KR20150139736A - 4 phase 8/6 Swiched Reluctance Motor for low voltage fan drive - Google Patents

4 phase 8/6 Swiched Reluctance Motor for low voltage fan drive Download PDF

Info

Publication number
KR20150139736A
KR20150139736A KR1020140067976A KR20140067976A KR20150139736A KR 20150139736 A KR20150139736 A KR 20150139736A KR 1020140067976 A KR1020140067976 A KR 1020140067976A KR 20140067976 A KR20140067976 A KR 20140067976A KR 20150139736 A KR20150139736 A KR 20150139736A
Authority
KR
South Korea
Prior art keywords
srm
phase
torque
stator
rotor
Prior art date
Application number
KR1020140067976A
Other languages
Korean (ko)
Other versions
KR101718188B1 (en
Inventor
안진우
이동희
정광일
Original Assignee
경성대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경성대학교 산학협력단 filed Critical 경성대학교 산학협력단
Priority to KR1020140067976A priority Critical patent/KR101718188B1/en
Publication of KR20150139736A publication Critical patent/KR20150139736A/en
Application granted granted Critical
Publication of KR101718188B1 publication Critical patent/KR101718188B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/06Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated around the stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • H02P25/0925Converters specially adapted for controlling reluctance motors wherein the converter comprises only one switch per phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The present invention is a 4 phase 8/6 switched reluctance motor (SRM) for a low voltage fan drive which has a requirement of a cooling fan motor for a vehicle of the rated output 600 W, the torque 1.67 Nm, the velocity 2800 rpm, the total weight 1.7 kg, the current 50 A, the input voltage 12 V, and the efficiency 80%, and satisfies a condition of a stator diameter 105 mm, a rotator diameter 61 mm, a stack length 35 mm, an air gap 0.25 mm, the number of phases 4, a stator polarity arc 21°, a rotator polarity arc 23°, a shaft diameter 10 mm, and a slot area 284 mm.

Description

저전압 팬 구동용 4상 8/6 SRM{4 phase 8/6 Swiched Reluctance Motor for low voltage fan drive}4 phase 8/6 SRM for low voltage fan drive {4 phase 8/6 Swiched Reluctance Motor for low voltage fan drive}

본 발명은 자동차 팬 구동(automotive fan drive)용 스위치드 릴럭턴스 모터{Swiched Reluctance Motor)에 관한 것으로 특히 저전압 팬 구동용 4상 8/6 SRM에 관한 것이다.The present invention relates to a swept reluctance motor for an automotive fan drive and more particularly to a four-phase 8/6 SRM for low voltage fan drive.

일반적으로 소형 냉각 팬은 가변 속도 범위가 제한되고 효율이 낮은 직류 또는 단상 유도 모터에 의하여 구동된다. Generally, small cooling fans are driven by a DC or single phase induction motor with limited variable speed range and low efficiency.

이에 성능과 효율을 개선시키기 위하여 브러시리스 DC 모터 (BDCM: Brushless DC Motor)를 채택하는 경우가 있는데 이 경우 비용이 증가하고 열이 발생한다는 문제점이 있으며, 가변 속도 범위가 넓은 AC 모터 드라이브의 경우, 고가의 인버터를 불가피하게 사용하여야 하는 문제가 있다.In order to improve performance and efficiency, a brushless DC motor (BDCM) is used. In this case, there is a problem that the cost is increased and heat is generated. In the case of an AC motor drive having a wide variable speed range, There is a problem that an expensive inverter must be inevitably used.

한편, 일반적으로 사용되는 다른 모터와 비교하여 스위치드 릴럭턴스 모터(SRM)는 단순하고 견고한 구조, 낮은 관성, 높은 결함 내성, 높은 발생 토크와 가속 능력, 고속 동작 적합성, 단순한 구동 회로와 편리한 스위칭 제어 등과 같은 많은 장점을 가지고 있다. Compared to other commonly used motors, the Switched Reluctance Motor (SRM) has a simple and robust construction, low inertia, high fault tolerance, high generating torque and acceleration capability, high speed operation compatibility, simple drive circuitry and convenient switching control It has many similar advantages.

특히, SRM 회전자의 경우, 도전체나 영구자석이 없는 관계로 코깅(cogging) 토크가 없어 스타트하기 용이하다.Particularly, in the case of an SRM rotor, since there is no conductor or permanent magnet, there is no cogging torque and it is easy to start.

이 때문에 최근 들어, 이러한 스위치드 릴럭턴스 모터(SRM)를 가전 기기, 에어컨 및 자동차 팬 등에 사용하려는 경향이 점증하는 추세이다[1]-[8].In recent years, there has been an increasing tendency to use such a switched reluctance motor (SRM) for home appliances, air conditioners, and automobile fans [1] - [8].

[1] D. H. Lee, H. K. M. Khoi, J. W. Ahn, "Design and Analysis of High Speed 4/2 SRMs for an air-blower", IEEE International Symposium Industrial Electronics, pp.1242-1246, July 2010. [1] D. H. Lee, H. K. M. Khoi, J. W. Ahn, "Design and Analysis of High Speed 4/2 SRMs for an Air-blower ", IEEE International Symposium Industrial Electronics, pp.1242-1246, July 2010. [2] R. Krishnan : Switched Reluctance Motor Drives. CRC Press LLC, Boca Raton, Florida, 2001. [2] R. Krishnan: Switched Reluctance Motor Drives. CRC Press LLC, Boca Raton, Florida, 2001. [3] A. Labak, N.C. Kar, : "A novel five-phase pancake shaped switched reluctance motor for hybrid electric vehicles," Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE , vol., no., pp.494-499, 7-10 Sept. 2009. [3] A. Labak, N.C. Kar, "A novel five-phase pancake shaped switched reluctance motor for hybrid electric vehicles," Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE, vol., No., Pp. 494-499, pp. 7-10 Sept. 2009. [4] D. H. Lee,T. H. Pham and J. W. Ahn, "Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,"IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, Sep. 2013. [4] D. H. Lee, T. H. Pham and J. W. Ahn, "Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction," IEEE Trans. Ind. Electron., Vol. 60, no. 9, pp. 3637-3643, Sep. 2013. [5] K. Bie.kowski, J. Szczypior, B. Bucki, A. Biernat, A. Rogalski : Influence of Geometrical Parameters of Switched Reluctance Motor on Electromagnetic Torque. Proceedings of XVI International Conference of Electrical Machines, Krakow, 5-8 September 2004. [5] K. Bie.kowski, J. Szczypior, B. Bucki, A. Biernat, A. Rogalski: Influence of Geometrical Parameters on Switched Reluctance Motor on Electromagnetic Torque. Proceedings of XVI International Conference on Electrical Machines, Krakow, 5-8 September 2004. [6] M. Tanujaya, Dong-Hee Lee, Jin-Woo Ahn, ?esign a Novel Switched Reluctance Motor for Neighborhoods Electric Vehicle", ECCE-Asia, June 2011. [6] M. Tanujaya, Dong-Hee Lee, and Jin-Woo Ahn, "A Novel Switched Reluctance Motor for Neighborhoods Electric Vehicle", ECCE-Asia, June 2011. [7] Jin-Woo Ahn, Huynh Khac Minh Khoi, Dong-Hee Lee, "Design and analysis of high speed 4/2 SRMs for an air-blower", 2010 IEEE International Symposium on, Industrial Electronics (ISIE), vol., no., pp.1242-1246, 4-7 July 2010. [7] Jin-Woo Ahn, Huynh Khac Minh Khoi, Dong-Hee Lee, "Design and Analysis of High Speed 4/2 SRMs for an Air-blower", 2010 IEEE International Symposium on Industrial Electronics (ISIE), vol. , no., pp.1242-1246, 4-7 July 2010. [8] Tanujaya, M, D. H. Lee, J. W. Ahn, "Characteristic analysis of a Novel 6/5 c-core type three-phase Switched Reluctance Motor" IEEE International Conference of Electrical Machines and System, pp. 1-6, Aug 2011. [8] Tanujaya, M, D. H. Lee, J. W. Ahn, "Characteristic analysis of a Novel 6/5 c-core type three-phase Switched Reluctance Motor" IEEE International Conference on Electrical Machines and Systems, pp. 1-6, Aug 2011. [9] T. Uematsu, R. S. Wallace "Design of a 100Kw Switched Reluctance Motor for Electric Vehicle" IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp 160-170, Feb 2002. [9] T. Uematsu, R. S. Wallace "Design of a 100 Kw Switched Reluctance Motor for Electric Vehicle" IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp 160-170, Feb 2002. [10] T.J.E. Miller, "Optimal Design of Switched Reluctance Motors" IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp 160-170, Feb 2002. [10] T.J.E. Miller, "Optimal Design of Switched Reluctance Motors" IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp 160-170, Feb 2002. [11] K.N. Srinivas and R. Arumugam, "Finite element analysis combined circuit simulation of dynamic performance of switched reluctance motors," Electric Power Components and Systems, Vol. 30, 2002, pp1033-1045.G. O. Young, "Synthetic structure of industrial plastics," in Plastics, 2nd ed., vol.3, J. Peters, Ed.NewYork:McGraw-Hill,1965,pp.15-64 [11] K.N. Srinivas and R. Arumugam, "Finite element analysis combined circuit simulation of dynamic performance of switched reluctance motors," Electric Power Components and Systems, Vol. 30, 2002, pp1033-1045. O. Young, "Synthetic structure of industrial plastics," in Plastics, 2nd ed., Vol.3, J. Peters, Ed. New York: McGraw-Hill, 1965, pp. 15-64

본 발명에서는, 냉각 팬 기기의 요구 사항에 적합한 3 종류의 SRM 즉 6/4, 12/8 및 8/6 SRM의 구조 내지 설계에 대하여 제안하고 이 중에서 최적 모터 설계를 제안하는 것을 목적으로 한다.In the present invention, the structure and design of three kinds of SRMs, i.e., 6/4, 12/8 and 8/6 SRM, which are suited to the requirements of the cooling fan device, are proposed, and an optimal motor design is proposed.

이를 위하여 본 발명에서는 이들 모터들의 성능 평가를 위하여 인덕턴스, 토크, 및 효율 별로 비교하였다.For this purpose, in order to evaluate the performance of these motors according to the present invention, the inductance, torque, and efficiency were compared.

본 발명에서는 SRM의 치수는 소정의 구속 조건식(constraint equation)에 의하여 예측하였으며, 파라미터는 정상 상태의 반복적인 과정을 통한 성능에 따라서 소정의 값을 선택하여 구하였다.[9]-[11]In the present invention, the dimensions of the SRM are predicted by a predetermined constraint equation, and parameters are determined by selecting a predetermined value according to performance through a repetitive process of steady state. [9] - [11]

또한, 본 발명에서는 모터 설계 파라미터가 모터 성능에 미치는 영향을 분석하였으며, 설계 요구 사항을 특징화하기 위해 유한 요소 해석법 (FEA) 및 변이 분석법(transient analysis)을 사용하였다.In addition, the present invention analyzes the influence of motor design parameters on motor performance, and uses finite element analysis (FEA) and transient analysis to characterize design requirements.

추가로, 본 발명에서 제안하는 모터들의 인덕턴스, 토크 및 효율을 측정하기 위해 소정의 실험을 수행하기도 하였다.In addition, certain experiments have been performed to measure the inductance, torque and efficiency of the motors proposed in the present invention.

본 발명은 차량용 냉각팬 모터의 요구사항이 정격 출력, 600W, 토크 1.67Nm, 속도 2800rpm, 총 무게, 1.7kg, 전류, 50A, 입력 전압 12V, 효율 80%d인 경우 사용되는 저전압 팬 구동용 4상 8/6 SRM으로서, 고정자 직격이 105mm, 회전자 직경이 61mm, 스택 길이 35mm, 공극 0.25mm, 위상의 수 4, 고정자 극 호 21°, 회전자 극 호 23°, 축 직경 10mm, 슬롯 에리어 284 mm 인 조건을 충족하는 것을 특징으로 한다.The present invention relates to a low-voltage fan drive for use with a vehicle cooling fan motor having a rated output of 600 W, a torque of 1.67 Nm, a speed of 2800 rpm, a total weight of 1.7 kg, a current of 50 A, an input voltage of 12 V, The SRM is an 8/6 SRM with a stator of 105mm, a rotor diameter of 61mm, a stack length of 35mm, a pore of 0.25mm, a number of phases of 4, a stator pole of 21 °, a rotor pole of 23 °, 284 mm. ≪ / RTI >

본 발명에서는 자동차 냉각 팬 기기에 적합한 6/4, 12/8, 8/6 SRM을 설계하고 시뮬레이션을 수행한 바, 시뮬레이션 및 실험 결과는 이러한 3 종류의 모터가 기기 요구에 상응할 수 있고 그 중에서도 고정자의 극이 8개이고 회전자의 극이 6개인 4상의 8/6 SRM은 동일한 조건에서 더 나은 성능 효율을 가진다는 것을 알 수 있었다.In the present invention, 6/4, 12/8, and 8/6 SRMs suitable for automotive cooling fan devices were designed and simulated, and simulation and experimental results show that these three types of motors can correspond to equipment requirements, It can be seen that the 8/6 SRM with four poles with eight stator poles and six rotor poles has better performance efficiency under the same conditions.

도 1a~1f는 본 발명에서 제안된 3 종류의 모터의 자속 결합(flux linkage) 및 자속 밀도를 나타낸다.
도 2a, 2b, 3a, 3b 및 4a, 4b는 3 종류의 모터 인덕턴스의 시뮬레이션 및 실험 프로파일이다.
도 5a는 6/4 SRM, 도 5b는 12/8 SRM 도 5c는 8/6 SRM의 토크 프로파일이다.
도 6a~6c는 각각 6/4 SRM, 도 5b는 12/8 SRM 도 5c는 8/6 SRM의 동적 모델 석 그래프이다.
도 7a~7c는 정격 속도 조건에서 6/4, 12/8 및 8/6 SRM의 실험 파형도이다.
도 8a~8c는 본 발명에서 제안된 3 종류 모터(6/4 SRM, 12/8 SRM, 8/6 SRM)의 속도-토크 곡선 그래프이다.
1A to 1F show the flux linkage and the magnetic flux density of the three motors proposed in the present invention.
Figures 2a, 2b, 3a, 3b and 4a, 4b are simulation and experimental profiles of three types of motor inductance.
5A is a torque profile of 6/4 SRM, FIG. 5B is a torque profile of 12/8 SRM, and FIG. 5C is a torque profile of 8/6 SRM.
Figs. 6A to 6C are dynamic model charts of 6/4 SRM, Fig. 5B is 12/8 SRM, and Fig. 5C is 8/6 SRM.
Figures 7a to 7c are experimental waveform diagrams of 6/4, 12/8 and 8/6 SRM under rated speed conditions.
8A to 8C are graphs of speed-torque curves of the three motors (6/4 SRM, 12/8 SRM, 8/6 SRM) proposed in the present invention.

이하, 도면 등을 참조하여 본 발명에서 제안하는 저전압 팬 구동용 SRM에 대하여 설명하기로 한다.Hereinafter, an SRM for driving a low-voltage fan proposed by the present invention will be described with reference to the drawings.

알려진 바와 같이, SRM는 냉각 팬 기기에 저합한 장점들을 지니고 있다. As is known, the SRM has some advantages in cooling fan units.

본 발명의 SRM 또한 이러한 냉각 팬용으로 설계되었으며, 자동차용 냉각 팬 기기의 요구 사항과 치수의 일예는 아래의 표 1(자동차 냉각 팬 모터의 요구 사항)과 같다.The SRM of the present invention is also designed for such a cooling fan, and examples of the requirements and dimensions of a cooling fan device for a car are the same as those in Table 1 (requirements of a car cooling fan motor).

파라미터parameter value 단위 unit 정격 출력 Rated output 600 600 W W 토크talk 1.67 1.67 Nm Nm 속도speed 2800 2800 RPM RPM 총무게 Total weight 1.7 1.7 Kg Kg 전류electric current 50 50 A A 입력전압Input voltage 12 12 V V 효율 efficiency 80 80 % %

SRM은 고정자와 회전자 극수의 조합에 따라, 2상, 3상, 4상 등과 같이 다양하게 위상을 선택하여 설계 할 수 있다. The SRM can be designed in a variety of phases, such as 2-phase, 3-phase, and 4-phase, depending on the combination of stator and rotor poles.

모터의 극 선택은 설계 시작시 매우 중요한 과정 중의 하나인데, 이는 위상과 극의 수가 손실, 효율, 토크 리플 및 소음과 같은 모터의 성능과 밀접하게 관련되어 있기 때문이다.
The pole selection of the motor is one of the most important processes at the beginning of the design because the number of phases and poles is closely related to the performance of the motor such as loss, efficiency, torque ripple and noise.

본 발명에서, 3 종류의 SRM (6/4, 8/6, 12/8)을 설계하고 이들의 성능에 대해 비교 평가하고자 한다.
In the present invention, three types of SRMs (6/4, 8/6, 12/8) are designed and evaluated for their performance.

출력 방정식은 구경(bore diameter), 길이, 속도 및 기계 출력에 대한 자기적 및 전기적 부하와 관련되어 있다.The output equations relate to magnetic and electrical loads on bore diameter, length, velocity and mechanical power.

일반적으로, 기존 모터의 설계는 다음과 같은 출력 방정식으로부터 시작된다.In general, the design of an existing motor starts with the following output equation:

[식 1][Formula 1]

Figure pat00001

Figure pat00001

여기서,

Figure pat00002
는 효율이며,
Figure pat00003
는 식 2에서 정의되는 듀티 사이클(duty cycle)이고 ,
Figure pat00004
Figure pat00005
는 식 3과 식 4에서 계산되는 각각의 계수이다. here,
Figure pat00002
Is efficient,
Figure pat00003
Is the duty cycle defined in Equation 2,
Figure pat00004
and
Figure pat00005
Are the respective coefficients calculated in Equation 3 and Equation 4.

Figure pat00006
는 정렬 위치에서의 고정자 극의 자속 밀도이고,
Figure pat00007
는 식 5에서 정의되는 특정 전기적 부하이다.
Figure pat00008
는 구경이고,
Figure pat00009
은 고정자 극의 축 방향 길이이고,
Figure pat00010
는 회전자 속도(단위, 분당 회전수 (rpm))이다.
Figure pat00006
Is the magnetic flux density of the stator pole at the alignment position,
Figure pat00007
Is the specific electrical load defined in Equation 5.
Figure pat00008
Lt; / RTI >
Figure pat00009
Is the axial length of the stator pole,
Figure pat00010
Is the rotor speed (unit, revolutions per minute (rpm)).

[식 2][Formula 2]

Figure pat00011
Figure pat00011

Figure pat00012
는 각 상승 인덕턴스 프로파일에 대한 전류 도전 각(current conduction angle)이고,
Figure pat00013
는 고정자 위상들의 개수이고,
Figure pat00014
는 회전자의 극수이다.
Figure pat00012
Is the current conduction angle for each rising inductance profile,
Figure pat00013
Is the number of stator phases,
Figure pat00014
Is the number of poles of the rotor.

[식 3][Formula 3]

Figure pat00015

Figure pat00015

[식 4][Formula 4]

Figure pat00016
Figure pat00016

여기서,

Figure pat00017
는 위상 당 정렬된 포화 인덕턴스를 나타내고
Figure pat00018
는 위상 당 정렬되었으나 비포화된 인덕턴스를 의미한다.
Figure pat00019
는 위상 당 비정렬된 인덕턴스이다.here,
Figure pat00017
Represents the saturation inductance aligned per phase
Figure pat00018
Is an inductance that is aligned per phase but is non-saturating.
Figure pat00019
Is the unaligned inductance per phase.

[식 5][Formula 5]

Figure pat00020
Figure pat00020

여기서,

Figure pat00021
는 위상 당 회전 권수이고,
Figure pat00022
는 고정자 전류,
Figure pat00023
은 동시에 도전되는 위상의 갯수이다.
here,
Figure pat00021
Is the number of turns per phase,
Figure pat00022
The stator current,
Figure pat00023
Lt; / RTI > is the number of phases that are simultaneously conducting.

모터가 자동 스타트할 수 있도록 하기 위하여, 고정자 극 호

Figure pat00024
및 회전자 자극 호
Figure pat00025
는 다음 식 6 및 식 7의 조건을 충족하여야 한다.In order to allow the motor to start automatically,
Figure pat00024
And rotor excitation arc
Figure pat00025
Must satisfy the conditions of the following equations (6) and (7).

[식 6][Formula 6]

Figure pat00026
Figure pat00026

[식 7][Equation 7]

Figure pat00027
Figure pat00027

토크에 있어서, 공극이 작을수록 토크가 개선된다. 그러나 공극은 통상 가공 수준에 따라 달라질 수 있다. 일반적인 공극의 범위는 0.25 ~ 0.3 mm 정도이다.In the torque, the smaller the gap, the better the torque is. However, pores can usually vary depending on processing levels. Typical pore size ranges from 0.25 to 0.3 mm.

고정자 백 아이언(back iron)) 두께

Figure pat00028
는 고정자내의 최대 자속 밀도에 따라 결정되며, 음향 노이즈를 감소시키기 위해 진동을 최소화 시키는 것도 다른 추가적인 요인으로 결정될 수 있다.Stator back iron) Thickness
Figure pat00028
Is determined by the maximum magnetic flux density in the stator and minimizing vibration to reduce acoustic noise can be determined by other additional factors.

고정자 백 아이언에서의 자속 밀도는 대략 고정자 극에서의 자속 밀도의 절반 정도이나, 약간 더 클 수도 있다.The magnetic flux density in the stator back irons is about half of the magnetic flux density at the stator poles, but may be slightly larger.

회전자 극 호는 극의 자속 밀도를 수용할 수 있도록 선택되어 진다. The rotor poles are chosen to accommodate the magnetic flux density of the poles.

만약, 극의 폭

Figure pat00029
와 극 호의 관계가 다음 식 8과 같다면,
Figure pat00030
는 최소 0.5
Figure pat00031
의 값을 가진다. If the width of the pole
Figure pat00029
If the relationship between the polarity and the pole is given by Eq. (8)
Figure pat00030
0.5
Figure pat00031
Lt; / RTI >

[식 8][Equation 8]

Figure pat00032

Figure pat00032

기계적 강건성 및 진동의 최소화를 고려하면 다음 식 9와 같은 조건을 만족하는 것이 바람직할 수 있다.Considering the mechanical robustness and the minimization of the vibration, it may be preferable to satisfy the following condition (9).

[식 9][Equation 9]

Figure pat00033

Figure pat00033

회전자 백 아이언 두께

Figure pat00034
는 구조적 완결성과 작동 자속 밀도에 연관될 수 있다.Rotor back iron thickness
Figure pat00034
Can be related to structural integrity and working flux density.

선택되는 값의 범위는 정렬 및 비정렬 인덕턴스간의 비를 더 높게 하기 위하여 극간 공극이 더 클 수 있도록 선택되어야 하지만, 이와 동시에 회전자의 진동을 최소화시키기 위하여 회전자 극을 더 짧게 하는 것이 바람직 할 수도 있다.The range of values to be selected should be chosen such that the inter-pole gap is larger to make the ratio between the aligned and unaligned inductances higher, while at the same time it may be desirable to make the rotor pole shorter to minimize oscillation of the rotor have.

이러한 점들을 고려하여, 회전자 극 폭을 고려하여 회전자 백 아이언 두께 께

Figure pat00035
는 다음 식 10을 만족하는 것이 바람직할 수 있다.Considering these points, consider the thickness of the rotor back iron
Figure pat00035
May preferably satisfy the following expression (10).

[식 10][Equation 10]

Figure pat00036
Figure pat00036

특정 기기의 요구 조건이나 구속 조건식에 따라서, 6/4, 8/6 및 12/8의 SRM의 주요 설계 파라미터는 표 2와 같을 수 있다.Depending on the requirements or constraints of the particular equipment, the main design parameters of SRMs of 6/4, 8/6 and 12/8 may be as shown in Table 2.

타입type 6/46/4 12/812/8 8/68/6 단위unit 고정자 직경Stator diameter 105105 105105 105105 mmmm 회전자 직경Rotor diameter 6262 6262 6161 mmmm 스택 길이Stack length 3535 3535 3535 mmmm 공극air gap 0.250.25 0.250.25 0.250.25 mmmm 위상의 수Number of phases 33 33 44 고정자 극 호Stator pole pole 3030 1414 2121 °° 회전자 극 호Rotor pole arc 3232 1616 2323 °° 축 직경Shaft diameter 1010 1010 1010 mmmm 슬롯 에리어(slot area)Slot area 293293 210210 284284 mmmm

표 2에서 알 수 있듯이, 위 3 종류 모터의 고정자 직경, 스택 길이, 공극 및 축 직경(shaft diameter)은 동일하기 때문에 이들 모터의 성능을 비교하는데 매우 유리하다.
As shown in Table 2, the stator diameter, stack length, pore and shaft diameter of the above three motors are the same, which is very advantageous for comparing the performance of these motors.

III. 특성 분석III. Character analysis

A. 정적 분석A. Static analysis

일반적으로 유한 요소 해석법(FEA)은 정상 상태 성능측정에 사용되는데, 본 발명에서는 3상 6/4, 12/8 SRM과 4상 8/6 SRM에 대하여 정적 분석을 수행하였다.Generally, FEA is used for steady-state performance measurement. In the present invention, static analysis is performed for 3-phase 6/4, 12/8 SRM and 4-phase 8/6 SRM.

SRM은 일반적으로 포화 영역에서 동작하도록 설계된다. The SRM is typically designed to operate in the saturation region.

도 1a~1f는 본 발명에서 제안된 3 종류의 모터의 자속 결합(flux linkage) 및 자속 밀도를 나타낸다. 도 1a, 1b는 3상의 6/4 SRAM, 도 1c, 1d는 3상의 12/8의 SRM, 도 1e, 1f는 4상의 8/6의 SRM 이다.1A to 1F show the flux linkage and the magnetic flux density of the three motors proposed in the present invention. Figures 1a and 1b are 6/4 SRAM in three phases, Figures 1c and 1d are 12/8 SRM in three phases, and Figures 1e and 1f are SRM in 8/6 in four phases.

도 1a~1f의 결과로부터 알 수 있듯이, 자속 흐름은 위상 전류가 여기(勵起)될 때 여기된 극을 통과 하며, 여기되지 않은 다른 극으로는 통과하지 않는다.As can be seen from the results of Figs. 1a-1f, the flux flow passes through the excited pole when the phase current is excited and does not pass through to the other pole which is not excited.

인덕턴스와 토크는 모터의 중요한 두가지 특성이다. Inductance and torque are two important characteristics of the motor.

SRM은 회전자 위치와 전류에 따라 변하는 인덕턴스에 의해 특징지어진다. SRM is characterized by the inductance that varies with rotor position and current.

인덕턴스 값은 전류, 토크 및 효율에도 영향을 미친다.The inductance value also affects current, torque and efficiency.

도 2a, 2b, 3a, 3b 및 4a, 4b는 3 종류의 모터 인덕턴스의 시뮬레이션 및 실험 프로파일이며, 그 결과는 표 3(3 종류 모터의 인덕턴스)에 요약되어 있다.
Figures 2a, 2b, 3a, 3b and 4a, 4b are simulation and experimental profiles of three types of motor inductance, the results of which are summarized in Table 3 (inductance of three types of motors).

6/4 6/4 12/8 12/8 8/6 8/6 Min.Min. Max. Max. Min. Min. Max. Max. Min. Min. Max. Max. 시뮬레이션
[mH]
simulation
[mH]
0.0278 0.0278 0.200 0.200 0.0246 0.0246 0.1149 0.1149 0.0527 0.0527 0.2514 0.2514
실험
[mH]
Experiment
[mH]
0.0321 0.0321 0.205 0.205 0.0303 0.0303 0.1034 0.1034 0.0577 0.0577 0.2322 0.2322

표 3에서 알 수 있듯이, 특정 모터의 경우 시뮬레이션 결과치가 실험 결과치보다 더 크게 나타났다.As shown in Table 3, the simulation results for specific motors were larger than the experimental results.

SRM에서 토크는 고정자 극이 근접한 회전자 극을 가까운 회전자 극을 끌어당기려는 자연스러운 성향에 의하여 만들어진다. In SRM, the torque is created by the natural tendency of the stator poles to attract close rotor poles to the nearby rotor poles.

회전자 극이 고정자 극과 정렬되기 전에 위상이 여기 되는 경우, 회전자는 모터의 동작과 일치하는 회전 방향으로의 토크를 느낀다. If the phase is excited before the rotor pole aligns with the stator poles, the rotor senses torque in the direction of rotation consistent with the motions of the motor.

토크는 전류와 회전자의 위치 함수이다. Torque is the position function of the current and the rotor.

본 발명에서 제안된 모터들의 토크 프로파일은 도 5a~5c에 도시되어 있다.The torque profiles of the motors proposed in the present invention are shown in Figs. 5a to 5c.

도 5a는 6/4 SRM, 도 5b는 12/8 SRM 도 5c는 8/6 SRM의 토크 프로파일이다.5A is a torque profile of 6/4 SRM, FIG. 5B is a torque profile of 12/8 SRM, and FIG. 5C is a torque profile of 8/6 SRM.

도 6a~6c는 각각 6/4 SRM, 도 5b는 12/8 SRM 도 5c는 8/6 SRM의 동적 모델 석 그래프이다.Figs. 6A to 6C are dynamic model charts of 6/4 SRM, Fig. 5B is 12/8 SRM, and Fig. 5C is 8/6 SRM.

표 4는 본 발명에서 제안된 3 종류 모터의 성능을 비교한 것으로 6/4, 12/8 및 8/6 타입의 SRM 각각은 1.74Nm, 1.72Nm 및 1.74Nm의 평균 토크를 갖도록 설계되었다.Table 4 compares the performance of the three motors proposed in the present invention, and each SRM of the 6/4, 12/8 and 8/6 types is designed to have an average torque of 1.74 Nm, 1.72 Nm and 1.74 Nm.

타입 type 6/4 6/4 12/8 12/8 8/6 8/6 단위 unit 외부 전원 External Power 512.52 512.52 505.49 505.49 507.94 507.94 W W 평균 토크 Average torque 1.74 1.74 1.72 1.72 1.74 1.74 Nm Nm 속도speed 2800 2800 2800 2800 2800 2800 rpm rpm 전류electric current 50 50 50 50 50 50 A A 입력 전압 Input voltage 12 12 12 12 12 12 V V 효율efficiency 88.5 88.5 85.3 85.3 85.3 85.3 % %

IV. 실험 결과IV. Experiment result

A 구동 성능A driving performance

정격 속도 조건(2800rpm)에서 6/4, 12/8 및 8/6 SRM의 실험 파형은 도 7a~7c와 같다.The experimental waveforms of 6/4, 12/8 and 8/6 SRM at the rated speed condition (2800 rpm) are shown in Figs. 7a to 7c.

부하 토크는 정격 속도 1.7Nmh 유지하였다.
The load torque was maintained at a rated speed of 1.7 Nmh.

도 8a~8c는 본 발명에서 제안된 3 종류 모터(6/4 SRM, 12/8 SRM, 8/6 SRM)의 속도-토크 곡선 그래프이다. 도 8a~8c로부터 모터의 효율과 속도 사이의 관계를 알 수 있다. 8A to 8C are graphs of speed-torque curves of the three motors (6/4 SRM, 12/8 SRM, 8/6 SRM) proposed in the present invention. 8A to 8C, the relationship between the efficiency and the speed of the motor can be known.

도 8a~8c의 결과는 아래 표 5에 요약되어 있다. 표 5에서 알 수 있듯이, 동일한 조건하에서 8/6 SRM가 최대 효율을 가지는 것을 알 수 있다.The results of Figures 8a-8c are summarized in Table 5 below. As can be seen in Table 5, it can be seen that the 8/6 SRM has the maximum efficiency under the same conditions.

유형

매개변수
type

parameter
6/4 6/4 12/8 12/8 8/6 8/6 단위 unit
시뮬레이션 simulation 88.5 88.5 85.3 85.3 85.3 85.3 % % 실험 Experiment 81.0 81.0 81.4 81.4 85.2 85.2 % %

이상에서 설명한 바와 같이, 본 발명에서는 자동차 냉각 팬 기기에 적합한 6/4, 12/8, 8/6 SRM을 설계하고 시뮬레이션을 수행한 바, 시뮬레이션 및 실험 결과는 이러한 3 종류의 모터가 기기 요구에 상응할 수 있고 그 중에서도 고정자의 극이 8개이고 회전자의 극이 6개인 4상의 8/6 SRM은 동일한 조건에서 더 나은 성능 효율을 가진다는 것을 알 수 있었다.As described above, according to the present invention, 6/4, 12/8, and 8/6 SRMs suitable for a car cooling fan device were designed and simulated, and simulation and experimental results show that these three types of motors It can be seen that the 8/6 SRM of four phases with 8 poles of the stator and 6 poles of the rotor has a better performance efficiency under the same conditions.

Claims (1)

차량용 냉각팬 모터의 요구사항이 정격 출력, 600W, 토크 1.67Nm, 속도 2800rpm, 총 무게, 1.7kg, 전류, 50A, 입력 전압 12V, 효율 80%d인 경우 사용되는 저전압 팬 구동용 4상 8/6 SRM으로서,
고정자 직격이 105mm, 회전자 직경이 61mm, 스택 길이 35mm, 공극 0.25mm, 위상의 수 4, 고정자 극 호 21°, 회전자 극 호 23°, 축 직경 10mm, 슬롯 에리어 284 mm 인 조건을 충족하는 것을 특징으로 하는 저전압 팬 구동용 4상 8/6 SRM.
The requirements of the automotive cooling fan motor are 4-phase 8/8-phase motor for low-voltage fan drive with rated output 600W, 1.67Nm torque, 2800rpm speed, total weight 1.7kg, current 50A, input voltage 12V, efficiency 80% 6 As an SRM,
The rotor having a stator diameter of 105 mm, a rotor diameter of 61 mm, a stack length of 35 mm, a pore of 0.25 mm, a number of phases of 4, a stator pole of 21 °, a rotor pole of 23 °, a shaft diameter of 10 mm, and a slot area of 284 mm 4-phase 8/6 SRM for low-voltage fan drive.
KR1020140067976A 2014-06-04 2014-06-04 4 phase 8/6 Switched Reluctance Motor for low voltage fan drive KR101718188B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140067976A KR101718188B1 (en) 2014-06-04 2014-06-04 4 phase 8/6 Switched Reluctance Motor for low voltage fan drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140067976A KR101718188B1 (en) 2014-06-04 2014-06-04 4 phase 8/6 Switched Reluctance Motor for low voltage fan drive

Publications (2)

Publication Number Publication Date
KR20150139736A true KR20150139736A (en) 2015-12-14
KR101718188B1 KR101718188B1 (en) 2017-03-20

Family

ID=55020896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140067976A KR101718188B1 (en) 2014-06-04 2014-06-04 4 phase 8/6 Switched Reluctance Motor for low voltage fan drive

Country Status (1)

Country Link
KR (1) KR101718188B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301132A (en) * 2016-10-24 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 Permagnetic synchronous motor power calculation algorithms, device, refrigerator controller and refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200088550A (en) 2019-01-14 2020-07-23 경성대학교 산학협력단 A Direct Torque Control Method of Switched Reluctance Motor using SVM
KR20200088549A (en) 2019-01-14 2020-07-23 경성대학교 산학협력단 A Direct Torque Control Method of Switched Reluctance Motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984282A (en) * 1995-09-14 1997-03-28 T R W S S J Kk Stator for motor and manufacture thereof
JP2000134849A (en) * 1998-10-28 2000-05-12 Brother Ind Ltd Reluctance motor
JP2000184672A (en) * 1998-12-18 2000-06-30 Yunitekku Denka Kogyo Kk Four-phase reluctance motor
JP2014512791A (en) * 2011-03-30 2014-05-22 戴珊珊 Switch reluctance motor and excitation control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984282A (en) * 1995-09-14 1997-03-28 T R W S S J Kk Stator for motor and manufacture thereof
JP2000134849A (en) * 1998-10-28 2000-05-12 Brother Ind Ltd Reluctance motor
JP2000184672A (en) * 1998-12-18 2000-06-30 Yunitekku Denka Kogyo Kk Four-phase reluctance motor
JP2014512791A (en) * 2011-03-30 2014-05-22 戴珊珊 Switch reluctance motor and excitation control method thereof

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
[1] D. H. Lee, H. K. M. Khoi, J. W. Ahn, "Design and Analysis of High Speed 4/2 SRMs for an air-blower", IEEE International Symposium Industrial Electronics, pp.1242-1246, July 2010.
[10] T.J.E. Miller, "Optimal Design of Switched Reluctance Motors" IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp 160-170, Feb 2002.
[11] K.N. Srinivas and R. Arumugam, "Finite element analysis combined circuit simulation of dynamic performance of switched reluctance motors," Electric Power Components and Systems, Vol. 30, 2002, pp1033-1045.G. O. Young, "Synthetic structure of industrial plastics," in Plastics, 2nd ed., vol.3, J. Peters, Ed.NewYork:McGraw-Hill,1965,pp.15-64
[2] R. Krishnan : Switched Reluctance Motor Drives. CRC Press LLC, Boca Raton, Florida, 2001.
[3] A. Labak, N.C. Kar, : "A novel five-phase pancake shaped switched reluctance motor for hybrid electric vehicles," Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE , vol., no., pp.494-499, 7-10 Sept. 2009.
[4] D. H. Lee,T. H. Pham and J. W. Ahn, "Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,"IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, Sep. 2013.
[5] K. Bie.kowski, J. Szczypior, B. Bucki, A. Biernat, A. Rogalski : Influence of Geometrical Parameters of Switched Reluctance Motor on Electromagnetic Torque. Proceedings of XVI International Conference of Electrical Machines, Krakow, 5-8 September 2004.
[6] M. Tanujaya, Dong-Hee Lee, Jin-Woo Ahn, ?esign a Novel Switched Reluctance Motor for Neighborhoods Electric Vehicle", ECCE-Asia, June 2011.
[7] Jin-Woo Ahn, Huynh Khac Minh Khoi, Dong-Hee Lee, "Design and analysis of high speed 4/2 SRMs for an air-blower", 2010 IEEE International Symposium on, Industrial Electronics (ISIE), vol., no., pp.1242-1246, 4-7 July 2010.
[8] Tanujaya, M, D. H. Lee, J. W. Ahn, "Characteristic analysis of a Novel 6/5 c-core type three-phase Switched Reluctance Motor" IEEE International Conference of Electrical Machines and System, pp. 1-6, Aug 2011.
[9] T. Uematsu, R. S. Wallace "Design of a 100Kw Switched Reluctance Motor for Electric Vehicle" IEEE Transactions on Industrial Electronics, vol. 49, no 1, pp 160-170, Feb 2002.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301132A (en) * 2016-10-24 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 Permagnetic synchronous motor power calculation algorithms, device, refrigerator controller and refrigerator
CN106301132B (en) * 2016-10-24 2018-12-21 珠海格力电器股份有限公司 Permanent magnet synchronous motor power calculation algorithms, device, refrigerator controller and refrigerator

Also Published As

Publication number Publication date
KR101718188B1 (en) 2017-03-20

Similar Documents

Publication Publication Date Title
Morimoto et al. Performance of PM-assisted synchronous reluctance motor for high-efficiency and wide constant-power operation
Atallah et al. Torque-ripple minimization in modular permanent-magnet brushless machines
Kondelaji et al. Double-stator PM-assisted modular variable reluctance motor for EV applications
Liu et al. Influence of rotor pole number on electromagnetic performance of novel variable flux reluctance machine with DC-field coil in stator
Gecer et al. Comparative analysis of SRM, BLDC and induction motor using ANSYS/Maxwell
Liu et al. Winding configurations and performance investigations of 12-stator pole variable flux reluctance machines
KR101718188B1 (en) 4 phase 8/6 Switched Reluctance Motor for low voltage fan drive
Xheladini et al. Permanent Magnet Synhronous Motor and Universal Motor comparison for washing machine application
Ahmad et al. Design investigation of three phase HEFSM with outer-rotor configuration
Deng et al. A comparison of conventional and segmental rotor 12/10 switched reluctance motors
KR101666931B1 (en) Magnetic circuit with variable magnetic flux
Singh et al. A robust design methodology with FEA of SRM for efficient heavy duty exhaust fan application
Omar et al. Performances comparison of various design slot pole of Field Excitation Flux Switching Machines with segmental rotor
Kerdsup et al. Design of synchronous reluctance motors with IE4 energy efficiency standard competitive to BLDC motors used for blowers in air conditioners
Shehata Design tradeoffs between starting and steady state performances of line-started interior permanent magnet synchronous motor
Son et al. Design and analysis of double stator axial field type srm
Jeong et al. Performance comparison of SRMs for low voltage fan drive
Kashif et al. Analysis of reverse-saliency PMSM with multiple flux-barriers for SWPS
Lukman et al. Comparative performance analysis of switched reluctance motors for automotive fan
Vakil et al. Performance comparison of sinusoidally-fed PM BLDC motors having different rotor topologies
Liu et al. Design and investigation of flux weakening capability in variable flux reluctance machine
Prakht et al. Comparison of high-speed single-phase flux reversal motor and hybrid switched reluctance motor
Morimoto et al. Performance of PM/reluctance hybrid motor with multiple flux-barrier
Jeong et al. Performance and design of a novel single-phase hybrid switched reluctance motor for hammer breaker application
Rallabandi et al. Optimal design of outer rotor switched reluctance machines for direct drive rim applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20191211

Year of fee payment: 4