성을 안정화시키기 위해 도펀트도 사용될 수 있다. 상기 도펀트는 일반적으로 술폰산의 이온과 같은 무기 또는 유기 음이온(anion)을 포함한다. 특정 실시예들에서는, 산화 촉매제는 양이온(예: 전이 금속)과 음이온(예: 술폰산)을 포함한다는 점에서 촉매와 도핑 기능을 둘 다 갖는다. 가령, 상기 산화 촉매제는 철(III) 할리드(예: FeCl3)와 같은 철(III) 양이온을 포함하는 전이 금속 염, 또는 Fe(ClO4)3 또는 Fe2(SO4)3 와 같은 그 외 무기산의 철(III) 염, 그리고 유기산 및 유기기들을 포함하는 무기산의 철(III) 염일 수 있다. 무기기들을 포함하는 무기산의 철(III) 염의 예로는 가령 C1 내지 C20 알카놀의 술폰산 모노에스테르의 철(III) 염 (예: 라우릴 술페이트(lauryl sulfate)의 철(III) 염)을 포함한다. 마찬가지로, 유기산의 철(III) 염의 예로는 가령 C1 내지 C20 알칼 술폰산의 철(III) 염 (예: 메탄, 에탄, 프로판, 부탄 또는 도데칸 술폰산); 지방족 퍼플루오르술폰산의 철(III) 염 (예: 트리플루오르메탄 술폰산, 퍼플루오르부탄 술폰산, 또는 퍼플루오르옥탄 술폰산); 지방족 C1 내지 C20 카르복시산의 철(III) 염 (예: 2-에틸헥실카르복시산); 지방족 퍼플루오르카르복시산의 철(III) 염 (예: 트리플루오르아세트산 또는 퍼플루오르옥탄산); C1 내지 C20 알킬 그룹들에 의해 선택적으로 치환된 아로마 술폰산의 철(III) 염 (예: 벤젠 술폰산, o-톨루엔 술폰산, p-톨루엔 술폰산, 또는 도데실벤젠 술폰산); 시클로알칸 술폰산의 철(III) 염 (예: 캠퍼 술폰산) 등을 포함한다. 상술한 철(III) 염들의 혼합물도 사용될 수 있다. 철(II)-p-톨루엔 술포네이트, 철(III)-o-톨루엔 술포네이트, 및 그 혼합물은 특히 적합하다. 상업적으로 적합한 철(III)-p-톨루엔 술포네이트의 예로 Clevios™ C로 명명된Heraeus Precious Metals GmbH & Co. KG에서 제조된 것이 있다.The conductive polymer may be formed in situ or may be over-polymerized and then applied to the anode body in the form of a dispersant. In order to form the in-situ polymerized layer, the monomer may optionally be chemically polymerized with the presence of an oxidation catalyst. The oxidation catalyst generally contains transition metal cations such as iron (III), copper (II), chromium (VI), cerium (IV), manganese (IV), manganese (VII), or ruthenium . A dopant may also be used to provide extra charge to the conductive polymer and to stabilize the conductivity of the polymer. The dopant generally comprises an inorganic or organic anion, such as an ion of a sulfonic acid. In certain embodiments, the oxidation catalyst has both a catalyst and a doping function in that it includes a cation (e.g., a transition metal) and an anion (e.g., a sulfonic acid). For example, the oxidation catalyst is iron (III) halides: such as (for example, FeCl 3) and iron (III) a transition metal salt containing the cation, or Fe (ClO 4) 3 or Fe 2 (SO 4) 3, such Iron (III) salts of inorganic acids, and iron (III) salts of inorganic acids including organic acids and organic acids. Examples of iron (III) salts of inorganic acids containing inorganic groups include iron (III) salts of sulfonic acid monoesters of C 1 to C 20 alkanols, such as iron (III) salts of lauryl sulfate, . Likewise, examples of iron (III) salts of organic acids include, for example, iron (III) salts of C 1 to C 20 alkanesulfonic acids such as methane, ethane, propane, butane or dodecane sulfonic acid; Iron (III) salts of aliphatic perfluorosulfonic acids such as trifluoromethanesulfonic acid, perfluorobutanesulfonic acid, or perfluorooctanesulfonic acid; Iron (III) salts of aliphatic C 1 to C 20 carboxylic acids such as 2-ethylhexylcarboxylic acid; Iron (III) salts of aliphatic perfluorocarboxylic acids such as trifluoroacetic acid or perfluorooctanoic acid; An iron (III) salt of an aromaticsulfonic acid optionally substituted by C 1 to C 20 alkyl groups such as benzenesulfonic acid, o-toluenesulfonic acid, p-toluenesulfonic acid, or dodecylbenzenesulfonic acid; Iron (III) salts of cycloalkanesulfonic acids such as camphorsulfonic acid, and the like. Mixtures of the abovementioned iron (III) salts may also be used. Iron (II) -p-toluenesulfonate, iron (III) -o-toluenesulfonate, and mixtures thereof are particularly suitable. An example of a commercially suitable iron (III) -p-toluenesulfonate is Heraeus Precious Metals GmbH ≪ / RTI >

산화 촉매제와 모노머는 중합 반응을 개시하도록 순차적으로 또는 함께 도포될 수 있다. 이러한 구성 요소들을 도포하기에 적합한 기술에는 스크린 프린팅(screen printing), 딥핑(dipping), 전기 이동 코팅(electrophoreti coating), 및 분사가 포함된다. 한 예로, 모노머는 전구체 용액을 형성하도록 산화 촉매제와 초기에 혼합될 수 있다. 이렇게해서 형성된 혼합물은 애노드 부분에 도포된 후 전도성 코팅이 표면에 형성되도록 중합될 수 있다. 또는, 산화 촉매제와 모노머는 순차적으로 도포될 수 있다. 일 실시예에 따르면, 가령, 산화 촉매제는 유기 용제(예: 부탄올)에 용해된 후 딥핑(dipping) 용액으로서 도포될 수 있다. 그런 다음, 애노드 부분은 용액을 제거하기 위해 건조될 수 있다. 그런 다음, 상기 부분은 모노머를 포함하는 용액에 담지될 수 있다. 어쨌든, 사용된 산화제와 바람직한 반응 시간에 따라, 중합 반응은 약 -10℃ 내지 약 250℃, 어떤 실시예에서는 약 0℃ 내지 약 200℃에서 일반적으로 수행된다. 상술한 바와 같은 적합한 중합 기술들은 Biler의 미국 특허 번호 7,515,396에 더 상세히 기재되어 있을 수 있다. 이러한 전도성 코팅(들)을 도포하기 위한 또 다른 방법들은 Sakata 의 미국 특허 번호 5,457,862, Sakata 의 미국 특허 번호 5,473,503, Sakata 의 미국 특허 번호 5,729,428, 및 Kudoh의 미국 특허 번호 5,812,367에 기재되어 있을 수 있다.The oxidation catalyst and the monomer may be applied sequentially or together to initiate the polymerization reaction. Suitable techniques for applying these components include screen printing, dipping, electrophoreti coating, and spraying. As an example, the monomer may be initially mixed with the oxidation catalyst to form a precursor solution. The thus formed mixture may be applied to the anode portion and then polymerized to form a conductive coating on the surface. Alternatively, the oxidation catalyst and the monomer may be sequentially applied. According to one embodiment, for example, the oxidation catalyst may be applied as a dipping solution after being dissolved in an organic solvent (e.g., butanol). The anode portion may then be dried to remove the solution. The part can then be carried on a solution containing the monomer. In any event, depending on the oxidant used and the desired reaction time, the polymerization reaction is generally carried out at a temperature of from about -10 ° C to about 250 ° C, in some embodiments from about 0 ° C to about 200 ° C. Suitable polymerization techniques as described above may be described in more detail in US Patent No. 7,515,396 to Biler . Other addition for applying such conductive coating (s), methods may be described in U.S. Patent No. 5,729,428, and Kudoh of U.S. Patent No. 5,812,367 the outer of U.S. Patent No. 5,457,862, U.S. Pat. No. of outer Sakata 5,473,503, Sakata et Sakata have.

V. 다른 층들V. Other layers

필요 시, 커패시터는 공지된 다른 층들도 포함할 수 있다. 가령, 상기 부분은 탄소층(예: 그라파이트)과 은(silver)층이 각각 도포될 수 있다. 은 코팅은 커패시터에 대해 가령 땜질 가능한 전도체, 접촉층 및/또는 전하 콜렉터(charge collector)로서 기능할 수 있고, 탄소 코팅은 은 코팅의 고체 전해질과의 접촉을 제한할 수 있다. 이러한 코팅은 고체 전해질의 일부 또는 전부를 커버할 수 있다. If desired, the capacitor may also include other layers known in the art. For example, the portion may be coated with a carbon layer (e.g., graphite) and a silver layer, respectively. The silver coating may function as a solderable conductor, a contact layer and / or a charge collector for the capacitor, for example, and the carbon coating may limit contact of the silver coating with the solid electrolyte. Such a coating may cover some or all of the solid electrolyte.

VIVI . 말단부 (. End terminationsterminations ))

커패시터는 특히 표면 마운팅(mounting) 도포 시에는, 말단부(termination)를 포함할 수 있다. 가령, 커패시터는 커패시터 요소의 애노드 납이 전기적으로 연결되는 애노드 말단부 및 커패시터 요소의 캐소드가 전기적으로 연결되는 캐소드 말단부를 포함할 수 있다. 상기 말단부를 형성하는데는 전도성 금속(예: 구리, 니켈, 은, 니켈, 아연, 주석, 팔라듐, 납, 구리, 알루미늄, 몰리브덴, 티타늄, 철, 지르코늄, 마그네슘, 및 그 합금) 등 어떠한 전도성 물질이라도 사용될 수 있다. 특히 적합한 전도성 금속에는 가령 구리, 구리 합금(예: 구리-지르코늄, 구리-마그네슘, 구리-아연, 또는 구리-철), 니켈, 및 니켈 합금(예: 니켈-아연) 등이 포함될 수 있다. 말단부의 두께는 커패시터의 두께를 최소화하도록 일반적으로 선택된다. 가령, 말단부의 두께는 약 0.05 내지 1 밀리미터, 어떤 실시예에서는 약 0.05 내지 약 0.5 밀리미터, 및 약 0.07 내지 약 0.2 밀리미터의 범위를 가질 수 있다. 전도성 물질의 일 예로 Wieland(독일)에서 구입 가능한 구리-아연 합금 금속판이 있다. 필요 시, 말단부의 표면은 최종 부분이 회로 기판에 마운팅 가능하도록 하기 위해, 공지된 기술로 니켈, 은, 금, 주석 등으로 말단부 표면을 전기도금할 수 있다. 일 특정 실시예에 따르면, 말단부의 양 표면은 니켈과 은 플래시(flash)로 각각 도금되고, 마운팅 표면 또한 주석 납 솔더층(tin solder layer)으로 도금될 수 있다.The capacitors may include terminations, particularly when applying a surface mount. For example, the capacitor may include a cathode end to which the anode lead of the capacitor element is electrically connected and a cathode end to which the cathode of the capacitor element is electrically connected. Any conductive material, such as a conductive metal (e.g., copper, nickel, silver, nickel, zinc, tin, palladium, lead, copper, aluminum, molybdenum, titanium, iron, zirconium, magnesium, Can be used. Particularly suitable conductive metals may include, for example, copper, copper alloys (e.g., copper-zirconium, copper-magnesium, copper-zinc, or copper-iron), nickel, and nickel alloys such as nickel-zinc. The thickness of the distal end is generally chosen to minimize the thickness of the capacitor. For example, the thickness of the distal end may range from about 0.05 to 1 millimeter, in some embodiments from about 0.05 to about 0.5 millimeters, and from about 0.07 to about 0.2 millimeters. An example of a conductive material is a copper-zinc alloy sheet available from Wieland (Germany). If desired, the surface of the distal end can be electroplated with nickel, silver, gold, tin, etc., in a known manner, so that the final portion is mountable to the circuit board. According to one particular embodiment, both surfaces of the distal end are plated with nickel and silver flash, respectively, and the mounting surface may also be plated with a tin solder layer.

도 1에서는 커패시터 요소(33)와 전기적으로 연결된 애노드 말단부(62)과 캐소드 말단부(72)를 포함하는 전해 커패시터(30)의 일 실시예를 도시하고 있다. 커패시터 요소(33)는 상부 표면(37), 하부 표면(39), 정면(36) 및 후면(38)을 갖는다. 캐소드 말단부(72)는 커패시터 요소(33)의 어떤 표면과도 전기적 접촉을 할 수 있으나, 도시된 일 실시예에서는, 하부 표면(39)과 후면(38)과 전기적 접촉을 한다. 더 구체적으로, 캐소드 말단부(72)는 제2 구성 요소(74)와 실질적으로 수직으로 배치된 제1 구성 요소(73)를 포함한다. 상기 제1 구성 요소(73)는 커패시터 요소(33)의 하부 표면(39)과 전기적으로 접촉하고 일반적으로 평행하게 배치된다. 제2 구성 요소(74)는 커패시터 요소(33)의 후면(38)과 전기적으로 접촉하고 일반적으로 평행하게 배치된다. 비록 일체형으로 도시되었으나, 상기 부분들은 일체형이 아닌 개별적으로 마련되어 직접 서로 연결되거나 추가적인 전도성 요소(예: 금속)를 통해 연결될 수 있다. 또한, 특정 실시예들에 따르면, 제2 구성 요소(74)는 캐소드 말단부(72)로부터 제거될 수 있다. 마찬가지로, 애노드 말단부(62)은 제2 구성 요소(64)에 실질적으로 수직으로 배치된 제1 구성 요소(63)를 포함할 수 있다. 제1 구성 요소(63)는 커패시터 요소(33)의 하부 표면(39)과 전기적으로 접촉하고 일반적으로 평행하게 배치된다. 제2 구성 요소(64)는 애노드 납(16)을 운반하는 운반하는 영역(51)을 포함한다. 도시된 실시예에 따르면, 상기 영역(51)은 납(16)의 표면 접촉과 기계적 안정성을 더 향상시키도록 “U-자 형태”를 갖는다.1 illustrates an embodiment of an electrolytic capacitor 30 that includes an anode end 62 and a cathode end 72 that are electrically coupled to a capacitor element 33. The anode end 62 is a cathode terminal. The capacitor element 33 has an upper surface 37, a lower surface 39, a front surface 36 and a rear surface 38. The cathode end 72 is in electrical contact with any surface of the capacitor element 33 but in the illustrated embodiment is in electrical contact with the bottom surface 39 and the back surface 38. More specifically, the cathode end 72 includes a first component 73 disposed substantially perpendicular to the second component 74. The first component 73 is in electrical contact with and generally parallel to the bottom surface 39 of the capacitor element 33. The second component 74 is in electrical contact with the rear face 38 of the capacitor element 33 and is disposed generally parallel. Although shown as an integral part, the parts may be provided separately rather than integrally, and may be directly connected to each other or may be connected through additional conductive elements (e.g., metal). Also, according to certain embodiments, the second component 74 may be removed from the cathode tip portion 72. Likewise, the anode terminal 62 may comprise a first component 63 disposed substantially perpendicular to the second component 64. The first component 63 is in electrical contact with the lower surface 39 of the capacitor element 33 and is disposed generally parallel. The second component 64 includes a carrying area 51 carrying the anode lead 16. According to the illustrated embodiment, the region 51 has " U-shape " to further improve surface contact and mechanical stability of the lead 16. [

말단부들은 공지된 임의의 기술을 사용해 커패시터 요소에 연결될 수 있다. 일 실시예에 따르면, 가령, 캐소드 말단부(72)와 애노드 말단부(62)를 규정하는 납 프레임이 제공될 수 있다. 상기 납 프레임에 전해 커패시터 요소(33)를 부착하기 위해, 캐소드 말단부(72)의 표면에는 전도성 접착제가 초기에 도포될 수 있다. 전도성 접착제는 가령 수지 조성물이 포함된 전도성 금속 입자들을 포함할 수 있다. 금속 입자들은 은, 구리, 금, 백금, 니켈, 아연, 비스무트(bismuth) 등일 수 있다. 수지 조성물은 열가소성 수지(예: 에폭시 수지), 경화제(예: 산 무수물), 및 커플링제(예: 실란 커플링제)를 포함할 수 있다. 적합한 전도성 접착제들이 Osako 의 미국 특허 공개 번호 2006/0038304에 기재되어 있을 수 있다. 전도성 접착제를 캐소드 말단부(72)에 도포하는데에는 다양한 기술들 중 어느 것이라도 사용될 수 있다. 가령, 인쇄 기술은 그 실용성과 비용 절감 측면 때문에 사용될 수 있다.The ends can be connected to the capacitor element using any known technique. According to one embodiment, a lead frame may be provided that defines, for example, the cathode end portion 72 and the anode end portion 62. To attach the electrolytic capacitor element 33 to the lead frame, a conductive adhesive may be initially applied to the surface of the cathode terminal portion 72. The conductive adhesive may comprise, for example, conductive metal particles comprising the resin composition. The metal particles can be silver, copper, gold, platinum, nickel, zinc, bismuth, and the like. The resin composition may include a thermoplastic resin (e.g., an epoxy resin), a curing agent (e.g., an acid anhydride), and a coupling agent (e.g., a silane coupling agent). Suitable conductive adhesives may be described in U.S. Patent Publication No. 2006/0038304 to Osako et al . Any of a variety of techniques may be used to apply the conductive adhesive to the cathode end 72. For example, printing technology can be used because of its practicality and cost savings.

말단부들을 커패시터에 부착하는데는 일반적으로 다양한 방법들이 사용될 수 있다. 일 실시예에 따르면, 가령, 애노드 말단부(62)의 제2 구성 요소(64)와 캐소드 말단부(72)의 제2 구성 요소(74)는 도 1에 도시된 위치로 위쪽으로 초기에 굽어진다. 그런 다음, 커패시터 요소(33)는, 그 하부 표면(39)이 접착제와 접촉하고 애노드 납(16)은 상부 U-자 영역(51)에 수용되도록, 캐소드 말단부(72) 상에 배치된다. 필요 시, 플라스틱 패드나 테이프와 같은 절연 물질(미도시)은 애노드와 캐소드 말단부들을 전기적으로 단절시키기 위해 커패시터 요소(33)의 하부 표면(39)과 애노드 말단부(62)의 제1 구성 요소(63) 사이에 배치될 수 있다. Various methods can generally be used to attach the ends to the capacitor. According to one embodiment, for example, the second component 64 of the anode end 62 and the second component 74 of the cathode end 72 initially bend upwardly to the position shown in FIG. The capacitor element 33 is then disposed on the cathode end portion 72 such that the lower surface 39 thereof contacts the adhesive and the anode lead 16 is received in the upper U-shaped region 51. An insulating material (not shown), such as a plastic pad or tape, may be attached to the bottom surface 39 of the capacitor element 33 and the first component 63 of the anode terminal 62 to electrically disconnect the anode and cathode ends As shown in FIG.

그런 다음, 애노드 납(16)은 기계적 용접, 레이저 용접, 전도성 접착제 등과 같은 임의의 공지된 기술을 사용해 상기 영역(51)에 전기적으로 연결된다. 가령, 애노드 납(16)은 레이저를 사용해 애노드 말단부(62)에 용접될 수 있다. 레이저는 일반적으로 유도 방출에 의해 광자를 방출할 수 있는 레이저 매체 및 레이저 매체의 요소들을 자극하는 에너지원을 포함하는 공명기(resonator)를 포함한다. 적합한 레이저 종류의 하나로 네오디뮴(Nd)으로 도핑된 알루미늄 및 이트륨 석류석(yttrium garnet, YAG)으로 구성된 것이 있다. 자극된 입자들은 네오디뮴 이온 Nd3 + 이다. 에너지원은 연속적인 레이저빔을 방출하도록 레이저 매체에 지속적인 에너지를 제공하거나 펄스 레이저빔을 방출하도록 방전될 수 있다. 애노드 납(16)을 애노드 말단부(62)에 전기적으로 연결한 후에는 전도성 접착제가 경화될 수 있다. 가령, 열 프레스를 사용해 열과 압력을 가하여 전해 커패시터 요소(33)가 접착제에 의해 캐소드 말단부(72)에 적절히 접착되도록 할 수 있다.The anode lead 16 is then electrically connected to the region 51 using any known technique such as mechanical welding, laser welding, conductive adhesive, and the like. For example, the anode lead 16 may be welded to the anode end 62 using a laser. Lasers typically include a laser medium capable of emitting photons by induced emission and a resonator comprising an energy source that stimulates the elements of the laser medium. One suitable type of laser consists of aluminum and yttrium garnet (YAG) doped with neodymium (Nd). The stimulation particles are neodymium ions Nd 3 +. The energy source may be discharged to provide continuous energy to the laser medium to emit a continuous laser beam or to emit a pulsed laser beam. After the anode lead 16 is electrically connected to the anode terminal 62, the conductive adhesive can be cured. For example, heat and pressure may be applied using a hot press to cause the electrolytic capacitor element 33 to properly adhere to the cathode end 72 by an adhesive.

커패시터 요소가 부착되면, 납 프레임을 수지 케이싱 내부에 봉인한 후, 실리카 또는 그 외 공지된 캡슐화 물질로 충진될 수 있다. 상기 케이스의 너비와 길이는 의도된 적용 분야에 따라 달라질 수 있다. 적합한 케이싱에는 가령 “A”, “B”, “C”, “D”, “E”, “F”, “G”, “H”, “J”, “K”, “L”, “M”, “N”, “P”, “R”, “S”, “T”, “V”, “W”, “Y”, “X”, 또는 ”Z” 케이스 (AVX Corporation) 등이 있다. 사용된 케이스 크기와 상관 없이, 커패시터 요소는 애노드와 캐소드 말단부들의 적어도 일부는 회로 기판에 장착되기 위해 노출되도록 캡슐화된다. 도 1에 도시된 바와 같이, 가령 커패시터 요소(33)는 애노드 말단부(62)의 일부와 캐소드 말단부(72)의 일부가 노출되도록 케이스(28)에 캡슐화된다. Once the capacitor element is attached, the lead frame may be sealed inside the resin casing and then filled with silica or other known encapsulating material. The width and length of the case may vary depending on the intended application. Suitable casings include, for example, "A", "B", "C", "D", "E", "F", "G", "H" , "N", "P", "R", "S", "T", "V", "W", "Y", "X" . Regardless of the case size used, the capacitor element is encapsulated such that at least a portion of the anode and cathode ends are exposed for mounting to the circuit board. 1, for example, the capacitor element 33 is encapsulated in the case 28 such that a portion of the anode terminal portion 62 and a portion of the cathode terminal portion 72 are exposed.

이러한 결과로 형성된 커패시터는 그것을 형성하는데 사용된 방법과 상관 없이, 우수한 전기적 특성들을 나타낼 수 있다. 등가 직렬 저항(“ESR”)은 100kHz 주파수에서, 하모닉스가 없는 상태에서, 2.2 볼트 DC 바이어스(bias) 및 0.5 볼트 피크 대 피크 시누소이드 신호로 측정했을 때, 가령 약 300 밀리옴(milliohms) 이하, 어떤 실시예에서는 약 200 밀리옴 이하, 그리고 어떤 실시예에서는 약 1 내지 약 100 밀리옴일 수 있다. 또한, 절연체를 통해 하나의 전도체에서부터 인접한 다른 전도체로 흐르는 전류를 일반적으로 일컫는 누설 전류는 비교적 낮은 수준으로 유지될 수 있다. 가령, 누설 전류는 약 40μA 이하, 어떤 실시예에서는 약 25 μA 이하, 또 어떤 실시예에서는 15 μA 이하일 수 있다. 마찬가지로, 커패시터의 정규화된 누설 전류의 수치 값은 약 0.2 μA/μF*V 이하, 어떤 실시예에서는 0.1 μA/μF*V, 또 어떤 실시예에서는 0.05 μA/μF*V 이하일 수 있는데, 여기서 μA는 마이크로암페어이고, μF*V는 커패시턴스(capacitance)와 정격전압(rated voltage)의 결과물이다. ESR과 정규화된 누설 전류 값들은 비교적 높은 온도에서도 유지될 수 있다. 가령, 상기 값들은 약 100℃ 내지 약 350℃, 그리고 어떤 실시예에서는 약 200℃ 내지 약 300℃(예: 240℃)의 온도에서 리플로(reflow)(예: 10초 동안) 후 유지될 수 있다.The resulting capacitors can exhibit good electrical properties, regardless of the method used to form them. An equivalent series resistance (" ESR ") is measured at a frequency of 100 kHz, in the absence of harmonics, at a voltage of 2.2 volts DC and a 0.5 volts peak to peak sinusoidal signal, such as less than about 300 milliohms , In some embodiments less than about 200 milliohms, and in some embodiments from about 1 to about 100 milliohms. Also, the leakage current, generally referred to as the current flowing from one conductor to another adjacent conductor through an insulator, can be maintained at a relatively low level. For example, the leakage current may be less than about 40 μA, in some embodiments less than about 25 μA, and in some embodiments less than 15 μA. Likewise, the numerical value of the normalized leakage current of the capacitor may be less than or equal to about 0.2 [mu] A / F * V, in some embodiments 0.1 [mu] A / F * V, Microampere, and μF * V is the result of capacitance and rated voltage. ESR and normalized leakage current values can be maintained at relatively high temperatures. For example, the values may be maintained after reflow (e.g., for 10 seconds) at a temperature of from about 100 ° C to about 350 ° C, and in some embodiments from about 200 ° C to about 300 ° C have.

본 발명은 아래 예들을 참조로 할 때 더 잘 이해될 것이다.
The invention will be better understood with reference to the following examples.

실험 절차Experimental Procedure

등가 직렬 저항(Equivalent series resistance ESRESR ))

등가 직렬 저항은 Kelvin Leads 2.2 볼트 DC 바이어스 및 0.5 볼트 피크 대 피크 시누소이드 신호와 Keithley 3330 Precision LCZ 미터를 사용하여 측정될 수 있다. 작업 주파수는 100 kHz 일 수 있고 온도는 23℃±2℃일 수 있다.The equivalent series resistance can be measured using a Kelvin Leads 2.2 volt DC bias and a 0.5 volt peak to peak sinusoidal signal and a Keithley 3330 Precision LCZ meter. The operating frequency may be 100 kHz and the temperature may be 23 ° C ± 2 ° C.

커패시턴스(Capacitance capacitanceCapacitance ))

커패시턴스는 Kelvin Leads 2.2 볼트 DC 바이어스 및 0.5 볼트 피크 대 피크 시누소이드 신호와 Keithley 3330 Precision LCZ 미터를 사용하여 측정될 수 있다. 작업 주파수는 120 Hz 일 수 있고 온도는 23℃±2℃일 수 있다.The capacitance can be measured using a Kelvin Leads 2.2 volt DC bias and a 0.5 volt peak-to-peak sinusoidal signal and a Keithley 3330 Precision LCZ meter. The operating frequency may be 120 Hz and the temperature may be 23 ° C ± 2 ° C.

누설 전류:Leakage current:

누설 전류(“DCL”)는 약 25℃ 및 정격전압(예: 4V)에서 60초 후에 누설 전류를 측정하는 누설 실험 세트를 사용하여 측정될 수 있다.
The leakage current (" DCL ") can be measured using a leakage test set measuring leakage current at about 25 ° C and 60 seconds at the rated voltage (eg, 4V).

예 1Example 1

애노드 샘플을 형성하기 위해 200,000μFV/g 탄탈럼 분말이 사용되었다. 각각의 애노드 샘플은 탄탈럼 와이어와 내장되고, 1250℃에서 소결되고, 5.8g/cm3의 밀도로 가압되었다. 그 결과로 나타난 펠렛들은 0.76 x 1.22 x 0.67 mm의 크기를 가졌다. 상기 펠렛들은 유전층을 형성하도록 10 시간 동안 0.1 wt.% 질산 전해질에서 10.4V로 양극산화처리 되었다. 프리 코팅층을 형성하기 위해, 애노드 부분은 30분 동안 가습 분위기(30℃, 8g/m3의 습도)에 놓인 후, 망간 질산염 (비중은 1.09) 및 1 wt.%의 폴리알킬 에테르 계면활성제를 포함하는 용액에 담지되었다. 상기 부분은 120 분 동안 또 다른 가습 분위기 (30℃, 8g/m3의 습도)에 놓인 후, 80%의 상대 습도를 갖는 분위기에서 250℃에서 열처리되었다. 이 결과로 나타난 이상화망간 나노프로젝션들은 약 10 나노미터의 평균 크기를 가졌고, 표면 커버리지는 약 10%였다.200,000 μFV / g tantalum powder was used to form the anode sample. Each anode was pressed to a density of the sample is embedded with tantalum wire, and sintered at 1250 ℃, 5.8g / cm 3. The resulting pellets had a size of 0.76 x 1.22 x 0.67 mm. The pellets were anodized to 10.4 V in a 0.1 wt.% Nitric acid electrolyte for 10 hours to form a dielectric layer. To form the precoat layer, the anode portion was placed in a humidified atmosphere (30 ° C., 8 g / m 3 of humidity) for 30 minutes followed by a manganese nitrate (specific gravity of 1.09) and 1 wt.% Polyalkylether surfactant Lt; / RTI > solution. The part was placed in another humidifying atmosphere (30 캜, 8 g / m 3 of humidity) for 120 minutes and then heat-treated at 250 캜 in an atmosphere having a relative humidity of 80%. The resulting idealized manganese nano-projections had an average size of about 10 nanometers and a surface coverage of about 10%.

20분 동안 0.1 wt.%의 아세트산 전해질에서 8.4V에서 리포메이션(reformation)이 수행되었다. 그런 다음, 애노드 부분은 0.8 wt.% 셸락(shellac) 및 에탄올을 포함하는 용액에 30초 동안 담지된 후, 30분간 125℃에서 열처리되었다. 전도성 폴리머층을 형성하기 위해, 상기 애노드 부분은 3,4-에틸렌디오티오펜 모노머의 1부(part), 산화제의 6.4 부(50 wt.% 철 p-톨루엔술포네이트), 에탄올의 6부, 및 물 1부를 포함하는 용액에 30초 동안 초기에 담지되었다. 상기 모노머는 80%의 상대 습도를 포함하는 분위기에서 20℃에서 60분 동안 중합된 후, 물, 부탄올, 및 p-톨루엔술포테이트(2 wt.%)를 포함하는 용액에서 세척되었다. 리포메이션은 0.01 wt.% 인산을 포함하는 전해질에서 8.4V에서 30분 동안 수행되었다. 그런 다음, 애노드 부분은 산화제(55 wt.% 철 p-톨루엔술포네이트)를 포함하는 용액에서 30초 동안 담지된 후 85℃에서 5분 동안 건조된 후, 3,4-에틸렌디오티오펜 모노머를 포함하는 용액에서 1초 동안 담지된 후, 80%의 상대 습도를 갖는 분위기에서 20℃에서 5 내지 60분 동안 중합되었다. 상기 부분은 물, 부탄올, 및 p-톨루엔술포네이트(2 wt.%)를 포함하는 용액에서 세척되었다. 그런 다음, 상기 부분은 그라파이트 분산제(graphite dispersion)에 담지된 후 건조되고, 은 분산제(silver dispersion)에 담지된 후 건조되었다. Reformation was performed at 8.4 V in a 0.1 wt.% Acetic acid electrolyte for 20 minutes. The anode portion was then loaded in a solution containing 0.8 wt.% Shellac and ethanol for 30 seconds and then heat treated at 125 占 폚 for 30 minutes. In order to form the conductive polymer layer, the anode portion was formed by mixing a part of a 3,4-ethylenedithiophene monomer, 6.4 parts (50 wt.% Iron p-toluenesulfonate) of an oxidizing agent, 6 parts of ethanol, And 1 part of water for 30 seconds. The monomers were polymerized at 20 DEG C for 60 minutes in an atmosphere containing 80% relative humidity and then washed in a solution containing water, butanol, and p-toluenesulfonate (2 wt.%). The reformation was carried out at 8.4 V for 30 minutes in an electrolyte containing 0.01 wt.% Phosphoric acid. Then, the anode portion was supported for 30 seconds in a solution containing an oxidizing agent (55 wt.% Iron p-toluenesulfonate) and then dried at 85 캜 for 5 minutes, and 3,4-ethylenedithiophene monomer , And then polymerized at 20 DEG C for 5 to 60 minutes in an atmosphere having a relative humidity of 80%. The portion was washed with a solution containing water, butanol, and p-toluenesulfonate (2 wt.%). The part was then carried on a graphite dispersion, dried, loaded on a silver dispersion and then dried.

실험 후, 커패시턴스는 45.5 μF, ESR은 91mΩ, 그리고 누설 전류는 14.6μA인 것으로 판단되었다 (정규화된 누설 전류는 6.3V의 정격전압에 대해 0.051μA/μF*V였다).After the test, it was determined that the capacitance was 45.5 μF, the ESR was 91 mΩ, and the leakage current was 14.6 μA. (The normalized leakage current was 0.051 μA / μF * V for a rated voltage of 6.3 V).

예 2Example 2

애노드 샘플을 형성하기 위해 150,000μFV/g 탄탈럼 분말이 사용되었다. 150,000 μFV / g tantalum powder was used to form the anode sample.

각각의 애노드 샘플은 탄탈럼 와이어와 내장되고, 1300℃에서 소결되고, 5.8g/cm3의 밀도로 가압되었다. 그 결과로 나타난 펠렛들은 1.01 x 1.52 x 0.57 mm의 크기를 가졌다. 상기 펠렛들은 유전층을 형성하도록 10 시간 동안 0.1 wt.% 질산 전해질에서 10.4V로 양극산화처리 되었다. 프리 코팅층을 형성하기 위해, 애노드 부분은 30분 동안 가습 분위기(30℃, 8g/m3의 습도)에 놓인 후, 망간 질산염 (비중은 1.09) 및 1 wt.%의 폴리알킬 에테르 계면활성제를 포함하는 용액에 담지되었다. 상기 부분은 120 분 동안 또 다른 가습 분위기 (30℃, 8g/m3의 습도)에 놓인 후, 80%의 상대 습도를 갖는 분위기에서 250℃에서 열처리되었다. 이 결과로 나타난 이상화망간 나노프로젝션들은 약 11 나노미터의 평균 크기를 가졌고, 표면 커버리지는 약 10%였다. 20분 간 0.1 wt.% 아세트산 전해질에서 8.4V에서 리포메이션(reformation)이 수행되었다. 그런 다음, 애노드 부분은 0.8 wt.% 셸락(shellac) 및 에탄올을 포함하는 용액에 30초 동안 담지된 후, 30분간 125℃에서 열처리되었다. 전도성 폴리머층을 포함하는 커패시터의 나머지 부분들은 예1에서 설명한 바대로 형성되었다.Each anode was pressed to a density of the sample is embedded with tantalum wire, and sintered at 1300 ℃, 5.8g / cm 3. The resulting pellets had a size of 1.01 x 1.52 x 0.57 mm. The pellets were anodized to 10.4 V in a 0.1 wt.% Nitric acid electrolyte for 10 hours to form a dielectric layer. To form the precoat layer, the anode portion was placed in a humidified atmosphere (30 ° C., 8 g / m 3 of humidity) for 30 minutes followed by a manganese nitrate (specific gravity of 1.09) and 1 wt.% Polyalkylether surfactant Lt; / RTI > solution. The part was placed in another humidifying atmosphere (30 캜, 8 g / m 3 of humidity) for 120 minutes and then heat-treated at 250 캜 in an atmosphere having a relative humidity of 80%. The resulting idealized manganese nano-projections had an average size of about 11 nanometers and a surface coverage of about 10%. Reformation was performed at 8.4 V in a 0.1 wt.% Acetic acid electrolyte for 20 minutes. The anode portion was then loaded in a solution containing 0.8 wt.% Shellac and ethanol for 30 seconds and then heat treated at 125 占 폚 for 30 minutes. The remaining portions of the capacitor including the conductive polymer layer were formed as described in Example 1.

실험 후, 커패시턴스는 46.6 μF, ESR은 71mΩ, 그리고 누설 전류는 12.1μA인 것으로 판단되었다 (정규화된 누설 전류는 6.3V의 정격전압에 대해 0.041μA/μF*V였다).After the experiment, it was determined that the capacitance was 46.6 μF, the ESR was 71 mΩ, and the leakage current was 12.1 μA (the normalized leakage current was 0.041 μA / μF * V for a rated voltage of 6.3 V).

예 3Example 3

애노드 샘플을 형성하기 위해100,000μFV/g 탄탈럼 분말이 사용되었다. 각각의 애노드 샘플은 탄탈럼 와이어와 내장되고, 1325℃에서 소결되고, 6.0g/cm3의 밀도로 가압되었다. 그 결과로 나타난 펠렛들은 0.70 x 1.08 x 0.57 mm의 크기를 가졌다. 상기 펠렛들은 유전층을 형성하도록 8 시간 동안 0.1 wt.% 질산 전해질에서 19.4V로 양극산화처리 되었다. 프리 코팅층을 형성하기 위해, 애노드 부분은 30분 동안 가습 분위기(30℃, 8g/m3의 습도)에 놓인 후, 망간 질산염 (비중은 1.09) 및 1 wt.%의 폴리알킬 에테르 계면활성제를 포함하는 용액에 담지되었다. 상기 부분은 120 분 동안 또 다른 가습 분위기 (30℃, 8g/m3의 습도)에 놓인 후, 80%의 상대 습도를 갖는 분위기에서 250℃에서 열처리되었다. 이 결과로 나타난 이산화망간 나노프로젝션들은 약 11 나노미터의 평균 크기를 가졌고, 표면 커버리지는 약 10%였다. 20분 동안 1 wt.%의 아세트산 전해질에서 17.4V에서 리포메이션(reformation)이 수행되었다. 그런 다음, 애노드 부분은 0.8 wt.% 셸락(shellac) 및 에탄올을 포함하는 용액에 30초 동안 담지된 후, 30분간 125℃에서 열처리되었다. 전도성 폴리머층을 포함하는 커패시터의 나머지 부분들은 예1에서 설명한 바대로 형성되었다.100,000 μFV / g tantalum powder was used to form the anode sample. Each anode sample was embedded with tantalum wire, sintered at 1325 DEG C, and pressed at a density of 6.0 g / cm < 3 >. The resulting pellets had a size of 0.70 x 1.08 x 0.57 mm. The pellets were anodized to 19.4 V in a 0.1 wt.% Nitric acid electrolyte for 8 hours to form a dielectric layer. To form the precoat layer, the anode portion was placed in a humidified atmosphere (30 ° C., 8 g / m 3 of humidity) for 30 minutes followed by a manganese nitrate (specific gravity of 1.09) and 1 wt.% Polyalkylether surfactant Lt; / RTI > solution. The part was placed in another humidifying atmosphere (30 캜, 8 g / m 3 of humidity) for 120 minutes and then heat-treated at 250 캜 in an atmosphere having a relative humidity of 80%. The resulting manganese dioxide nano-projections had an average size of about 11 nanometers and a surface coverage of about 10%. Reformation was performed at 17.4 V in 1 wt.% Acetic acid electrolyte for 20 minutes. The anode portion was then loaded in a solution containing 0.8 wt.% Shellac and ethanol for 30 seconds and then heat treated at 125 占 폚 for 30 minutes. The remaining portions of the capacitor including the conductive polymer layer were formed as described in Example 1.

실험 후, 커패시턴스는 9.8 μF, ESR은 132mΩ, 그리고 누설 전류는 0.3μA인 것으로 판단되었다 (정규화된 누설 전류는 10V의 정격전압에 대해 0.003μA/μF*V였다).After the experiment, it was determined that the capacitance was 9.8 μF, the ESR was 132 mΩ, and the leakage current was 0.3 μA (the normalized leakage current was 0.003 μA / μF * V for a rated voltage of 10 V).

이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention as defined by the appended claims. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (42)

고체 전해 커패시터로서,
애노드 몸체;
상기 애노드 몸체 위에 놓이는 유전체;
상기 유전체 위에 놓이는 접착 코팅; 및
상기 유전체와 상기 접착 코팅 위에 놓이는 고체 전해질을 포함하고,
상기 접착 코팅은 불연속 프리 코팅층 및 수지층을 포함하고, 상기 불연속 코팅층은 복수의 이산형 산화 망간 나노프로젝션들을 포함하는, 고체 전해 커패시터.
As solid electrolytic capacitors,
An anode body;
A dielectric overlying the anode body;
An adhesive coating overlying the dielectric; And
And a solid electrolyte overlying the dielectric and the adhesive coating,
Wherein the adhesive coating comprises a discontinuous precoat layer and a resin layer, the discontinuous coating layer comprising a plurality of discrete manganese oxide nanoprojections.
제1항에 있어서,
상기 애노드 몸체는 탄탈럼을 포함하고 상기 유전체는 탄탈럼 5산화물을 포함하는, 고체 전해 커패시터.
The method according to claim 1,
Wherein the anode body comprises tantalum and the dielectric comprises tantalum pentoxide.
제1항 또는 제2항에 있어서,
상기 나노프로젝션들은 약 5 나노미터 내지 약 500 나노미터, 바람직하게는 약 6 나노미터 내지 약 250 나노미터, 더 바람직하게는 약 8 나노미터 내지 약 150 나노미터, 그보다 더 바람직하게는 약 10 나노미터 내지 약 110 나노미터의 평균 크기를 갖는, 고체 전해 커패시터.
3. The method according to claim 1 or 2,
The nano-projections may have a thickness of about 5 nanometers to about 500 nanometers, preferably about 6 nanometers to about 250 nanometers, more preferably about 8 nanometers to about 150 nanometers, even more preferably about 10 nanometers ≪ / RTI > to about 110 nanometers.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 나노프로젝션들의 약 50% 이상, 바람직하게는 약 70% 이상, 더 바람직하게는 약 90% 이상은 약 10 나노미터 내지 약 110 나노미터의 평균 크기를 갖는, 고체 전해 커패시터.
4. The method according to any one of claims 1 to 3,
Wherein at least about 50%, preferably at least about 70%, more preferably at least about 90% of the nano-projections have an average size of from about 10 nanometers to about 110 nanometers.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 나노프로젝션들의 표면 커버리지는 약 0.1% 내지 약 40%, 바람직하게는 약 0.5% 내지 약 30%, 더 바람직하게는 약 1% 내지 약 20%인, 고체 전해 커패시터.
5. The method according to any one of claims 1 to 4,
Wherein the surface coverage of the nano-projections is from about 0.1% to about 40%, preferably from about 0.5% to about 30%, more preferably from about 1% to about 20%.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 산화 망간은 이산화 망간인, 고체 전해 커패시터.
6. The method according to any one of claims 1 to 5,
Wherein the manganese oxide is manganese dioxide.
제1항 내지 제6항 중 어느 한 항에 있어서,
상기 프리 코팅층은 상기 유전체 위에 놓이고 상기 수지층은 상기 프리 코팅층 위에 놓이는, 고체 전해 커패시터.
7. The method according to any one of claims 1 to 6,
Wherein the precoat layer overlies the dielectric and the resin layer overlies the precoat layer.
제1항 내지 제6항 중 어느 한 항에 있어서,
상기 수지층은 상기 유전체 위에 놓이고 상기 프리 코팅층은 상기 수지층 위에 놓이는, 고체 전해 커패시터.
7. The method according to any one of claims 1 to 6,
Wherein the resin layer overlies the dielectric and the precoat layer overlies the resin layer.
제1항 내지 제8항 중 어느 한 항에 있어서,
상기 수지층은 천연 또는 합성 수지를 포함하는, 고체 전해 커패시터.
9. The method according to any one of claims 1 to 8,
Wherein the resin layer comprises a natural or synthetic resin.
제9항에 있어서,
상기 수지는 비교적 절연성을 갖는, 고체 전해 커패시터.
10. The method of claim 9,
The resin is relatively insulative.
제9항에 있어서,
상기 수지는 중합체인, 고체 전해 커패시터.
10. The method of claim 9,
Wherein the resin is a polymer.
제9항에 있어서,
상기 수지는 폴리우레탄, 폴리스티렌, 불포화 또는 포화 지방산의 에스테르, 또는 그 조합으로부터 형성되는, 고체 전해 커패시터.
10. The method of claim 9,
Wherein the resin is formed from polyurethane, polystyrene, esters of unsaturated or saturated fatty acids, or combinations thereof.
제9항에 있어서,
상기 수지는 셸락(shellac)으로부터 형성되는, 고체 전해 커패시터.
10. The method of claim 9,
Wherein the resin is formed from a shellac.
제1항 내지 제13항 중 어느 한 항에 있어서,
상기 전도성 폴리머층은 화학적으로 중합된 전도성 폴리머를 포함하는, 고체 전해 커패시터.
14. The method according to any one of claims 1 to 13,
Wherein the conductive polymer layer comprises a chemically polymerized conductive polymer.
제14항에 있어서,
상기 전도성 폴리머는 치환된 폴리티오펜인, 고체 전해 커패시터.
15. The method of claim 14,
Wherein the conductive polymer is a substituted polythiophene.
제15항에 있어서,
상기 치환된 폴리티오펜은 폴리(3,4-에틸렌디옥시티오펜)인, 고체 전해 커패시터.
16. The method of claim 15,
Wherein said substituted polythiophene is poly (3,4-ethylenedioxythiophene).
제1항 내지 제16항 중 어느 한 항에 있어서,
탄소층 및/또는 은층은 상기 고체 전해질 위에 놓이는, 고체 전해 커패시터.
17. The method according to any one of claims 1 to 16,
Wherein the carbon layer and / or the silver layer is deposited on the solid electrolyte.
제1항 내지 제17항 중 어느 한 항에 있어서,
애노드에 전기적으로 연결되는 애노드 말단부(termination)와 상기 고체 커패시터에 전기적으로 연결되는 캐소드 말단부를 더 포함하는, 고체 전해 커패시터.
18. The method according to any one of claims 1 to 17,
Further comprising an anode termination electrically connected to the anode and a cathode end electrically connected to the solid capacitor.
제1항 내지 제18항 중 어느 한 항에 있어서,
상기 커패시터는 100 kHz의 주파수에서 결정되는, 약 300밀리옴 이하, 바람직하게는 약 200 밀리옴 이하, 더 바람직하게는 약 1 내지 약 100 밀리옴 이하의 ESR을 나타내는, 고체 전해 커패시터.
19. The method according to any one of claims 1 to 18,
Wherein the capacitor exhibits an ESR of less than or equal to about 300 milliohms, preferably less than or equal to about 200 milliohms, and more preferably less than or equal to about 1 milliohm, determined at a frequency of 100 kHz.
제1항 내지 제19항 중 어느 한 항에 있어서,
상기 커패시터는 약 0.2 μA/μF*V 이하, 바람직하게는 약 0.1 μA/μF*V 이하, 더 바람직하게는 약 0.05 μA/μF*V 이하의 정규화된(normalized) 누설 전류를 나타내는, 고체 전해 커패시터.
20. The method according to any one of claims 1 to 19,
Wherein the capacitor exhibits a normalized leakage current of less than about 0.2 [mu] A / [mu] F * V, preferably less than or equal to about 0.1 [mu] A / .
고체 전해 커패시터 형성 방법으로,
산화 망간 전구체를 포함하는 상기 애노드에 용액을 가하고 복수의 이산형 산화 망간 나노프로젝션들을 형성하도록 열분해 전화함으로써 불연속 프리 코팅층을 형성하는 단계; 및
천연 또는 합성 수지를 포함하는 상기 애노드에 용액을 가함으로써 수지층을 형성하는 단계를 포함하는 방법으로 애노드 몸체와 유전체를 포함하는 애노드를, 다층 접착 코팅에 접착시키는 단계를 포함하는 고체 전해 커패시터 형성 방법.
As a solid electrolytic capacitor forming method,
Forming a discontinuous precoat layer by applying a solution to the anode comprising a manganese oxide precursor and pyrolyzing to form a plurality of discrete manganese oxide nano-projections; And
A method of forming a solid electrolytic capacitor, comprising: adhering an anode comprising an anode body and a dielectric to a multilayer adhesive coating by a method comprising forming a resin layer by applying a solution to said anode comprising a natural or synthetic resin .
제21항에 있어서,
상기 산화 망간 전구체는 망간 질산염(manganese nitrate)인, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the manganese oxide precursor is manganese nitrate.
제21항에 있어서,
상기 용액은 약 0.01 wt.% 내지 약 30wt.%, 바람직하게는 약 0.05 wt.% 내지 약 25 wt.%, 더 바람직하게는 약0.1wt.% 내지 약20 wt.%의 양으로 계면활성제를 포함하는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
The solution may contain a surfactant in an amount of from about 0.01 wt.% To about 30 wt.%, Preferably from about 0.05 wt.% To about 25 wt.%, More preferably from about 0.1 wt.% To about 20 wt. ≪ / RTI >
제21항에 있어서,
상기 애노드를, 상기 산화 망간 전구체를 포함하는 용액과 접촉시키기 전에 가습 분위기와 접촉시키는 단계를 더 포함하는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Further comprising contacting the anode with a humidifying atmosphere prior to contacting the solution with the solution comprising the manganese oxide precursor.
제21항에 있어서,
상기 애노드를, 산화 망간 전구체를 포함하는 용액과 접촉시킨 후 그러나 상기 전구체를 열분해 전환하기 전에 가습 분위기와 접촉시키는 단계를 더 포함하는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Further comprising contacting said anode with a solution comprising a manganese oxide precursor but contacting said precursor with a humidifying atmosphere prior to pyrolysis conversion.
제21항에 있어서,
상기 전구체는 가습 분위기가 있는 상태에서 열분해 전환되는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the precursor is thermally decomposed and converted in a humidified atmosphere.
제24항, 제25항, 또는 제26항에 있어서,
상기 가습 분위기는 약 1 내지 약 30 g/m3, 바람직하게는 약 4 내지 약 25 g/m3, 더 바람직하게는 약 5 내지 약 20 g/m3의 습도를 갖는, 고체 전해 커패시터 형성 방법.
27. The method of claim 24, 25, or 26,
Wherein the humidifying atmosphere has a humidity of from about 1 to about 30 g / m 3 , preferably from about 4 to about 25 g / m 3 , and more preferably from about 5 to about 20 g / m 3 , in a solid electrolytic capacitor forming method .
제24항, 제25항, 또는 제26항에 있어서,
상기 가습 분위기는 약 30% 내지 약 90%, 바람직하게는 약 40% 내지 약 85%, 더 바람직하게는 약 50% 내지 약 80%의 상대 습도를 갖는, 고체 전해 커패시터 형성 방법.
27. The method of claim 24, 25, or 26,
Wherein the humidifying atmosphere has a relative humidity of from about 30% to about 90%, preferably from about 40% to about 85%, more preferably from about 50% to about 80%.
제21항에 있어서,
상기 전구체는 약 150℃ 내지 약 300℃의 온도에서 열분해 전환되는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the precursor is thermally decomposed at a temperature of about 150 < 0 > C to about 300 < 0 > C.
제21항에 있어서,
상기 애노드 몸체는 탄탈럼을 포함하고 상기 유전체는 탄탈럼 5산화물을 포함하는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the anode body comprises tantalum and the dielectric comprises tantalum pentoxide.
제21항에 있어서,
상기 나노프로젝션들은 약 5 나노미터 내지 약 500 나노미터, 바람직하게는 약 6 나노미터 내지 약 250 나노미터, 더 바람직하게는 약 8 나노미터 내지 약 150 나노미터, 그보다 더 바람직하게는 약 10 나노미터 내지 약 110 나노미터의 평균 크기를 갖는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
The nano-projections may have a thickness of about 5 nanometers to about 500 nanometers, preferably about 6 nanometers to about 250 nanometers, more preferably about 8 nanometers to about 150 nanometers, even more preferably about 10 nanometers ≪ / RTI > to about 110 nanometers.
제21항에 있어서,
약 50% 이상, 바람직하게는 약 70% 이상, 더 바람직하게는 약 90% 이상의 나노프로젝션들은 약 10 나노미터 내지 약 110 나노미터의 평균 크기를 갖는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein at least about 50%, preferably at least about 70%, more preferably at least about 90% of the nanoprojections have an average size of about 10 nanometers to about 110 nanometers.
제21항에 있어서,
상기 나노프로젝션들의 표면 커버리지는 약 0.1% 내지 약 40%, 바람직하게는 약 0.5% 내지 약 30%, 더 바람직하게는 약 1% 내지 약 20%인, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the surface coverage of the nano-projections is from about 0.1% to about 40%, preferably from about 0.5% to about 30%, more preferably from about 1% to about 20%.
제21항에 있어서,
상기 산화 망간은 이산화 망간인, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the manganese oxide is manganese dioxide.
제21항에 있어서,
상기 전도성 폴리머층은 모노머를 화학적으로 중합함으로써 형성되는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the conductive polymer layer is formed by chemically polymerizing monomers.
제35항에 있어서,
상기 모노머는 3,4-에틸렌디옥시티오펜인, 고체 전해 커패시터 형성 방법.
36. The method of claim 35,
Wherein the monomer is 3,4-ethylenedioxythiophene.
제21항에 있어서,
상기 수지는 비교적 절연성을 갖는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the resin is relatively insulative.
제21항에 있어서,
상기 수지는 셸락으로부터 형성되는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the resin is formed from a shellac.
제21항에 있어서,
상기 수지-함유 용액 또한 비수성 용제, 경화제, 또는 그 조합을 포함하는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the resin-containing solution also comprises a non-aqueous solvent, a curing agent, or a combination thereof.
제21항에 있어서,
상기 애노드에 도포한 후 상기 수지-함유 용액을 열처리하는 단계를 더 포함하는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Further comprising the step of heat treating the resin-containing solution after application to the anode.
제21항에 있어서,
상기 수지층은 상기 프리 코팅층 다음에 형성되는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the resin layer is formed after the pre-coating layer.
제21항에 있어서,
상기 프리 코팅층은 상기 수지층 다음에 형성되는, 고체 전해 커패시터 형성 방법.
22. The method of claim 21,
Wherein the precoat layer is formed after the resin layer.
KR1020140069626A 2014-06-09 2014-06-09 Solid electrolytic capacitor containing a multi-layered adhesion coating KR20150141075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140069626A KR20150141075A (en) 2014-06-09 2014-06-09 Solid electrolytic capacitor containing a multi-layered adhesion coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140069626A KR20150141075A (en) 2014-06-09 2014-06-09 Solid electrolytic capacitor containing a multi-layered adhesion coating

Publications (1)

Publication Number Publication Date
KR20150141075A true KR20150141075A (en) 2015-12-17

Family

ID=55080996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140069626A KR20150141075A (en) 2014-06-09 2014-06-09 Solid electrolytic capacitor containing a multi-layered adhesion coating

Country Status (1)

Country Link
KR (1) KR20150141075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119347A (en) * 2018-04-13 2020-10-19 에이브이엑스 코포레이션 Solid electrolytic capacitors comprising sequentially deposited internally conductive polymer films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119347A (en) * 2018-04-13 2020-10-19 에이브이엑스 코포레이션 Solid electrolytic capacitors comprising sequentially deposited internally conductive polymer films

Similar Documents

Publication Publication Date Title
KR102244972B1 (en) Solid electrolytic capacitor containing conductive polymer particles
JP6681138B2 (en) Stable solid electrolytic capacitors containing nanocomposites
JP6641321B2 (en) Ultra high voltage solid electrolytic capacitors
JP5933200B2 (en) Solid electrolytic capacitors for use in high voltage applications
JP5805448B2 (en) Solid electrolytic capacitor containing improved manganese oxide electrolyte
JP6960718B2 (en) Solid electrolytic capacitors with high capacitance
JP2010093255A (en) Capacitor anode formed from powder containing coarse agglomerate and fine agglomerate
KR102262077B1 (en) Solid electrolytic capacitor containing a multi-layered adhesion coating
JP2014022748A (en) Nonionic surfactant for solid electrolyte of electrolytic capacitor
KR102241640B1 (en) Solid electrolytic capacitor containing a pre-coat layer
KR20150141075A (en) Solid electrolytic capacitor containing a multi-layered adhesion coating

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
WITB Written withdrawal of application