KR20150134582A - CHEMICAL DOPING OF SOL-GEL TiO2 FILM - Google Patents

CHEMICAL DOPING OF SOL-GEL TiO2 FILM Download PDF

Info

Publication number
KR20150134582A
KR20150134582A KR1020140061478A KR20140061478A KR20150134582A KR 20150134582 A KR20150134582 A KR 20150134582A KR 1020140061478 A KR1020140061478 A KR 1020140061478A KR 20140061478 A KR20140061478 A KR 20140061478A KR 20150134582 A KR20150134582 A KR 20150134582A
Authority
KR
South Korea
Prior art keywords
tio
thin film
doped
oxide thin
sol
Prior art date
Application number
KR1020140061478A
Other languages
Korean (ko)
Inventor
박정영
이영근
카리안 차크라바르티 고데티
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020140061478A priority Critical patent/KR20150134582A/en
Publication of KR20150134582A publication Critical patent/KR20150134582A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/828Platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a catalytic system, wherein catalyst nanoparticles are vacuum-metalized on an oxide thin film in which a base metal is doped, and a method for improving activity of a catalyst by metalizing the catalyst nanoparticles on the oxide thin film in which the base metal is doped. Specifically, the present invention relates to a catalytic system, wherein Pt nanoparticle is vacuum-metalized on a TiO_2 thin film, in which N or F is doped in a sol-gel method, in an arc plasma deposition method, and a method for improving the activity of the catalyst by metalizing the Pt nanoparticles on the TiO_2 thin film, wherein N or F is doped in the sol-gel method, in the arc plasma deposition method. The oxide thin film in which the base metal is doped, especially TiO_2 thin film, wherein N or F is doped, is used as a support. Therefore, the catalytic system has an excellent catalytic stability and has improved catalytic activity and a turnover frequency in comparison with a catalytic system using the oxide thin film in which the base metal is not doped as the support.

Description

솔-젤 TiO2 박막의 화학적 도핑 {CHEMICAL DOPING OF SOL-GEL TiO2 FILM}CHEMICAL DOPING OF SOL-GEL TiO2 FILM < RTI ID = 0.0 >

본 발명은, 비금속 도핑 (doping) 된 산화물 박막 상에 나노촉매입자를 증착한 촉매 시스템 및 비금속 도핑된 산화물 박막 상에 나노촉매입자를 증착하여 촉매의 활성을 증가시키는 방법에 관한 것으로서, 보다 구체적으로는 솔-젤 (sol-gel) 법으로 N- 및 F-도핑한 TiO2 박막 상에 아크 플라즈마 증착법 (arc plasma deposition) 으로 Pt 나노입자를 증착한 촉매 시스템 및 솔-젤법으로 N- 및 F-도핑한 TiO2 박막 상에 아크 플라즈마 증착법으로 Pt 나노입자를 증착하여 촉매의 활성을 증가시키는 방법에 관한 것이다.The present invention relates to a catalyst system in which nanocatalyst particles are deposited on a non-metal doped oxide thin film, and a method of depositing nanocatalyst particles on a non-metal doped oxide thin film to increase the activity of the catalyst. More specifically, the sol-gel (sol-gel) method as N- and F- doped with TiO 2 arc plasma vapor deposition method on the thin film (arc plasma deposition) by depositing a Pt nanoparticle catalyst system and sol-gel method to the N- and F- And a method of depositing Pt nanoparticles on the doped TiO 2 thin film by arc plasma deposition to increase the activity of the catalyst.

산화물-금속 계면 (oxide-metal interface) 에서의 전자 여기 (electronic excitation) 의 역할은, 계면화학 및 불균일 촉매작용 (heterogeneous catalysis) 의 분야의 많은 관심을 끌었다. 강한 금속-지지체 상호 작용 (strong metal-support interaction; SMSI) 이라고도 언급되는 산화물-금속 계면의 존재에 의한 촉매 활성의 증가는, 역 (inverse) Ag/NiO 촉매로 일산화탄소 산화반응을 수행한 Schwab 및 그의 동료들에 의해 처음으로 제안되었다 (G.M. Schwab, Angewandte Chemie-International Edition 6 (1967) 375). 상기 연구는, 활성화에너지가 반도체 두께의 함수로서 변화함을 나타내며, 이는 금속-산화물 계면 면적의 중요성을 의미한다. 또한, 금속 및 반도체의 도핑은 활성화 에너지의 변화를 야기했으며, 이는 쇼트키 장벽 (Schottky barrier) 이 중요한 역할을 한다는 것을 의미한다. 상기 효과는, 또한 다수의 산화물 상에 증착된 로듐을 이용한 Boffa 및 그의 동료들에 의해서도 연구되었다 (A. Boffa et al., J Catal 149 (1994) 149-158). 그들은 CO2 수소화반응 (hydrogenation) 에서, 특히 하기 3 가지 다른 산화물의 존재 하에서, 회전율이 14 배 증가하는 현저한 효과를 관찰하였다: TiOX, NbOX, 및 TaOX. 금속-산화물 계면 면적이 최대가 되었을때, 활성도가 최대였으며, 이러한 경우는 산화물이 약 1/2 단층을 커버할 때 발생하였다. 흥미롭게도, 화학 반응성의 증가는 ZrOX, VOX, WOX, 및 FeOX 에 대해서는 두드러지지 않았다. 상기 연구들은, 산화물의 다수의 종류 (NiO, CeO, TiOX, NbOX, and TaOX) 에 따른 화학 반응성을 결정하는 것에 있어서 금속-산화물 계면이 중요한 역할을 한다는 것을 제안한다. 상기 산화물들은 3-4 eV 의 벌크 밴드갭 (bulk band gaps) 을 가지는 반도체들이며, 이는 금속 및 산화물 간의 쇼트키 장벽을 형성시킨다. 따라서, 기판을 도핑하여 밴드갭을 조절함으로써 촉매 활성을 변화시킬 수 있다.The role of electronic excitation in the oxide-metal interface has attracted much attention in the field of interfacial chemistry and heterogeneous catalysis. The increase in catalytic activity due to the presence of an oxide-metal interface, also referred to as strong metal-support interaction (SMSI), is evidenced by Schwab ' s performance of a carbon monoxide oxidation reaction with an inverse Ag / It was first proposed by colleagues (GM Schwab, Angewandte Chemie-International Edition 6 (1967) 375). The above studies indicate that the activation energy varies as a function of semiconductor thickness, which means the importance of the metal-oxide interface area. In addition, the doping of metals and semiconductors has caused a change in the activation energy, which means that the Schottky barrier plays an important role. This effect has also been studied by Boffa and colleagues using rhodium deposited on a number of oxides (A. Boffa et al., J Catal 149 (1994) 149-158). They observed a remarkable effect in CO 2 hydrogenation, in particular in the presence of the following three different oxides: a 14-fold increase in turnover: TiO x , NbO x , and TaO x . When the metal-oxide interfacial area was maximized, the activity was maximal, which occurred when the oxide covered about a half of the monolayer. Interestingly, the increase in chemical reactivity was not significant for ZrO x , VO x , WO x , and FeO x . These studies suggest that the metal-oxide interface plays an important role in determining the chemical reactivity with many kinds of oxides (NiO, CeO 2, TiO x , NbO x , and TaO x ). The oxides are semiconductors with bulk band gaps of 3-4 eV, which form a Schottky barrier between the metal and the oxide. Therefore, the catalyst activity can be changed by doping the substrate and adjusting the bandgap.

이산화티탄 (TiO2) 은, 광촉매작용 (photocatalysis), 광전기화학 (photoelectrochemistry) 을 포함한 다양한 곳에 적용되고 흔히 연구되는 반도체 물질이며, 촉매 지지체이다. 밴드갭 변형은 증감제로서 유기 염료를 활용하여 달성될 수 있으나, 안정성이 문제된다. 수용액에 사용되는 경우, 염료가 표면에서 제거될 수 있어어 장기 안정성 (long-term stability) 에 대한 의문이 제기된다. 대안적으로, TiO2 내에 전이 금속을 도핑하는 것 또는 환원된 TiOX 광촉매를 합성하는 것이 스펙트럼 반응을 넓히는 데에 사용되어 왔다. 그러나, 열안정성 및 전하 캐리어 (charge carrier) 재결합 중심의 증가로 인해, 이산화티탄이 전이 금속으로 도핑되는 것이 제한되어 왔다.
Titanium dioxide (TiO 2 ) is a semiconductor material and catalytic support that is often studied and applied to a variety of applications including photocatalysis, photoelectrochemistry, and the like. Bandgap strains can be achieved using organic dyes as sensitizers, but stability is a problem. When used in aqueous solutions, the dye can be removed from the surface, raising questions about long-term stability. Alternatively, doping a transition metal in TiO 2 or synthesizing a reduced TiO x photocatalyst has been used to broaden the spectrum response. However, due to the increase of the thermal stability and the charge carrier recombination center, the titanium dioxide has been limited to being doped with the transition metal.

Asahi et al. 은 질소를 도핑함으로써 TiO2 의 광반응을 넓히는 새로운 시도를 도입하였다 (R. Asahi et al., Science 293 (2001) 269-271). Kasahara et al. 은, 2.1 eV 의 밴드갭을 가지는 산화질화물 (LaTiO2N) 의 빛 조사 하에서의 광활성도를 보고하였다 (A. Kasahara et al., The Journal of Physical Chemistry A 106 (2002) 6750-6753). 그 후로, 많은 연구 그룹들이 TiO2 광촉매의 비금속 도핑을 연구하였다. 도핑된 TiO2 나노결정에 대한 많은 연구 결과들이 발표되었으며, 반응성 스퍼터링 (reactive sputtering) 과 같은 비용 효과적인 기술에 의해 제조된 박막에 대해서는 오직 소수의 연구 결과들만이 발표되었다 (E.Y. Seon-Hong Lee, Hideyuki Okumura and Keiichi N. Ishihara, Materials Transactions 50 (2009) 1805-1811). 지난 10 년 간, 비금속 도핑된 TiO2 를 사용하여 촉매효율을 개선하는 것에 대한 지속적인 논의가 있었다. Baker et al. 은, 불소 도핑 및 산소 화학양론 (stoichiometry) 을 이용한 TiO2 의 캐리어 운반 특성의 변화를 관찰하였다 (L.R. Baker, A. Hervier, H. Seo, G. Kennedy, K. Komvopoulos, G.A. Somorjai, The Journal of Physical Chemistry C 115 (2011) 16006-16011). 그들은, CO 산화반응에 대한 촉매 활성의 증가는 표면 산소를 활성화시켜 CO 와 활발히 반응하는 결과를 야기한다고 강조하였다. 상기 활성화 공정은, 전자가 TiO2 에서 표면 흡착물질 (adsorbates) 로 이동하도록 촉진하는 F 도핑의 주요한 결과였다.
Asahi et al. Introduces a new attempt to broaden the photoreaction of TiO 2 by doping nitrogen (R. Asahi et al., Science 293 (2001) 269-271). Kasahara et al. Reported the photoactivity of oxynitride (LaTiO 2 N) having a band gap of 2.1 eV under light irradiation (A. Kasahara et al., The Journal of Physical Chemistry A 106 (2002) 6750-6753). Since then, many research groups have studied nonmetal doping of TiO 2 photocatalysts. Many studies on doped TiO 2 nanocrystals have been published and only a few studies have been published for thin films made by cost-effective techniques such as reactive sputtering (EY Seon-Hong Lee, Hideyuki Okumura and Keiichi N. Ishihara, Materials Transactions 50 (2009) 1805-1811). Over the past decade, there has been constant debate about using non-metal doped TiO 2 to improve catalyst efficiency. Baker et al. Is the change in the carrier transport properties of TiO 2 doped with fluorine and oxygen stoichiometry (stoichiometry) was observed (LR Baker, A. Hervier, H. Seo, G. Kennedy, K. Komvopoulos, GA Somorjai, The Journal of Physical Chemistry C 115 (2011) 16006-16011). They emphasize that the increase in catalytic activity for CO oxidation leads to an active reaction with CO by activating the surface oxygen. The activation process was a major result of F doping, which facilitated the transfer of electrons from TiO 2 to surface adsorbates.

본 발명에서, 본 발명자들은, 아크 플라즈마 증착법 (arc plasma deposition; APD) 을 사용하여 제조된, 화학적으로 개질된 TiO2 박막 상의 Pt 나노입자로 이루어진 2차원 모델 촉매 시스템을 차용하였다. 본 발명자들은, 솔-젤법을 사용하여 제조된, 질소 및 불소로 도핑되어 화학적으로 개질된 TiO2 박막이 대부분의 환경 하에서 우수한 안정성을 나타낸다는 것을 밝혀내었다. 본 발명자들은, Pt-도핑된 TiO2 시스템을 제조하였고, 그 후 CO 산화반응에 대한 촉매반응을 수행하였다. Pt 나노입자 및 지지체 사이의 전하 운반에 따른 촉매 반응 동안에, 촉매 활성이 증가되는 잠재적 원인이 논의될 것이다.In the present invention, the present inventors borrowed a two-dimensional model catalyst system made of Pt nanoparticles on a chemically modified TiO 2 thin film prepared by arc plasma deposition (APD). The present inventors have found that TiO 2 thin films prepared using the sol-gel method and chemically modified with nitrogen and fluorine are excellent in stability under most circumstances. The present inventors prepared a Pt-doped TiO 2 system, and then performed a catalytic reaction for the CO oxidation reaction. During the catalytic reaction of the charge transport between the Pt nanoparticles and the support, the potential cause of increased catalytic activity will be discussed.

본 발명의 목적은 비금속 도핑된 산화물 박막 상에 나노촉매입자를 증착한 촉매 시스템을 제공하는 것이고, 또한 상기 비금속 도핑된 산화물 박막 상에 나노촉매입자를 증착하여 촉매의 활성을 증가시키는 방법을 제공하는 것이다. It is an object of the present invention to provide a catalyst system in which nanocatalyst particles are deposited on a nonmetallically doped oxide thin film and to provide a method of depositing nanocatalyst particles on the nonmetallically doped oxide thin film to increase the activity of the catalyst will be.

보다 구체적으로는, 본 발명의 목적은 솔-젤 (sol-gel) 법으로 N- 및 F-도핑한 TiO2 박막 상에 Pt 나노입자를 증착한 촉매 시스템을 제공하는 것이고, 솔-젤법으로 N- 및 F-도핑한 TiO2 박막 상에 Pt 나노입자를 증착하여 촉매의 활성을 증가시키는 방법을 제공하는 것이다.More specifically, it is an object of the present invention to provide a catalyst system in which Pt nanoparticles are deposited on a thin film of TiO 2 doped N- and F-doped by a sol-gel method, - and F-doped TiO 2 thin films by depositing Pt nanoparticles on the TiO 2 thin film.

상기한 목적을 달성하기 위하여, 본 발명은, 비금속 도핑된 산화물 박막 상에 나노촉매입자를 증착한 촉매 시스템을 제공한다.In order to achieve the above object, the present invention provides a catalyst system in which nanocatalyst particles are deposited on a non-metal-doped oxide thin film.

본 발명은, 비금속 도핑된 산화물 박막 상에 나노촉매입자를 증착하여 촉매의 활성을 증가시키는 방법을 제공한다.The present invention provides a method for increasing the activity of a catalyst by depositing nanocatalyst particles on a non-metal doped oxide thin film.

본 발명의 일실시예에 있어서, 상기 비금속 도핑은 질소-도핑 또는 불소-도핑일 수 있다.In one embodiment of the present invention, the non-metal doping may be nitrogen-doped or fluorine-doped.

본 발명의 일실시예에 있어서, 상기 산화물 박막은 CeO2, Nb2O5, TaO5, SiO2 또는 TiO2 박막일 수 있다.In one embodiment of the present invention, the oxide thin film may be a thin film of CeO 2 , Nb 2 O 5 , TaO 5 , SiO 2 or TiO 2 .

본 발명의 일실시예에 있어서, 상기 나노촉매입자는 금 (Au), 은 (Ag), 백금 (Pt), 코발트 (Co), 니켈 (Ni), 팔라듐 (Pd) 또는 이리듐(Ir) 일 수 있다.In one embodiment of the present invention, the nanocatalyst particles may be selected from the group consisting of Au, Ag, Pt, Co, Ni, Pd, have.

본 발명의 일실시예에 있어서, 상기 산화물 박막은 솔-젤 (sol-gel) 법으로 제조될 수 있다.In one embodiment of the present invention, the oxide thin film may be manufactured by a sol-gel method.

본 발명의 일실시예에 있어서, 상기 나노촉매입자는 아크 플라즈마 증착법 (arc plasma deposition) 에 의해 산화물 박막에 증착될 수 있다.In one embodiment of the present invention, the nanocatalyst particles may be deposited on the oxide thin film by arc plasma deposition.

본 발명의 일실시예에 있어서, 상기 산화물 박막은 250 내지 550 ℃ 의 온도에서 어닐링 (annealing) 될 수 있다.In one embodiment of the present invention, the oxide thin film may be annealed at a temperature of 250 to 550 ° C.

본 발명의 일실시예에 있어서, 상기 질소-도핑은 1M 내지 10M 의 질소의 몰농도로 도핑될 수 있다.In one embodiment of the present invention, the nitrogen-doping can be doped with a molar concentration of nitrogen of 1M to 10M.

본 발명의 일실시예에 있어서, 상기 불소-도핑은, 5 % 내지 20 % 의 불소의 퍼센트 농도로 도핑될 수 있다.In one embodiment of the present invention, the fluorine-doping may be doped with a percent concentration of fluorine ranging from 5% to 20%.

본 발명의 일실시예에 있어서, 상기 촉매는 CO 산화반응에 사용될 수 있다.In one embodiment of the present invention, the catalyst may be used for CO oxidation.

본 발명은, 비금속 도핑 (doping) 된 산화물 박막 상에 나노촉매입자를 증착한 촉매 시스템 및 비금속 도핑된 산화물 박막 상에 나노촉매입자를 증착하여 촉매의 활성을 증가시키는 방법을 제공한다. 보다 구체적으로는 솔-젤 (sol-gel) 법으로 N- 및 F-도핑한 TiO2 박막 상에 아크 플라즈마 증착법 (arc plasma deposition) 으로 Pt 나노입자를 증착한 촉매 시스템 및 솔-젤법으로 N- 및 F-도핑한 TiO2 박막 상에 아크 플라즈마 증착법으로 Pt 나노입자를 증착하여 촉매의 활성을 증가시키는 방법을 제공한다.The present invention provides a catalyst system in which nanocatalyst particles are deposited on a non-metal doped oxide thin film and a method of depositing nanocatalyst particles on a non-metal doped oxide thin film to increase the activity of the catalyst. More specifically, the sol-gel method as N--gel (sol-gel) method as N- and F- doped with TiO 2 thin film in the arc plasma vapor deposition method (plasma arc deposition) in the catalyst system, and the sole by depositing the Pt nanoparticles And depositing Pt nanoparticles on the F-doped TiO 2 thin film by arc plasma deposition to increase the activity of the catalyst.

본 발명은, 상기 촉매 시스템에서, 비금속 도핑된 산화물 박막, 특히, N- 또는 F-도핑된 TiO2 박막을 지지체로 이용함으로써, 비금속 도핑되지 않은 산화물 박막을 지지체로 이용하는 촉매 시스템에 비해, 증가된 촉매 활성 및 회전 주기 (turnover frequency) 를 가지며, 우수한 촉매 안정성을 나타내는 효과가 있다.The present invention relates to the use of a non-metal-doped oxide thin film, particularly an N- or F-doped TiO 2 thin film, as a support in the catalyst system, as compared to a catalyst system using a non-metal undoped oxide thin film as a support, Has catalytic activity and a turnover frequency, and exhibits excellent catalyst stability.

도 1은, 다양한 질소의 몰농도로 N-도핑된 TiO2 의 SEM 이미지를 나타낸다: (a) 1M, (b) 3M. (c) 5M, 및 (d) 10M.
도 2는, 250 내지 550 ℃ 의 온도에서 어닐링 (annealing) 한 후, 아나타제 (anatase) 피크를 강조한, 도핑된 및 도핑되지 않은 TiO2 의 XRD 패턴을 나타낸다: (a) 3M N-도핑된 TiO2, (b) 10 % F-도핑된 TiO2, (c) 도핑되지 않은 TiO2 (R 은 루틸 (rutile) 피크에 해당한다)
도 3은, (a) 상이한 질소의 몰농도로 N-도핑된 TiO2 및 (b) 불소의 다양한 퍼센트로 F-도핑된 TiO2 의 자외선 가시광 흡수 분광학 (UV-Vis absorption spectroscopy) 을 나타낸다.
도 4는, (a) F-도핑된 TiO2, (b)N-도핑된 TiO2, 및 (c) 도핑되지 않은 TiO2 상의 APD Pt 나노입자의 SEM 이미지를 나타낸다. (d) 100 V 의 아크 방전 전압 하에서 10 펄스 샷을 사용한, SiO2 TEM 그리드 상에 증착된 APD Pt 나노입자의 TEM 이미지를 나타낸다.
도 5는, (a) 도핑되지 않은, N- 및 F-도핑된 TiO2 상의 APD Pt 나노입자의 XPS 분석을 나타낸다; (b) 3M N-도핑된 TiO2 의 N1s 피크는 주요 삽입 (interstitial) 및 치환 특성 피크를 나타낸다; (c) 10 % F-도핑된 TiO2 의 F1s 피크는 주요 치환 특성 피크를 나타낸다; 및 (d) Pt 나노입자의 지지체에 따른 산화 상태의 비교를 나타낸다.
도 6은, CO 산화반응에 대한 촉매 활성도를 나타낸다: (a) 회전주기 (turnover frequency) 및 (b) 아레니우스 도표는 24.8 kcal/mol (F-도핑된 TiO2 상의 Pt), 28.2 kcal/mol (N-도핑된 TiO2 상의 Pt), 및 24.4 kcal/mol (도핑되지 않은 TiO2 상의 Pt) 의 활성화 에너지를 나타낸다. (c) TiO2 의 전도 밴드갭으로부터 흡수된 O 로의 전하 운반에 의한, 표면 산소의 전자 여기 메카니즘의 개략적 도식을 나타낸다.
Figure 1 shows an SEM image of N-doped TiO 2 at various molar concentrations of nitrogen: (a) 1M, (b) 3M. (c) 5M, and (d) 10M.
Figure 2 shows the XRD pattern of doped and undoped TiO 2 after annealing at a temperature of 250-550 ° C with anatase peak highlighted: (a) 3M N-doped TiO 2 , (b) 10% F-doped TiO 2 , (c) undoped TiO 2 , where R corresponds to a rutile peak,
Figure 3 shows UV-Vis absorption spectroscopy of (a) TiO 2 N-doped at different molar concentrations of nitrogen and (b) F-doped TiO 2 at various percentages of fluorine.
Figure 4 shows a SEM image of APD Pt nanoparticles on (a) F-doped TiO 2 , (b) N-doped TiO 2 , and (c) undoped TiO 2 . (d) TEM image of APD Pt nanoparticles deposited on a SiO 2 TEM grid using 10 pulse shots under an arc discharge voltage of 100 V. FIG.
Figure 5 shows (a) XPS analysis of APD Pt nanoparticles on undoped, N- and F-doped TiO 2 ; (b) a peak of N1s 3M N- doped TiO 2 is inserted key (interstitial) and represents a substituted characteristic peaks; (c) the F1s peak of 10% F-doped TiO 2 represents the peak of the major displacement characteristic; And (d) the oxidation state of the Pt nanoparticles with respect to the support.
Figure 6 shows the catalytic activity for CO oxidation reactions: (a) turnover frequency and (b) Arrhenius diagram shows 24.8 kcal / mol (Pt on F-doped TiO 2 ), 28.2 kcal / mol (Pt on N-doped TiO 2 ), and 24.4 kcal / mol (Pt on undoped TiO 2 ). (c) a schematic diagram of the electron excitation mechanism of the surface oxygen by charge transport from the conduction band gap of TiO 2 to the absorbed O. FIG.

본 발명자들은, 도핑된 (doped) 및 도핑되지 않은 (undoped) 이산화티탄 (TiO2) 상의 백금 나노입자들을 사용하여, CO 산화반응에 대한 촉매 활성도에 대한 지지체의 효과에 대해 연구하였다. 지지체로서의 도핑되지 않은 TiO2 는 솔-젤법 (sol-gel process) 을 통해 합성되었다. 그 후, 박막은 질소 (N) 및 불소 (F) 와 같은 비금속 음이온으로 화학적으로 도핑되었다. 박막은 스핑 코팅 기술을 사용하여 제조된다; 주사 전자 현미경 (scanning electron microscopy; SEM), X-선 회절 (X-ray diffraction; XRD), 자외선 가시광 흡수 분광학 (UV-Vis absorption spectroscopy) 및 X-선 광전자 분광법 (X-ray photoelectron spectroscopy; XPS) 을 포함한 특성화 기술은 각각 박막의 형태학 (morphology), 결정상 (crystal phase), 결정자 (crystallites), 광학 특성 및 원소 조성을 조사하기 위해 수행되었다. 특히, 도핑된 TiO2 박막의 XPS 분석은, 질소 부위는 삽입형으로 존재하나, 불소는 TiO2 격자 내에 치환 형태로 도핑되어 있음을 나타내었다. Pt/N-, Pt/F-, 및 Pt/도핑되지 않은 TiO2 촉매는, 아크 플라즈마 증착법 (arc plasma deposition; APD) 을 이용하여 N-, F-, 및 도핑되지 않은 TiO2 박막 상에 백금 나노입자를 증착시킴으로써 제조되었다. Pt 나노입자의 촉매 활성을 설명하기 위해 CO 산화반응이 수행되었다. Pt/N-도핑된 TiO2 및 Pt/F-도핑된 TiO2 의 회전율 (turnover rate) 은 Pt/도핑되지 않은 TiO2 의 회전율보다 2.5 배 높았다. 촉매 활성은, 도핑 공정 동안 형성된 전자 여기 및 산소 정공 (oxygen vacancy) 에 의해 증가된 것으로 생각된다.
The present inventors have studied the effect of a support on catalytic activity for CO oxidation using platinum nanoparticles on doped and undoped titanium dioxide (TiO 2 ). Undoped TiO 2 as a support was synthesized via a sol-gel process. The thin film was then chemically doped with non-metallic anions such as nitrogen (N) and fluorine (F). Thin films are prepared using a sputter coating technique; X-ray diffraction (XRD), UV-Vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS) were performed using a scanning electron microscope (SEM) Were performed to investigate the morphology, crystal phase, crystallites, optical properties and elemental composition of the films, respectively. In particular, the XPS analysis of the doped TiO 2 thin films showed that the nitrogen sites are implanted, while the fluorine is doped in the TiO 2 lattice in a substituted form. The Pt / N-, Pt / F-, and Pt / undoped TiO 2 catalysts were deposited on N-, F-, and undoped TiO 2 thin films using arc plasma deposition (APD) ≪ / RTI > nanoparticles. To explain the catalytic activity of Pt nanoparticles, a CO oxidation reaction was performed. The turnover rate of Pt / N-doped TiO 2 and Pt / F-doped TiO 2 was 2.5 times higher than that of Pt / undoped TiO 2 . The catalytic activity is believed to be increased by electron excitation and oxygen vacancy formed during the doping process.

본 발명에서 "솔-젤법" 은 금속의 무기화합물 용액에서 용액 내 화합물의 가수분해, 증축합 반응을 진행시켜 솔 (sol) 을 젤 (gel) 로 변형시키고 젤을 가열함으로써 산화물 고체를 만드는 방법으로서, 먼저 금속 나노입자는 액체 속에서 솔 (sol) 형태의 금속 입자 부유물로 존재하다가 알콕사이드 (alkoxide) 의 형태로 녹게 되고, 이것이 물 또는 알코올과의 반응을 통해 금속 하이드록사이드 (hydroxide) 의 형태로 변하게 된다. 그리고 이 금속 하이드록사이드 (hydroxide) 들이 서로 공유 결합을 통해 고체 네트워크 (solid network) 를 형성하면서 젤 (gel) 형태를 갖게 된다. 이 과정을 솔-젤법이라 부른다.
In the present invention, "sol-gel method" is a method for producing an oxide solid by modifying a sol into a gel by proceeding a hydrolysis and condensation reaction of a compound in a solution of a metal in a solution and heating the gel First, the metal nanoparticles are present in a liquid state as sol-like metal particle suspensions and then dissolved in the form of alkoxide, which reacts with water or an alcohol in the form of metal hydroxide . These metal hydroxides form a solid network through a covalent bond to each other and form a gel. This process is called the sol-gel method.

솔-젤법은 상온에서도 금속산화물의 합성이 가능하고 각 단계에서의 화학적인 현상을 이용한 제조 변수의 조절로 분자단계에서부터 원천적인 물리화학적 성질의 조절이 가능한 장점이 있다. 즉, 솔-젤법은 분자수준에서 원료를 혼합할수 있어 제조된 입자의 균일성을 증가시킬 수 있으며, 고 표면적의 입자를 제조할 수 있고, 소결 온도를 낮출 수 있다는 장점 때문에 다성분계 복합물의 제조에 많이 이용되어 왔다. 특히, 고순도의 알콕사이드를 이용한 솔-젤법은 넓은 응용 범위를 가지며, 최종생산물의 형태를 분말, 모노리스 그리고 섬유형태로 조절할 수 있다는 장점을 가지고 있다.
The sol-gel method is capable of synthesizing metal oxides even at room temperature and has the advantage of controlling the original physico-chemical properties from the molecular stage by controlling the manufacturing parameters using chemical phenomena at each step. That is, the sol-gel method can increase the uniformity of the prepared particles by mixing the raw materials at the molecular level, can produce particles with high surface area, and can lower the sintering temperature, It has been widely used. In particular, the sol-gel method using alkoxide of high purity has a wide application range and has the advantage that the final product form can be adjusted to powder, monolith and fiber form.

기존에는, 산화물 박막이 기판에 물리적 기상 증착법 (physical vapor deposion, PVD) 이나 화학적 기상 증착법 (chemical vapor deposition, CVD) 과 같은 공정에 의해서 제작되었다. 이러한 방법을 통한 산화물의 증착의 큰 단점은 특히, 고 진공이나 고온이 필요하다는 것이다. 하지만 본 발명에서는 솔-젤법을 사용함으로써, 가장 단순한 화학 반응을 통해 기판 위에 산화물 박막을 증착시킬 수 있고, 저온에서도 화학 조성이 쉽고, 균일한 두께를 가지는 고순도의 산화물 박막을 제작할 수 있다는 장점을 갖는다.
Conventionally, an oxide thin film is formed on a substrate by a process such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). A major disadvantage of the deposition of the oxide through this method is that it requires a high vacuum or high temperature. However, in the present invention, by using the sol-gel method, it is possible to deposit an oxide thin film on a substrate through the simplest chemical reaction and to manufacture a high-purity oxide thin film having a uniform chemical composition even at a low temperature .

본 발명의 산화물 박막은 CeO2, Nb2O5, TaO5, SiO2 및 TiO2 으로 구성되는 군에서 적어도 하나 이상 선택되며, 바람직하게는, CeO2, Nb2O5, SiO2 또는 TiO2, 더욱 바람직하게는 CeO2, Nb2O5, 또는 TiO2 이다.
The oxide thin film of the present invention is selected from the group consisting of CeO 2 , Nb 2 O 5 , TaO 5 , SiO 2 and TiO 2 , preferably CeO 2 , Nb 2 O 5 , SiO 2 or TiO 2 , more preferably from CeO 2, Nb 2 O 5, or TiO 2.

본 발명의 나노촉매입자는 금(Au), 은(Ag), 백금(Pt), 코발트(Co), 니켈(Ni), 팔라듐(Pd) 및 이리듐(Ir)으로 구성되는 군에서 적어도 하나 이상 선택되나 이에 한정하지 않으며, 바람직하게는 금(Au), 은(Ag) 또는 백금(Pt), 더욱 바람직하게는 백금(Pt)이다.
The nanocatalyst particles of the present invention may be at least one selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), cobalt (Co), nickel (Ni), palladium (Pd) and iridium But is not limited thereto, and is preferably gold (Au), silver (Ag) or platinum (Pt), more preferably platinum (Pt).

본 발명의 나노 촉매는 바람직하게는 APD 에 의하여 합성된다. APD 는 나노 촉매의 대량 합성을 가능하게 하는 동시에 촉매 활성에 영향을 미치는 내재적 요인의 연구를 할 수 있도록 한다.
The nanocatalyst of the present invention is preferably synthesized by APD. APD enables large-scale synthesis of nanocatalysts and allows study of intrinsic factors affecting catalytic activity.

본 발명의 나노 촉매는 1 내지 20nm 크기의 입자인 것이 바람직하다. 금속입자의 크기가 1nm 미만이면 금속 입자층 형성이 잘 되지 않는 문제점이 있고, 금속입자의 크기가 20nm 를 초과하면 금속입자의 표면적이 적어짐으로써 촉매 활성이 떨어지는 문제점이 있다. 본 발명의 나노 촉매는 더 바람직하게는 2 내지 10nm, 보다 더 바람직하게는 2.5 내지 5nm 이다.
The nanocatalyst of the present invention is preferably particles having a size of 1 to 20 nm. When the size of the metal particles is less than 1 nm, there is a problem that the metal particle layer is not formed well. When the size of the metal particles exceeds 20 nm, there is a problem that the surface area of the metal particles is decreased and the catalytic activity is lowered. The nanocatalyst of the present invention is more preferably 2 to 10 nm, even more preferably 2.5 to 5 nm.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

<실시예 1> TiO&Lt; Example 1 > 22 솔 (sol) 의 형성 Formation of sol

(1) 도핑되지 않은 TiO(1) undoped TiO 22 솔의 형성 Formation of brush

본원발명의 기술분야에 널리 알려진 방법에 의해 도핑되지 않은 이산화티탄을 준비하였다. Ti 전구체 (precursor) 로서 티타늄 테트라부틸옥사이드 (titanium tetrabutyloxide; TTBO), 안정제로서 디에탄올아민 (diethanolamine; DEA) 이, 용매로서 에틸알코올 (ethyl alcohol; EtOH) 이 사용되었다. 모든 시약은 분석 등급이 사용되었고, 추가적인 정제없이 사용되었다. 출발 용액의 화학적 몰조성은 TTBO : H2O : DEA : EtOH = 1 : 26.5 : 1 : 1 이었다. 용액은 연속적으로 2 시간 동안 교반되었고, 그 결과 투명한 TiO2 솔 (sol) 이 형성되었다. 그 후, 반응을 완료시키기 위해, 상기 솔을 24 시간 동안 숙성시켰다.
Undoped titanium dioxide was prepared by methods well known in the art of the present invention. Titanium tetrabutyloxide (TTBO) as a Ti precursor, diethanolamine (DEA) as a stabilizer and ethyl alcohol (EtOH) as a solvent were used. All reagents were assay grade and used without further purification. The chemical molar composition of the starting solution was TTBO: H 2 O: DEA: EtOH = 1: 26.5: 1: 1. The solution was stirred continuously for 2 hours, resulting in the formation of a clear TiO 2 sol. Then, in order to complete the reaction, the brush was aged for 24 hours.

(2) 불소-도핑된 TiO(2) fluorine-doped TiO 22 (F-TiO (F-TiO 22 ) 솔의 형성) Formation of brush

불소-도핑된 이산화티탄 (F-TiO2) 솔이 상기 개시된 것과 유사한 절차에 따라 합성되었고, 여기서 암모늄 플루오라이드 (ammonium fluoride; NH4F) 가 불소 전구체로 사용되었다. 5 %, 10 %, 15 % 및 20 % F-TiO2 솔을 합성하기 위해, TTBO 에 대한 NH4F 의 몰비가 0.05, 0.1, 0.15 및 0.2 로 사용되었다. 상기 퍼센트 농도 (%) 는 TiO2 전구체의 몰질량에 대한 불소 전구체의 몰질량의 비를 의미한다 (사용된 불소 전구체의 몰질량/사용된 TiO2 전구체의 몰질량 x 100). 즉, 본 실시예에서의 F-TiO2 솔의 퍼센트 농도는, TTBO 의 몰질량에 대한 NH4F 의 몰질량의 비를 의미한다 (사용된 NH4F 몰질량/사용된 TTBO 몰질량 x 100). 상기 졸은 2 시간 동안 교반되었고, 박막을 제조하기 위해 24 시간 동안 숙성되었다.
A fluorine-doped titanium dioxide (F-TiO 2 ) sol was synthesized according to a procedure similar to that described above, wherein ammonium fluoride (NH 4 F) was used as the fluorine precursor. To synthesize 5%, 10%, 15% and 20% F-TiO 2 sols, the molar ratio of NH 4 F to TTBO was used as 0.05, 0.1, 0.15 and 0.2. The percent concentration (%) means the ratio of the molar mass of the fluorine precursor to the molar mass of the TiO 2 precursor (molar mass of fluorine precursor used / molar mass of the TiO 2 precursor used x 100). That is, F-TiO percent concentration of the second brush in the present embodiment, refers to the ratio of the molar mass of NH 4 F for the molar mass of TTBO (a NH 4 F molar mass / a TTBO molar mass x 100 Using ). The sol was stirred for 2 hours and aged for 24 hours to prepare a thin film.

(3) 질소-도핑된 TiO(3) Nitrogen-doped TiO 22 (N-TiO (N-TiO 22 ) 솔의 형성) Formation of brush

도펀트 전구체로서 요소 (urea) 를 사용하여 질소-도핑된 이산화티탄 (N-TiO2) 박막을 제조하였다. 전형적인 실험방법 중 Pillai et al. 의 변형된 절차에 따라, 10 ml 의 티타늄 이소프로폭시드 (titanium isopropoxide; TIP) 가 금속 전구체로서 사용되었고, 아세트산 (20 ml) 에 첨가되고, 교반되었다 (M.B. Fisher, D.A. Keane, P. Fernandez-Ibanez, J. Colreavy, S.J. Hinder, K.G. McGuigan, S.C. Pillai, Applied Catalysis B: Environmental 130-131 (2013) 8-13). 혼합물을 가수분해하기 위해, 탈이온수 (deionized water) (60 ml) 가 격렬한 교반과 함께 혼합물에 적상 (dropwise) 으로 첨가되었다. TIP, 아세트산 및 물이 1 : 10 : 100 의 몰비로 첨가되었다. 용액은 2 시간 동안 교반되어, 투명한 TiO2 솔 (sol) 이 수득되었다. N-TiO2 를 생산하기 위해, EtOH (15 ml) 에 혼합된 요소 (1.77 g) 를, 준비된 TIP-아세트산 혼합물에 첨가하여, TIP, 아세트산, 물 및 EtOH 의 혼합 용액에 대한 다양한 질소의 몰농도를 가진 무색의 N-TiO2 솔을 형성하였다. 일반적인 수성 요소 용액은 매우 불균일한 박막을 생성하므로, 도핑에 직접적으로 사용될 수 없다. 이러한 경우, 솔을 제조하는 동안 EtOH 가 용매로서 사용된다.
A nitrogen-doped titanium dioxide (N-TiO 2 ) thin film was prepared using urea as a dopant precursor. Among the typical experimental methods, Pillai et al. 10 ml of titanium isopropoxide (TIP) was used as the metal precursor and added to acetic acid (20 ml) and stirred (MB Fisher, DA Keane, P. Fernandez- Ibanez, J. Colreavy, SJ Hinder, KG McGuigan, SC Pillai, Applied Catalysis B: Environmental 130-131 (2013) 8-13). To hydrolyze the mixture, deionized water (60 ml) was added dropwise to the mixture with vigorous stirring. TIP, acetic acid and water were added in a molar ratio of 1: 10: 100. The solution is stirred for 2 hours, the transparent TiO 2 sol (sol) was obtained. To produce N-TiO 2 , the urea (1.77 g) mixed in EtOH (15 ml) was added to the prepared TIP-acetic acid mixture to give a molar concentration of various nitrogens to the mixed solution of TIP, acetic acid, water and EtOH the colorless N-TiO 2 sol having a form. Typical aqueous urea solutions produce highly heterogeneous films and can not be used directly for doping. In this case, EtOH is used as the solvent during the preparation of the brush.

<실시예 2> 도핑되지 않은 TiO&Lt; Example 2 > 22 솔, F-TiO Sol, F-TiO 22 솔 및 N-TiO Sol and N-TiO 22 솔이 스핀코팅된 박막의 형성 Formation of Sol-Spin Coated Thin Films

박막은 3000 rpm 에서 20 초 동안 스핀코팅 기법으로 제조되었다. 초음파적으로 에탄올 및 물로 10 분 동안 세정되고, 질소 하에서 건조된 실리카 웨이퍼 (silica wafers) 가 기판으로서 사용되었다. 가장 높은 촉매 활성을 나타내는 효율적인 상 (phase) 으로 알려진 아나타제 상 (anatase phase) 을 수득하기 위해, 제조된 박막은 350 ℃ 에서 2 시간 동안 어닐링되었다. N-TiO2 박막의 다양한 몰농도의 형태학은 도 1에 개시되어 있다.
Thin films were prepared by spin coating at 3000 rpm for 20 seconds. Silica wafers, which were cleaned ultrasonically with ethanol and water for 10 minutes, and dried under nitrogen, were used as substrates. In order to obtain an anatase phase known as an efficient phase exhibiting the highest catalytic activity, the prepared thin film was annealed at 350 ° C for 2 hours. The morphology of the various molar concentrations of N-TiO 2 thin films is shown in FIG.

<실시예 3> TiO&Lt; Example 3 > 22 박막 상의 Pt 나노입자의 증착 Deposition of Pt nanoparticles on a thin film

준비된 박막에 Pt 나노입자를 증착하기 위해, 본 발명자들은 동축 펄스 (coaxial pulsed) 아크 플라즈마 증착법 (APD) 시스템 (ULVAC, ARL-300) 을 사용하였다. 박막에 Pt 나노입자 (~ 2.7 nm) 를 증착시키기 위한 시스템 변수는 본원발명의 기술분야에 널리 알려진 것과 유사하다. 간략히는, 증착은 10-6 torr 진공 하의 상온에서 수행되었다. 음극 전극은, 절연체에 의해 분리된 백금 양극 로드 (rod) 에 동축으로 고정되었다. 트리거 (trigger) 전극은 양극 로드에 아크 방전을 유도하여, 고도의 이온화된 백금 플라즈마를 생성한다. 트리거 전극에 적용되는 전압을 변화시킴으로써 후에 타겟 표면 상에 증착되는 나노입자의 평균 크기를 조절한다. 증착되는 각각의 펄스는 약 8 x 10-4 mg/cm2 이다. 본 실험에서는, 10 펄스의 Pt 가, F-TiO2, N-TiO2 및 도핑되지 않은 이산화티탄 박막에 각각 증착되었다. 본 발명자들은 초고진공 배치 반응기 (ultrahigh vacuum batch reactor) (10-8 torr 기준 압력) 를 사용하여, CO 산화반응에서의 촉매 활성을 측정하였다. 반응 챔버 (chamber) 는 40 torr CO, 100 torr O2 및 620 torr He 로 상온에서 대전되었다; 반응 혼합물은 재순환 펌프를 이용하여 연속적으로 2 L/min 으로 순환시켰다. CO 전환은 모니터링되었고, 반응 혼합물은 220 내지 260 ℃ 의 온도에서 기체 크로마토그래피 (gas chromatograph; GC) 에 의해 온라인으로 분석되었다.
In order to deposit Pt nanoparticles in the prepared thin film, we used a coaxial pulsed arc plasma deposition (APD) system (ULVAC, ARL-300). The system parameters for depositing Pt nanoparticles (~ 2.7 nm) in the thin film are similar to those well known in the art. Briefly, the deposition was performed at room temperature under a vacuum of 10 -6 torr. The cathode electrode was coaxially fixed to a platinum anode rod separated by an insulator. A trigger electrode induces an arc discharge on the anode rod to produce a highly ionized platinum plasma. By varying the voltage applied to the trigger electrode, the average size of the nanoparticles deposited on the target surface is regulated later. Each pulse is deposited from about 8 x 10 -4 mg / cm 2 . In this experiment, 10 pulses of Pt were deposited on the F-TiO 2 , N-TiO 2, and undoped titanium dioxide thin films, respectively. The present inventors measured the catalytic activity in a CO oxidation reaction using an ultrahigh vacuum batch reactor (10 -8 torr pressure). The reaction chamber was charged at room temperature with 40 torr CO, 100 torr O 2, and 620 torr He; The reaction mixture was continuously circulated at 2 L / min using a recirculation pump. CO conversion was monitored and the reaction mixture was analyzed on-line by gas chromatograph (GC) at a temperature of 220-260 &lt; 0 &gt; C.

본 발명에서, 알코올 용액 내 N-치환된 티타늄 이소프로폭시드 및 F-치환된 티타늄 테트라부톡시드 전구체의 가수분해에 의한 솔-젤법을 이용하여 도핑된 이산화티탄이 합성되었다. 다양한 도핑 수준으로 N-TiO2 를 합성하기 위해 질소 전구체의 상이한 몰농도가 사용되었다. 다양한 질소의 몰농도의 N-TiO2 박막의 SEM 이미지로 나타낸 바와 같이 (도 1), 질소의 도핑 수준이 1M 에서 3M 로 증가함에 따라, 형성의 용이성 및 박막의 질이 개선되었다; 결정의 크기가 어닐링 온도가 증가함에 따라 증가하였으나, 잘 유지되었고 연속적이었다. 도핑 수준을 더욱 증가시킴에 따라 (즉, 5M 및 10 M 질소 농도), 플레이크 (flake) 와 같은 구조의 완전히 불연속적이고 불규칙적인 박막을 형성하였다.
In the present invention, doped titanium dioxide was synthesized by the sol-gel method by hydrolysis of an N-substituted titanium isopropoxide and an F-substituted titanium tetrabutoxide precursor in an alcohol solution. Different molar concentrations of nitrogen precursors were used to synthesize N-TiO 2 at various doping levels. As shown by the SEM image of the N-TiO 2 thin films with various nitrogen molar concentrations (FIG. 1), as the doping level of nitrogen increased from 1 M to 3 M, ease of formation and film quality improved; The size of the crystals increased with increasing annealing temperature, but was well maintained and continuous. As the doping level was further increased (i. E., 5 M and 10 M nitrogen concentration), a completely discontinuous, irregular thin film of flake-like structure was formed.

도 2에 개시한 바와 같이, 도핑되지 않은, N- 및 F-도핑된 TiO2 의 결정 상 (crystal phase) 이 X-선 분말 회절 (X-ray powder diffraction; XRD) 을 이용하여 분석되었다. N- 및 F-도핑된 샘플 둘 모두는, 250 내지 550 ℃ 의 범위의 온도에서 온도가 10 ℃/min 으로 증가하는 머플노 (muffle furnace) 에서 2 시간 동안 어닐링되었다. 상기 어닐링 공정 후, 샘플들은 상온으로 냉각되었다. 2θ = 25.3°에서 뾰족한 피크를 나타내고 유효 표면 촉매 결정 상 (effective surface catalytic crystal phase) 인 아나타제 피크는, 박막을 350 ℃ 이상으로 어닐링한 후에 나타난다; 350 ℃ 미만인 경우, 박막은 피크를 갖지 않는 무정형 상 (amorphous phase) 를 갖는다. F-TiO2 의 경우, 아나타제 피크는 450 ℃ 이상에서 샘플을 어닐링한 후에 나타나며, 이것이 불소-도핑된 TiO2 의 일반적인 특성이다.
As shown in FIG. 2, the undoped, N and F-doped TiO 2 crystal phases were analyzed using X-ray powder diffraction (XRD). Both N- and F-doped samples were annealed in a muffle furnace at a temperature ranging from 250 to 550 占 폚 for 2 hours at a temperature increase of 10 占 폚 / min. After the annealing process, the samples were cooled to room temperature. Anatase peaks that exhibit sharp peaks at 2? = 25.3 ° and an effective surface catalytic crystal phase appear after annealing the thin film at 350 ° C or higher; When the temperature is lower than 350 DEG C, the thin film has an amorphous phase which does not have a peak. In the case of F-TiO 2 , the anatase peak appears after annealing the sample at 450 ° C or higher, which is a general characteristic of fluorine-doped TiO 2 .

자외선 가시광 흡수 분광학 (UV-Vis absorption spectroscopy) 으로 샘플들을 특성화함으로써 샘플들의 광학 특성이 평가되었다. 도 3은, 도핑되지 않은 TiO2 에 비교하여 N- 및 F-TiO2 의 UV-Vis 스펙트럼을 나타낸다. Yang et al. 은 F-도핑된 TiO2 의 흡수 피크의 어떠한 중요한 이동도 관찰하지 못했으며, 이는 F-도핑이 적색 이동에 어떠한 효과도 갖지 않는다는 것을 의미한다 (H. Yang, X. Zhang, Journal of Materials Chemistry 19 (2009) 6907-6914). 상기 결과들은, 도핑된 F 원자들이 TiO2 의 밴드갭에 중요한 효과를 나타내지 않는다고 주장한 Yamaki et al. 에 의해 보고된, F-도핑된 TiO2 의 계산된 결과와 불일치한다 (M.B. Fisher, D.A. Keane, P. Fernandez-Ibanez, J. Colreavy, S.J. Hinder, K.G. McGuigan, S.C. Pillai, Applied Catalysis B: Environmental 130-131 (2013) 8-13). 도 3(a) 는, 질소 도핑의 정도에 관련된 광학 특성의 변화에 관한 도핑의 효과를 포함하는, 질소-도핑된 이산화티탄의 증가된 광학 특성을 나타낸다. 도핑에 따른 증가된 광학 특성들은 다양한 잠재적 적용을 위한 이산화티탄의 밴드갭의 감소를 의미한다. 도 3(b) 에서, 가시 스펙트럼으로의 약간의 이동은, 불소 전구체에 의한 산소 빈공간의 형성으로 설명된다. 도 4는 F-, N-, 및 도핑되지 않은 TiO2 상의 Pt 나노입자의 SEM 이미지 및 100 V 의 아크 방전 전압 하에서 10 펄스 샷을 사용한, SiO2 TEM 그리드 상에 증착된 APD Pt 나노입자의 TEM 이미지를 나타낸다.
The optical properties of the samples were evaluated by characterizing the samples with ultraviolet-visible absorption spectroscopy (UV-Vis absorption spectroscopy). Figure 3 is, as compared with the non-doped TiO 2 shows the UV-Vis spectra of the N- and F-TiO 2. Yang et al. Did not observe any significant shift of the absorption peak of F-doped TiO 2 , which means that F-doping has no effect on red shift (H. Yang, X. Zhang, Journal of Materials Chemistry 19 (2009) 6907-6914). These results show that the doped F atoms do not have a significant effect on the band gap of TiO 2 . In the report by, and F- in the doped TiO 2 and the discrepancy calculation results (Fisher MB, DA Keane, P. Fernandez-Ibanez, J. Colreavy, SJ Hinder, KG McGuigan, SC Pillai, Applied Catalysis B: Environmental 130 -131 (2013) 8-13). Figure 3 (a) shows the increased optical properties of nitrogen-doped titanium dioxide, including the effect of doping on changes in optical properties related to the degree of nitrogen doping. The increased optical properties due to doping implies a reduction in the bandgap of titanium dioxide for various potential applications. In Fig. 3 (b), a slight shift to the visible spectrum is explained by the formation of an oxygen vacancy space by the fluorine precursor. Figure 4 shows TEM images of APD Pt nanoparticles deposited on a SiO 2 TEM grid using a SEM image of Pt nanoparticles on F-, N-, and undoped TiO 2 and 10 pulse shots under an arc discharge voltage of 100 V Image.

화학적 조성은 XPS 분석에 의해 확인되었다. 도 5는, 도핑되지 않은, N- 및 F-도핑된 TiO2 상의 APD Pt 나노입자에 대한 XPS 데이터를 나타낸다; 3M N-도핑된 TiO2 의 N1s 피크는 주요 삽입 (interstitial) 및 치환 특성 피크를 나타낸다; 10 % F-TiO2 의 F1s 피크는 주요 치환 특성 피크를 나타낸다; 및 Pt 나노입자의 지지체에 따른 산화 상태의 비교를 나타낸다. 데이터를 피팅하는 동안, 기준 탄소 C1s 피크는 284.6 eV 에서 관찰되었다. 도 5(b) 에서, 본 발명자들은 399.16 eV 의 결합 에너지 피크를 관찰할 수 있었는데, 이는 질소의 TiO2 격자로의 삽입적 도핑이며, 397.09 eV 에서의 작은 피크 (shoulder) 는 질소의 치환적 도핑에서 유래된 것이다. 상기 값들은 F 에도 부합된다. Peng et al. 은 396 - 397.5 eV 에서의 N1s 피크는 질소 원자에 대한 것이라고 보고하였으며, 상기 질소 원자들은 Ti-N-Ti 연결로서 TiO2 격자에 치환적으로 도핑된 것이다 (F. Peng, L. Cai, H. Yu, H. Wang, J. Yang, Journal of Solid State Chemistry 181 (2008) 130-136). 도 5(c) 는 F-도핑된 TiO2 의 결합 에너지 피크를 나타낸다. 본 발명자들은 683.5 eV 에서의 하나의 주요 피크를 관찰할 수 있었다. F 및 O는 유사한 원자 직경을 가지기 때문에, 이 피크는 TiO2 내의 도핑된 F 원자에 관한 것이다; F 원자들은 격자 내에서 산소 원자를 대체한 후, Ti-F 결합을 형성하였다. 도핑된 TiO2 에 지지된 Pt 나노입자의 산화 상태는, 도핑되지 않은 TiO2 에 지지된 것보다 ~ 40 % 낮았다 (도 5(a),(d)). 도 6(a)(b) 는 각각 회전 주기 (turnover frequency; TOF) 에 관한 CO 산화반응 결과 및 샘플들의 활성화 에너지를 나타내는 아레니우스 도표를 나타낸다. APD Pt/N-도핑된 TiO2 및 APD Pt/F-도핑된 TiO2 에서의 CO 산화반응의 회전율은, APD Pt/도핑되지 않은 TiO2 에 비해 2.5 배 높은 촉매 활성도를 의미한다; N-도핑된 TiO2 상의 Pt 의 활성화 에너지 (28.2 kcal/mol) 는 Pt/도핑되지 않은 TiO2 (24.4 kcal/mol) 및 Pt/F-도핑된 TiO2 (24.48kcal/mol) 에 비해 높다.
The chemical composition was confirmed by XPS analysis. Figure 5 shows XPS data for APD Pt nanoparticles on undoped, N- and F-doped TiO 2 ; N1s peak of 3M N- doped TiO 2 is inserted key (interstitial) and represents a substituted characteristic peaks; The F1s peak of 10% F-TiO 2 shows the peak of the major displacement characteristic; And the oxidation state of the Pt nanoparticles with respect to the support. During the fitting of the data, the reference carbon C1s peak was observed at 284.6 eV. In Figure 5 (b), we were able to observe a binding energy peak of 399.16 eV, which is an implanted doping of the nitrogen to the TiO 2 lattice, a small shoulder at 397.09 eV, . These values are also consistent with F. Peng et al. Reported that the N1s peak at 396 - 397.5 eV is for nitrogen atoms, which are substituted for the TiO 2 lattice as a Ti-N-Ti bond (F. Peng, L. Cai, H. et al. Yu, H. Wang, J. Yang, Journal of Solid State Chemistry 181 (2008) 130-136). 5 (c) shows the binding energy peak of F-doped TiO 2 . The present inventors were able to observe one major peak at 683.5 eV. Since F and O have similar atomic diameters, this peak relates to doped F atoms in TiO 2 ; F atoms replaced oxygen atoms in the lattice and then formed Ti-F bonds. A support for the doped TiO 2 oxidation state of the Pt nanoparticles, - the support than to the non-doped TiO 2 40% lower (Figure 5 (a), (d) ). 6 (a) and 6 (b) show Arrhenius diagrams showing the results of the CO oxidation reaction and the activation energies of the samples, respectively, regarding the turnover frequency (TOF). The turnover rate of CO oxidation in APD Pt / N-doped TiO 2 and APD Pt / F-doped TiO 2 means 2.5 times higher catalytic activity than APD Pt / undoped TiO 2 ; The activation energy of Pt on N-doped TiO 2 (28.2 kcal / mol) is higher than that of Pt / undoped TiO 2 (24.4 kcal / mol) and Pt / F-doped TiO 2 (24.48 kcal / mol).

촉매 반응의 증가에 대한 가능한 메카니즘은, N-TiO2 의 경우에는 산소 빈공간의 증가된 농도로 설명될 수 있다. 반면, F-TiO2 의 경우에는, CO 와 즉각적으로 반응하는 활성화된 O-중간체 (O-intermediate) 를 형성하기 위한, TiO2 로부터 흡수된 산소로의 전자 과잉에 의해 전자 여기가 가능하다. 도 6(c) 는, TiO2 의 전도 밴드로부터 흡수된 O 로의 전하 운반에 의한, 표면 산소의 전자 여기 메카니즘에 대한 에너지 도표를 나타낸다. 대안적으로, 증가된 전하 운반에 의해 야기된 Pt/도핑된 TiO2 의 낮은 산화 상태 (도 5(d)) 는, CO 산화반응에서 높은 촉매 활성도를 나타낸다. 따라서, 본 연구는 금속/산화물 촉매의 촉매 활성에서의 지지체의 도펀트의 역할을 설명하고, 촉매 활성도를 개선하기 위해 산화물 지지체의 도핑을 변화시키는 것에 의한 금속-지지체 상호작용을 조사하기 위해, 2차원 촉매계에 대한 새로운 시도를 제안한다.
A possible mechanism for the increase in catalytic reaction can be explained by the increased concentration of oxygen vacancy in the case of N-TiO 2 . On the other hand, in the case of F-TiO 2 , electron excitation is possible by electron excess to oxygen absorbed from TiO 2 to form an activated O-intermediate which immediately reacts with CO. Figure 6 (c) shows an energy plot for the electron excitation mechanism of surface oxygen by charge transport from the conduction band of TiO 2 to O 2 absorbed. Alternatively, the low oxidation state of Pt / doped TiO 2 (Fig. 5 (d)) caused by increased charge transport shows high catalytic activity in the CO oxidation reaction. Thus, this study describes the role of the dopant of the support in the catalytic activity of the metal / oxide catalyst, and to investigate the metal-support interaction by changing the doping of the oxide support to improve catalytic activity, A new approach to the catalyst system is proposed.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다. The present invention has been described with reference to the preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

Claims (21)

비금속 도핑 (doping) 된 산화물 박막 상에 나노촉매입자를 증착하여, 촉매의 활성을 증가시키는 방법.A method for depositing nanocatalyst particles on a non-metal doped oxide thin film to increase the activity of the catalyst. 제 1 항에 있어서,
상기 비금속 도핑은 질소-도핑 또는 불소-도핑인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the non-metal doping is nitrogen-doped or fluorine-doped.
제 1 항에 있어서,
상기 산화물 박막은 CeO2, Nb2O5, TaO5, SiO2 또는 TiO2 박막인 것을 특징으로 하는 방법.
The method according to claim 1,
The oxide thin film is CeO 2, Nb 2 O 5, TaO 5, SiO 2 or characterized in that the TiO 2 thin film.
제 3 항에 있어서,
상기 산화물 박막은 TiO2 박막인 것을 특징으로 하는 방법.
The method of claim 3,
Wherein the oxide thin film is a TiO 2 thin film.
제 1 항에 있어서,
상기 나노촉매입자는 금 (Au), 은 (Ag), 백금 (Pt), 코발트 (Co), 니켈 (Ni), 팔라듐 (Pd) 또는 이리듐(Ir) 인 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the nanocatalyst particles are gold (Au), silver (Ag), platinum (Pt), cobalt (Co), nickel (Ni), palladium (Pd), or iridium (Ir).
제 5 항에 있어서,
상기 나노촉매입자는 백금 (Pt) 인 것을 특징으로 하는 방법.
6. The method of claim 5,
Wherein the nanocatalyst particles are platinum (Pt).
제 1 항에 있어서,
상기 산화물 박막은 솔-젤 (sol-gel) 법으로 제조되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the oxide thin film is manufactured by a sol-gel method.
제 1 항에 있어서,
상기 나노촉매입자는 아크 플라즈마 증착법 (arc plasma deposition) 에 의해 산화물 박막에 증착되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the nanocatalyst particles are deposited on the oxide thin film by arc plasma deposition.
제 1 항에 있어서,
상기 산화물 박막은 250 내지 550 ℃ 의 온도에서 어닐링 (annealing) 되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the oxide thin film is annealed at a temperature of 250 to 550 占 폚.
제 2 항에 있어서,
상기 질소-도핑은, 1M 내지 10M 의 질소의 몰농도로 수행되는 것을 특징으로 하는 방법.
3. The method of claim 2,
Characterized in that the nitrogen-doping is carried out with a molar concentration of nitrogen from 1 M to 10 M.
제 2 항에 있어서,
상기 불소-도핑은, 5 % 내지 20 % 의 불소의 퍼센트 농도로 수행되며, 상기 퍼센트 농도는 사용된 TiO2 전구체의 몰질량에 대한 사용된 불소 전구체의 몰질량의 비인 것을 특징으로 하는 방법.
3. The method of claim 2,
The fluorine-doping, is carried out as a percentage of the concentration of 5% to 20% fluorine, characterized in that the ratio of the molar mass of the fluorine precursor used for the molar mass of the percent concentration of the TiO 2 precursor used.
제 1 항에 있어서,
상기 촉매는 CO 산화반응에 사용되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the catalyst is used in a CO oxidation reaction.
비금속 도핑 (doping) 된 산화물 박막 상에 나노촉매입자를 증착한 촉매 시스템.A catalyst system in which nanocatalyst particles are deposited on a non-metal doped oxide thin film. 제 13 항에 있어서,
상기 비금속 도핑은 질소-도핑 또는 불소-도핑인 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Wherein the non-metal doping is nitrogen-doped or fluorine-doped.
제 13 항에 있어서,
상기 산화물 박막은 TiO2 박막인 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Wherein the oxide thin film is a TiO 2 thin film.
제 13 항에 있어서,
상기 나노촉매입자는 백금 (Pt) 인 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Wherein the nanocatalyst particles are platinum (Pt).
제 13 항에 있어서,
상기 산화물 박막은 솔-젤 (sol-gel) 법으로 제조되는 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Wherein the oxide thin film is manufactured by a sol-gel method.
제 13 항에 있어서,
상기 나노촉매입자는 아크 플라즈마 증착법 (arc plasma deposition) 에 의해 산화물 박막에 증착되는 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Wherein the nanocatalyst particles are deposited on the oxide thin film by arc plasma deposition.
제 13 항에 있어서,
상기 질소-도핑은, 1M 내지 10M 의 질소의 몰농도로 수행되는 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Characterized in that the nitrogen-doping is carried out with a molar concentration of nitrogen from 1 M to 10 M.
제 13 항에 있어서,
상기 불소-도핑은, 5 % 내지 20 % 의 불소의 퍼센트 농도로 수행되며, 상기 퍼센트 농도는 사용된 TiO2 전구체의 몰질량에 대한 사용된 불소 전구체의 몰질량의 비인 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
The fluorine-doping, 5% to be performed as a percent concentration of 20% fluorine, the percent concentration of the catalyst system, characterized in that the ratio of the molar mass of the fluorine precursor used for the molar mass of the TiO 2 precursor used.
제 13 항에 있어서,
상기 촉매 시스템은 CO 산화반응에 사용되는 것을 특징으로 하는 촉매 시스템.
14. The method of claim 13,
Wherein the catalyst system is used in a CO oxidation reaction.
KR1020140061478A 2014-05-22 2014-05-22 CHEMICAL DOPING OF SOL-GEL TiO2 FILM KR20150134582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140061478A KR20150134582A (en) 2014-05-22 2014-05-22 CHEMICAL DOPING OF SOL-GEL TiO2 FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140061478A KR20150134582A (en) 2014-05-22 2014-05-22 CHEMICAL DOPING OF SOL-GEL TiO2 FILM

Publications (1)

Publication Number Publication Date
KR20150134582A true KR20150134582A (en) 2015-12-02

Family

ID=54883007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140061478A KR20150134582A (en) 2014-05-22 2014-05-22 CHEMICAL DOPING OF SOL-GEL TiO2 FILM

Country Status (1)

Country Link
KR (1) KR20150134582A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108686653A (en) * 2018-04-27 2018-10-23 郑州轻工业学院 A kind of preparation method and application for the bimetal nano catalyst reducing CO in smoke of cigarettes burst size
CN109574333A (en) * 2018-12-06 2019-04-05 东南大学 A kind of copper modification nitrogen-doped titanium dioxide material and its preparation method and application
KR101965828B1 (en) * 2017-09-29 2019-04-05 한국원자력연구원 Sol solution for titanium dioxide bulk structure, sol-gel method for titanium dioxide bulk structure and the catalyst filter comprising titanium dioxide bulk structure
KR20210070090A (en) * 2019-12-04 2021-06-14 단국대학교 천안캠퍼스 산학협력단 Method for preparing metal-doped photocatalytic nanoparticles without using additives

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101965828B1 (en) * 2017-09-29 2019-04-05 한국원자력연구원 Sol solution for titanium dioxide bulk structure, sol-gel method for titanium dioxide bulk structure and the catalyst filter comprising titanium dioxide bulk structure
CN108686653A (en) * 2018-04-27 2018-10-23 郑州轻工业学院 A kind of preparation method and application for the bimetal nano catalyst reducing CO in smoke of cigarettes burst size
CN108686653B (en) * 2018-04-27 2021-01-22 郑州轻工业学院 Preparation method and application of bimetallic nano-catalyst for reducing CO release amount of cigarette smoke
CN109574333A (en) * 2018-12-06 2019-04-05 东南大学 A kind of copper modification nitrogen-doped titanium dioxide material and its preparation method and application
KR20210070090A (en) * 2019-12-04 2021-06-14 단국대학교 천안캠퍼스 산학협력단 Method for preparing metal-doped photocatalytic nanoparticles without using additives

Similar Documents

Publication Publication Date Title
Varshney et al. Nanoscale TiO2 films and their application in remediation of organic pollutants
Zong et al. Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light
Zaleska Doped-TiO2: a review
Chen et al. Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid
Wang et al. Sol− gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals
Wang et al. Photocatalytic hydrogen production from aqueous solutions over novel Bi0. 5Na0. 5TiO3 microspheres
US8110520B2 (en) Carbon-coated metal oxide nano-particles and method of preparing the same
Liu et al. Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates
CN108671907B (en) Platinum/titanium dioxide nanoflower composite material and preparation method and application thereof
Goddeti et al. Chemical Doping of TiO 2 with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation
Akgun et al. Effect of silver incorporation on crystallization and microstructural properties of sol–gel derived titania thin films on glass
Hojamberdiev et al. Visible-light-driven N–F-codoped TiO2 powders derived from different ammonium oxofluorotitanate precursors
Xie et al. Role of sodium ion on TiO2 photocatalyst: influencing crystallographic properties or serving as the recombination center of charge carriers?
US10751700B2 (en) Nanostructured binary oxide TiO2/AI2O3 with stabilized acidity as catalytic support and its synthesis process
KR20150134582A (en) CHEMICAL DOPING OF SOL-GEL TiO2 FILM
EP3166724A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
Li et al. Structure and size distribution of TiO 2 nanoparticles deposited on stainless steel mesh
Bayram et al. The role of cobalt doping on the optical and structural properties of Mn3O4 nanostructured thin films obtained by SILAR technique
Samadi et al. Synthesis, characterization, and application of Nd, Zr–TiO 2/SiO 2 nanocomposite thin films as visible light active photocatalyst
CN114653370B (en) Metal oxide-based metal monoatomic catalyst, and preparation method and application thereof
CN111589447A (en) Heterojunction nano-particle and preparation method and application thereof
Psathas et al. Highly Crystalline Nanosized NaTaO3/NiO Heterojunctions Engineered by Double-Nozzle Flame Spray Pyrolysis for Solar-to-H2 Conversion: Toward Industrial-Scale Synthesis
KR101227087B1 (en) Morphology control method of nano-structured material
Hsiao et al. Preparation of Pd-containing TiO2 film and its photocatalytic properties
Arul et al. Visible light proven Si doped TiO2 nanocatalyst for the photodegradation of Organic dye

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application