KR20150139145A - Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof - Google Patents

Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof Download PDF

Info

Publication number
KR20150139145A
KR20150139145A KR1020140067180A KR20140067180A KR20150139145A KR 20150139145 A KR20150139145 A KR 20150139145A KR 1020140067180 A KR1020140067180 A KR 1020140067180A KR 20140067180 A KR20140067180 A KR 20140067180A KR 20150139145 A KR20150139145 A KR 20150139145A
Authority
KR
South Korea
Prior art keywords
bio
tea
biochar
steam
twbc
Prior art date
Application number
KR1020140067180A
Other languages
Korean (ko)
Inventor
옥용식
메쓰티카 비타나게
아누쉬카 라자파크샤
이상수
박재남
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020140067180A priority Critical patent/KR20150139145A/en
Publication of KR20150139145A publication Critical patent/KR20150139145A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a method for activating biochar, which includes a step of treating biochar with steam. The present invention further relates to biochar activated by such activation method, and to a method for adsorbing antibiotics using the biochar. More specifically, the present invention provides an activation method for producing activated biochar with high adsorption ability for organic pollutants, especially for antibiotics, wherein biochar is produced by using waste tea leaves followed by steam treatment. Furthermore, the present invention also relates to a method for using biochar activated by the method as an adsorbent involving in adsorption of antibiotics existing in soil and water.

Description

증기 처리를 이용한 바이오차의 활성화 방법, 증기 처리로 활성화된 바이오차 및 그 제조방법{Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof} BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating a bio-tea using a steam treatment, a method for manufacturing a bio-

본 발명은 바이오차(biochar)를 증기 처리하여 활성화하고, 증기 처리로 활성화된 바이오차를 이용하여 물 및 토양 중 항생제의 흡착을 증진시키는 방법에 관한 것이다. The present invention relates to a method for enhancing the adsorption of antibiotics in water and soil using a biochar activated by steam treatment of biochar.

항생제는 환경오염 물질로 일반화되고 있고(Boxall, 2012), 세계 많은 지역의 환경에서 높은 농도로 관찰되고 있어 토양, 물과 식물에 각별한 주의가 요구된다(Kim et al., 2011; Ok et al., 2011). 항생제는 동물용 약품(Veterinary pharmaceuticals)의 형태로 동물에 투여되어 체내에 잔류하다가, 동물로부터 배설되는 배설물(거름) 및/또는 대량 가축매몰지역으로부터 발생되는 침출수 또는 용출물 등의 다양한 과정을 통해 환경에 유입된다(Kim et al., 2012; Kwon et al., 2011). 상기한 방법으로 항생제가 토양이나 물 시스템에 유입된 이후에는 생물학적, 물리적 또는 화학적 과정에 의해 분해되거나, 토양 입자에 흡착되거나, 식물에 흡수되거나, 지하수에 도달하거나, 또는 빗물 및 배수물을 통해 지표수로 이동될 수 있다(Kim et al., 2010b). 토양과 물에 고농도의 항생제가 존재하면 항생제 내성을 가진 박테리아가 형성될 수 있기 때문에 심각한 문제점이 있다. Antibiotics are being generalized to environmental pollutants (Boxall, 2012) and are observed at high concentrations in many parts of the world, requiring special attention to soil, water and plants (Kim et al., 2011; Ok et al. , 2011). Antibiotics are administered to animals in the form of veterinary pharmaceuticals and remain in the body, and are then released into the environment through a variety of processes, such as excretion (fecal matter) excreted from the animal and / or leachate or eluate from large- (Kim et al., 2012; Kwon et al., 2011). After the antibiotics have been introduced into the soil or water system as described above, they may be decomposed by biological, physical or chemical processes, adsorbed on soil particles, absorbed by plants, reached groundwater, (Kim et al., 2010b). The presence of high concentrations of antibiotics in soil and water has serious problems as antibiotic resistant bacteria can form.

일례로, 설폰아미드(Sulfonamides, SAs)는 수의산업에 널리 사용되는 항생제 군으로서, 대부분의 물에서 빈번히 검출된다(Kim et al., 2011; Ok et al., 2011).Sulfonamides (SAs), for example, are a group of antibiotics widely used in the veterinary industry and are frequently detected in most waters (Kim et al., 2011; Ok et al., 2011).

SAs는 아미노벤젠설폰아미드(p-aminobenzenesulfonamide)의 유도체에 대한 일반명으로 아미드 치환기에 따라 다양한 형태를 가진다. 이러한 SAs는 동물의 성장을 촉진시키고, 감염성 질병을 막을 수 있어 주로 돼지를 키우는 산업에서 이용되는데, SAs의 농도는 대지 분뇨에서 20 mg/kg의 농도로 까지 존재한다는 사실이 보고되었다(Haham et al., 2012). SAs는 흡착성이 낮고, 생분해가 잘되지 않아서, 원래의 상태로 침출되기 때문에 SAs를 흡착하기 위하여 진흙, 습식물질, 토양, 나노물질 및 블랙 카본 등을 이용한 다양한 방법이 제안되고 있다. 그러나, 이러한 물질들은 흡착효율이 높지 않거나 경제적이지 않아, 항생제를 높은 효율로 흡착할 수 있는 방법 및 흡착 효율이 높은 물질을 찾기 위한 다양한 연구가 진행되고 있다.SAs are generic names for derivatives of p-aminobenzenesulfonamide, which have various forms depending on the amide substituent. It has been reported that these SAs are used in industries that promote growth of animals and prevent infectious diseases, mainly in pigs, where the concentration of SAs is up to 20 mg / kg in soil manure (Haham et al ., 2012). Since SAs are low in adsorbability and do not biodegrade well, they are leached to their original state. Therefore, various methods using mud, wet material, soil, nanomaterials and black carbon have been proposed to adsorb SAs. However, since these materials are not highly efficient or economical, various studies have been conducted to find a method capable of adsorbing antibiotics with high efficiency and a material having high adsorption efficiency.

한편, SAs의 흡착은 복잡한 과정으로서, 양이온 교환 메커니즘 또는 표면착화에 의해서 좌우될 수 있는 것으로 보고되었다(Ji et al., 2011; Kahle and Stamm, 2007). 몇몇 연구에서 바이오차에 의한 SAs의 흡착에 대하여 발표하였는데, 전기음성도와 방향족성이 증가하면, SAs의 흡착이 증가된다고 보고하였다(Yao et al., 2012). 바이오차는 산소가 제한되거나, 없는 조건의 열분해(pyrolysis)를 통해서 생산된다. 바이오차는 탄소격리(carbon sequestration)를 증가시키고, 오염물을 고정화하여 토양의 질을 개선한다고 알려져 있다(Ahmad et al., 2013c; Almaroai et al., 2014; Awad et al., 2013). 바이오차의 특성은 공급 원료의 유형, 열분해 온도 그리고 반응물이 반응기에 머무는 체류시간에 의해서 영향을 받는다(Ahmad et al., 2013c; Uchimiya et al., 2012). 종래 연구는 물 또는 토양 정화를 위한 바이오차의 개발, 그들의 특성 및 적용 방법에 초점이 맞추어져 있었다(Ahmad et al., 2012). 최근에는 몇몇 연구가 바이오차의 활성화를 위해서 수행되었으나, 흡착효율이 높지 않다는 단점이 있었다.On the other hand, the adsorption of SAs has been reported to be a complex process that can be influenced by cation exchange mechanisms or surface complexation (Ji et al., 2011; Kahle and Stamm, 2007). Several studies have reported the adsorption of SAs by biochars, and it has been reported that as the electronegativity and aromatics increase, the adsorption of SAs increases (Yao et al., 2012). Bio-tea is produced by pyrolysis with limited or no oxygen. Biochae is known to increase carbon sequestration and improve soil quality by immobilizing contaminants (Ahmad et al., 2013c; Almaroai et al., 2014; Awad et al., 2013). The characteristics of the bio-tea are influenced by the type of feedstock, the pyrolysis temperature and the residence time of the reactants in the reactor (Ahmad et al., 2013c; Uchimiya et al., 2012). Previous studies have focused on the development of biofuels for water or soil purification, their characterization and application methods (Ahmad et al., 2012). In recent years, several studies have been carried out to activate the biocide, but the drawback is that the adsorption efficiency is not high.

(0001) 한국공개특허 : 10-2014-0016670(0001) Korea Patent Publication: 10-2014-0016670 (0002) 한국공개특허 : 10-2014-0000540(0002) Korea Patent Publication: 10-2014-0000540 (0003) 한국공개특허 : 10-2013-0045653(0003) Korean Patent Publication No. 10-2013-0045653 (0004) 한국등록특허 : 제10-1190282호(0004) Korean Registered Patent: No. 10-1190282

(0001) Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536-544. (0001) Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., Ok, Y.S. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536-544. (0002) Ahmad, M., Lee, S.S., Oh, S.-E., Mohan, D., Moon, D.H., Lee, Y.H., Ok, Y.S. 2013a. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ. Sci. Pollut. Res. 20, 8364-8373. (0002) Ahmad, M., Lee, S. S., Oh, S.-E., Mohan, D., Moon, D. H., Lee, Y. H., Ok, Y.S. 2013a. Modeling adsorption kinetics of trichlorethylene onto biochars derived from soybean stover and peanut shell wastes. Environ. Sci. Pollut. Res. 20, 8364-8373. (0003) Ahmad, M., Lee, S.S., Rajapaksha, A.U., Vithanage, M., Zhang, M., Cho, J.S., Lee, S.-E., Ok, Y.S. 2013b. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 143, 615-622.M., Lee, S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S.-E., Ok, Y.S. 2013b. Trichlorethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 143, 615-622. (0004) Ahmad, M., Moon, D.H., Vithanage, M., Koutsospyros, A., Lee, S.S., Yang, J.E., Lee, S.E., Jeon, C., Ok, Y.S. 2013c. Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol. 89, 150-157. (0004) Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., Lee, S. S., Yang, J. E., Lee, S. E., Jeon, C., Ok, Y.S. 2013c. Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichlorethylene removal from water. J. Chem. Technol. Biotechnol. 89, 150-157. (0005) Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-33. M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-33. (0006) Almaroai, Y., Usman, A.A., Ahmad, M., Moon, D., Cho, J.-S., Joo, Y., Jeon, C., Lee, S., Ok, Y. 2014. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ. Earth Sci. 71, 1289-1296. (0006) Almaroai, Y., Usman, AA, Ahmad, M., Moon, D., Cho, J.-S., Joo, Y., Jeon, C., Lee, S., Ok, . Effects of biochar, cow bone, and eggshell on Pb is irritated with saline water. Environ. Earth Sci. 71,1289-1296. (0007) Awad, Y.M., Blagodatskaya, E., Ok, Y.S., Kuzyakov, Y. 2013. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labeled maize residues and on their stabilization in soil aggregates. Eur. J. Soil Sci. 64, 488-499. (0007) Awad, Y. M., Blagodatskaya, E., Ok, Y.S., Kuzyakov, Y. 2013. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labeled maize residues and their stabilization in soil aggregates. Eur. J. Soil Sci. 64, 488-499. (0008) Azargohar, R., Dalai, A.K. 2008. Steam and KOH activation of biochar: Experimental and modeling studies. Microporous Mesoporous Mater. 110, 413-421. (0008) Azargohar, R., Dalai, A.K. 2008. Steam and KOH activation of biochar: Experimental and modeling studies. Microporous Mesoporous Mater. 110, 413-421. (0009) Braschi, I., Blasioli, S., Gigli, L., Gessa, C.E., Alberti, A., Martucci, A. 2010. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater. 178, 218-225. (0009) Braschi, I., Blasioli, S., Gigli, L., Gessa, CE, Alberti, A., Martucci, A. 2010. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater. 178, 218-225. (0010) Cao, X., Harris, W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222-5228. (0010) Cao, X., Harris, W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222-5228. (0011) Chen, B., Zhou, D., Zhu, L. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137-5143. Chen, B., Zhou, D., Zhu, L. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137-5143. (0012) Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis. 72, 243-248.(0012) Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis. 72, 243-248. (0013) Haham, H., Oren, A., Chefetz, B. 2012. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. Environ. Sci. Technol. 46, 11870-11877. (0013) Haham, H., Oren, A., Chefetz, B. 2012. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. Environ. Sci. Technol. 46, 11870-11877. (0014) Haller, M.Y., Mller, S.R., McArdell, C.S., Alder, A.C., Suter, M.J.F. 2002. Quantification of veterinary antibiotics(sulfonamides and trimethoprim) in animal manure by liquid chromatographymass spectrometry. J. Chromatogr. A 952, 111-120. (0014) Haller, M. Y., Mller, S. R., McArdell, C. S., Alder, A. C., Suter, M. J. F. 2002. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatographymass spectrometry. J. Chromatogr. A 952, 111-120. (0015) Ippolito, J.A., Strawn, D.G., Scheckel, K.G., Novak, J.M., Ahmedna, M., Niandou, M.A.S. 2012. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar. J. Environ. Qual. 41, 1150-1156. (0015) Ippolito, J.A., Strawn, D.G., Scheckel, K.G., Novak, J.M., Ahmedna, M., Niandou, M.A.S. 2012. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar. J. Environ. Qual. 41, 1150-1156. (0016) Ji, L., Chen, W., Zheng, S., Xu, Z., Zhu, D. 2009. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25, 11608-11613. (0016) Ji, L., Chen, W., Zheng, S., Xu, Z., Zhu, D. 2009. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25, 11608-11613. (0017) Ji, L., Wan, Y., Zheng, S., Zhu, D. 2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol. 45, 5580-5586. (0017) Ji, L., Wan, Y., Zheng, S., Zhu, D. 2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol. 45, 5580-5586. (0018) Kahle, M., Stamm, C. 2007. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68, 1224-1231. (0018) Kahle, M., Stamm, C. 2007. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68, 1224-1231. (0019) Kim, K.R., Owens, G., Kwon, S.I., So, K.H., Lee, D.B., Ok, Y.S. 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, Soil Pollut. 214, 163-174. (0019) Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., Ok, Y.S. 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, Soil Pollut. 214, 163-174. (0020) Kim, K.R., Owens, G., Ok, Y.S., Park, W.K., Lee, D.B., Kwon, S.I. 2012. Decline in extractable antibiotics in manure-based composts during composting. Waste Manage. 32, 110-116. Kim, K. R., Owens, G., Ok, Y.S., Park, W. K., Lee, D. B., Kwon, S.I. 2012. Decline in extractable antibiotics in manure-based composts during composting. Waste Manage. 32, 110-116. (0021) Kim, S.C., Yang, J.E., Ok, Y.S., Carlson, K. 2010. Dissolved and colloidal fraction transport of antibiotics in soil under biotic and abiotic conditions. Water Qual. Res. J. Can. 45, 275-285. Kim, S. C., Yang, J. E., Ok, Y.S., Carlson, K. 2010. Dissolved and colloidal fraction transport of antibiotics under biotic and abiotic conditions. Water Qual. Res. J. Can. 45, 275-285. (0022) Kwon, S.I., Owens, G., Ok, Y.S., Lee, D.B., Jeon, W.T., Kim, J.G., Kim, K.R. 2011. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manage. 31, 39-44.Kwon, S. I., Owens, G., Ok, Y.S., Lee, D. B., Jeon, W.T., Kim, J.G., Kim, K.R. 2011. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manage. 31, 39-44. (0023) Lehmann, J., Joseph, S. 2009. Biochar for environmental management: Science and technology. UK: Earthscan (0023) Lehmann, J., Joseph, S. 2009. Biochar for environmental management: Science and technology. UK: Earthscan (0024) Many, J.J. 2012. Pyrolysis for bochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939-7954. (0024) Many, J.J. 2012. Pyrolysis for bochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939-7954. (0025) Ok, Y.S., Kim, S.C., Kim, K.R., Lee, S.S., Moon, D.H., Lim, K.J., Sung, J.K., Hur, S.O., Yang, J.E. 2011. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ. Monit. Assess. 174, 693-701. (0025) Ok, Y.S., Kim, S.C., Kim, K.R., Lee, S.S., Moon, D.H., Lim, K.J., Sung, J.K., Hur, S.O., Yang, J.E. 2011. Monitoring of selected veterinary antibiotics in a composting facility in Gangwon Province, Korea. Environ. Monit. Assess. 174, 693-701. (0026) Qiang, Z., Adams, C. 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38, 2874-2890. (0026) Qiang, Z., Adams, C. 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38, 2874-2890. (0027) Richter, M.K., Sander, M., Krauss, M., Christl, I., Dahinden, M.G., Schneider, M.K., Schwarzenbach, R.P. 2009. Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environ. Sci. Technol. 43, 6632-6638. (0027) Richter, M. K., Sander, M., Krauss, M., Christl, I., Dahinden, M. G., Schneider, M. K., Schwarzenbach, R.P. 2009. Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environ. Sci. Technol. 43, 6632-6638. (0028) Teixid, M., Pignatello, J.J., Beltrn, J.L., Granados, M., Peccia, J. 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar). Environ. Sci. Technol. 45, 10020-10027. (0028) Teixid, M., Pignatello, J. J., Beltrn, J. L., Granados, M., Peccia, J. 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar). Environ. Sci. Technol. 45, 10020-10027. (0029) Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compouds in soils A review. J. Plant Nutr. Soil Sci. 166, 145-167. (0029) Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compouds in soils review. J. Plant Nutr. Soil Sci. 166, 145-167. (0030) Uchimiya, M., Bannon, D.I., Wartelle, L.H. 2012. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J. Agric. Food. Chem. 60, 1798-1809. (0030) Uchimiya, M., Bannon, D. I., Wartelle, L.H. 2012. Retention of heavy metals by carboxyl functional groups in biochars in small arms range soil. J. Agric. Food. Chem. 60, 1798-1809. (0031) Uzun, B.B., Apaydin-Varol, E., Ate, F., zbay, N., Ptn, A.E. 2010. Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel 89, 176-184. (0031) Long, B. B., Apaydin-Varol, E., Ate, F., ZBay, N., Ptn, A.E. 2010. Synthetic fuel production from tea waste: Characterization of bio-oil and bio-char. Fuel 89, 176-184. (0032) Yang, W., Zheng, F., Lu, Y., Xue, X., Li, N. 2011a. Adsorption interaction of tetracyclines with porous synthetic resins. Ind. Eng. Chem. 50, 13892-13898. (0032) Yang, W., Zheng, F., Lu, Y., Xue, X., Li, N. 2011a. Adsorption interaction of tetracyclines with porous synthetic resins. Ind. Eng. Chem. 50, 13892-13898. (0033) Yang, W., Zheng, F., Xue, X., Lu, Y. 2011b. Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. J. Colloid Interface Sci. 362, 503-509.(0033) Yang, W., Zheng, F., Xue, X., Lu, Y. 2011b. Investigation into adsorption mechanisms of sulfonamides to porous adsorbents. J. Colloid Interface Sci. 362, 503-509. (0034) Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A.R., Cao, X., Yang, L., Xue, Y., Li, H. 2012. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J. Hazard. Mater. 209210, 408-413. (0034) Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, AR, Cao, X., Yang, L., Xue, 2012. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J. Hazard. Mater. 209210, 408-413. (0035) Zhu, D., Kwon, S., Pignatello, J.J. 2005. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ. Sci. Technol. 39, 3990-3998. (0035) Zhu, D., Kwon, S., Pignatello, J.J. 2005. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ. Sci. Technol. 39, 3990-3998.

본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로, 바이오차의 흡착효율을 높일 수 있도록, 차 찌꺼기에서 유래한 바이오차를 증기 처리하여 흡착효율이 높은 활성화된 바이오차를 제조하고, 이를 이용하여 물과 토양에 존재하는 항생제를 흡착하는 방법을 제공하는 것이다. DISCLOSURE OF THE INVENTION The present invention has been devised to solve the problems described above, and it is an object of the present invention to provide an activated bio-tea having a high adsorption efficiency by vapor-treating a bio-tea derived from tea residue to increase the adsorption efficiency of the bio- To thereby adsorb antibiotics present in water and soil.

전술한 기술적 과제를 달성하기 위해, 본 발명에서는 바이오차를 증기로 처리하는 단계를 포함하는 바이오차의 활성화 방법을 제공한다.According to an aspect of the present invention, there is provided a method for activating a bio-tea comprising the step of treating the bio-tea with steam.

또한, 본 발명에서는 증기로 처리하는 단계를 포함하는 바이오차의 활성화 방법으로 활성화된 바이오차를 제공한다.In addition, the present invention provides a bio-tea activated by a bio-tea activation method including a step of treating with steam.

또한, 본 발명에서는 (a) 차 찌꺼기를 건조하는 단계, (b) 상기 단계 (a)에서 건조된 차 찌꺼기를 분쇄하는 단계, (c) 상기 단계 (b)에서 분쇄된 차 찌꺼기를 200 ~ 800 ℃에서 열분해하여 바이오차를 제조하는 단계 및 (d) 상기 단계 (c)에서 제조된 바이오차를 상기한 방법으로 활성화하는 단계를 포함하는 활성화된 바이오차의 제조방법을 제공한다.(B) a step of crushing the carburst dried in the step (a); (c) a step of crushing the carburst pulverized in the step (b) Deg.] C to produce a bio-tea, and (d) activating the bio-tea produced in the step (c) by the above-described method.

또한, 본 발명에서는 증기로 처리하여 활성화된 바이오차를 이용하여 물 또는 토양에서 항생제를 흡착하는 방법을 제공한다.
The present invention also provides a method for adsorbing antibiotics in water or soil using activated biocides treated with steam.

본 발명의 바이오차의 활성화 방법에 의하면 기존의 바이오차 보다 표면적 및 공극부피가 현저히 증가한 바이오차를 제조할 수 있고, 이러한 활성화 방법에 의해 활성화된 바이오차를 항생제로 오염된 물 및 토양에 적용할 경우에, 우수한 항생제 흡착효과를 보여 기존 바이오차를 이용하는 방법에 비하여 효율적으로 항생제를 흡착·제거할 수 있다.
According to the method for activating the bio-tea of the present invention, a bio-tea having a surface area and a void volume significantly increased compared with the conventional bio-tea can be produced. The activated bio-tea can be applied to water and soil contaminated with antibiotics , It shows excellent antibiotic adsorption effect, so that it can efficiently adsorb and remove antibiotics as compared with a conventional method using biocha.

도 1은 설파메타진(sulfamethazine, SMT)의 분자 구조 및 물리·화학적 특성(선택된 pKa,1 및 pKa,2는 선행문헌(Qiang and Adams, 2004)의 값을 사용함)을 보여주는 개략도이다.
도 2는 바이오차 및 바이오매스(Biomass, BM)의 FTIR 스팩트럼이다(BM : 바이오매스, TWBC-300 : 300 ℃ 제한된 산소 조건하에서 열분해하여 제조된 바이오차, TWBC-300N : 300 ℃ 질소 조건하에서 열분해하여 제조된 바이오차, TWBC-300S: 300 ℃ 제한된 산소 조건하에서 열분해 한 후 증기 활성화하여 제조된 바이오차, TWBC-700 : 700 ℃ 제한된 산소 조건하에서 열분해하여 제조된 바이오차, TWBC-700N : 700 ℃ 질소 조건하에서 열분해 한 후 제조된 바이오차,TWBC-700S : 700 ℃ 제한된 산소 조건하에서 열분해 후 증기 활성화하여 제조된 바이오차).
도 3은 바이오차 및 바이오매스의 공극 크기 분포(Pore size distribution)를 나타내는 그래프이다.
도 4는 pH 5에서 (a) SMT의 랭뮤어 흡착 등온선(Langmuir adsorption isotherms) 및 (b) 랭뮤어 흡착 등온선(Langmuir adsorption isotherms)으로부터 얻어진 분리 인자(seperation factor, RL)를 나타내는 그래프이다.
도 5는 낮은 평형 농도에서, 서로 다른 조건하에서 얻어진 분배 계수(distribution coefficients, KD)를 나타내는 그래프이다.
도 6은 700 ℃에서 제조된 바이오차의 pH 3 ~ 9 범위에서 측정한 흡착 분배계수(KD)를 나타내는 그래프이다.
도 7은 본 발명에 따른 증기 활성화된 바이오차의 제조방법을 나타내는 개략도이다.
1 is a schematic diagram showing the molecular structure and physical and chemical properties of sulfamethazine (SMT) (using selected pK a , 1 and pK a , 2 using the values of the preceding document (Qiang and Adams, 2004)).
FIG. 2 is a FTIR spectrum of biochemicals and biomass (BM: biomass, TWBC-300: biocar produced by pyrolysis under limited oxygen conditions, TWBC-300N: pyrolysis TWBC-300S: Biocar produced by steam cracking after pyrolysis under limited oxygen conditions, TWBC-700: Biocar produced by pyrolysis under limited oxygen conditions at 700 ° C, TWBC-700N: 700 ° C TWBC-700S: Biocar produced by pyrolysis and steam activation under limited oxygen conditions at 700 ° C).
FIG. 3 is a graph showing the pore size distribution of bio-tea and biomass.
4 is a graph showing the separation factor (R L ) obtained from (a) Langmuir adsorption isotherms of SMT and (b) Langmuir adsorption isotherms at pH 5.
5 is a graph showing distribution coefficients (K D ) obtained under different conditions at low equilibrium concentrations.
FIG. 6 is a graph showing the adsorption partition coefficient (K D ) measured at pH 3 to 9 of a biochip prepared at 700 ° C.
7 is a schematic view showing a method of manufacturing a steam activated bio-tea according to the present invention.

본 발명에서는, 바이오차를 증기로 처리하는 단계를 포함하는 바이오차의 활성화 방법을 제공한다. According to the present invention, there is provided a method for activating a bio-tea comprising the step of treating the bio-tea with steam.

본 발명의 일 태양에서, 상기 증기로 처리하는 단계는 온도가 200 ~ 800 ℃ 범위인 상태에서 수행될 수 있으나, 이에 제한되지 않는다. 바람직하게는, 600 ~ 800 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.In one aspect of the present invention, the step of treating with the steam may be carried out at a temperature in the range of 200 to 800 ° C, but is not limited thereto. Preferably, it may be carried out at 600 to 800 ° C, but is not limited thereto.

본 발명의 일 태양에서, 상기 증기로 처리하는 단계는 30 ~ 90 분 동안 증기를 주입하여 진행될 수 있으나, 이에 제한되지 않는다. In one aspect of the present invention, the step of treating with steam may be conducted by injecting steam for 30 to 90 minutes, but is not limited thereto.

본 발명의 일 태양에서, 상기 바이오차는 차 찌꺼기로부터 제조될 수 있으나, 이에 제한되지 않는다.In one aspect of the present invention, the bio-car may be manufactured from a car garage, but is not limited thereto.

또한, 본 발명에서는 증기로 처리하여 활성화된 바이오차를 제공한다. 상기 활성화된 바이오차는 중간 내지 높은 표면적을 갖는 구조화된 탄소 기질로서, 표면에 무정형 탄소(amorphous carbon)를 포함하고, 중간 내지 높은 표면적을 갖는 구조화된 탄소 기질로서, 유기 오염물질을 흡착할 수 있는 흡착제로 작용할 수 있다. 또한, 표면의 작용기가 발달하며, 표면에 기공의 부피가 증가하므로, 수질 및 토양에서 항생제를 효율적으로 제거할 수 있다. In addition, the present invention provides activated bio-tea by treating with steam. The activated biochar is a structured carbon substrate having a medium to high surface area, which is a structured carbon substrate having amorphous carbon on its surface and having a medium to high surface area. The adsorbent capable of adsorbing organic pollutants . ≪ / RTI > Also, functional groups on the surface are developed and the volume of the pores on the surface increases, so that antibiotics can be efficiently removed from water and soil.

본 발명에서는 (a) 차 찌꺼기를 건조하는 단계, (b) 상기 단계 (a)에서 건조된 차 찌꺼기를 분쇄하는 단계, (c) 상기 단계 (b)에서 분쇄된 차 찌꺼기를 200~ 800 ℃에서 열분해하여 바이오차를 제조하는 단계 및 (d) 상기 단계 (c)에서 제조된 바이오차를 증기 처리하여 활성화하는 단계를 포함하는 활성화된 바이오차의 제조방법을 제공한다.(B) a step of pulverizing the carburst dried in the step (a); (c) a step of grinding the carburized pulverized in the step (b) at a temperature of 200 to 800 ° C .; And (d) steam-treating the bio-tea prepared in the step (c) to activate the bio-tea.

본 발명의 일 태양에서, 상기 단계 (a)에서는 차를 우려낸(infusion) 후 남은 차 찌꺼기(tea waste)를 수집하고, 탈이온수(deionized water), 멸균수(sterillized water) 또는 증류수(distilled water)를 이용하여 수회 세척한 후 건조할 수 있다.In one aspect of the present invention, in step (a), tea waste left after infusion of the tea is collected, and deionized water, sterilized water, or distilled water, , And then dried.

본 발명의 일 태양에서, 상기 단계 (b)는 건조된 차 찌꺼기를 분쇄하는 단계로서, 입도 크기 1mm 이하로 분쇄하는 것이 바람직하지만, 이에 제한되지 않는다.In one aspect of the present invention, the step (b) is a step of pulverizing the dried carburst, which is preferably, but not limited to, grinding to a particle size of 1 mm or less.

본 발명의 일 태양에서, 상기 단계 (c)에서는 상기 분쇄한 차 찌꺼기를 200~ 800 ℃에서 열분해하여 바이오차를 제조할 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the step (c) may be performed by pyrolyzing the pulverized tea waste at 200 to 800 ° C, but the present invention is not limited thereto.

본 발명의 일 태양에서, 상기 단계 (c)에서는 제한된 산소 분위기에서 열분해하여 바이오차를 제조할 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the step (c) may be performed by pyrolyzing in a limited oxygen atmosphere, but the present invention is not limited thereto.

본 발명의 일 태양에서, 상기 단계 (d)는 단계 (c)에서 제조된 바이오차를 200~ 800 ℃에서 증기 처리하여 활성화할 수 있으며, 이에 제한되지 않는다.In one aspect of the present invention, the step (d) may be activated by steam treatment at 200 to 800 ° C of the bio-tea prepared in step (c), but is not limited thereto.

또한, 본 발명은 증기 처리로 활성화된 바이오차를 이용해서 물 또는 토양에서 항생제를 흡착하는 단계를 포함하는 항생제 흡착 방법을 제공한다.The present invention also provides a method of adsorbing antibiotics comprising adsorbing antibiotics in water or soil using a bio-activated by steam treatment.

본 발명의 일 태양에서, 상기 항생제는 설폰아미드(sulfonamide)계, 세팔로스포린(cephalosporin)계, 폴리펩티드(polypeptide)계, 폴리엔(polyene)계, 마클로라이드(macrolide)계, 테트라사이클린(tetracyclin)계, 아미노글루코사이드(aminoglycosides)계 또는 페니실린(penicillin)계의 군으로부터 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않는다.In one aspect of the present invention, the antibiotic is selected from the group consisting of a sulfonamide system, a cephalosporin system, a polypeptide system, a polyene system, a macrolide system, a tetracycline system, Aminoglycosides, penicillin, and the like, but the present invention is not limited thereto.

본 발명의 일 태양에서, 상기 항생제는 설파메타진(sulfamethazine)일 수 있으며, 이에 제한되지 않는다.
In one aspect of the present invention, the antibiotic may be sulfamethazine, but is not limited thereto.

이하, 실시예 및 비교예를 기초로 하여 본 발명에 대하여 상세하게 설명하나, 제시된 실시예는 예시적인 것으로 본 발명의 범위를 제한하기 위한 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the examples shown are illustrative and are not intended to limit the scope of the present invention.

비교예Comparative Example . . 바이오매스Biomass , , 바이오차Bio tea 및 질소 처리된  And nitrogen treated 바이오차의Bio-car 제조 Produce

(1) 바이오매스, 바이오차 및 질소 처리된 바이오차의 제조(1) Production of biomass, bio-tea and nitrogen-treated bio-tea

바이오매스를 제조하기 위해서, 먼저 우려낸 차에서 찌꺼기를 수집하고, 멸균수로 수회 세척한 후 공기건조(air drying)하여, 1 mm 미만의 입도 크기로 분쇄하여, 바이오매스를 제조했다. 이러한 차 찌꺼기는 31.05 %의 홀로셀룰로오즈(holocellulose), 25.68 %의 리그닌(lignin), 13.97 %의 추출물(extractives)을 포함한다(Uzen et al., 2010). In order to produce biomass, the waste was first collected in a towed car, washed several times with sterilized water, air dried, and ground to a particle size of less than 1 mm to produce biomass. These carcasses include 31.05% holocellulose, 25.68% lignin, and 13.97% extractives (Uzen et al., 2010).

바이오차를 제조하기 위해서, 분쇄된 차 찌꺼기를 화로(N11/H Nabertherm furnace, Germany)에서 분당 7 ℃의 가열속도로 제한된 산소 조건하에서 2시간 동안 가열하여, 최고온도 300 ℃ 또는 700 ℃에서 열분해하여 바이오차를 제조하였다. 최고온도 300 ℃에서 열분해하여 제조된 바이오차는 TWBC-300이고, 최고온도 700 ℃에서 열분해하여 제조된 바이오차는 TWBC-700이며, BC는 바이오차, TW는 차 찌꺼기인 것을 뜻한다.In order to produce the bio-tea, the crushed tea grounds were pyrolyzed at a maximum temperature of 300 ° C or 700 ° C under a limited oxygen condition at a heating rate of 7 ° C per minute in a furnace (N11 / H Nabertherm furnace, Germany) The bio-tea was prepared. The bio-tea produced by pyrolysis at a maximum temperature of 300 ° C is TWBC-300, the bio-tea produced by pyrolysis at a maximum temperature of 700 ° C is TWBC-700, BC means bio-tea, and TW means tea residue.

질소 처리된 바이오차를 제조하기 위해서, 분쇄된 차 찌꺼기를 변형된 화로(N11/H Nabertherm furnace, Germany)에서 산소(O2)가 제한된 상태를 만들기 위하여, 분당 5 mL의 유량으로 질소가스(N2)를 주입 및 분당 7 ℃의 승온 조건에서 2시간 동안 가열하여, 최고온도 300 ℃ 또는 700 ℃에서 열분해하여 바이오차를 제조하였다(Ahmad et al., 2012). 또한, 질소 조건하에서 최고온도 300 ℃에서 열분해하여 제조된 바이오차는 TWBC-300N이고, 질소 조건하에서 최고온도 700 ℃에서 열분해하여 제조된 바이오차는 TWBC-700N이며, N은 질소처리 했음을 뜻한다.
In order to make the nitrogen treated green tea, the pulverized tea residue was treated with nitrogen gas (N 2 / N 2 ) at a flow rate of 5 mL per minute to make oxygen (O 2 ) restricted state in a modified furnace (N11 / H Nabertherm furnace, Germany) 2 ) was injected and heated at a temperature of 7 ° C / min for 2 hours to pyrolyze at a maximum temperature of 300 ° C or 700 ° C to produce a biochar (Ahmad et al., 2012). The biocide prepared by pyrolysis at a maximum temperature of 300 ° C under nitrogen condition is TWBC-300N, and the biocide produced by pyrolysis at 700 ° C under nitrogen condition is TWBC-700N, and N means nitrogen.

실시예Example . 증기 처리하여 활성화된 . Steamed and activated 바이오차의Bio-car 제조 Produce

(1) 증기 처리하여 활성화된 바이오차의 제조(1) Production of bio-tea activated by steam treatment

증기 처리하여 활성화된 바이오차를 제조하기 위해서, 비교예에서 얻어진 TWBC-300 또는 TWBC-700을 300 ℃ 또는 700 ℃의 최고 온도에서 추가적으로 45분 동안, 분당 5 mL의 유량으로 증기 처리하여 바이오차를 활성화시켰다. To produce the activated biocide by steam treatment, the TWBC-300 or TWBC-700 obtained in the comparative example was steamed at a maximum temperature of 300 DEG C or 700 DEG C for an additional 45 minutes at a flow rate of 5 mL per minute, Lt; / RTI >

최고온도 300 ℃에서 열분해한 후, 증기 처리하여 활성화된 바이오차는 TWBC-300S, 최고온도 700 ℃에서 열분해한 후, 증기 처리하여 활성화된 바이오차는 TWBC-700S이며, S는 증기(steam)처리하여 활성화했음을 뜻한다.
The biocide activated by steam treatment after pyrolysis at the maximum temperature of 300 ° C is thermally decomposed at TWBC-300S, the maximum temperature is 700 ° C, steamed, and the activated biocide is TWBC-700S. S is activated by steam treatment .

(2) 제조된 바이오매스 및 바이오차의 특성 분석(2) Characterization of manufactured biomass and bio-tea

제조된 바이오차를 건식 연소(dry combustion)하여 원소분석기(elemental analyzer, model EA 1110, CE Instruments, Milan, Italy)를 이용하여 구성 원소를 측정하였다. 수소/탄소(H/C) 및 산소+질소/탄소(0+N/C)의 원자 비율을 측정하여 각각의 극성(polarity)과 방향성(aromacity)을 계산하고, 수분, 이동성물질(mobile matter), 회분(ash) 및 잔류물질(resident matter)을 측정하였다(Ahmad et al. 2013b). The constituent elements were measured using an elemental analyzer (model EA 1110, CE Instruments, Milan, Italy) by dry combustion of the produced bio-car. The polarity and aromatics of each are measured by measuring atomic ratios of hydrogen / carbon (H / C) and oxygen + nitrogen / carbon (0 + N / C) , Ash and resident matter were measured (Ahmad et al. 2013b).

바이오차가 가지는 pH를 측정하기 위해서 바이오차와 탈이온수를 1:5의 비율로 혼합하여 용액으로 제조하고 pH 미터(pH meter, Orion, Thermo Electron Corp., Waltham, MA, USA)로 측정하였다. To measure the pH of the bio-tea, a mixture of bio-tea and deionized water was mixed at a ratio of 1: 5, and the solution was measured with a pH meter (pH meter, Orion, Thermo Electron Corp., Waltham, MA, USA).

바이오차 표면에 존재하는 공극 및 작용기를 분석하였다. 각각의 바이오차의 표면 및 공극 형태는 에너지 산란 분광기(energy dispersive spectrophotometer, SU8000, Hitachi, Tokyo, Japan)가 장착된 주사전자현미경(field emission scanning electron microscope, FE-SEM : 15.0 kv × 5.0 k)으로 촬영하였으며, 표면의 작용기는 적외선분광법(Fourier transform infrared spectroscopy, FTIR, Bio-Rad Excalibur 3000MX spectrophotometer, Hercules, CA, USA)을 이용하여 측정하였다. BET(Brunauer-Emmett-Teller) 표면적(SBET), 전체 공극 부피 및 공극 직경은 가스 흡착 분석기(gas sorption analyzer, NOVA-1200; Quantachrome Corp., Boynton Beach, FL, USA)를 이용하여 측정하였다.
The pores and functional groups existing on the surface of the bio - tea were analyzed. The surface and pore shapes of each bio-tea were measured by a field emission scanning electron microscope (FE-SEM: 15.0 kV x 5.0 k) equipped with an energy dispersive spectrophotometer (SU8000, Hitachi, Tokyo, Japan) And the surface functional groups were measured using infrared spectroscopy (FTIR, Bio-Rad Excalibur 3000MX spectrophotometer, Hercules, Calif., USA). The BET (Brunauer-Emmett-Teller) surface area (S BET ), total pore volume and pore diameter were measured using a gas sorption analyzer (NOVA-1200; Quantachrome Corp., Boynton Beach, FL, USA).

(3) 바이오매스 및 제조된 바이오차의 특성 분석 결과(3) Analysis of characteristics of biomass and manufactured bio-tea

제조된 바이오매스 및 제조된 바이오차의 원소 분석 결과를 하기 표 1에 나타내었다.
The results of the elemental analysis of the produced biomass and the produced bio-tea are shown in Table 1 below.

[표 1] 제조된 바이오차의 근사 분석 및 원소 분석 결과[Table 1] Approximate analysis and elemental analysis of the produced biocha

Figure pat00001
Figure pat00001

a : 회분 및 수분 비존재 상태
a: ash and moisture absent state

상기 표 1에 나타난 바와 같이, 300 ℃에서 제조된 바이오차가 0.19 ~ 0.24의 산소/탄소(O/C) 비율을 보였고, 700 ℃에서 제조된 바이오차가 0.08 ~ 0.11의 산소/탄소(O/C) 비율을 보여, 열분해 온도 증가에 따라 산소/탄소(O/C) 비율이 감소하는 것을 확인할 수 있었다. 또한, 열분해 온도의 증가에 따른 극성지표(0+N/C)의 감소는 표면에 극성 작용기가 감소되는 것을 나타내어, 700 ℃에서 제조된 바이오차가 300 ℃에서 제조된 바이오차에 비해서 친수성이 낮음을 확인할 수 있었다. 또한, 수소/탄소(H/C)비율은 TWBC-700이 0.278, TWBC-700N이 0.324, TWBC-700S이 0.299였고, TWBC-300이 0.890, TWBC-300N이 0.690, TWBC-700S이 0.790인 것으로 나타나, 고온에서 제조된 바이오차가 높은 비율로 탄화되고, 높은 방향성 구조를 나타내는 것을 확인할 수 있었다. 이는 도 2에 나타난 FTIR 스펙트럼의 결과와 일치함을 확인할 수 있었다.As shown in Table 1, the bio-car produced at 300 ° C showed an oxygen / carbon (O / C) ratio of 0.19 to 0.24 and the bio-car produced at 700 ° C showed an oxygen / carbon (O / C) ratio of 0.08 to 0.11. And the oxygen / carbon (O / C) ratio decreased with increasing pyrolysis temperature. The decrease in the polar index (0 + N / C) with increasing pyrolysis temperature indicates that the polar functional group is reduced on the surface, and the bio-car produced at 700 ° C is less hydrophilic than the bio-car produced at 300 ° C I could confirm. The hydrogen / carbon (H / C) ratio was 0.278 for TWBC-700, 0.324 for TWBC-700N, 0.299 for TWBC-700S, 0.890 for TWBC-300, 0.690 for TWBC-300N and 0.790 for TWBC- It was confirmed that the biochar produced at a high temperature was carbonized at a high rate and exhibited a high aromatic structure. This is consistent with the results of the FTIR spectrum shown in FIG.

도 2에 나타난 모든 바이오차와 원료의 FTIR 스펙트럼에서의 피크 배치는 문헌(Cao and Harris, 2010; Chen et al., 2008)에 제시된 데이터에 근거하였다. 300 ℃에서 제조된 바이오차와 700 ℃에서 제조된 바이오차에서 서로 다른 스펙트럼을 얻었다. 고온의 열분해로 제조된 바이오차는 3200 ~ 3500 cm-1의 넓은 산소-수소 밴드를 나타냈고, 2820 ~ 2980 cm-1의 지방족 화합물 탄소-수소 밴드는 감소하여, 고온에서 불안정한 지방족(aliphatic) 화합물의 손실을 나타냈다. 그리고, 1100-1000 cm-1 밴드로서 PO4 3 -의 존재를, 그리고 1490-1410 cm-1 주변의 밴드로써 CO3 2 -의 존재를 확인할 수 있었다(Cao and Harris, 2010). 또한, TWBC-700, TWBC-700N 및 TWBC-700S의 885 cm- 1와 750 cm-1에서 나타나는 밴드는 방향족 탄화수소의 면외 변형(out-of-plane deformation)에 의해 나타나는 것으로서(Chen et al., 2008), 700 ℃에서 제조된 바이오차는 300 ℃에서 제조된 바이오차보다 더 높은 방향성을 나타내는 것을 확인할 수 있었다.Peak placement in the FTIR spectrum of all biochips and raw materials shown in Figure 2 was based on data presented in the literature (Cao and Harris, 2010; Chen et al., 2008). Different spectra were obtained from the bio - tea prepared at 300 ° C and the bio - tea prepared at 700 ° C. The biodiesel produced by pyrolysis at high temperature exhibited a wide oxygen-hydrogen band of 3200 ~ 3500 cm -1 , and the aliphatic carbon-hydrogen band of 2820 ~ 2980 cm -1 decreased, leading to the formation of unstable aliphatic compounds Loss. And, as the 1100-1000 cm -1 band, PO 4 3 - This confirmed the presence of (Cao and Harris, 2010) - 2 CO 3 as a present, and a band around 1490-1410 cm -1 for. Also, TWBC-700, TWBC-700N and 700S-TWBC 885 cm of - as indicated by the band 1 and 750 cm -1 appear in the out-of-plane deformation of the aromatic hydrocarbon (out-of-plane deformation) (Chen et al,. 2008), it can be confirmed that the biochar produced at 700 ° C has a higher directionality than the biochar produced at 300 ° C.

표 1에서 나타난 바와 같이, 제조된 바이오매스 및 바이오차의 표면적은 열분해 온도 증가에 따라 2.28에서 342.22 m2/g로 상당히 증가하였으며, 고온에서 제조되어 증기 활성화된 TWBC-700S가 576.09 m2/g로서 가장 증가된 값을 나타냈다. As shown in Table 1, the surface area of the produced biomass and bio-tea increased considerably from 2.28 to 342.22 m 2 / g with increasing pyrolysis temperature, and the steam-activated TWBC-700S prepared at high temperature had a surface area of 576.09 m 2 / g As shown in Fig.

도 3에 나타난 바와 같이, 제조된 바이오매스 및 바이오차의 공극 크기 분포는, TWBC-700S에서 지름이 작은 공극의 부피가 증가된 것을 확인할 수 있었다. 이는 증기 처리에 의해, 바이오차로부터 추가로 방출된 수소형태의 합성가스에 의한 것으로 생각되고, 이에 의해 공극 부피 및 표면적이 증가된 것을 확인할 수 있었다(Demirbas, 2004).
As shown in FIG. 3, it was confirmed that the pore size distribution of the produced biomass and bio-tea increased in the volume of pores having a small diameter in TWBC-700S. This is believed to be due to the syngas in the form of hydrogen, which is further released from the bio-car by the vapor treatment, thereby increasing the void volume and surface area (Demirbas, 2004).

실험예Experimental Example . 제조된 . Manufactured 바이오매스Biomass  And 바이오차의Bio-car 항생제 흡착제거 능력 향상 평가 Antibiotic adsorption removal ability evaluation

(1) 바이오차의 항생제 흡착 제거 능력 평가를 위한 배치흡착실험(1) Batch adsorption experiment for evaluation of antibiotic adsorption removal ability of bio-tea

항생제의 배치흡착실험은 pH 3, 5, 7 및 9에서 진행하였으며, pH 3, 7 및 9는 10 mM 인산암모늄(ammonium phosphate) 그리고 pH 5는 10 mM 초산암모늄(ammonium acetate)로 제조하였고, 0.1 M 염화암모늄(ammonium chloride)을 이용하여 조절하면서 실험하였으며, 1 ~ 50 mg/L의 범위의 농도에서 수행하였다. 또한, 실험하는 동안 pH를 체크하여 필요시 짝산 및 짝염기로 조정하였다(Richter et al., 2009). 모든 흡착실험에서 1g/L의 양으로 바이오차를 흡착제로서 투입했다. 또한, 상기한 용액은 25 ℃에서 배양교반기(incubator shaker, SI-300/300R/600/600R, JEID TECH Korea)를 이용하여 100 rpm 속도로 지속적으로 교반하여 평형을 유지했다. 72 시간이 지난 후에, 폴리비닐리덴플루오라이드(poly vinylidene fluoride, PVDF) 필터를 이용하여 여과하고 고성능액체크로마토그래피(high performance liquid chromatography, HPLC) 분석하기 전에 애질런트(agilent) 갈색병에 보관하였다. 모든 실험은 25 ℃에서 수행하였다. 여과시 발생하는 유실양은 항생제 용액만 담겨있는 공 샘플로 측정한 결과 무시할만한 수준으로 결정하였다. 용액의 항생제 농도는 자동견본기(auto-sampler)와 UV-VIS 검출기가 장착된 HPLC로 측정했다. 컬럼 오븐(column oven)이 구비된 역상컬럼(reverse-phase Sunfire C18 column)을 사용하였다. 컬럼은 25 ℃에서 0.5 mL/min의 유속을 유지하였다. 이동상 A는 엽산(formic acid, 99.9:0.1 v/v)과 HPLC 등급수(HPLC-grade water)로 구성되었고, 이동상 B는 HPLC 등급수를 포함하는 아세토니트릴(acetonitrile)과 엽산(99.9:0.1 v/v)으로 구성되었다. 농도구배(gradient)는 초기 1 분간 96 % 이동상 A와 4 %의 이동상 B에서 70 % 이동상 A와 30 %의 이동상 B가 되도록 하고, 이후 19 분 동안 유지했다. 주입량은 20 ㎕이고, 265 nm에서 흡광도를 측정했다(Ji et al., 2009).
Batch adsorption experiments of antibiotics were carried out at pH 3, 5, 7 and 9, and pH 3, 7 and 9 were prepared with 10 mM ammonium phosphate and pH 5 with 10 mM ammonium acetate. M ammonium chloride, and was performed at a concentration ranging from 1 to 50 mg / L. In addition, the pH was checked during the experiment and adjusted to equilibrium and conjugate bases as needed (Richter et al., 2009). In all adsorption experiments, 1 g / L of bio-tea was added as the adsorbent. The above solution was continuously stirred at a rate of 100 rpm using an incubator shaker (SI-300 / 300R / 600 / 600R, JEID TECH Korea) at 25 ° C to maintain equilibrium. After 72 hours, they were filtered using a polyvinylidene fluoride (PVDF) filter and stored in an agilent brown bottle prior to high performance liquid chromatography (HPLC) analysis. All experiments were carried out at 25 ° C. The amount of water lost during filtration was determined to be negligible as measured by a blank sample containing only the antibiotic solution. Antibiotic concentrations of the solutions were determined by HPLC with an auto-sampler and a UV-VIS detector. A reverse-phase Sunfire C18 column equipped with a column oven was used. The column maintained a flow rate of 0.5 mL / min at 25 ° C. Mobile phase A consisted of formic acid (99.9: 0.1 v / v) and HPLC grade water. Mobile phase B consisted of acetonitrile and folic acid (99.9: 0.1 v / v). The concentration gradient was made to be 70% mobile phase A and 30% mobile phase B at 96% mobile phase A and 4% mobile phase B for 1 minute and then kept for 19 minutes. The dose was 20 μl and the absorbance was measured at 265 nm (Ji et al., 2009).

(2) 분배계수 계산(2) Calculation of distribution coefficient

SMT 배치흡착 실험 데이터는 하기 수학식 1의 프로인들리히(Freundlich) 등온선과 하기 수학식 2의 랭뮤어(Langmuir) 등온선을 이용하여 분석했다.The SMT batch adsorption test data was analyzed using the Freundlich isotherm of Equation 1 and the Langmuir isotherm of Equation 2 below.

[수학식 1][Equation 1]

Figure pat00002
Figure pat00002

[수학식 2]&Quot; (2) "

Figure pat00003
Figure pat00003

여기서, qads는 단위 질량당 흡착된 항생제 농도(mg/g), Ce는 도 4의 (a)에 나타난 흡착되는 물질의 평형 농도(mg/L), KF는 흡착제의 상대적 흡착 용량을 표시하는 상수(mg/g), n은 흡착강도를 표시하는 상수, KL은 랭뮤어 친화도 매개변수(L/mg), qmax 는 최대 랭뮤어 수용 매개변수(mg/g)이다. 등온선 매개변수는 비선형회귀(non-linear regression)에 의해 결정했다.Where q ads is the adsorbed antibiotic concentration per unit mass (mg / g), Ce is the equilibrium concentration (mg / L) of the adsorbed material as shown in Figure 4 (a), K F is the relative adsorption capacity of the adsorbent indicating constant (mg / g), n is a constant, K L is the Langmuir affinity parameter (L / mg), q max the maximum acceptable Langmuir parameters (mg / g) indicating the strength of suction. The isotherm parameter was determined by non-linear regression.

랭뮤어 매개변수에 근거한 분리 인자(separation factor, RL)는 흡착 시스템이 배치 시스템에서 친화적인지 비친화적인지 결정하기 위하여 사용될 수 있고, 이를 수학식 3에 나타내었다.The separation factor (R L ) based on the Langmuir parameter can be used to determine if the adsorption system is friendly or not in the batch system and is shown in equation (3).

[수학식 3]&Quot; (3) "

Figure pat00004
Figure pat00004

여기서, KL은 랭뮤어상수 (L/mg), C0는 초기 SMT 농도(mg/L)이다. Where K L is the Langmuir constant (L / mg) and C 0 is the initial SMT concentration (mg / L).

KD 는 흡착 분배계수이고 각각의 다른 pH값에서 계산하였으며, KD는 단위질량당 흡착된 SMT 양(qads)과 평형 흡착제 농도(Ce)의 비율로 정의되며, 하기 수학식 4에 나타내었다.K D is the adsorption partition coefficient and is calculated at each different pH value. K D is defined as the ratio of the adsorbed SMT amount (q ads ) per unit mass to the equilibrium adsorbent concentration (C e ) .

[수학식 4]&Quot; (4) "

Figure pat00005
Figure pat00005

또한, 항생제 한 분자당 흡착되는 점유면적(Am)은 하기 수학식 5를 이용해서, TWBC-700, TWBC-700N 및 TWBC-700S에 대하여 계산하였다. In addition, the occupied area (A m ) adsorbed per molecule of the antibiotic was calculated for TWBC-700, TWBC-700N and TWBC-700S using the following equation (5).

[수학식 5]&Quot; (5) "

Figure pat00006
Figure pat00006

여기서, SBET는 바이오차의 표면적(m2/g), MW는 항생제의 분자량, NA는 아보가드로 상수(6.023 × 1023), qmax는 pH 5에서 바이오차의 단위 무게당 최대 흡착량(g/g)이다.In the equation, S BET is the surface area of the biocide (m 2 / g), M W is the molecular weight of the antibiotic, N A is the Avogadro constant (6.023 × 10 23 ), q max is the maximum adsorption amount per unit weight of the biocide (g / g).

피얼슨의 상관계수(pearson's correlation coefficient, r) 및 확률(P)값은 SAS ver 9.1(SAS Institute, Cary, NC, USA)을 이용하여 결정하였다.
The Pearson's correlation coefficient (r) and probability (P) were determined using SAS version 9.1 (SAS Institute, Cary, NC, USA).

(3) SMT 흡착 및 분배계수의 측정 결과(3) Measurement results of SMT adsorption and partition coefficient

제조된 바이오매스 및 바이오차의 SMT 흡착 및 분배계수 결과를 하기 표 2에 나타내었다.The results of SMT adsorption and partition coefficient of the prepared biomass and bio-tea are shown in Table 2 below.

[표 2] 제조된 바이오매스 및 바이오차의 SMT 흡착에 대한 비선형 프로인들리히 등온선과 랭뮤어 등온선 상수값[Table 2] Nonlinear proline isotherms and Langmuir isotherm constants for SMT adsorption of biomass and biocide produced

Figure pat00007

Figure pat00007

표 2에 나타난 바와 같이, 흡착 데이터는 프로인들리히모델에서 높은 회귀계수(regression coefficients, r2)를 나타내어, 잘 일치함을 보여주었다. 700 ℃에서 제조된 바이오차의 KF 값은 300 ℃에서 제조된 것들보다 높았고, 이는 높은 항생제 수용능력을 보여준다. 이때, 프로인들리히 계수인 n은 모두 1보다 낮은데, 이로써 각각의 바이오차에서의 흡착 표면적이 균일하지 않음을 알 수 있었다. As shown in Table 2, the adsorption data showed a high agreement with the regression coefficients (r 2 ) in the pro-inferior model. K F value of the bio-manufactured tea at 700 ℃ was higher than those produced at 300 ℃, which shows high antibiotic capacity. At this time, the proton acceptance coefficient n is lower than 1, which indicates that the adsorption surface area in each biochain is not uniform.

pH 5에서 TWBC-700N 및 TWBC-700S에 대한 랭뮤어 흡착능인 qmax값이 바이오매스에 대한 것보다 각각 약 50배 및 58배 높았다. 또한, 다른 조건의 동일온도에서 제조된 바이오차들인 TWBC-700, TWBC-700N 및 TWBC-700S은 각각 다른 흡착능을 보였다. pH 5에서의 흡착능은, 바이오매스 < TWBC-300S < TWBC-300 < TWBC-300N < TWBC-700 < TWBC-700N < TWBC-700S의 순으로 증가하였다. The Langmuir adsorption capacity q max for TWBC-700N and TWBC-700S at pH 5 was about 50 and 58 times higher than for biomass, respectively. In addition, TWBC-700, TWBC-700N and TWBC-700S, which were prepared at the same temperature under different conditions, exhibited different adsorption capacities. The adsorption capacity at pH 5 increased in the order of biomass <TWBC-300S <TWBC-300 <TWBC-300N <TWBC-700 <TWBC-700N <TWBC-700S.

바이오차의 흡착능과 표 1에 기재된 비표면적 및 공극 부피와의 상관관계를 조사한 결과 바이오차의 흡착능은 비표면적(r = 0.92, P = 0.004) 및 공극 부피(r = 0.96, P = 0.001)와 양의 상관관계를 보였다. 이로써, 흡착되는 물질과 바이오차 사이에 상호작용은 표면 의존적인 것임을 확인할 수 있었다(Yang et al., 2011b). As a result of the correlation between the adsorption capacity of bio-tea and the specific surface area and void volume shown in Table 1, the adsorption capacity of bio-tea was found to be as follows: specific surface area (r = 0.92, P = 0.004) and pore volume (r = 0.96, P = Positive correlation. This confirms that the interaction between the adsorbed material and the bio-phase is surface-dependent (Yang et al., 2011b).

도 4의 (b)에는, 항생제 흡착에 대한 친화성의 지표로서 계산된 분리인자(RL)가 나타나 있다. 도 4의 (b)에 나타난 바와 같이, 제조된 모든 바이오차들이 1보다 작은 RL값을 가지는 것으로 나타났으며, 이것은 본 실시예에 따라 제조된 모든 바이오차들이 항생제 흡착능이 양호하다는 것을 알 수 있었으며, 이들 바이오차들 중 TWBC-700S가 가장 낮은 RL값을 나타내어, 가장 흡착능이 뛰어남을 알 수 있었다.Figure 4 (b) shows the separation factor (R L ) calculated as an index of affinity for antibiotic adsorption. As shown in Fig. 4 (b), all of the bio-cars manufactured showed an R L value of less than 1, which means that all of the bio-cars manufactured according to this example had a good antibiotic adsorption capacity TWBC-700S showed the lowest R L value among these biochars, and it was found that the most excellent adsorption capacity was obtained.

바이오차의 흡착 친화성을 보다 상세히 알아보기 위하여, 낮은 평형농도인 pH 5에서 흡착분배 계수(KD)를 계산하였으며 그 결과를 도 5에 나타냈다. 도 5에서 나타난 바와 같이, 실험한 농도 내에서 KD값은 약 104(L/kg)이었다. 관찰된 KD값은 문헌(Ji et al., 2009)상에서 보고된 토양, 부식물, 점토광물을 포함하는, 자연 토류 흡착제의 흡착 분배계수 값보다 현저히 큰 값임을 확인할 수 있었다.In order to investigate the adsorption affinity of bio-tea in more detail, the adsorption partition coefficient (K D ) was calculated at pH 5, which is a low equilibrium concentration, and the results are shown in FIG. As shown in FIG. 5, the K D value was about 10 4 (L / kg) within the experimented concentration. The observed K D values are significantly larger than the adsorption partition coefficients of natural soil adsorbents, including soils, caustic and clay minerals reported in the literature (Ji et al., 2009).

도 6에 나타난 바와 같이, TWBC-700S가 TWBC-700 및 TWBC-700N 보다 SMT 흡착능이 높은 것을 알 수 있었으며, 이것은 바이오차의 표면접근성(surface area accessibility)과 일치하는 것임을 알 수 있었다. 또한, 700 ℃에서 제조된 바이오차에 있어서, 흡착능이 pH 3에서 가장 높았으며, pH가 증가함에 따라 감소하는 경향을 보여 KD값이 pH 의존성이 있음을 확인할 수 있었다.
As shown in FIG. 6, it was found that TWBC-700S had higher SMT adsorbability than TWBC-700 and TWBC-700N, which is consistent with the surface area accessibility of the bio-tea. Also, the adsorption capacity of the biochip prepared at 700 ℃ was the highest at pH 3, and decreased with increasing pH. It was confirmed that K D value was pH dependent.

(4) SMT 흡착을 위한 가능한 메커니즘(4) Possible mechanisms for SMT adsorption

이렇게 증기 처리된 바이오차에 발생한 표면적 및 공극 부피를 포함한 물리적 변화는 공극으로의 항생제 유입을 증가시키고, 이것에 의해서 바이오차의 흡착 효율이 증가한다(Yang et al., 2011a). 표 3에 나타난 바와 같이, 증기 활성화된 바이오차는 다른 바이오차에 비하여 많은 수의 미세공극으로 이루어져 있고, 이로써 높은 공극부피(0 ~ 2 nm)를 나타냈다. 또한, TWBC-700S에서 중공극(mesopore, 2~ 50 nm)과 소공극(micropore, > 50 nm)을 상당히 많이 관측할 수 있다. 도 1에 나타난 바와 같이, SMT 분자의 크기는 대략적으로 1.050 nm 0.672 nm로 알려져 있으므로(Braschi et al., 2010), SMT는 소공극, 중공극 및 대공극으로 확산될 수 있다. 따라서, TWBC-700S 및 TWBC-700N 바이오차가 높은 공극 부피를 가지는 점이 높은 항생제 흡착능과 연관지어 설명할 수 있다.Physical changes, including surface area and pore volume, in the steam treated biochars increase the antibiotic influx into the pores, which increases the adsorption efficiency of biochains (Yang et al., 2011a). As shown in Table 3, the steam-activated bio-car is composed of a large number of micro-pores as compared with the other bio-car, thereby exhibiting a high pore volume (0 to 2 nm). In TWBC-700S, mesopores (2-50 nm) and micropores (> 50 nm) can be observed to a considerable extent. As shown in Figure 1, SMT molecules are known to be approximately 1.050 nm 0.672 nm in size (Braschi et al., 2010), and SMT can be diffused into small pores, mesopores and large pores. Therefore, the high pore volume of the TWBC-700S and TWBC-700N biocides can be explained by their high antibiotic adsorption capacity.

표 1에 나타난 바와 같이, 흡착된 SMT 분자당 점유면적(A m )은 TWBC-700는 2403.40 Å2, TWBC-700N는 727.53 Å2 그리고 TWBC-700S는 860.16 Å2으로 측정되었다. 이와 같이, TWBC-700N와 TWBC-700S에 대한 A m 값이 TWBC-700에 비해 낮게 측정되었는데, 이것은 TWBC-700N 및 TWBC-700S가 표면에 훨씬 더 압축된 분자배열을 가지는 것을 의미하는 것이다(Yang et al., 2011a). 산소를 포함하는 작용기는 흡착에 대하여 유기 화합물과 경쟁하고, 공극 네트워크에 대한 입체적 장애를 나타낸다(Yang et al., 2011a). 700 ℃에서 제조된 바이오차는 산소를 포함하는 작용기의 수가 적어 물 분자와 표면 상호작용이 감소한다. 또한, 이것은 TWBC-700N 및 TWBC-700S에 대한 상호작용이 TWBC-700에 대한 것보다 강하다는 것을 나타내고, 이는 흡착 상호작용에 기여하는 또 다른 점이라는 것을 시사한다. As shown in Table 1, the occupied area (A m ) per adsorbed SMT molecule was measured as 2403.40 Å 2 for TWBC-700, 727.53 Å 2 for TWBC-700N and 860.16 Å 2 for TWBC-700S. As such, the A m values for TWBC-700N and TWBC-700S were lower than for TWBC-700, which means that TWBC-700N and TWBC-700S have a much more compressed molecular arrangement on the surface et al., 2011a). Functional groups containing oxygen compete with organic compounds for adsorption and exhibit steric hindrance to the pore network (Yang et al., 2011a). The bio-tea prepared at 700 ℃ has fewer functional groups containing oxygen and decreases surface interaction with water molecules. This also indicates that the interaction for TWBC-700N and TWBC-700S is stronger than for TWBC-700, which is another point contributing to the adsorption interaction.

낮은 pH에서 바이오차의 SMT 흡착의 가능한 메커니즘은, 방향족 고리의 양성자화된 아미노기(표 1 참조)와 전자가 풍부한 그래핀 표면 간의 π+-π 전자공여체- 수용체(π+-π electron donor acceptor, EDA)상호작용에 기반하여 예측할 수 있다. 이러한, 양이온 교환반응은 여러 물질과 토양을 포함하고 있는 진흙에 대하여, SMT가 최대로 흡착된다는 보고(Ji et al., 2009; Teixido et al., 2011)가 있고, 이것은 바이오차에 대하여도 유효할 것이다(Kahle and Stamm, 2007). 도 6에 나타난 바와 같이, 본 발명에서 얻은 바이오차의 흡착 분배계수 데이터는 선행문헌(Teixid et al., 2011)의 연구와 일치했다. 또한, pH 3에서는 높은 KD값을 나타내는데, 이는 SMT 흡착은 강한 양이온-π 결합에 의한 것임을 나타낸다. 반면에, pH 7의 중성 조건하에서는 분배계수가 감소하여, 바이오차의 표면에 SMT 흡착의 주요한 메커니즘이 부분적 양이온 교환과 양쪽성 이온 상호작용에 의한 것임을 시사하는 것이다. 또한, pH 9인 알칼리 환경에서는 수용액에 SMT의 음이온이 우세하기 때문에 낮은 KD값이 관찰됐고, 이것은 음전하를 띄고 있는 SMT와 바이오차 표면에 정전자반발(electrostatic repulsions)에 의한 것일 수 있으며, 음전하의 도움을 받는 수소결합이 우세한 흡착 메커니즘으로 예상되었다. 제조된 모든 바이오차의 SMT 흡착능은 산성 조건에서보다 알칼리 조건일 때 흡착능이 낮은 것을 알 수 있다. 종합적으로, TWBC-700S의 SMT 흡착 능력은 TWBC-700와 TWBC-700N에 비해 높았다. 그러므로 TWBC-700S가 제조된 바이오차 중 SMT 제거 효율이 가장 높아 넓은 pH 범위에 걸쳐 환경정화(environmental remediation)에 사용하기에 가장 적합한 바이오차임을 알 수 있었다.
Possible mechanisms of SMT adsorption of bio-in from the low pH is, the protons of the aromatic ring closure amino group (see Table 1) and the electron-rich π + yes -π electron donor surface between the pin-receptor (-π + π electron donor acceptor, EDA) interactions. In this study, it was reported that SMT was adsorbed to the maximum in the cation exchange reaction for mud containing various materials and soil (Ji et al., 2009; Teixido et al., 2011) (Kahle and Stamm, 2007). As shown in Fig. 6, the adsorption partition coefficient data of the biochars obtained in the present invention were in agreement with those of the preceding literature (Teixid et al., 2011). Also, at pH 3, a high K D value is shown, indicating that SMT adsorption is due to strong cation-π bonds. On the other hand, under neutral conditions of pH 7, the partition coefficient decreases, suggesting that the main mechanism of SMT adsorption on the surface of biochars is due to partial cation exchange and zwitterionic interactions. In the alkaline environment of pH 9, a low K D value was observed due to the predominance of anions of SMT in aqueous solution, which may be due to electrostatic repulsions on the surface of SMT and bio-car with negative charge, Hydrogen bonding with the help of hydrogen was expected to be the predominant adsorption mechanism. The SMT adsorption capacity of all of the prepared biochains was lower than that of the acidic condition in the alkaline condition. Overall, the SMT adsorption capacity of TWBC-700S was higher than that of TWBC-700 and TWBC-700N. Therefore, it was found that TWBC-700S has the highest removal efficiency of SMT among the biochannels manufactured. Therefore, biocham is most suitable for environmental remediation over a wide pH range.

(5) 결론(5) Conclusion

700 ℃에서 제조되어 증기 활성화된 바이오차인 TWBC-700S가 가장 높은 SMT 흡착능을 보였고, 이것은 TWBC-700S의 공극의 부피와 표면적이 가장 넓기 때문인 것으로 확인되었다. 낮은 pH 조건에서 항생제 흡착 효율이 더욱 높은 것으로 나타나, 바이오차에 의한 SMT 흡착은 pH에 의존적인 것을 알 수 있었다. 높은 pH 조건하에서 700 ℃에서 제조되어 증기 활성화된 바이오차와 질소 조건하에서 제조된 바이오차는 다른 조건에서 제조된 바이오차에 비해서 6 ~ 9 배 높은 SMT 흡착능을 보였다. 이상의 결과로 증기 활성화된 바이오차가 넓은 환경적 pH 조건하에서 수용액에 존재하는 항생제 제거에 매우 효과적인 것을 확인할 수 있었다. The steam-activated biocide TWBC-700S, which was manufactured at 700 ° C, showed the highest SMT adsorption capacity, which was confirmed to be due to the widest volume and surface area of the TWBC-700S pores. It was shown that the adsorption efficiency of antibiotics was higher at low pH conditions, and that the adsorption of SMT by biochannel was pH dependent. The bio - tea prepared at 700 ℃ under high pH condition and steam activated biocide and nitrogen condition showed 6 ~ 9 times higher SMT adsorption capacity than bio - tea prepared under different conditions. As a result, it was confirmed that the steam-activated bioassay is very effective in removing antibiotics present in aqueous solution under a wide environmental pH condition.

Claims (10)

바이오차(biochar)를 증기로 처리하는 단계를 포함하는 바이오차의 활성화 방법.A method for activating a biochar comprising the step of treating a biochar with steam. 제 1항에 있어서,
상기 증기로 처리하는 단계는 온도가 200 ~ 800 ℃ 범위인 상태에서 진행되는 것을 특징으로 하는 바이오차의 활성화 방법.
The method according to claim 1,
Wherein the step of treating with the steam is carried out at a temperature in the range of 200 to 800 ° C.
제 1항에 있어서,
상기 증기로 처리하는 단계는 30 ~ 90 분 동안 증기를 주입하는 것을 특징으로 하는 바이오차의 활성화 방법.
The method according to claim 1,
Wherein the step of treating with the steam comprises injecting steam for 30 to 90 minutes.
제 1항에 있어서,
상기 바이오차는 차 찌꺼기(tea waste)로부터 제조된 것을 특징으로 하는 바이오차의 활성화 방법.
The method according to claim 1,
Wherein the bio-tea is manufactured from tea waste.
제 1항 내지 제 4항 중 어느 한 항의 방법에 의해 활성화된 것을 특징으로 하는 바이오차. A biochip which is activated by the method of any one of claims 1 to 4. (a) 차 찌꺼기를 건조하는 단계;
(b) 상기 단계 (a)에서 건조된 차 찌꺼기를 분쇄하는 단계;
(c) 상기 단계 (b)에서 분쇄된 차 찌꺼기를 200 ~ 800 ℃에서 열분해하여 바이오차를 제조하는 단계; 및
(d) 상기 단계 (c)에서 제조된 바이오차를 제 1항 내지 제 4항 중 어느 한 항의 방법으로 활성화하는 단계;
를 포함하는 활성화된 바이오차의 제조방법.
(a) drying the car garbage;
(b) pulverizing the tea residue dried in the step (a);
(c) pyrolyzing the pulverized tea residue at 200 to 800 ° C. in the step (b) to produce a bio-tea; And
(d) activating the biochip prepared in step (c) by the method of any one of claims 1 to 4;
&Lt; / RTI &gt;
제 6항에 있어서,
상기 단계 (c)는 제한된 산소 조건하에서 제조되는 것을 특징으로 하는 활성화된 바이오차의 제조방법.
The method according to claim 6,
Wherein said step (c) is produced under limited oxygen conditions.
제 5항의 바이오차를 이용하여 물 또는 토양에서 항생제를 흡착하는 단계를 포함하는 항생제 흡착 방법. A method for adsorbing antibiotics comprising the step of adsorbing antibiotics in water or soil using the biocide of claim 5. 제 8항에 있어서,
상기 항생제는 설폰아미드(sulfonamide)계, 세팔로스포린(cephalosporin)계, 폴리펩티드(polypeptide)계, 폴리엔(polyene)계, 마클로라이드(macrolide)계, 테트라사이클린(tetracyclin)계, 아미노글루코사이드(aminoglycosides)계 또는 페니실린(penicillin)계의 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 항생제 흡착 방법.
9. The method of claim 8,
The antibiotic may be selected from the group consisting of sulfonamide, cephalosporin, polypeptide, polyene, macrolide, tetracyclin, aminoglycosides, Wherein the antibiotic is at least one selected from the group consisting of penicillin and penicillin.
제 9항에 있어서,
상기 항생제는 설파메타진(sulfamethazine)인 것을 특징으로 하는 항생제 흡착 방법.


















10. The method of claim 9,
Wherein the antibiotic is sulfamethazine. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;


















KR1020140067180A 2014-06-02 2014-06-02 Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof KR20150139145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140067180A KR20150139145A (en) 2014-06-02 2014-06-02 Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140067180A KR20150139145A (en) 2014-06-02 2014-06-02 Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20150139145A true KR20150139145A (en) 2015-12-11

Family

ID=55020363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140067180A KR20150139145A (en) 2014-06-02 2014-06-02 Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20150139145A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597678A (en) * 2016-01-11 2016-05-25 湖南大学 Mg/Al hydrotalcite modified charcoal composite material and preparation method and application thereof
CN105924451A (en) * 2016-04-27 2016-09-07 国家海洋局第三海洋研究所 Macrolide compound with tea pathomycete prevention activity, and preparation method and use thereof
CN106076253A (en) * 2016-06-24 2016-11-09 湖南大学 A kind of hydrotalcite-modified biological material removing quadracycline in water body and the preparation and application of thermal decomposition product thereof
CN108144579A (en) * 2017-12-25 2018-06-12 华南农业大学 The preparation and application of synchronous absorption traces of antibiotic and Cr VI compound adsorbent
CN108911008A (en) * 2018-07-19 2018-11-30 湖南大学 The method for removing copper and tetracycline in water body
CN114917868A (en) * 2022-05-06 2022-08-19 浙江科技学院 Preparation method of waste black tea biochar for antibiotic adsorption
CN115920844A (en) * 2022-12-16 2023-04-07 华侨大学 Carboxyl functionalized covalent organic framework/amino functionalized biochar composite material and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597678A (en) * 2016-01-11 2016-05-25 湖南大学 Mg/Al hydrotalcite modified charcoal composite material and preparation method and application thereof
CN105924451A (en) * 2016-04-27 2016-09-07 国家海洋局第三海洋研究所 Macrolide compound with tea pathomycete prevention activity, and preparation method and use thereof
CN106076253A (en) * 2016-06-24 2016-11-09 湖南大学 A kind of hydrotalcite-modified biological material removing quadracycline in water body and the preparation and application of thermal decomposition product thereof
CN108144579A (en) * 2017-12-25 2018-06-12 华南农业大学 The preparation and application of synchronous absorption traces of antibiotic and Cr VI compound adsorbent
CN108911008A (en) * 2018-07-19 2018-11-30 湖南大学 The method for removing copper and tetracycline in water body
CN114917868A (en) * 2022-05-06 2022-08-19 浙江科技学院 Preparation method of waste black tea biochar for antibiotic adsorption
CN115920844A (en) * 2022-12-16 2023-04-07 华侨大学 Carboxyl functionalized covalent organic framework/amino functionalized biochar composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Rajapaksha et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
Luo et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems
Stylianou et al. Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks
Yang et al. Limited role of biochars in nitrogen fixation through nitrate adsorption
KR20150139145A (en) Method for biochar activating using by steam treatment, steam activated biochar for being settled steam treatment and manufacturing method thereof
Beltrame et al. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves
Atugoda et al. Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: Kinetics, isotherm and thermodynamics
Zhang et al. Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs)
Liu et al. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA)
Zeng et al. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants
Rosales et al. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems
Kaouah et al. Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46
Heidari et al. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation
Uchimiya et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil
Isaeva et al. Modern carbon–based materials for adsorptive removal of organic and inorganic pollutants from water and wastewater
Fu et al. Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents
Guan et al. Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water
CN106000334A (en) Modified reed biomass charcoal and preparing method and application thereof
Ferraz et al. Performance of oat hulls activated carbon for COD and color removal from landfill leachate
Nguyen et al. Phosphoric acid-activated biochar derived from sunflower seed husk: Selective antibiotic adsorption behavior and mechanism
Lyu et al. Potential application of biochar for bioremediation of contaminated systems
Ahmed Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments
Reza et al. Analysis on preparation, application, and recycling of activated carbon to aid in COVID-19 protection
Nowicki The effect of mineral matter on the physicochemical and sorption properties of brown coal-based activated carbons
CN104128161B (en) A kind of amino modified activated coke heavy metal absorbent and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application