KR20150134294A - 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터 - Google Patents

그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터 Download PDF

Info

Publication number
KR20150134294A
KR20150134294A KR1020150095642A KR20150095642A KR20150134294A KR 20150134294 A KR20150134294 A KR 20150134294A KR 1020150095642 A KR1020150095642 A KR 1020150095642A KR 20150095642 A KR20150095642 A KR 20150095642A KR 20150134294 A KR20150134294 A KR 20150134294A
Authority
KR
South Korea
Prior art keywords
graphyne
bending deformation
present
particles
fermi level
Prior art date
Application number
KR1020150095642A
Other languages
English (en)
Inventor
이윤택
Original Assignee
이윤택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이윤택 filed Critical 이윤택
Priority to KR1020150095642A priority Critical patent/KR20150134294A/ko
Publication of KR20150134294A publication Critical patent/KR20150134294A/ko

Links

Images

Classifications

    • H01L41/22
    • C01B31/043
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L41/04
    • H01L41/187

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Micromachines (AREA)
  • Hall/Mr Elements (AREA)

Abstract

본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 일 함수를 하나 이상 조절하는 트랜지스터에 관한 것으로, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, Fermi level(페르미레벨)의 높이를 하나 이상 조절, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공한다.
또한, 본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 일 함수를 하나 이상 조절하는 트랜지스터에 관한 것으로, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, Fermi level(페르미레벨)의 높이를 하나 이상 조절, 중 하나 이상 선택되는 것을 교차되는 장벽조정회로의 정전기적 준위로 인하여 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공한다.

Description

그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터{Graphyne transistors by using the selected one or more of Graphyne bending deformation, Graphyne position move, that the one or more of work-function controlling of the transistors}
본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터 및 제조방법에 관한 것으로, 보다 상세하게는 그래파인(Graphyne)을 마이크로단위, 나노단위 중 하나 이상 선택되는 단위를 구비하는 탄성, 신축성, 유연성 중 하나 이상 선택되는 것을 구비하는, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 하나 이상 구비하는 것이다.
1. 실리콘(Si) 소재의 트랜지스터가 수십 억개씩 들어가 있는 현행 반도체로는 `10나노급`이 미세공정의 한계로 꼽힌다.
2. 하지만 그래파인(Graphyne) 소재로 반도체의 용량과 처리속도를 확 높이면 차세대 반도체 시장의 주도권을 쥘 수 있다.
3. 그래파인(Graphyne)은 탄소 동소체의 구조의 물질로서 그래핀과 유사한 특성을 지니고 있다.
4. 반도체 성능을 높이려면 트랜지스터 크기를 줄여 전자의 이동거리를 좁히거나 전자의 이동도가 더 높은 소재를 사용해 전자가 빠르게 움직이도록 해야 한다.
5. 높은 전자 이동도를 갖고 있는 그래파인(Graphyne)은 실리콘을 대체할 물질로 주목받고 있지만 문제는 그래파인(Graphyne)이 `도체` 특성을 갖고 있다는 점이다. 그래파인(Graphyne)이 금속성을 지니고 있어 전류를 차단할 수 없다는 얘기다. 트랜지스터는 전류의 흐름과 차단으로 디지털 신호인 0과 1을 나타낸다. 그래파인(Graphyne)을 사용하려면 이를 `반도체화`하는 과정이나 충분한 진공 gap(진공갭), gap(갭, 예를들어 절연층을 의미할 수 있음), Air gap(에어갭), 진공층, 에어층, 중 선택되는 것을 가져야 한다.
6. 그래파인(Graphyne)이 자랑하는 전자의 이동속도를 유지하면서도 그동안 난제로 인식됐던 대기 전력 문제를 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하는데 있다.
7. 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 기존 트랜지스터와 다른 점은 채널 전위조절(실리콘 트랜지스터 방식)이 아닌 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이조절을 통해 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이며 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하는데 있다.
8. 또한 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하여 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적 준위로 인하여, 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 시켜 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 하여 Work function(일함수)를 하나 이상 조절하고자 하는 트랜지스터의 원리입니다. 하나 이상의 쇼키장벽(Schottky Barrier)는 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것으로 인하여 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하게 되며, 이는 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하는 방법으로도 활용될 수 있습니다. 이는 상부의 교차되어 지나가는 회로(장벽조정)의 정전기적인 준위로 인하여 조절이 가능합니다. 이러한 구성은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형을 일으켜 하나 이상의 굽힘변형이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하는 것으로 이해되어 질 수 있습니다. 이는 그래파인(Graphyne)의 빠른 전도도를 이용하여 트랜지스터를 개발 할 수 있으며, 충분한 진공 gap(진공갭), gap(갭, 예를들어 절연층을 의미할 수 있음), Air gap(에어갭), 진공층, 에어층, 중 선택되는 것을 구비한 상태로 종래 전계효과트랜지스터보다 전도속도가 빠른 트랜지스터를 개발 할 수 있습니다.
본 발명의 한 실시형태에서, 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
1. 실리콘(Si) 소재의 트랜지스터가 수십 억개씩 들어가 있는 현행 반도체로는 `10나노급`이 미세공정의 한계로 꼽힌다.
2. 하지만 그래파인(Graphyne) 소재로 반도체의 용량과 처리속도를 확 높이면 차세대 반도체 시장의 주도권을 쥘 수 있다.
3. 그래파인(Graphyne)은 탄소 동소체 구조의 물질로 실리콘보다 빠르게 전자를 전달하는 특성을 지니고 있다.
4. 반도체 성능을 높이려면 트랜지스터 크기를 줄여 전자의 이동거리를 좁히거나 전자의 이동도가 더 높은 소재를 사용해 전자가 빠르게 움직이도록 해야 한다.
그러나, 상기 그래파인(Graphyne)의 뛰어난 전도도를 활용하고자 하는 경우, 너무 뛰어난 전도도로 인해 종래의 트랜지스터 방식으로는 전류의 흐름과 차단을 조절하기가 어려운 문제점이 발생하였다.
따라서, 본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, Fermi level(페르미레벨)의 높이를 하나 이상 조절, 중 하나 이상 선택되는 것으로 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공함에 그 목적이 있다.
또한, 본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, Fermi level(페르미레벨)의 높이를 하나 이상 조절, 중 하나 이상 선택되는 것을 교차되는 장벽조정회로의 정전기적 준위로 인하여 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공함에 그 목적이 있다.
1. 그래파인(Graphyne)이 자랑하는 전자의 이동속도를 유지하면서도 그동안 난제로 인식됐던 대기 전력 문제를 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하는데 있다.
2. 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 기존 트랜지스터와 다른 점은 채널 전위조절(실리콘 트랜지스터 방식)이 아닌 쇼키 장벽(Schottky Barrier)의 높이를 통해 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이며 이는 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하는데 있다.
3. 또한 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하여 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이다.
4. 또한 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하여 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이다.
5. 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이다.
발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 시켜 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하고자 하는 트랜지스터의 원리입니다. 하나 이상의 쇼키장벽(Schottky Barrier)는 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것으로 인하여 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하게 되며, 이는 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하는 방법으로도 활용될 수 있습니다. 이는 상부의 교차되어 지나가는 회로(장벽조정)의 정전기적인 준위로 인하여 조절이 가능합니다. 이러한 구성은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형을 일으켜 하나 이상의 굽힘변형이 가해진 하나 이상의 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 하나 이상 조절하는 것으로 이해되어 질 수 있습니다. 이는 그래파인(Graphyne)의 빠른 전도도를 이용하여 트랜지스터를 개발 할 수 있으며, 종래의 구조가 어려웠던 그래파인(Graphyne)을 충분한 진공 gap(진공갭), gap(갭, 예를들어 절연층을 의미할 수 있음), Air gap(에어갭), 진공층, 에어층, 중 선택되는 것을 구비한 상태로 종래 전계효과트랜지스터보다 전도속도가 빠른 트랜지스터를 개발 할 수 있습니다.
본 발명의 한 실시형태에서, 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
상기에서 설명한 바와 같이 이루어진 본 발명에 따르면, 대기 전력 문제를 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하면 종래의 트랜지스터보다 처리속도가 빠른 트랜지스터를 개발 할 수 있는 효과가 있게 된다.
또한 상기에서 설명한 바와 같이 이루어진 본 발명에 따르면, 대기 전력 문제를 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하면 종래의 트랜지스터보다 처리속도가 빠른 트랜지스터를 개발 할 수 있는 효과가 있게 된다.
도 1
a. 1 내지 3 으로 구성되는, 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
b. 1 내지 3 으로 구성되는, 교차되어 지나가는 300(빗금쳐져 있는 부위)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
c. 1 내지 3 으로 구성되는, 하나 이상의 그래파인(Graphyne)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 교차되어 지나가는 300(빗금쳐져 있는 부위)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면
d. 1 내지 3 으로 구성되는, 하나 이상의 그래파인(Graphyne)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 구성하고, 교차되어 지나가는 300(빗금쳐져 있는 부위)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면
e. 1 내지 3 으로 구성되는, 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다.
f. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 2
a. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
b. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 교차되어 지나가는 300(도면에는 없지만 도면속의 구성이 교차되어 포함되어 있는)의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 300으로 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
c. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
d. 도면의 구성이 다음과 같이 설명될 수 있다. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이, 하나 이상의 Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
e. 도면의 설명과는 무관하게 도면의 구성이 다음과 같이 설명될 수 있다. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300과의 하나 이상의 Fermi level(페르미레벨)의 높이를 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
f. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 3
a. 1 내지 3 으로 구성되는, 90 또는 100(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
b. 1 내지 3 으로 구성되는, 300(빗금쳐져 있는 부위)의 정전기적 준위로 인하여 90 또는 100(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
c. 1 내지 3 으로 구성되는, 도면에서 통로는 접착물질, 엘라스토머, 액체고분자, 부도체, 절연층, 중 선택되는 것을 의미하며, 본 발명의 한 실시형태에서, 도면에서 빈공간은 진공층, Air층(에어층), 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 의미한다.
d. 1 내지 3 으로 구성되는, 하나 이상의 그래파인(Graphyne)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 교차되어 지나가는 300(빗금쳐져 있는 부위)의 정전기적 준위로 인하여 90 또는 100(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 상부에 구비된)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면
e. 1 내지 3 로 구성되는, 하나 이상의 그래파인(Graphyne)은 90 또는 100(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)의 위에 구비되어 있지만 도면에는 90 또는 100으로 같이 설명한다. 작동내용은 아래와 같이 설명된다. 90 또는 100(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 90 또는 100(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다.
f. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 4
a. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
b. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 교차되어 지나가는 300(도면에는 없지만 도면속의 구성이 교차되어 포함되어 있는)의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
c. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
d. 도면의 구성이 다음과 같이 설명될 수 있다. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이, 하나 이상의 Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
e. 도면의 설명과는 무관하게 도면의 구성이 다음과 같이 설명될 수 있다. 하나 이상의 그래파인(Graphyne)(200)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 Fermi level(페르미레벨)의 높이를 구성하고, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
f. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 5
a. 1 내지 3 으로 구성되는, 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
b. 1 내지 3 으로 구성되는, 교차되어 지나가는 300(도면속의 구성이 교차되어 포함되어 있는 빗금쳐져 있는 부위-장벽조정)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 그래파인(Graphyne)(200)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다.
c. 1 내지 3 으로 구성되는, 도면에서 통로는 접착물질, 엘라스토머, 액체고분자, 부도체, 절연층, 중 선택되는 것을 의미하며, 본 발명의 한 실시형태에서, 도면에서 빈공간은 진공층, Air층(에어층), 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 의미한다.
d. 1 내지 3 으로 구성되는, 하나 이상의 그래파인(Graphyne)이 하나 이상의 300(빗금쳐져 있지 않은)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 구성하고, 교차되어 지나가는 300(빗금쳐져 있는 부위)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면
e. 1 내지 3 로 구성되는, 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 300으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다.
f. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 6
a. 1 내지 4 로 구성되는, 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다.
b. 1 내지 4 로 구성되는, 교차되어 지나가는 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나의 회로로만도 전자의 이동이 가능함을 의미한다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다.
c. 1 내지 4 로 구성되는, 하나 이상의 200(그래파인(Graphyne))이 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)과의 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 구성하고, 교차되어 지나가는 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)의 정전기적 준위로 인하여 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 110(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하나 이상의 200(그래파인(Graphyne))을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 300(도면에 작성되어 있지는 않으나 도면의 회로구성이 포함되어 있는)으로 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다.
d. 상기 a 내지 c 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 7
a. 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 우측면의 회로로 Work funiction(일함수)의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
b. 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여, Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
c. 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여, Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
d. 상기 a 내지 c 에서, 본 도면은 교차되어 지나가는 회로(장벽조정)과 그래파인(Graphyne)이 하나의 전지에 연결되어 있으며, 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
e. 상기 a 내지 c 에서, 본 도면은 교차되어 지나가는 회로(장벽조정)과 그래파인(Graphyne)이 하나의 전지에 연결되어 있으며, 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
f. 본 도면의 설정과 관계없이, 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
g. 상기 a 내지 f 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다.
h. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 8
a. 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 우측면의 회로로 Work funiction(일함수)의 조절으로 연결되는 도면, 여기서는 하나 이상의 회로로 연결될 수 있음을 의미한다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다
b. 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여, Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다
c. 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여, Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다
d. 상기 a 내지 c 에서, 본 도면은 교차되어 지나가는 회로(장벽조정)과 그래파인(Graphyne)이 하나의 전지에 연결되어 있으며, 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다
e. 상기 a 내지 c 에서, 본 도면은 교차되어 지나가는 회로(장벽조정)과 그래파인(Graphyne)이 하나의 전지에 연결되어 있으며, 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다
f. 본 도면의 설정과 관계없이, 교차되어 지나가는 회로(장벽조정)의 정전기적 준위로 인하여 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 도면을 의미할 수 있다. 이는 일반적인 트랜지스터의 원리로서 하나 이상의 회로로도 전자의 이동이 가능함을 의미한다.
g. 상기 a 내지 f 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다.
h. 상기 a 내지 e 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
도 9
a. 본 도면은, 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로로 인하여 하나 이상의 Piezo(피에조) 물질이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터의 주요 회로도를 설명하는 도면이다.
b. 본 도면은, 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로로 인하여 하나 이상의 Piezo(피에조) 물질이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터의 주요 회로도를 설명하는 도면으로도 이해될 수 있다.
c. 상기 a 내지 b 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다.
d. 상기 a 내지 c 중 하나 이상 선택되는 것에서, 본 발명의 한 실시형태에서, 본 도면에서 제시되는 구성요소는 일면에서 제시하는 설명의 범위 안에서 본 발명에서 제시하는 물리적 치수를 하나 이상 구비하며 그 크기나 모양이 달라질 수 있다. 본 발명의 한 실시형태에서, 본 도면의 구성은 하나 이상의 쿨롱 봉쇄(Coulomb blockade)로서 하나 이상 재구성되어 설명될 수 있다.
본 발명에 적용된 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터는 도 1 내지 도 9 에 도시된 바와 같이 구성되는 것이다.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 일반적으로 통용되는 용어들로서 이는 생산자의 의도 또는 관계에 따라 달라질 수 있으므로 그 정의는 본 명세서에서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 시켜 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하고자 하는 트랜지스터의 원리이다. 하나 이상의 쇼키장벽(Schottky Barrier)은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것으로 인하여 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하게 되며, 이는 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하는 방법으로도 활용될 수 있다. 상기 설명은 상부의 교차되어 지나가는 회로(장벽조정)의 정전기적인 준위로 인하여 조절이 가능합니다. 이러한 구성은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형을 일으켜 하나 이상의 굽힘변형이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 하나 이상 조절하는 것으로 이해되어 질 수 있습니다. 상기 설명의 내용을 토대로 검토하면 그래파인(Graphyne)의 빠른 전도도를 이용하여 트랜지스터를 개발 할 수 있으며, 그래파인(Graphyne)을 충분한 진공 gap(진공갭), gap(갭, 예를들어 절연층을 의미할 수 있음), Air gap(에어갭), 진공층, 에어층, 중 선택되는 것을 구비한 상태로 종래 전계효과트랜지스터보다 전도속도가 빠른 트랜지스터를 개발 할 수 있다.
본 발명은 그래파인(Graphyne)이 자랑하는 전자의 이동속도를 유지하면서도 그동안 난제로 인식됐던 대기 전력 문제를 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결한다.
그리고, 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 기존 트랜지스터와 다른 점은 채널 전위조절(실리콘 트랜지스터 방식)이 아닌 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이를 통해 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이며 상기 설명은 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결한다.
또한, 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 기존 트랜지스터와 다른 점은 채널 전위조절(실리콘 트랜지스터 방식)이 아닌 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것을 통해 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이다.
또한, 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터가 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하여 전자 이동속도가 빠르면서도 전류를 차단할 수 있게 한 것이다.
또한, 그래파인(Graphyne)으로 만든 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터로 이해되어 질 수 있음이다.
본 발명의 한 실시예에서, 본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공한다.
본 발명의 한 실시예에서, 본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공한다.
본 발명의 한 실시예에서, 본 발명은 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공한다.
본 발명의 한 실시예에서, 본 발명은 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 제공한다.
본 발명의 한 실시예에서, 본 발명은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 시켜 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하고자 하는 트랜지스터의 원리이다. 하나 이상의 쇼키장벽(Schottky Barrier)는 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것으로 인하여 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하게 되며, 이는 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)를 하나 이상 조절하는 방법으로도 활용될 수 있다. 이는 상부의 교차되어 지나가는 회로(장벽조정)의 정전기적인 준위로 인하여 조절이 가능하다. 이러한 구성은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 이해되어 질 수 있다. 이는 그래파인(Graphyne)의 빠른 전도도를 이용하여 트랜지스터를 개발 할 수 있으며, 그래파인(Graphyne)을 충분한 진공 gap(진공갭), gap(갭, 예를들어 절연층을 의미할 수 있음), Air gap(에어갭), 진공층, 에어층, 중 선택되는 것을 구비한 상태로 종래 전계효과트랜지스터보다 전도속도가 빠른 트랜지스터를 개발 할 수 있다.
본 발명의 한 실시예에서, 본 발명은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 본 발명은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 본 발명은 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하는 것은 그래파인(Graphyne)의 상단부에 접착물질, 엘라스토머, 액체고분자, 부도체, 절연체(절연층), 중 선택되는 것이 구비되어 있는 상황에서도 그래파인(Graphyne)과 함께 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 할 수 있는 것을 의미한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)를 구비하는데 있어서 전사기술, 리소그래피기술을 사용할 수 있으며, 교차되는 회로를 꾸미는데 있어서, 오버레이 기술등 통용되는 종래의 반도체 제조기술을 사용하여 제작 할 수 있음이다. 본 발명의 한 실시예에서, 그래파인(Graphyne)이 전사되는데 있어서 하나 이상의 자성입자가 함께 구비되어 있는 상태로 같이 전사되어 회로를 구성할 수 있다.
본 발명의 한 실시예에서, 진공층, Air층(에어층), 중 선택되는 것을 구비하는데 있어서 해체층으로서 구비할 수 있으며, 해체층은 분열이나 분해시켜 사용할 수 있는 종래의 반도체 공정에서 사용하는 해체층을 의미한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는, 하나 이상의 그래파인(Graphyne)의 상부에 접착물질, 엘라스토머, 액체고분자, 부도체, 절연체(절연층), 중 선택되는 것이 구비되는 다층상태에서 하나 이상의 굽힘변형이 구비되어, 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다. 이는 도면에서 접착물질, 엘라스토머, 액체고분자, 부도체, 절연체(절연층), 중 선택되는 것이 통로로 이어지는 것을 의미할 수 있다.
본 발명의 한 실시예에서, 굽힘변형은 영률(Young's modulus)로서 설명될 수 있다. 본 발명의 한 실시예에서, 굽힘변형은 곡률반경 1/2 R 값(구부러짐과 관계된 곡률 반경(r)의 두배로 나누어줌으로써 표면 변형률이 결정되는 박막, 초박막, 초경박 중 하나 이상 선택되는 것)으로서도 이해되어 질 수 있다.
본 발명의 한 실시예에서, 자성입자는 하나 이상의 나노 자성입자를 의미한다.
본 발명의 한 실시예에서, 자성입자는 Magnet(자석) 성질을 구비하는 모든 합성물질을 포함하는 것으로 이해되어져야 한다.
본 발명의 한 실시예에서, 자성입자는 Magnet(자석) 성질을 구비하는 모든 나노 합성물질을 포함하는 것으로 이해되어져야 한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 비선형 탄성 물리학적 원리와 관련된 복잡한 하나 이상의 형태, 하나 이상의 레이아웃를 하나 이상 구비할 수 있으며, 하나 이상의 초기변형률(prestrain)의 크기(εpre)가 증가할수록 상기 비선형 탄성 물리학적 원리와 관련된 복잡한 하나 이상의 형태, 하나 이상의 레이아웃 중 하나 이상 선택되는 것을 하나 이상 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 구부러짐과 관계된 곡률 반경(r)의 두배로 나누어줌으로써 표면 변형률이 결정되는 박막, 초박막, 초경박 중 하나 이상 선택되는 것에서의 기초적인 굽힘 역학을 하나 이상 set theory(조합이론), Combinatorics(조합론), Geometry(기하학), Group(그룹), 조절 중 하나 이상 선택되는 것으로 하나 이상 구비하여 유도된다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 하나 이상 구비하는 하나 이상의 층에서 하나 이상의 구부림 모멘트<M>은 하나 이상 규칙적, 불규칙적, 균일, 불균일, 다공성 중 하나 이상 선택되는 것으로, 하나 이상 1차원적, 2차원적, 3차원적, n차원적 중 하나 이상 선택되는 것으로, 하나 이상 동일, 비동일, 전체적, 부분적, 지속적, 비지속적, set theory(조합이론), Combinatorics(조합론), Geometry(기하학), Group(그룹), 조절 중 하나 이상 선택되는 것으로 하나 이상 구비하는 하나 이상의 곡률로부터 얻어지고, 그것은 하나 이상 동일, 비동일, set theory(조합이론), Combinatorics(조합론), Geometry(기하학), Group(그룹), 중 하나 이상 선택되는 것으로 하나 이상 구비하는 하나 이상의 <u>의 2차 도함수이다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)을 하나 이상 구비하는 것은, 하나 이상 구비하는 평면에서 수행되며, 종래 전자장치 제조공정과 하나 이상 선택적으로 호환될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상 구비하는 평면에서 수행되며, 본 발명의 한 실시예에서, 종래 전자장치 제조공정과 하나 이상 선택적으로 호환될 수 있다.
본 발명의 한 실시예에서, 종래 평면 형상 제조 시스템을 비선형 형태를 필요로 하는 적용에 사용하기 위해 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 평면으로 제조되는 기하학적 한계를 극복할 수 있는 형태를 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 양의 곡률을 하나 이상 구비하는 표면과 관련됨에 불구하고 음의 곡률을 하나 이상 구비하는 것들 역시 가능하다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 비동일 평면을 하나 이상 구비하고 하나 이상 상호연결된 형태를 구비할 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)을 하나 이상 구비하는데 있어서, 하나 이상의 캐리어 유동체와 같은 하나 이상의 캐리어 매개물로 확산되는 공정을 구비할 수 있다.
본 발명의 한 실시예에서, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 mobility(이동도)로서 설명된다.
본 발명의 한 실시예에서, mobility(이동도)는 에어층, 진공층, 기체층, 액체층, 고체층, 중 선택되는 것 내에서 이온, 전자, 콜로이드입자 등 전하를 가진 입자가 전기장 때문에 힘을 받을 때, 그 평균이동속도 v와 전기장의 세기 E의 관계 v=uE로 정의되는 계수 u이다. 전기장의 세기가 크지 않을 때만 성립하며, u의 단위는 cm2 s-1 V-1이다. 본 발명의 한 실시예에서, 이 비례관계는 E가 그다지 크지 않을 때 성립하며, 등방성 매질에서는 u는 스칼라상수이다. u의 단위는 cm2 s-1 V-1이다. 특히 홀이동도(Hall mobility)와 구분할 때는 유동이동도라 한다. 단위부피당의 입자수를n, 입자의 전하를 e라 하면, 입자의 운동에 따른 전기전도도 σ는 σ=neu이다. 입자의 확산계수 D는 일반적으로 아인슈타인의 관계식 u=eD/kT(k는 볼츠만상수, T는 절대온도)가 성립한다.
본 발명의 한 실시예에서, mobility(이동도)는 임피던스의 역수를 말한다. 단(單)진동하는 기계시스템의 어떤 점 속도와 같은 점 또는 다른 점의 힘과의 복소수 비를 이동도라 한다. (1) 세기 E의 전장에서 전하를 갖는 입자가 힘을 받을 때 평균 이동속도 V와 E의 비 V/E를 이동도 라고 한다. (2) 주파수 응답 함수의 일종이며, 어떤 점의 속도와 그와 같은 점 또는 다른 점의 여자력의 비이다. 기계 임피던스의 역수이며 주파수의 복소 함수가 된다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할때 발생하는 그래파인(Graphyne)의 굽힘역학은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것에 비하여 그래파인(Graphyne)이 영률(Young's modulus)를 구비하는 것으로 이해되어 질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 (1) 하나 이상의 1 마이크로미터 이상 100 마이크로미터 이하의 범위, (2) 하나 이상의 0.1 나노미터 이상 100 나노미터 이하의 범위, 로 구성되는 상기 (1) 내지 (2) 중 하나 이상 선택되는 범위를 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할때 발생하는 변형으로부터 자유로운 변형 고립층(예를들어 진공층, 에어층, 중 선택되는 것)을 본 발명의 트랜지스터는 하나 이상 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 구부러짐과 관계된 곡률 반경(r)의 두배로 나누어줌으로써 표면 변형률이 결정되는 박막, 초박막, 초경박 중 하나 이상 선택되는 것에서의 기초적인 굽힘 역학으로 해석되어 질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것이 구비할때 발생될 수 있는, 박리 등의 치명적인 변형을 피하기 위하여 변형이 영인 구조(예를들어, 충분히 단단한 구조)를 본 발명의 트랜지스터는 구비할 수 있다. 본 발명의 한 실시예에서, 상기 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 기하학적인 형태를 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 다층구조, 단일, 중 하나 이상 선택되는 것으로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 이해되어 질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것은 하나 이상의 변형이 발생하는 면적으로 인하여 조절되어지지만, 본 발명의 한 실시예에서, 변형이 발생하지 않는 면적에 의하여 영향을 받을 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것은 공간적으로 균일하지 않은 특성을 구비하여 구비된다. 본 발명의 한 실시예에서, 이미 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 공간적으로 균일한 특성을 구비하는 것으로 해석되어 질 수 있다. 상기 공간적으로 균일한 특성, 공간적으로 뷸균일한 특성은 (평면-변형) 계수들로서 설명되어 진다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것은 하나 이상 공간적으로 균일하지 않은 특성, 하나 이상 공간적으로 균일한 특성, 중 하나 이상 선택되는 특성을 하나 이상 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 상부 표면으로부터 변형이 발생하는 거리(d)로서 설명되어 진다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 구부림 강성도 및 효과적인 신장성을 가지는 합성보(또는 보, 또는 플레이트)의 굽힘역학으로 설명되어 진다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 구부림 모멘트<M> (하나 이상의 굽힘 에너지, 축방향 힘 F 중 하나 이상 선택되는 것)은 플레이트 이론을 통하여 그것의 하나 이상 동일, 비동일, 전체적, 부분적, 지속적, 비지속적, set theory(조합이론), Combinatorics(조합론), Geometry(기하학), Group(그룹), 조절 중 하나 이상 선택되는 것으로 하나 이상 구비하는 하나 이상의 평면밖 변위 <u>의 항으로 얻어진다. 또한 그것의 변형 에너지는 <u>의 항으로 얻어진다. 더하여 상기 변위 <u>는 전체 에너지를 최소화하는 것에 의해 결정되어질 계수들과 함께 푸리에 급수로 확장된다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 곡률로부터 얻어지고, 그것은 하나 이상 동일, 비동일, 전체적, 부분적, 지속적, 비지속적, set theory(조합이론), Combinatorics(조합론), Geometry(기하학), Group(그룹), 조절 중 하나 이상 선택되는 것으로 하나 이상 구비하는 하나 이상의 <u>의 2차 도함수이다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것은 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것이 하나 이상 가깝게, 붙으며, 인접하게 위치시키는, 근접하게, 충분히 가깝게, 밀접하게 붙는, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다. 상기 하나 이상 가깝게, 붙으며, 인접하게 위치시키는, 근접하게, 충분히 가깝게, 밀접하게 붙는, 중 하나 이상 선택되는 것은 100 ㎛, 1 ㎛, 100 ㎚, 1 ㎚ 중 하나 이상 선택되는 수치보다 적은 수학 값, 물리적 치수 중 하나 이상 선택되는 것으로 정의된다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 10 ㎛, 1 ㎛, 100 ㎚, 1 ㎚ 중 하나 이상 선택되는 수치보다 적은 수학 값, 물리적 치수 중 하나 이상 선택되는 것으로 정의된다.
본 발명의 한 실시예에서, 본 발명의 트랜지스터는 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것을 구비할때 발생하는 변형에 민감한 층을 보호하기 위하여 충분한 단단한 재질이 사용될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 그래파인(Graphyne)을 25%, 20%, 10%, 25% 내지 0.1% 의 범위, 중 하나 이상 선택되는 범위에서 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 해석되어 질 수 있으나 이에 한정되지는 않는다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 다층구조, 단일, 중 하나 이상 선택되는 것으로 구비하되, 등가 장력 강도(Equivalent tensile strength) 및 등가 굽힘 강도(Equivalent bending strength)로서 설명될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 해체층은 하나 이상의 폴리메틸메타크릴레이트(PMMA)를 하나 이상 구비, 이용 중 하나 이상 선택되는 것으로, 하나 이상의 분열, 분해, 제거 중 하나 이상 선택되는 것을 하나 이상 구비하는 것으로 해석되어 질 수 있다.
본 발명의 한 실시예에서, 본 발명의 제조방법은 전자 구성 요소 배열 또는 요소의 패턴 배열과 같이(예를 들어, 반도체) 고정확성 리프트오프 인쇄 요소들을 가능하게 하기 위해 하나 이상의 고정 및 지지 구조(fixture)를 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 접착층, 접착영역, 접착물질은 본 발명에서 제시하는 접착영역, 접착제, 접착 전구체 중 하나 이상 선택되는 것의 결합력보다 적은 결합력을 의미할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 접착층, 접착영역, 접착물질은 접착영역, 접착제, 접착 전구체 중 하나 이상 선택되는 것이 구비되는 것을 의미할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 유한 요소 시뮬레이션을 만족하는 하나 이상의 구조, 형태, 구성요소 중 하나 이상 선택되는 것을 하나 이상 구비한다. 본 발명의 한 실시예에서, 유한 요소 시뮬레이션은 하나 이상의 8-노드, 4-노드 요소 중 선택되는 것을 가지는 요소를 구비하여 실행될 수 있다. 본 발명의 한 실시형태에서, 상기 유한 요소 시뮬레이션은 유사한 맴브레인 변형 패턴을 나타낼 수 있다. 본 발명의 한 실시형태에서, 유한 요소 시뮬레이션은, 역학적으로 독립적 방식으로 행동하기 위해 하나 이상의 유한요소법(FEM), 유한차분법(FDM), 유한체적법(Finite Volume Method), 다구찌 기법(Taguchi method), 로버스트 설계(Robust Design) 중 하나 이상 선택되는 것을 구비한다.
본 발명의 한 실시예에서, 본 발명의 트랜지스터는, 본 발명의 트랜지스터를 제조하기 위해서 정렬 유지 소자를 사용할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 버클링변형을 구비할 수 있다. 본 발명의 한 실시예에서, 하나 이상의 버클링변형은 작은 다수의 파장들이 함께 융합되는 것과 같이 발생할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것의 상부에 구비되는 하나 이상의 그래파인(Graphyne)은 상기 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 충분히 덮는 형태로 구비될 수 있다.
본 발명의 한 실시예에서, 본 발명의 트랜지스터는 a. 그래파인(Graphyne)의 하나 이상의 비동일 평면의 설계를 위하여, b. 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할때 발생하는 하나 이상의 기계적인 변형격리를 위하여, 로 구성되는 상기 a 내지 b, 중 하나 이상 선택되는 것을 위하여, 본 발명에서 제시하는 제조방법을 하나 이상 사용할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나의 층, 다층상태, 중 선택되는 층의 상태로 하나 이상의 점, 리본, 나노리본, 띠, 파형, 언덕(hill), 작은 면, 작은 선, 면, 선, 중 하나 이상 선택되는 형태를 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 아래와 같이 의미될 수 있다. 본 발명의 한 실시예에서, 하나 이상의 그래파인(Graphyne)은 하나 이상의 1). 그래파인(Graphyne), 2). 그래파인(Graphyne)과 상기 그래파인(Graphyne)이 드레인에 연결되는 부분에 전도성물질을 구비하는 형태, 3). 그래파인(Graphyne)과 전도성물질이 다층상태를 구비하되 굽힘변형을 구비할 수 있는 형태, 4). 그래파인(Graphyne)과 낮은 영률(Young's modulus)의 물질이 다층상태를 구비하되 굽힘변형을 구비할 수 있는 형태, 5). 그래파인(Graphyne)과 낮은 영률(Young's modulus)의 전도성 물질이 다층상태를 구비하되 굽힘변형을 구비할 수 있는 형태, 로 구성되는 상기 1) 내지 5) 중 선택되는 것을 의미할 수 있으나 기본적으로 그래파인(Graphyne)의 뛰어난 전도도와 큰 기계적 변형에도 파괴되지 않는다는 점 및 큰 기계적 변형에도 전도도가 변화되지 않는다는 점을 이용한다는 측면에서 다양한 변형형태가 구비될 수 있다. 본 발명의 한 실시예에서, 상기 전도성물질은 하나 이상의 원자형태 또는 분자형태의 전도성물질을 의미할 수 있다. 본 발명의 한 실시예에서, 상기 전도성물질은 전도성 폴리머(conducting polymer)를 의미할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 a. 변형두께가 대략 0.1 나노미터 ~ 100 마이크로미터, b. 변형폭이 대략 1 나노미터 ~ 1 밀리미터 c. 변형길이가 대략 1 나노미터 ~ 100 마이크로미터, d. 변형길이가 1 마이크로미터 이상 또는 이하, e. 변형폭이 1 마이크로미터 이상 또는 이하, f. 마이크로스트립변형(두께 340 나노미터, 폭 5 마이크로미터, 길이 1밀리미터 이하), g. 변형간격(1 마이크로미터 이상 또는 이하), h. 하나 이상의 변형길이, 변형넓이, 변형면적, 변형부피, 변형폭, 변형높이, 변형두께, 변형단면적, 변형간격, 표면 거칠기, 표면 변형범위, 표면 비변형범위, 편평도, 중 하나 이상 선택되는 것의 하나 이상의 물리적 치수가 0.1 나노미터 ~ 200 마이크로미터, 로 구성되는 상기 a 내지 h, 로 구성되는 것중 하나 이상 선택되는 것을 구비하지만 상기 하나 이상의 물리적 치수에 한정되지 않고 하나 이상 구비될 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것은 (a). 4 ~ 20 ppma(parts per million atoms) 미만의 포함도, (b). 100만 원자 당 대략 1 ~ 4 ppma 미만의 포함도, (c). 대략 1 ppma 이하의 포함도, (d). 바람직하게는 일부 제품을 위해 대략 100 ppba(parts per billionatoms) 이하의 포함도, (e). 더 바람직하게는 일부 제품을 위해 대략 1 ppba 이하의 포함도를 하나 이상 구비할 수 있다. (f). 더 바람직하게는 일부 제품을 위해 대략 1 내지 10 ppba 이하의 포함도의 범위중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다, (g). 더 바람직하게는 일부 제품을 위해 대략 1 내지 10 ppmv(parts per million by volume) 이하의 포함도의 범위중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다, (h). 더 바람직하게는 일부 제품을 위해 대략 1 내지 10 ppbv(parts per billion by volume) 이하의 포함도의 범위중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다, 로 구성되는 상기 (a) 내지 (h) 중 하나 이상 선택되는 것을 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 a. 적어도 하나 이상의 100 나노미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, b. 바람직하게는 하나 이상의 10 나노미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, c. 좀더 바람직하게는 하나 이상의 1 나노미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, d. 더 바람직하게는 일부 제품을 위해 하나 이상의 1 Angstrom(옹스트롬) 이상의 평균 표면 위치에서 편차를 하나 이상 구비하며, 로 구성되는 상기 a 내지 d 로 구성되는 것 중 하나 이상 선택되는 것을 하나 이상 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 버클링 변형, 맴브레인 변형, 굽힘 변형, 중 하나 이상 선택되는 하나 이상의 변형을 하나 이상 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나의 층, 다층상태, 중 선택되는 층의 상태로 하나 이상의 사인파, 가우시안(Gaussian)파, 로렌츠형(Lorentzian)파, 주기적인파, 비주기적인파, 중 하나 이상 선택되는 파 형태를 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 사인파, 가우시안(Gaussian)파, 로렌츠형(Lorentzian)파, 주기적인파, 비주기적인파, 중 하나 이상 선택되는 파 형태를 하나 이상 구비하되, 상기 파 형태는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로부터 본 발명에서 제시하는 물리적 치수의 변형간격을 두고 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것이 파 형태로 구비될 수 있다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 운동하는 지점으로부터 본 발명에서 제시하는 물리적 치수의 변형간격을 두고 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것이 하나 이상의 사인파, 가우시안(Gaussian)파, 로렌츠형(Lorentzian)파, 주기적인파, 비주기적인파, 중 하나 이상 선택되는 파 형태로 구비될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 그래파인(Graphyne) 및 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것은 나노결정과 같은 "상향식" 공정 기술에 의해 생성된 반도체 재료 기반 장치에 관한 강화된 신뢰성을 보이는 기능적인 장치의 제조를 용이하게 하는 공정 플랫폼을 하나 이상 구비하여 하나 이상 제조할 수 있다. 더하여 상기 신뢰성은 확장된 작동 기간에 걸쳐 우수한 전자 특성을 보이기 위한 기능적인 장치의 성능을 나타내고, 본 발명의 방법 및 조성을 사용하여 제조된 장치의 총체의 전기적 특성에 관한 각각에 대한(piece-to-piece) 획일성을 나타낼 수 있다.
본 발명의 한 실시예에서, 하나 이상의 그래파인(Graphyne) 및 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것은 "하향식" 공정 기술에 의해 생성된 반도체 재료 기반 장치에 관한 강화된 신뢰성을 보이는 기능적인 장치의 제조를 용이하게 하는 공정 플랫폼을 하나 이상 구비하여 하나 이상 제조할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 a. 하나 이상 물리적으로 접촉하지 않고(예를들어, 밀접하게 붙거나 오버랩되지 않는), 하나 이상의 제1 및 제2 전극과 전기적으로 하나 이상 접촉하는 구성, b. 하나 이상 물리적으로 접촉하고, 하나 이상의 제1 및 제2 전극과 전기적으로 하나 이상 접촉하는 구성, c. 하나 이상의 제1 및 제2 전극과 전기적으로 하나 이상 접촉하는 구성, 로 구성되는 상기 a 내지 c 중 하나 이상 선택되는 것으로 이해될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 기울기를 구비하는 형태로 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 이해되어 질 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 a. 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, b. 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다. 상기 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 CPU, 메모리, 반도체 집적회로, 마이크로프로세서, 베터리가 구비되는 전자장치, 전자부품, 전자장치, 로 구성되는 것 중 하나 이상 선택되는 것에 하나 이상 1차원적, 2차원적, 3차원적, 중 하나 이상 선택되는 것으로 하나 이상 구비될 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 CPU, 메모리, 반도체 집적회로, 마이크로프로세서, 베터리가 구비되는 전자장치, 전자부품, 전자장치, 로 구성되는 것 중 하나 이상 선택되는 것에 하나 이상 1차원적, 2차원적, 3차원적, 중 하나 이상 선택되는 것으로 하나 이상 구비될 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 a. 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, b. 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것이 이미 구비되어 있는 상태에서 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것이 구비되는 것을 의미할 수 있다. 덧붙여 설명하자면 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는데 있어서 도움을 주는것으로 해석될 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 a. 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하는 것은 Fermi-level pinning(페르미레벨피닝)이 고려되어 설계되어 질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할때 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것은 하나 이상의 그래파인(Graphyne)과 하나 이상의 접촉각(Contect Angle)로서 설명되어 질 수 있다. 중요한 요점은 그래파인(Graphyne)과 접촉각(Contect Angle)을 하나 이상 구비하면서, 이것으로 인하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다는 점이다. 본 발명의 한 실시예에서, 하나 이상의 접촉각(Contect Angle)은 하나 이상의 자성입자가 하나 이상의 점 접촉, 면 접촉, 둥근면접촉, 규칙적인 형태의 점접촉, 불규칙적인 형태의 점접촉, 규칙적인 형태의 선접촉, 불규칙적인 형태의 선접촉, 규칙적인 형태의 면접촉, 불규칙적인 형태의 면접촉, 규칙적인 형태의 접촉, 불규칙적인 형태의 접촉, 중 하나 이상 선택되는 것으로 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 이해되어 질 수 있음이다. 본 발명의 한 실시예에서, 상기 하나 이상의 그래파인(Graphyne)과 하나 이상의 접촉각(Contect Angle)은 나노단위에서의 하나 이상의 접촉각(Contect Angle)을 의미한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 연속체 역학으로서 설명될 수 있다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 탄성체로서 설명되어 질 수 있다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 연속체 역학을 도입하여 하나 이상의 굽힘변형(Bending)이론으로 설명 될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 탄성을 구비하며 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 의미될 수 있으며, 탄성(elasticity)이란 물체에 가해진 힘이 사라졌을 때 물체가 원래의 모양으로 복구되고자 하는 성질이다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 다층상태 즉, 접착물질, 엘라스토머, 액체고분자, 부도체, 절연체(절연층), 중 선택되는 것이 그래파인(Graphyne)의 상단부에 함께 구비되어 있는 상태로 다층상태의 탄성을 구비하며 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 의미될 수 있다. 상기 다층상태의 탄성은 하나 이상의 영률(Young's modulus)를 구비하는 것으로 이해되어 질 수 있다.
본 발명의 한 실시예에서, 연속체 역학은 더 작은 요소로 무한히 나누어도 그 각각의 요소가 원래의 전체로서의 물질의 성질을 그대로 유지한다고 가정하는 연속체의 개념을 기반으로 한다. 실제로 물질은 연속적인 것이 아니라 원자로 이루어져 있다는 점, 그래서 불균일한 미시 구조를 갖고 있다는 점은 무시된다. 본 발명의 한 실시예에서, 연속체에서는 물체 내에 물질이 균일하게 분포되어 있고, 물체가 차지한 공간을 완전히 꽉 채우고 있으며, 따라서 에너지나 운동량 등의 물리량들이 극소 극한에서도 그대로 유지된다고 가정한다. 본 발명의 한 실시예에서, 연속체 역학에서는 본 발명을 설명하는데에 미분 방정식을 사용할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는데 있어서, 도면에서 보았을때 하부라 표현하였지만 본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)의 상부에 하나 이상 구비되어 그래파인(Graphyne)이 하부로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다. 또한 본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)의 측면에 하나 이상 구비되어 그래파인(Graphyne)이 반대되는 측면으로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다. 또한 본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)의 측면에 하나 이상 구비되어 그래파인(Graphyne)이 하부로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다. 따라서, 본 발명에서 하부에 구비되는 것으로 표현하는 것은 상부나 측면에 구비되는 것을 모두 포함하는 의미로 해석될 수 있으며, 중요한 요점은 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것이다.
본 발명의 한 실시형태에서,그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 (Ⅰ). 하나 이상의 가공, 증착, 스퍼터증착, 음극 아크 증착, 전자빔 물리 기상 증착, 증발 증착, 펄스 레이저 증착, 진동증착, 마스크, 광학적필터, 마스킹, 에칭, 등방성에칭, 이방성에칭, 습식에칭, 패터닝, 측면 패터닝, 한 방향 이상의 패터닝, 전사, 전이, 재생, 오버레이(over lay), 전자기 방사, 프린팅, 3D 프린트, 샘플회전, 기울기, 산화, 롤러, 주조, 나노주조, 인쇄, 캐스팅, 경화, 응고, 부유, 발열체사용, 프레싱, 롤 프레싱, 연마, 예비 변형, 트렌치(trench)의 시리즈, 큐어링, 몰딩, 회로를들어올림, 혼합, 채움, 반데르발스 힘, 봉지화(둘러쌓음), METAL(메탈), CLEAN(클린), IMP(임프), DIFF(디프), PHOTO(포토), CVD(화학기상증착), CMP(씨엠피), DEPOSITION(디포지션), ANNEALING(어닐링), WET(웨트), 식각, 레이저, 용접, 응축, FUSI, 이중확산, packaging(페키징), Bangding Wire(와이어본딩), Wide Square(와이드스퀘어), Bonding(본딩), Soldering(숄더링), wave Soldering(웨이브숄더링), BRAZING(브레이징), 리프트오프(lift off), 물질 성장, 도핑, 코팅, 증발, 담금, 금속증발, 용융, 분말코팅, 함침, 침전, 젤화, 필터, 절단, 용해, 세척, 건조, 전처리, 자기조직화, 포토리소그래피, 리소그래피, 리토그라피(석판인쇄술), 광학적 리토그라피, 형상식각, 금속증착, 절연막 형성, 선택적 식각, 마스크를 사용하지 않는 전자빔 리토그라피, FIB(focused-ion-beam(포커스드온빔)공정, 제거, HMDS, BOE, 스핀-온-도판트, PECVD, RIE, 피라나처리, HF, 스핀코팅, 자외선오존처리, PR패턴, PR제거, 아세톤세척, 에탄올세척, 융합, UVO처리, 배열제조, 전자빔, 이온빔, 성형, 초음파, 빛, 노광, 광, 집광, 램프, 레이저 파동 시리즈(광핀셋)로 위치이동, 리플로우(reflow) 현상, 플라즈마, 접착, 정전기력, 자기력, 정자기력, 음파, 압착, 압축, 전자파, 변형, 고주파, 침투, 확산, 산란, 분리, 분해, 화학적활성, 분열, 노출, 가열, 흡수, 방출, 냉각, 균열, 하나 이상의 고정 및 지지 구조(fixture), 비결합, 결합, 분사, 부착, 접촉, 밀착, 메니스커스원리, 박리, DNA사슬접기, 배열, 배치, 합성, 연결, 적층, 형상만들기, 조립, 조합, 형태변형, 위치시킴, 조직화, 자기조립(self-assembled), 자기조립단분자막(Self-assembled monolayer), Niemeyer-Dolan technique(니에메예르-고언 기술-그림자증착법), 터널접합, 교차, 근접, 밀접, 밀착, 패턴, 집적, 부각, 위치결정공정, 용액 인쇄, 제조 단계로부터 개별한 제조 단계에서 실시될 공간적으로 제어된 반도체 공정의 사실상 어떠한 유형, 중 선택되는 것으로 구성되는 것은 각각의 선택되는 방법이 하나 이상 구비되는 각각의 선택되는 하나 이상의 방법(예를들어, 상기 집적은 하나 이상의 집적)을 의미하되, Ⅰ. (a) 하나 이상 1차원적, 2차원적, 3차원적, n차원적 중 하나 이상 선택되는 것으로, (b) 한 방향 이상에서, (c) 하나 이상 지속적, 비지속적 중 하나 이상 선택되는 것으로, (d) 하나 이상 전체적, 부분적 중 하나 이상 선택되는 것으로, (e) 하나 이상 규칙적, 불규칙적, 균일, 불균일, 다공성 중 하나 이상 선택되는 것으로, 로 구성되는 상기 (a) 내지 (e) 중 하나 이상 선택되는 것으로 하나 이상 구비되며, Ⅱ. 상기 Ⅰ 에서 (a) 내지 (e) 중 하나 이상 선택되는 것으로 하나 이상 구비하되, ⓐ. 상기 각각의 선택되는 하나 이상의 방법은 제조 단계로부터 개별한 제조 단계에서 실시될 공간적으로 제어된 반도체 공정의 사실상 어떠한 유형도 하나 이상 구비하는 하나 이상의 공정의 공간적으로 제어되는 특성, ⓑ. 상기 각각의 선택되는 하나 이상의 방법의 지속시간, ⓒ. 상기 각각의 선택되는 하나 이상의 방법이 적용되는 환경의 온도, ⓓ. 상기 각각의 선택되는 하나 이상의 방법이 적용되는 환경의 압력, ⓔ. 상기 각각의 선택되는 하나 이상의 방법이 적용되는 환경의 전력, ⓕ. 상기 각각의 선택되는 하나 이상의 방법이 적용되는 환경의 기체, 액체, 고체 중 하나 이상 선택되는 것의 농도, ⓖ. 상기 각각의 선택되는 하나 이상의 방법이 적용되는 공간, ⓗ. 상기 ⓐ 내지 ⓖ 중 하나 이상 선택되는 것이 상기 (a) 내지 (e) 중 하나 이상 선택되는 것에 하나 이상 구비되는 단계, (Ⅱ). 상기 (Ⅰ) 에서 하나 이상 선택된 방법을 하나 이상 구비하여, ①. 하나 이상 1차원적, 2차원적, 3차원적, n차원적 중 하나 이상 선택되는 것으로, ②. 한 방향 이상에서, ③. 하나 이상 지속적, 비지속적 중 하나 이상 선택되는 것으로, ④. 하나 이상 전체적, 부분적 중 하나 이상 선택되는 것으로, ⑤. 하나 이상 규칙적, 불규칙적, 균일, 불균일, 다공성 중 하나 이상 선택되는 것으로, 로 구성되는 상기 ① 내지 ⑤ 중 하나 이상 선택되는 것으로 구비되는 것을 특징으로 한다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 제조방법을 구비할 수 있다. (1). 그래파인(Graphyne) 위에 폴리메틸메타크릴레이트(PMMA)등을 코팅한다. (2). 마스크를 통하여 방사광의 x선을 조사한다. (3). x선이 조사된 부분의 고분자는 화학 결합이 끊어짐으로 현상액(용매)에 녹기 쉽게 된다. (4) 상부에 교차되는 장벽조정회로를 구비 한다. (5). 용매액으로 폴리메틸메타크릴레이트(PMMA)층을 용해시킨다. 로 구비되는 (1) 의 제조방법, (1) 부터 (5) 로 이어지는 제조방법, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 제조방법을 구비할 수 있다. (1). 기판 세정, (2). 금속증착, 레지스터 도포, (3). 노광, (4). 현상, (5). 에칭(등방성이나 이방성 에칭, 또는 습식에칭), (6). 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 구비, (7). 레지스터, 금속제거, (8). 그래파인(Graphyne) 코팅(또는 인쇄, 또는 전사), (9). 그래파인(Graphyne) 위에 폴리메틸메타크릴레이트(PMMA)등을 코팅한다.(10). 마스크를 통하여 방사광의 x선을 조사한다. (11). x선이 조사된 부분의 고분자는 화학 결합이 끊어짐으로 현상액(용매)에 녹기 쉽게 된다. (12) 상부에 교차되는 장벽조정회로를 구비 한다. (13). 용매액으로 폴리메틸메타크릴레이트(PMMA)층을 용해시킨다. 로 구비되는 (1) 부터 (9) 로 이어지는 제조방법, (1) 부터 (13) 로 이어지는 제조방법, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 제조방법을 구비할 수 있다. (1). 기판 세정, (2). 금속증착, 레지스터 도포, (3). 노광, (4). 현상, (5). 에칭(등방성이나 이방성 에칭, 또는 습식에칭), (6). 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 구비, (7). 레지스터, 금속제거, (8). 그래파인(Graphyne) 코팅(또는 인쇄, 또는 전사), (9). 그래파인(Graphyne) 위에 절연층 등을 코팅한다., 로 구비되는 (1) 부터 (8) 로 이어지는 제조방법, (1) 부터 (9) 로 이어지는 제조방법, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 포토리소그래피 제조방법을 구비할 수 있다. (1). 마스크제작, (2). 감광제 스핀코팅(양성감광막 또는 음성감광막, 여기서는 양성감광막을 주로 구비한다), (3). Soft bake, (4). 정렬(alignment)과 노출(exposure), (5). 현상(development), (6). Hard bake, (7). 식각(etching), 로 구비되는 (1) 부터 (7) 로 이어지는 제조방법을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 설명을 줄이기 위해 나노입자(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 그래파인(Graphyne), 중 하나 이상 선택되는 것)로 표기한다를 고체 기판에 규칙적으로 배열하는 데는 몇가지 방법이 있을 수 있다. (1). 나노입자를 휘발성 유기 용매에 분산시켜 기판상에서 유기 용매를 증발시켜 기판에 나노입자만 남기는 방법이다. 나노입자를 유기상에 분산시키기 위해서는 나노입자 표면을 소수성으로 할 필요가 있다. 본 발명의 한 실시형태에서, 도데케인싸이올의 자기-조립 단분자막(SAM)을 입자 표면에 부착시켜 소수성으로 하는 것이 좋다. (2). 기판을 수시간 나노입자 용액에 담가 놓고 기판과 나노입자의 물리적, 화학적 상호작용에 따라 나노입자를 흡착시켜 집합시키는 방법. 입자를 배열하는 기판에는 HOPG(Highly Ordered Pyrolytic Graphite)높은 열분해 흑연)나 운모가 사용된다. (3). 자장에 의한 배열로 코발트 초자성 나노입자, 산화철 초자성 나노입자, 같은 초자성 나노입자를 자장안에서 자기장의 방향에 따라 끈모양으로 집합시키는 방법. (4). 주사탐침현미경과 SAM(self-assembled monolayer) 기술을 이용한 표면을 만들 수 있다. 예를 들어, 원자힘 현미경의 탐침을 펜과 같이 이용하여 탐침으로 더 씌운 곳만 나노입자를 심는 딥펜 나노리소그래피., 로 구성되는 (1) 내지 (4) 로 설명되는 제조방법을 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적 준위로 인하여, 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것은 shockley equation(쇼클리방정식)으로 설명되어 질 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적인 준위로 인하여, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것은 shockley equation(쇼클리방정식)으로 설명되어 질 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적 준위로 인하여, 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)(하부에 접착층, 반데르발스 힘, 중 선택되는 것이 형성된)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적 준위로 인하여, 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)(하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 하부에 접착층이 형성, 반데르발스 힘, 중 하나 이상 선택되는 것)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적 준위로 인하여, 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비할 수 있다.
본 발명의 한 실시형태에서, 1). 하나 이상의 그래파인(Graphyne)의 하단부, 2). 하나 이상의 그래파인(Graphyne)의 상단부, 3). 하나 이상의 그래파인(Graphyne)과 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것 사이, 로 구성되는 상기 1) 내지 3), 중 하나 이상 선택되는 형태는 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)의 탄성회복을 도와줄 수 있는 접착층, 엘라스토머, 낮은 영률(Young's modulus)을 구비하는 층, 중 선택되는 것이 구비될 수 있으나, 이에 한정되지는 않는다. 또한 본 발명의 한 실시형태에서, 1). 하나 이상의 그래파인(Graphyne)의 하단부, 2). 하나 이상의 그래파인(Graphyne)과 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것 사이, 로 구성되는 상기 1) 내지 2), 중 선택되는 형태는 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)의 탄성회복을 도와줄 수 있는 접착층, 엘라스토머, 반데르발스 힘, 낮은 영률(Young's modulus)을 구비하는 층, 중 하나 이상 선택되는 것이 구비될 수 있으나, 이에 한정되지는 않는다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)의 상부에 부도체, 접착물질, 엘라스토머, 액체고분자, 부도체, 절연체(절연층), 중 선택되는 것이 구비되는 다층상태에서, 상기 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것이 구비되어, 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다. 이는 도면에서 접착물질, 엘라스토머, 액체고분자, 부도체, 절연층, 중 선택되는 것이 통로로 이어지는 것을 의미할 수 있다. 본 발명의 한 실시예에서, 본 발명의 도면 300은 다층상태의 300을 의미할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것에서, Fermi level(페르미레벨)은 a. 페르미 레벨보다 높은 곳에 state(모양 또는 형세)와 전자를 동시에 공급해주면 페르미 레벨은 올라간다. b. 페르미레벨보다 높은 곳에 state(모양 또는 형세)와 전자를 동시에 제공한다. c. 그래파인(Graphyne)을 공간적인 왜곡시키되 전자를 동시에 제공한다, d. 그래파인(Graphyne)을 공간적으로 왜곡시키되 state(모양 또는 형세)와 전자를 동시에 제공한다, 으로 구성되는 a 내지 d 로 구성되는 것중 하나 이상 선택되는 것을 하나 이상 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 a. 적어도 하나 이상의 1 마이크로미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, b. 바람직하게는 하나 이상의 100 나노미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, c. 바람직하게는 하나 이상의 10 나노미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, d. 바람직하게는 하나 이상의 1 나노미터 미만의 평균 표면 위치에서 편차를 하나 이상 구비하며, e. 더 바람직하게는 일부 제품을 위해 하나 이상의 1 Angstrom(옹스트롬) 이상의 평균 표면 위치에서 편차를 하나 이상 구비하며, 로 구성되는 상기 a 내지 e 로 구성되는 것 중 하나 이상 선택되는 것을 하나 이상 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 그래파인(Graphyne)의 탄성을 구비한다. 상기 탄성은 그래파인(Graphyne)의 고유한 성질이며, 상기 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것이 구비된 이후 그래파인(Graphyne)의 하나 이상의 형태변형이 되돌아 오는 것으로 의미될 수 있다. 상기 탄성은 영률(Young's modulus)를 구비하는 것으로 이해되어 질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 접촉 면적을 증가시키는 표면 구조를 하나 이상 규칙적, 불규칙적, 균일, 불균일, 다공성 중 하나 이상 선택되는 것으로, 하나 이상 1차원적, 2차원적, 3차원적, 중 하나 이상 선택되는 것으로 하나 이상 구비한다. 본 발명의 한 실시예에서, 하나 이상의 "표면 구조(Surface texture)"는 증가된 표면 영역에 작용상 나타나는 어떠한 형태를 총칭하여 사용할 수 있다. 본 발명의 한 실시예에서, 하나 이상의 "표면 구조(Surface texture)"는 내적, 외적 중 하나 이상 선택되는 것으로 돌출 형상(relief feature) 또는 또 다른 표면 거칠기(surface roughness)를 하나 이상 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나 이상의 표면 거칠기(surface roughness)를 구비한다. 본 발명의 한 실시예에서, 표면 거칠기(surface roughness)는, (a). 1 마이크로미터 rms(Root mean square) 이하의 하나 이상 선택되는 범위, (b). 100 nm rms(Root mean square) 이하의 하나 이상 선택되는 범위, (c). 10 nm rms(Root mean square) 이하의 하나 이상 선택되는 범위, (d). 1 nm rms(Root mean square) 이하의 하나 이상 선택되는 범위, (e). 0.1 nm rms(Root mean square) 이상의 하나 이상 선택되는 범위, 로 구성되는 상기 (a) 내지 (e) 중 하나 이상 선택되는 것을 구비한다.
본 발명의 한 실시예에서, 영률(Young's modulus)은 0.1 MPa 이상과 50 MPa 사이, 100 Mpa 이하, 하나 이상의 5 MPa 이상, 1 MPa 이상, 0.1 MPa 이상과 100 MPa 사이, 로 구성되는 영률(Young's modulus)을 하나 이상 구비하지만, 이에 한정되지는 않는다.
본 발명의 한 실시예에서, 영률(Young's modulus)은 그래파인(Graphyne)의 영률(Young's modulus)을 의미한다. 본 발명의 한 실시예에서, 영률(Young's modulus)은 그래파인(Graphyne) 또는 그래파인(Graphyne)과 상부, 하부, 중 하나 이상 선택되는 것에 구비되는 다층형태에서의 하나 이상의 영률(Young's modulus)을 구비하는 층을 의미할 수 있다. 본 발명의 한 실시예에서, 하나 이상의 그래파인(Graphyne)에 비교하여 상기 하나 이상의 그래파인(Graphyne)의 상부, 하부, 중 하나 이상 선택되는 위치에 구비되는 층은 하나 이상의 그래파인(Graphyne)보다 낮은 영률(Young's modulus)을 구비하는 층으로 의미될 수 있다. 본 발명의 한 실시예에서 낮은 영률(Young's modulus)은 100 MPa 이하, 10 MPa 이하, 5 MPa 이하 또는 1 MPa 이하의 영률(Young's modulus)를 가진 층을 의미할 수 있으나, 이에 한정되지는 않는다. 본 발명의 한 실시예에서, 낮은 영률(Young's modulus)은 하나 이상의 층이 상기 하나 이상의 층이 구비되는, 굽힘변형시 발생하는 곡률반경의 안쪽으로 구비되는 층에 비교하여 낮은 영률(Young's modulus)을 구비하는 층으로 의미될 수 있다. 본 발명의 한 실시예에서, 낮은 영률(Young's modulus)은 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것의 상부에 구비되는 낮은 영률(Young's modulus)을 구비하는 층을 의미할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 (a). 1 마이크로미터 이하의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (b). 500 나노미터 이하의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (c). 1 마이크로미터 이상의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (d). 500 나노미터 이상의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (e). 100 나노미터 이상의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (f). 10 나노미터 이상의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (g). 1 나노미터 이상의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, (h). 0.1 나노미터 이상의 횡단면, 종단면, 한 방향 이상의 단면, 단면적 중 하나 이상 선택되는 것, 로 구성되는 상기 (a) 내지 (h) 중 하나 이상 선택되는 것을 구비한다. 본 발명의 한 실시예에서, 상기 하나 이상의 물리적 치수에 한정되지 않고 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)이 갖는 고유한 유연성은 종래 깨지기 쉬운 실리콘 기반의 전자 장치들에는 가능하지 않은 사용가능한 수많은 장치배열 위해 제공되는 다양한 형태로 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)이 하나 이상의 구비되게 할 수 있다. 또한 공정가능한 구성재료들과 하나 이상의 그래파인(Graphyne)과 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 구비되도록 한다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 하부에 구비되는 하나 이상의 그래파인(Graphyne)은 적은 비용으로 큰 기판영역에 전자 장치들을 제조할 수 있는 인쇄 기술로 제조 가능하다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 구비하는 것은 하나 이상의 전사 프린트하는 제조방법을 하나 이상 구비하여 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 파괴점(failure point)을 특징짖는 하나 이상의 변형, 파괴점(failure point)을 특징짖는 하나 이상의 기계적 충격, 중 하나 이상 선택되는 것과 같은 심각한 변형을 유도하지 않고 구비되는 것을 의미한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 (a). 변형률이 약 25%으로, (b). 변형률이 약 25% 미만으로, (c). 변형률이 약 10% 미만으로, (d). 바람직하게는 가해지는 변형률이 약 1% 미만으로, (e) 더욱 바람직하게는 가해지는 변형률이 약 0.5% 미만으로, 로 선택되는 상기 (a) 내지 (e) 중 하나 이상 선택되는 것으로, 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 의미될 수 있으나, 일면에서 제시하는 상기 변형률은 25% 내외로 한정되지는 않으며 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하기 위한 충분한 변형률을 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 교차되는 장벽조정회로의 정전기적 준위는 펄스형태나 테라헤르쯔, 기가헤르쯔, 메가헤르쯔, 등의 헤르쯔 형태로 구비되거나, 펄스나 헤르쯔로부터 파생될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 상기 하나 이상의 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 간격조정하는 것으로 의미될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상 파손되지 않고 약 0.1% 이상, 약 1% 이상, 약 10% 이상, 약 25% 이상, 중 하나 이상 선택되는 것의 변형을 하나 이상 구비할 수 있으나 이에 한정되지는 않는다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 하부에 구비되는 하나 이상의 그래파인(Graphyne), 그래파인(Graphyne) 상부에 교차되어 지나가는 장벽조정회로는 본 발명에서 제시하는 제조방법으로 하나 이상 패턴화할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 굽힘 역학으로 설명될 수 있으며, 상기 하나 이상의 굽힘 역학은 본 발명에서 제시, 청구하고자 하는 하나 이상의 구조의 하나 이상의 설계 및 하나 이상의 효율의 관점에 있어서 고려될 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 임의의 적은 곡률반경(r)에 대한 변형이 영인 구조 또는 층(예를들어, 진공층, 에어층, 중 선택되는 층)을 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 임의의 적은 곡률반경(r)의 하나 이상 위치한 기하학적 면에서부터 변형이 발생한 거리(d)로서 설명되며, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것에서, 하나 이상의 임의의 적은 곡률반경(r)의 하나 이상 위치한 기하학적 면에서부터 변형이 발생한 거리(d)로 인하여 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 설명되어 진다. 본 발명의 한 실시예에서, 상기에서 설명하는 거리(d)는 효과적인 신장성 강성도를 가지는 합성보(또는 보, 또는 플레이트)로서 설계되어질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 구부림 모멘트<M> (하나 이상의 굽힘 에너지, 축방향 힘 F 중 하나 이상 선택되는 것)은 플레이트 이론을 통하여 하나 이상 구비하는 하나 이상의 평면밖 변위 <u>의 항으로 얻어진다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 하나 이상의 표면 변위 <u>에 영향을 받는 변형 에너지는 <u>의 항으로 얻어진다. 더하여 상기 변위 <u>는 전체 에너지를 최소화하는 것에 의해 결정되어질 계수들과 함께 푸리에 급수로 확장된다. 본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것에서 각각의 층에서 하나 이상의 구부림 모멘트<M>은 하나 이상의 곡률로부터 얻어지고, 하나 이상의 <u>의 2차 도함수로서 풀이된다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 기계적 변형을 도모할 수 있는 구조적 모양을 하나 이상 규칙적, 불규칙적, 균일, 불균일, 다공성 중 하나 이상 선택되는 것으로, 하나 이상 1차원적, 2차원적, 3차원적, 중 하나 이상 선택되는 것으로, 하나 이상 구비하는 것으로 이해되어 질 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 작동하기 전과 비교하여, 하나 이상 공간적으로 균일하지 않은 특성을 하나 이상 구비하는 적어도 하나이상의 층을 의미할 수 있다.
본 발명의 한 실시예에서, 본 발명의 고정 및 지지 구조(fixture)를 구비하는 제조방법은 고정확성 리프트오프 배열을 용이하게하기 위한 앵커(anchor)를 발생시키고, 이에 의해 지지 기판으로부터 폴리머 재료에 고정된 배열을 제거시키는 공정을 구비할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것은 유한 요소 시뮬레이션을 수행하는 데 있어서 하나 이상의 좌굴(buckling)시트의 유한 요소 모델을 만족하며, 본 발명의 한 실시예에서, 상기 유한 요소 모델은 아래와 같이 설명된다. 요소를 구비하되, 하나 이상의 8-노드, 4-노드 요소 중 선택되는 것을 가지는 요소는 유사한 버클링 변형 패턴을 나타내며, 역학적으로 독립적 방식으로 행동하기 위해 충분하게 이격되는 유한 요소 모델을 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비되는 하나 이상의 그래파인(Graphyne)의 제조방법은 하나 이상의 특정 평면 공정 단계들, 회로 리프트오프(liftoff) 전략, 압축성 연결체 레이아웃, 장력을 인가하는 단계, 고정장치(fixture), 제조 단계로부터 개별한 제조 단계에서 실시될 공간적으로 제어된 반도체 공정의 사실상 어떠한 유형, 본 발명에서 제시하는 제조방법, 중 하나 이상 선택되는 제조방법을 구비하여 구비될 수 있다.
본 발명의 한 실시예에서, 사용될 제조방법에는 소수성영역과 친수성영역을 구분하여 캐리어 매개물로 인해 확산하는 공정을 구비할 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 상부에는 경화제 없이 경화되지 않는 액체 고분자 또는 엘라스토머가 상기 하나 이상의 상부 표면에 하나 이상 구비되는 형태를 취할 수 있다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 하부에 구비되는 하나 이상의 그래파인(Graphyne)의 제조방법은 반도체 웨이퍼와 같은 모체 기판으로 기계적으로 결합시키는 하나 이상의 정렬 유지 소자와 함께 제공될 수 있다. 본 발명의 한 실시예에서, 하나 이상의 정렬 유지 소자는 또한 하나 이상의 전사, 조립, 집적, 본 발명에서 제시하는 하나 이상의 제조방법 중 하나 이상 선택되는 것을 하나 이상 구비하는 공정 단계 중에 반도체 소자의 선택된 패턴을 정의하는 복수의 반도체 소자의 관련된 위치 및 배향을 유지하는데 유용하다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되,
b. 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되,
b. 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 자성입자를 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 자성입자가 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 자성입자를 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 자성입자가 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 Work function(일함수)을 하나 이상 조절하되,
b. 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne) 상단부에 하나 이상의 접착층, 액체고분자층, 엘라스토머층, 부도체층, 절연층, 진공층, Air층(에어층), 중 하나 이상 선택되는 층을 구비하며,
하나 이상의 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 실리콘이 하나 이상의 쇼키장벽(Schottky Barrier)의 높이, 하나 이상의 Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 구성하고, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 실리콘, 반도체, 중 하나 이상 선택되는 것이 하나 이상의 쇼키장벽(Schottky Barrier)의 높이, 하나 이상의 Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 구성하고, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것은 하나 이상의 그래파인(Graphyne)과 하나 이상의 실리콘, 반도체, 중 하나 이상 선택되는 것이 하나 이상의 쇼키장벽(Schottky Barrier)의 높이, 하나 이상의 Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 구성하고, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하는 것을 특징으로 한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 반도체, 금속, 실리콘, 도체, 전도성 물질, 중 하나 이상 선택되는 것이 하나 이상의 Fermi level(페르미레벨)의 높이를 구성하고, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은 하나 이상의 그래파인(Graphyne)과 하나 이상의 반도체, 금속, 실리콘, 도체, 전도성 물질, 중 하나 이상 선택되는 것이 하나 이상의 Fermi level(페르미레벨)의 높이를 구성하고, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것을 구비하는 것을 특징으로 한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하는 것은 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것으로 설명되는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하되,
b. 상기 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은 하나의 층, 다층상태, 중 선택되는 층의 상태로 하나 이상의 영률(Young's modulus)로서 하나 이상 구비되며,
c. 하나 이상의 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)은
상기 하나 이상의 그래파인(Graphyne)의 상단부에 하나 이상의 낮은 영률(Young's modulus)을 구비하는 층, 낮은 영률(Young's modulus)을 구비하는 전도성 물질층, 중 선택되는 층; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)은
상기 하나 이상의 그래파인(Graphyne)의 하단부에 접착층, 엘라스토머, 반데르발스 힘, 낮은 영률(Young's modulus)을 구비하는 층, 중 하나 이상 선택되는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 하나 이상의 자성입자가 하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 하나 이상 구비하되,
b. 하나 이상의 자성입자는 하나 이상의 Magnet(자석), 나노 Magnet(자석) 입자, 나노 Magnet(자석) 성질을 구비하는 합성물질, Magnet(자석) 성질을 구비하는 합성물질, 중 하나 이상 선택되는 것을 하나 이상 구비하며,
c. 하나 이상의 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은,
b. 하나 이상의 그래파인(Graphyne)과 접촉각(Contect Angle)을 하나 이상 구비하면서, Work function(일함수)을 하나 이상 조절하되, 상기 하나 이상의 접촉각(Contect Angle)은 하나 이상의 규칙적인 형태의 점접촉, 불규칙적인 형태의 점접촉, 규칙적인 형태의 선접촉, 불규칙적인 형태의 선접촉, 규칙적인 형태의 면접촉, 불규칙적인 형태의 면접촉, 규칙적인 형태의 접촉, 불규칙적인 형태의 접촉, 중 하나 이상 선택되는 것을 하나 이상 구비하면서,
c. Work function(일함수)을 하나 이상 조절하는 트랜지스터; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은,
b. 하나 이상의 그래파인(Graphyne)과 접촉각(Contect Angle)을 하나 이상 구비하면서, Work function(일함수)을 하나 이상 조절하되,
c. Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비하되, 상기 하나 이상의 접촉각(Contect Angle)은 하나 이상의 자성입자가 하나 이상의 점 접촉, 면 접촉, 둥근면접촉, 규칙적인 형태의 점접촉, 불규칙적인 형태의 점접촉, 규칙적인 형태의 선접촉, 불규칙적인 형태의 선접촉, 규칙적인 형태의 면접촉, 불규칙적인 형태의 면접촉, 규칙적인 형태의 접촉, 불규칙적인 형태의 접촉, 중 하나 이상 선택되는 것으로 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은,
b. 하나 이상의 그래파인(Graphyne)과 접촉각(Contect Angle)을 하나 이상 구비하면서, Work function(일함수)을 하나 이상 조절하되, 상기 하나 이상의 접촉각(Contect Angle)은 하나 이상의 규칙적인 형태의 점접촉, 불규칙적인 형태의 점접촉, 규칙적인 형태의 선접촉, 불규칙적인 형태의 선접촉, 규칙적인 형태의 면접촉, 불규칙적인 형태의 면접촉, 규칙적인 형태의 접촉, 불규칙적인 형태의 접촉, 중 하나 이상 선택되는 것을 하나 이상 구비하되, 연속체 역학이 구비되어 설명되며,
c. 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하는 것으로 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적인 준위로 인하여, 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
상기 굽힘변형은 하나의 층, 다층상태, 중 선택되는 층의 상태로
a. Beam(빔)의 굽힘변형
b. Plate(플레이트)의 굽힘변형
c. 하나 이상의 층의 굽힘변형
d. QuasisTaTic bending of beams(빔 QuasisTaTic(준정적) 굽힘)
e. QuasisTaTic bending of plaTes(판 Quasistatic(준정적) 굽힘)
f. Kirchhoff-Love theory of plates(플레이트의 키르히 호프 - 사랑 이론)
g. Mindlin-Reissner Theory of plaTes(판 Mindlin-Reissner(민드린-레이스너) 이론)
h. Dynamic bending of plaTes(동적 판 굽힘)
i. Dynamics of Thin Kirchhoff plaTes(얇은 키르히 호프 판의 역학)
j. 곡률
,로 구성되는 a 내지 j 로 구성되는 것 중 하나 이상 선택되는 것을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 대기 전력 문제를 해결하는데 있어서, 하나 이상의 Fermi level(페르미레벨)의 높이를 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하는데 있어서,
b. 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 해결하는 것; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
a. 대기 전력 문제를 해결하는데 있어서, 하나 이상의 쇼키 장벽(Schottky Barrier)의 높이, Fermi level(페르미레벨)의 높이, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하여 해결하는데 있어서,
b. 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 해결하는 것; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은
a. 매개 변수
Figure pat00001
를 조절,
b. 페르미 레벨보다 높은 곳에 state(모양 또는 형세)와 전자를 동시에 공급해주면 페르미 레벨은 올라간다,
c. 페르미레벨보다 높은 곳에 state(모양 또는 형세)와 전자를 동시에 제공한다,
d. 그래파인(Graphyne)을 공간적인 왜곡시키되 전자를 동시에 제공한다,
e. 그래파인(Graphyne)을 공간적으로 왜곡시키되 state(모양 또는 형세)와 전자를 동시에 제공하는 것으로 구성되는 상기 a 내지 e 중 하나 이상 선택되는 것을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은,
a. 하나 이상 물리적으로 접촉하지 않고 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
b. 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
c. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 간격조정하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
d. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 가깝게, 인접하게 위치시키는, 근접하게, 충분히 가깝게, 중 하나 이상 선택되는 것을 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
e. 그래파인(Graphyne)이 표면 거칠기(surface roughness)를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
f. 그래파인(Graphyne)이 표면 구조(Surface texture)를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
g. 그래파인(Graphyne)이 평균 표면 위치에서 편차를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
, 로 구성되는 상기 a 내지 g 중 하나 이상 선택되는 것을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은,
a. 하나 이상 물리적으로 접촉하지 않고 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
b. 하나 이상 물리적으로 접촉하고, 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
c. 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
d. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 간격조정하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
e. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 가깝게, 붙으며, 인접하게 위치시키는, 근접하게, 충분히 가깝게, 밀접하게 붙는, 중 하나 이상 선택되는 것을 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
f. 그래파인(Graphyne)이 표면 거칠기(surface roughness)를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
g. 그래파인(Graphyne)이 표면 구조(Surface texture)를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
h. 그래파인(Graphyne)이 평균 표면 위치에서 편차를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
, 로 구성되는 상기 a 내지 h 중 하나 이상 선택되는 것을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것은,
a. 하나 이상 물리적으로 접촉하지 않고 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
b. 하나 이상 물리적으로 접촉하고, 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
c. 하나 이상의 그래파인(Graphyne)(제 1 전극) 및 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
d. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 간격조정하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
e. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상 가깝게, 붙으며, 인접하게 위치시키는, 근접하게, 충분히 가깝게, 밀접하게 붙는, 중 하나 이상 선택되는 것을 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
f. 그래파인(Graphyne)이 표면 구조(Surface texture)를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
g. 그래파인(Graphyne)이 평균 표면 위치에서 편차를 하나 이상 구비하되, 하나 이상의 Fermi level(페르미레벨)의 높이조절로 하나 이상 구비되는 구성,
, 로 구성되는 상기 a 내지 g 중 하나 이상 선택되는 것을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하되, 상기 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은,
a. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 데 있어서, DiscreTe charging effecTs in small sysTems(작은 시스템에서 개별 충전 효과)로서 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 구성을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하되, 상기 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은,
a. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상의 쿨롱 봉쇄(Coulomb blockade)의 형태로서 설명되며, 전기적으로 하나 이상 접촉되는 구성을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
하나 이상의 그래파인(Graphyne)과 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하되, 상기 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은,
a. 그래파인(Graphyne)(제 1 전극)을 전도성 물질(제 2 전극)과 하나 이상의 Single electron transistor(단일 전자 트랜지스터)의 형태로서 설명되며, 전기적으로 하나 이상 접촉되는 구성을 하나 이상 구비하는 것; 을
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서,
상기 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는
CPU, 메모리, 반도체 집적회로, 마이크로프로세서, 베터리가 구비되는 전자장치, 전자부품, 전자장치, 로 구성되는 것 중 하나 이상 선택되는 것에 하나 이상 1차원적, 2차원적, 3차원적, 중 하나 이상 선택되는 것으로 하나 이상 구비되는 것; 를
구비하는 것을 특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터를 구비한다.
본 발명의 한 실시형태에서, 본 과제에서 설명하는 Fermi level(페르미레벨)은 (a). 전자가 체워질 확률이 1/2인 에너지 준위, (b). 절대온도 0도에서 최외각 전자가 가지는 에너지 높이, (c). 그래파인(Graphyne) 내에서 가장 약하게 속박되어 있는 에너지 준위, 로 구성되는 (a) 내지 (c) 중 하나 이상 선택되는 것의 의미를 가지는 것으로 이해된다.
본 발명의 한 실시형태에서, 쇼키 장벽(Schottky Barrier)는 금속 - 반도체 접합으로 인한 잠재적 인 에너지 에 형성된 전자에 대한 장벽을 의미한다.
본 발명의 한 실시형태에서, 전하를갖는입자 또는 전하를 띠는 입자는 내향플러렌(Endohedral fullerene), 양전하입자, 음전하입자, 양과음전하입자, 중 하나 이상 선택되는 것을 의미할 수 있다.
본 발명의 한 실시형태에서, Piezo(피에조)는 역압전효과(converse piezoelectric effect)를 의미한다. 즉 전기장을 가해주면 기계적인 변형이 일어난다.
본 발명의 한 실시예에서, 하나 이상의 그래파인(Graphyne)을 상부에 교차되어 지나가는 장벽조정용인 교차회로의 정전기적 준위로 인하여, 하나 이상의 자성입자가 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 일으켜 하나 이상의 굽힘변형, 위치이동 중 하나 이상 선택되는 것이 가해진 그래파인(Graphyne)이 하나 이상의 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절하여 Work function(일함수)을 하나 이상 조절할때 구비되는 하나 이상의 자성입자의 하나 이상의 운동은 암페어법칙(앙페르 회로 법칙(Ampere's circuital law)) 또는 앙페르-맥스웰 방정식으로 설명될 수 있다.
본 발명의 한 실시예에서, 정전기적 준위는 헤르쯔로부터 파생되는 정전기적 준위를 의미할 수 있다.
본 발명의 한 실시예에서, 정전기적 준위는 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 구비하여 하나 이상의 페르미레벨의 높이를 하나 이상 조절하는데 있어서, 상기 페르미레벨을 설명하는데 유용하기에 정전기적 준위를 구비하는 것으로 본 발명에서 설명하였다.
본 발명의 한 실시예에서, 정전기적 준위는 본 발명의 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 구비하는데 필요한 전기적인 힘, 전기장을 발생시킬 수 있는 어떠한 작용, 자기장을 발생시킬 수 있는 어떠한 작용, 정전기적인 어떠한 작용, 중 하나 이상 선택되는 것을 통합적으로 의미한다.
본 발명의 한 실시예에서, 정전기적 준위는 하나 이상의 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 구비하는데 필요한 전기적인 힘, 전기장을 발생시킬 수 있는 어떠한 작용, 정전기적인 어떠한 작용, 중 하나 이상 선택되는 것을 통합적으로 의미한다.
본 발명의 한 실시예에서, 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 구비하는 것은 굽힘변형으로만도 설명될 수 있지만, 그래파인(Graphyne)의 굽힘변형되는 끝단부를 위치이동이 되는 형태로도 설명할 수 있기에 자세한 설명을 보충하기 위해 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것을 구비하는 것으로 설명하였다.
본 발명의 한 실시예에서, 페르미레벨의 높이를 하나 이상 조절하는 것은 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절하는 것을 설명하는데 유용하다.
본 발명의 한 실시예에서, 페르미레벨은 전압계로 간단히 측정될 수 있으며(본 발명의 회로 구성이 전압계로 측정가능하도록 구비가 가능한), 또한 본 발명의 한 실시예에서, 피에조(역압전효과)로 인해 온도에 민감한(준 페르미레벨)이 구비될 수 있기에 본 발명의 명세서에서는 페르미레벨을 자세히 설명하였다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하부에 구비되는 물질은 전하를갖는입자 또는 전하를띠는입자 만으로도 구비 될 수 있다.
본 발명의 한 실시예에서, 그래파인(Graphyne)의 하부에도 엘라스토머층이나 절연층이 구비되어(예를들어, 절연을 위한), 다층상태로 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를띠는입자, 중 하나 이상 선택되는 것이 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다.
본 발명의 한 실시예에서, 자성입자는 자성을 나타내는 유기 분자로 유기라디칼, 자성 금속 복합체, 단일 분자 자석, 중 하나 이상 선택되는 것을 의미할 수 있다.
본 발명의 한 실시예에서, Work function(일함수)는 어떤 고체의 표면에서 한 개의 전자를 고체 밖으로 빼내는 데 필요한 에너지를 의미합니다.
발명의 한 실시형태에서, 그래파인(Graphyne)이 낮은 온도 상태에서 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상의 전도성 물질에, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 것으로 되는 것을 의미할 수 있다.
발명의 한 실시형태에서, 그래파인(Graphyne)이 낮은 온도 상태에서 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동 중 하나 이상 선택되는 것으로 하나 이상의 전도성 물질에, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절, 하나 이상의 Fermi level(페르미레벨)의 높이를 하나 이상 조절, 로 구성되는 것 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 것으로 되는 것을 의미할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne) 상단부에 하나 이상의 접착층, 액체고분자층, 엘라스토머층, 부도체층, 절연층, 진공층, Air층(에어층), 중 하나 이상 선택되는 층을 구비하며, 하나 이상의 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 것을 구비한다. 예를들어, 상기 설명은 진공층과 절연층이 그래파인(Graphyne)의 상단부에 동시에 구비될 수 있음을 의미한다.
본 발명의 한 실시형태에서, 본 발명의 그래파인(Graphyne)은 다층 그래파인(Graphyne)(멀티층 그래파인(Graphyne))을 의미할 수 있다.
본 발명의 한 실시형태에서, 본 발명의 그래파인(Graphyne)은 그래프딘(Graphdiyne)을 의미할 수 있다.
본 발명의 한 실시형태에서, 본 발명의 트랜지스터는 에피텍셜 성장 및 도핑 공정을 구비할 수 있다.
본 발명의 한 실시형태에서, 본 발명에서 제시되는 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 주어질 때마다 상기 하나 이상 선택되는 것의 상부에 초박막이나 증착막이 같이 구비되어 있는 상태(본 발명에서 제시하는 제조방법으로)를 의미하는 것으로 해석할 수 있다.
본 발명의 한 실시형태에서, 초박막이나 증착막은 10 마이크로미터 이하, 1 마이크로미터 이하, 100 나노미터 이하, 10 나노미터 이하, 중 선택되는 두께를 구비한다.
본 발명의 한 실시형태에서, 본 발명의 제조방법은 다양한 변형형태의 제조방법을 포함하는 것으로 의미될 수 있다. 예를들어, 증착은 열 ALD(thermal atomic layer deposition), 열 CVD(thermal chemical vapor deposition), 증발(evaporation) 법, 기상 증착 공정(chemical vapor deposition, CVD), 개시 화학 증착 공정(Initiated Chemical Vapor Deposition, iCVD), Atomic layer deposition(원자층증착), 촉매화학기상증착(catalytic chemical vapor deposition (CCVD)), 중 선택되는 증착을 의미할 수 있다. 중요한 요점은, 본 발명에서 제시하는 그래파인(Graphyne)의 대기전력문제를 그래파인(Graphyne)의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 해결하는 구조라는 점이다. 그러한 의미에서 제조방법 및 제조순서는 다양한 방법들이 사용 될 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne) 상부에 절연층 또는 그래파인(Graphyne) 상부에 초박막을 구비하는데 있어서(예를들어, 단일 전자 트랜지스터를 제작하는데 있어서), 열 ALD(thermal atomic layer deposition), 열 CVD(thermal chemical vapor deposition), 증발(evaporation) 법, 기상 증착 공정(chemical vapor deposition, CVD), 개시 화학 증착 공정(Initiated Chemical Vapor Deposition, iCVD), Atomic layer deposition(원자층증착), 중 선택되는 공정을 이용할 수 있다. 본 발명의 한 실시형태에서, 상기 절연층 또는 그래파인(Graphyne) 상부에 초박막의 형성 온도는, 예컨대, 100∼400℃ 정도일 수 있다.
본 발명의 한 실시형태에서, 개시 화학 증착 공정(Initiated Chemical Vapor Deposition, iCVD)은 용매를 사용하지 않는 공정으로서, 고분자 박막의 순도를 크게 개선할 수 있다.
본 발명의 한 실시형태에서, 게이트전극(교차되는 회로)과 소오스전극(그래파인(Graphyne)이 연결되는) 및 드레인전극(전도성물질)을 형성하기 위한 패터닝 공정에는 습식 식각(wet etch) 또는 리프트-오프(lift-off) 공정 등이 사용될 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne) 상부에 구비된 층(진공층, 에어층, 절연층, 중 선택되는 것) 상부에 게이트전극(교차되는 회로)을 형성할 수 있다. 또는 소오스전극(그래파인(Graphyne)) 및 소오스전극 상부에 진공층, 에어층, 절연층, 중 선택되는 것 및 측면에 드레인전극(전도성물질)을 형성하고 게이트전극(교차되는 회로)이 상부에 형성 될수 있다. 게이트전극(교차되는 회로) 및 드레인전극(전도성물질)은 금속이나 금속화합물로 형성할 수 있다. 상기 금속은 예컨대, Au, Cu, Ni, Ti, Pt, Ru, Pd 등으로 구성된 그룹에서 선택된 적어도 하나를 포함할 수 있고, 단층 또는 다층 구조로 형성될 수 있다. 상기 금속화합물은, 예컨대, 도전성 금속산화물 또는 금속합금일 수 있다. 게이트전극(교차되는 회로)은 그래파인(Graphyne)을 포함할 수도 있다. 드레인전극(전도성물질) 또한 적어도 하나 이상의 그래파인(Graphyne)을 포함할 수 있다. 드레인전극(전도성물질)은 게이트전극(교차되는 회로)과 동일한 물질로 형성하거나, 다른물질로 형성할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 제조방법을 구비할 수 있다. (1). 기판 세정, (2). 금속증착, 레지스터 도포, (3). 노광, (4). 현상, (5). 에칭(등방성이나 이방성 에칭, 또는 습식에칭), (6). 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 구비, (7). 레지스터, 금속제거, (8). 폴리메틸메타크릴레이트(PMMA)이 코팅된 그래파인(Graphyne) 전사(또는 인쇄) 후 패터닝, (9). 그래파인(Graphyne) 위에 폴리메틸메타크릴레이트(PMMA)등을 코팅한다.(또는 9번 공정에서 PMMA대신 절연층을 증착한다) (10). 상부에 교차되는 장벽조정회로를 구비 한다. (11). 용매액(실 예로, 아세톤)으로 폴리메틸메타크릴레이트(PMMA)층을 모두 용해시킨다. 로 구비되는 (1) 부터 (9) 로 이어지는 제조방법, (1) 부터 (11) 로 이어지는 제조방법, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 제조방법을 구비할 수 있다. (1). 기판 세정, (2). 금속증착, 레지스터 도포, (3). 노광, (4). 현상, (5). 에칭(등방성이나 이방성 에칭, 또는 습식에칭), (6). 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 구비, (7). 레지스터, 금속제거, (8). 그래파인(Graphyne)을 용매에서 분산시켜 분산액을 제조하는 단계; 상기 분산액을 코팅 후 열(또는 상온에서)로 증발시키는 단계;그 이후 패터닝 공정을 구비한다, (9). 그래파인(Graphyne) 위에 폴리메틸메타크릴레이트(PMMA)등을 코팅한다(또는 9번 공정에서 PMMA대신 절연층을 증착한다). (10). 상부에 교차되는 장벽조정회로를 구비 한다. (11). 용매액(실 예로, 아세톤)으로 폴리메틸메타크릴레이트(PMMA)층을 용해시킨다. 로 구비되는 (1) 부터 (9) 로 이어지는 제조방법, (1) 부터 (11) 로 이어지는 제조방법, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비된 하나 이상의 그래파인(Graphyne)을 하나 이상 구비하는 것은 아래와 같은 제조방법을 구비할 수 있다. (1). 기판 세정, (2). 금속증착, 레지스터 도포, (3). 노광, (4). 현상, (5). 에칭(등방성이나 이방성 에칭, 또는 습식에칭), (6). 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 구비, (7). 레지스터, 금속제거, (8). 폴리메틸메타크릴레이트(PMMA)이 코팅된 그래파인(Graphyne) 전사(또는 인쇄) 후 패터닝, (9). 그래파인(Graphyne) 위에 절연층을 구비한다(예를들어, 증착). (10). 상부에 교차되는 장벽조정회로를 구비 한다. (11). 용매액(예로, 아세톤)으로 폴리메틸메타크릴레이트(PMMA)층을 모두 용해시킨다. 로 구비되는 (1) 부터 (9) 로 이어지는 제조방법, (1) 부터 (11) 로 이어지는 제조방법, 중 하나 이상 선택되는 것을 하나 이상 구비할 수 있다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 상부에 구비되는 그래파인(Graphyne)을 하나 이상 구비하는 것은 나노 임프린트 리소그래피 공정을 구비하여 구비될 수 있다.
본 발명의 한 실시형태에서, 절연층, PMMA층 및 레지스트층은 스핀코팅법을 이용하여 형성될 수 있다.
본 발명의 한 실시형태에서, 본 발명에서 제시되는 교차회로가 구비되는 것이 주어질 때마다 기본적으로 교차회로 하부에 (a). 절연층, 또는 (b). 진공층, 에어층 중 선택되는 것과 절연층이 구비된 것, 로 구성되는 상기 (a) 내지 (b) 중 선택되는 것;을 의미할 수 있으며, 더하여 CMOS를 구비하는 공정이 선택적으로 사용될 수 있으나, 발명의 요지가 너무 복잡해져서 흐려질 것을 염려하여 기재하지는 않았다.
본 발명의 한 실시형태에서, 그래파인(Graphyne)의 상부 또는 하부에 진공층을 형성하기 위한 희생층은 아세톤, 벤젠 또는 클로로포름 등 유기용매에 용해되는 물질로 이루어질 수 있다. 따라서, 유기용매를 사용하는 경우, 상기 희생층은 제거될 수 있다. 일 예로, 상기 희생층은 PMMA(poly-methylmethacrylate)층일 수 있다. 그러나, 이에 한정되는 것은 아니며, 유기용매에 녹는 물질이라면 어느 것이든 가능할 수 있다
본 발명의 한 실시형태에서, 드레인 전극(전도성물질), 게이트전극(교차되는 장벽조정회로), 소오스전극(그래파인(Graphyne)에 연결된)은 각각 독립적으로 Au, Al, Ag, Be, Bi, Co, Cu, Cr, Hf, In, Mn, Mo, Mg, Ni, Nb, Pb, Pd, Pt, Rh, Re, Ru, Sb, Ta, Te, Ti, V, W, Zr, 및 Zn으로 이루어진 군으로부터 선택된 1종 이상으로 이루어질 수 있다. 이때, 혼합금속으로 전극을 구성할 경우, 합금이거나 경우에 따라, 접합된 형태로 적용할 수도 있다. 본 발명의 한 실시예에서, 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 그래파인(Graphyne)과 연결되는 소오스전극 및 드레인전극은 또한 상기 일면에서 제시하는 재질 이외에, 그래파인(Graphyne)을 구비할 수 있으나, 이에 한정되지는 않는다.
본 발명의 한 실시형태에서, 본 발명의 트랜지스터는 본 발명의 제조방법에 선택적으로 포함그룹으로 구비되는, 그래파인(Graphyne)의 상부 또는 하부의 위치에, 절연층을 구비하는 단계에서, 선택적으로 화학적 기계적 연마 (chemical mechanical polishing(CMP)) 를 이용하여 상기 절연층의 두께를 바람직한 수준인 예를 들어, 약 5 나노미터에서 100 나노미터 정도가 되도록 줄이기 위하여(또는 평탄하게 만들기 위하여) 연마되는 제조방법을 추가로 더 구비할 수 있다.
본 발명의 한 실시형태에서, 본 발명에서 PMMA층을 용해하는 제조공정이 제시되는 때에는 예를들어, (1). 아세톤이 PMMA층으로 흘러들어갈 수 있는 통로를 확보(예를들어, 식각, 이온빔 등)하고, (2). PMMA층을 용해한 후 (3). 통로를 다시 매꾸는(예를들어, 증착) 제조공정이 부분적으로 전부기재 될 수 있으나 본 발명의 제조공정의 설명에는 자세히 다 기재하지는 않았지만 기재된 것으로 이해할 수 있다(명세서가 너무 복잡해지는 것을 방지하기 위하여).
본 발명의 한 실시형태에서, 본 발명의 트랜지스터의 구조를 제조하는 제조공정이 있어서, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 하나 이상 구비하는 단계 후 박막을 구비(또는 증착) 하는 공정이 선택적으로 추가되는 공정순서가 기재 될 수 있으나 본 발명의 제조공정의 설명에는 자세히 다 기재하지는 않았지만 기재된 것으로 이해 할 수 있다(명세서가 너무 복잡해지는 것을 방지하기 위하여).
본 발명의 한 실시형태에서, 본 발명의 트랜지스터는 그래파인(Graphyne)과 그래파인(Graphyne)의 상부층의 장벽조정회로를 분리하여 제조하는 단계와 그 다음 페이스 투 페이스(웨이퍼 결합 프로세스)들을 구비하여 그래파인(Graphyne)의 굽힘변형을 통하여 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것의 그래파인(Graphyne) 회로와 장벽조정회로를 통합하는 단계를 포함하는 3D 통합방법을 사용한다. 상기 3D 통합방법은 그래파인(Graphyne)과 그래파인(Graphyne)의 상부층의 장벽조정회로를 분리하여 제조한 다음 나중에 그 둘을 페이스 투 페이스(웨이퍼 결합 프로세스)에서 통합하는 공정을 의미한다.
발명의 한 실시형태에서, 소스층 (그래파인(Graphyne)과 연결되는 좌측부-소스) 은, 메탈로 구성되며, (A). 드레인층 (그래파인(Graphyne)과 물리적으로 갭(여기서는 높낮이-페르미레벨의 높이조절을 의미한다)이 구비되어 있는 우측부-드레인) 은 추후 웨이퍼 결합 단계에서 접착(adhesion) 이 가능한 구리 (Cu) 로 구성된다(물론, 그래파인(Graphyne) 또는 다른 메탈이 구비되고 장벽조정회로 웨이퍼와 컨텍부분만 Cu로 구비가 가능하다), (B). 드레인층 (그래파인(Graphyne)과 쇼키 장벽(Schottky Barrier)을 구성하기 위한 우측부-드레인은 실리콘, 또는 반도체로 그래파인(Graphyne)과 쇼키 장벽(Schottky Barrier)을 구성하고-페르미레벨의 높이조절로도 의미될 수 있다) 그 후에, 실리콘 또는 반도체에 구리 (Cu)가 구비된다(추후 웨이퍼 결합 단계에서 접착(adhesion) 이 가능한), (C). 드레인층 (그래파인(Graphyne)과 쇼키 장벽(Schottky Barrier)을 구성하기 위한 우측부-드레인은 실리콘, 또는 반도체가 그래파인(Graphyne)과 물리적인 갭을 구비하며(여기서는 높낮이-페르미레벨의 높이조절을 의미한다) 쇼키 장벽(Schottky Barrier)을 구성하고) 그 후에, 실리콘 또는 반도체에 구리 (Cu)가 구비된다(추후 웨이퍼 결합 단계에서 접착(adhesion) 이 가능한), 로 구성되는 (A) 내지 (C) 중 선택되는 것을 구비한다.
따라서, 상기 메탈은 그래파인(Graphyne)층(들)의 노출된 부분들과 그래파인(Graphyne)과 연결되는 좌측부-소스, 드레인, 중 하나 이상 선택되는 위치에 컨택한다. 소스층은 전자빔 증착 (e-beam evaporation) 과 스퍼터링(sputtering) 을 이용하여 두께가 약 1 나노미터에서 100 나노미터정도가 되도록 증착되고, 드레인층(Cu)은 전기화학적 증착을 이용하여 두께가 약 5 나노미터에서 800 마이크로미터 (μm) 정도가 되도록 증착될 수 있다. 이 후 (a). 절연층 증착(증발(evaporation) 법, 열 ALD(thermal atomic layer deposition), 열 CVD(thermal chemical vapor deposition), 기상 증착 공정(chemical vapor deposition, CVD), 개시 화학 증착 공정(Initiated Chemical Vapor Deposition, iCVD), Atomic layer deposition(원자층증착), 중 선택되는 제조방법)을 사용하여 상기 그래파인(Graphyne)(또는 그래파인(Graphyne) 패턴화가 추가될 수 있으나 간략한 설명을 위해 설명하지 않았음-패턴된 그래파인(Graphyne))/기판 위에 증착된다), (b). 화학적 기계적 연마 (chemical mechanical polishing(CMP)) 를 이용하여 여분의 메탈을 제거하고 상기 절연층의 두께를 바람직한 수준인 예를 들어, 약 5 나노미터에서 100 나노미터 정도가 되도록 줄이기 위하여 연마된다, 또는 (a). PMMA drop-coating(드랍코팅)(또는 spin-coating(스핀코팅)), (b). 절연층 증착(증발(evaporation) 법, 열 ALD(thermal atomic layer deposition), 열 CVD(thermal chemical vapor deposition), 기상 증착 공정(chemical vapor deposition, CVD), 개시 화학 증착 공정(Initiated Chemical Vapor Deposition, iCVD), Atomic layer deposition(원자층증착), 중 선택되는 제조방법), (c). 화학적 기계적 연마 (chemical mechanical polishing(CMP)) 를 이용하여 여분의 메탈을 제거하고 상기 절연층의 두께를 바람직한 수준인 예를 들어, 약 5 나노미터에서 100 나노미터 정도가 되도록 줄이기 위하여 연마된다, (d). PMMA층 용해하여 진공층 형성(방법은 일면에서 설명하였음), 로 구성되는 공정순서를 구비할 수 있다. 상기 일면에서 제시하는 방법을 '그래파인(Graphyne) 웨이퍼'라 명한다. 이 후, 그래파인(Graphyne) 웨이퍼와 장벽조정회로 웨이퍼 를 통합하는데 사용되는 페이스 투 페이스(face to face) 결합방식을 사용한다. 장벽조정회로 웨이퍼는 그래파인(Graphyne) 웨이퍼와 페이스 투 페이스(face to face) 결합을 하기 위하여 뒤집어져 있다. 이와 달리 그래파인(Graphyne) 웨이퍼가 장벽조정회로 웨이퍼와 페이스 투 페이스(face to face) 결합을 하기 위하여 뒤집어질 수도 있다
상기, 두 웨이퍼들의 대응하는 소스와 드레인 메탈 컨택들 사이에는 구리 대 구리 결합으로 결합되어 있다. 일반적인 결합 온도는 400°C 이하이다. 그러므로, 상기 디바이스들은 상기 프로세스 동안에 파괴되지 않는다. 발명의 한 실시형태에서, 구리 대 구리 결합 대신에 400°C 근처로 결합되는 전도성 물질이 사용될 수 있다.
3D 통합은 본 발명에서 제시하는 그래파인(Graphyne) 굽힘 회로를 위한 패키징과 집적회로 기술의 갭을 충족하기 위한 매우 유망한 기술이다. CMOS 디바이스 층들을 쌓는 기술은 알려져 있다. 3D 통합기술 은 스케일링 없이도 시스템의 성능을 향상시킬 수 있는 새로운 방법이 될 수 있다. 또한, 그래파인(Graphyne)내에서 이동성이 매우 높은 캐리어들과 함께, 인터커넥트들의 기생저항과 기생용량이 전체 회로의 성능을 결정하는데 더욱 중요하게 될 것이다. 이런 관점에서, 3D 통합은 본 발명에서 제시하는 그래파인(Graphyne) 굽힘 회로들에 큰 장점을 제공한다. 그러한 장점들로는 (a) 전체 배선길이의 감소 및 그로 인한 인터커넥트 지연시간의 감소, (b) 칩들간 인터커넥트들의 현저한 증가 그리고 (c) 이질적인 (dissimilar) 재료들, 프로세스 기술들 및 기능들의 통합 능력 등을 포함한다.
따라서, 그래파인(Graphyne) 굽힘 회로들을 생산하기 위한 본 발명 기술의 장점들에는 다음과 같다: 1) 전술한 방법들을 포함하여, 광범위하게 다양한 방법들에 의해서 그래파인(Graphyne)이 구비될 수 있다. 2) 탄소재료들로부터의 잠재적 오염 없이 표준 클린룸 (standard clean-room) 시설에서 장벽조정회로가 포함된 복합회로(예를들어, 장벽조정회로(CMOS 회로))가 사전 제조될 수 있다. 3) 페이스 투 페이스(웨이퍼 결합 프로세스)에서의 정렬 (alignment) 은 그래파인(Graphyne)과 대기전력문제를 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것들이 하나 이상 구비되는 그래파인(Graphyne) 굽힘 회로에 있어서, 항상 회로의 바람직한 위치에 결합되게 해 준다. 4) 프로세스 중의 온도, 습식 식각, 가스 분위기 (gas ambient) 와 같이 기존 CMOS 디바이스(예를들어, 장벽조정회로 웨이퍼)에서 요구되는 것들이 여전히 유지될 수 있는데 그 이유는 그래파인(Graphyne)과 대기전력문제를 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것들이 하나 이상 구비되는 그래파인(Graphyne) 굽힘 회로가 다른 기판에서 별도로 제조되기 때문이다. 5) 그래파인(Graphyne) 굽힘 회로들의 경우 인터커넥트들에 의해 지배되는, 회로 지연시간이 상당히 감소된다.
더하여, 상기 그래파인(Graphyne) 웨이퍼와 (구리 대 구리(copper-to-copper)) 결합된 장벽조정회로 웨이퍼는 일정이상 제거한 후, 구조상에 추가적인 디바이스, 메탈층, 중 하나 이상 선택되는 것이 제조될수 있다. 또는 장벽조정회로 웨이퍼와 (구리 대 구리(copper-to-copper))결합된 그래파인(Graphyne) 웨이퍼에서도 추가적인 디바이스, 메탈층, 중 하나 이상 선택되는 것이 제조될 수 있다.
본 발명의 한 실시형태에서, 일면에서 제시하는 페이스 투 페이스(face to face) 결합방식에 있어서, 두 웨이퍼들의 대응하는 소스와 드레인 메탈 컨택들 사이를 제외한 나머지 부분(예를들어, CMP 공정을 거친 절연층)중 선택되는 부분에는 접착층, 접착제, 접착전구체, 반데르발스 힘, 중 하나 이상 선택되는 것이 구비될 수 있다. 발명의 한 실시형태에서, 반데르발스 힘 대신에 표면장력, 계면장력, 중 선택되는 힘이 대체되어 구비될 수 있다. 발명의 한 실시형태에서, 상기 접착층은 접착제, 진동접착, 열접착, 반도체 공정의 분위기 안에서 접착을 할 수 있는 일련의 공정으로 제시되는 접착, 중 선택되는 것을 의미한다.
본 발명의 한 실시형태에서, 상기 소스와 드레인 메탈 컨택은 구리가 한쪽 웨이퍼에 모두 구비되거나, 양쪽 웨이퍼에 나눠서 구비되어 컨택되는 구조를 구비할 수 있다.
본 발명의 한 실시형태에서, 본 발명에서 제시하는 그래파인(Graphyne)을 구비하는 방법에 있어서, (a) 단층 그래파인(Graphyne) 또는 다층 그래파인(Graphyne)층 상에 자기-조립 단분자막(SAM)을 부착하는 단계; (b) 상기 자기-조립 단분자막(SAM)을 마스크로 이용하여 상기 단층 그래파인(Graphyne) 또는 다층 그래파인(Graphyne)층을 식각하는 단계; (d). 자기-조립 단분자막(SAM)을 제거(예를들어, 용매로 세척), 로 구성되는 상기 (a) 내지 (d) 의 방법을 본 발명의 제조방법에 부분적으로 포함할 수 있다.
본 발명의 한 실시형태에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터에 있어서, 그래파인(Graphyne)의 굴곡지는 특성을 이용하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 그래파인(Graphyne)의 하단부에 하나 이상 구비하여 교차되는 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것의 끝점(변형되는 가장 높은 위치에 있는 형태, 예를들어 그래파인(Graphyne)의 변형형태인 언덕(hill)의 가장 꼭지점)은 양자점(Quantum dot)으로서 이해되어 활용 될 수 있다. 본 발명의 한 실시형태에서, 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것의 끝점(변형되는 가장 높은 위치에 있는 형태, 예를들어 그래파인(Graphyne)의 변형형태인 언덕(hill)의 가장 꼭지점)은 그래파인(Graphyne) 상부에 (1). 초박막, (2). 증착막, (3). 초박막이나 증착막이 구비된 후 패터닝된 초박막이나 증착막의 양자점, (4). 패터닝된 그래파인(Graphyne)의 양자점, 중 선택되는 것이 구비된 후(본 발명에서 제시하는 제조방법으로), 상기 초박막, 증착막, 초박막이나 증착막이 구비된 후 패터닝된 초박막이나 증착막의 양자점, 패터닝된 그래파인(Graphyne)의 양자점, 중 선택되는 것이 그래파인(Graphyne)의 상부에 같이 구비되어 있는 상태에서의 변형으로 구비되는 가장 높은 꼭지점인 양자점(Quantum dot)으로서도 이해되어 활용 될 수 있다. 본 발명의 한 실시형태에서, 그래파인(Graphyne)의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것의 변형의 가장 상위부분의 끝부분이 양자점(Quantum dot)으로 이해되어 지는 것은 패터닝된 그래파인(Graphyne), 패터닝된 그래파인(Graphyne)의 양자점, 중 선택되는 것의 변형으로 구비되는 가장 높은 꼭지점인 양자점(Quantum dot)으로서도 이해되어 활용 될 수 있다.
본 발명의 한 실시형태에서, 본 발명의 트랜지스터는 그래파인(Graphyne) 위에 그래파인(Graphyne)의 양자점(Quantum dot)을 구비하기 위하여, <1>. 그래파인(Graphyne)의 상부에 그래파인(Graphyne)을 전사한 후 패터닝하거나, 패터닝된 그래파인(Graphyne)을 전사하여 그래파인(Graphyne)의 양자점(Quantum dot)을 구비, 또는 <2>. (1). 그래파인(Graphyne) 구비, (2). 패터닝, (4). 그래파인(Graphyne)의 양자점(Quantum dot)을 구비, 로 구성되는 상기 <1> 내지 <2>의 제조방법을 구비하여 그래파인(Graphyne)의 양자점(Quantum dot)을 구비할 수 있다. 그 이후, 발명의 한 실시형태에서, 페이스 투 페이스 결합방식을 사용하여(다른 형태의 제조방법이 사용될 수 있음), 그래파인(Graphyne)의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 그 변형의 가장 상위부분의 끝부분이 양자점(Quantum dot)으로 구비되는 트랜지스터를 구비한다.
본 발명의 한 실시형태에서, 그래파인(Graphyne)의 상부에 패터닝된 그래파인(Graphyne), 패터닝된 그래파인(Graphyne)의 양자점, 중 선택되는 것을 구비하는 것은 본 발명에서 기본적으로 제시하는 그래파인(Graphyne)의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것에서의 상기 그래파인(Graphyne)에 포함되는 의미로 해석될 수 있다.
본 발명의 한 실시형태에서, 단일전자트랜지스터는 소비전력을 매우 낮출 수 있으므로 베터리의 사용시간을 현저히 늘릴 수 있으며, 그러함으로 인하여 베터리의 크기도 현저히 줄일 수 있다.
본 발명의 한 실시형태에서, 본 발명의 그래파인(Graphyne) 회로구성은 3차원적인 회로구성이 평면에서 이루어지는 2차원적인 회로로도 의미될 수 있다.(예를들어, 3차원적인 구성이 평면에 2차원적인 층으로 이루어지는 구조-눕혀서 본다고 생각하면 이해가 쉽다)
본 발명의 한 실시형태에서, 일면에서 설명하는 상기 절연층은 그래파인(Graphyne) 상부에 AIR갭, 진공갭, 접착층, 중 선택되는 것을 하나 이상 포함하는 것으로 의미된다.
본 발명의 한 실시형태에서, 일면에서 설명하는 상기 절연층은 그래파인(Graphyne)의 대기전력문제를 해결하는 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것을 구비하는 회로구성을 하나 이상 포함하는 것으로 의미된다.
본 발명의 한 실시형태에서, 일면에서 설명하는 상기 절연층은 그래파인(Graphyne)의 굽힘, 위치이동, 중 하나 이상 선택되는 것을 영률로서 조절할 수 있는 층을 통합적으로 의미할 수 있다.
본 발명의 한 실시형태에서, 일면에서 설명하는 상기 절연층은 접착층, 엘라스토머층, 부도체층, 절연층, 중 선택되는 것을 의미할 수 있다.
본 발명의 한 실시형태에서, 일면에서 설명하는 상기 절연층은 접착층, 엘라스토머층, 부도체층, 절연층, 중 선택되는 것을 의미할 수 있되, 그래파인(Graphyne)의 굽힘, 위치이동, 중 하나 이상 선택되는 것을 영률로서 조절할 수 있는 층을 통합적으로 의미할 수 있다.
본 발명의 한 실시형태에서, 일면에서 설명하는 절연층은
a. 접착층, 엘라스토머층, 부도체층, 절연층, 중 선택되는 것
b. 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 영률로서 조절할 수 있는 층
c. AIR층, 진공층, 접착층, 절연층 중 선택되는 것을 포함하고 있는 절연층
d. 박막층을 포함하고, 박막층 상부에 AIR층, 진공층, 중 선택되는 것을 더 포함하고 있는 절연층
,로 구성되는 상기 a 내지 d 중 하나 이상 선택되는 층을 의미하는 단계; 를 구비하는 것을 특징으로 한다.
본 발명의 한 실시형태에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를 갖는 입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 구비하는 방법에는 본 발명의 명세서에서 제시하는 방법을 하나 이상 조합하여(예를들어, 인쇄와 부유) 구비할 수 있다.
본 발명의 한 실시예에서, 장벽조정회로의 위치는 그래파인(Graphyne)의 상부에 있는 것을 원칙적으로 표한하였지만, 그래파인(Graphyne)의 하부에도 구비될 수 있으며, 그래파인(Graphyne)의 하부에 구비되어, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다.
본 발명의 한 실시예에서, 장벽조정회로의 위치는 그래파인(Graphyne)의 상부 또는 하부 또는 측면, 중 선택되는 장소에 위치할 수 있으며, 그래파인(Graphyne) 굽힘 회로와 이루는 각도는 수평상태에서 0도 내지 90의 각도, 또는 수직상태에서 기울기를 갖으며 구비하는 각도, 등을 구비할 수 있다. 중요한 요점은 장벽조정회로의 정전기적 준위로 인하여 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것이다.
본 발명의 한 실시예에서, 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 하부에 구비되는 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는데 있어서, 도면에서 보았을때 하부라 표현하였지만 본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)의 상부에 하나 이상 구비되어 그래파인(Graphyne)이 하부로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다. 또한 본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)의 측면에 하나 이상 구비되어 그래파인(Graphyne)이 반대되는 측면으로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다. 또한 본 발명의 한 실시형태에서, 하나 이상의 그래파인(Graphyne)의 측면 및 하부에 하나 이상 구비되어 그래파인(Graphyne)이 측면 및 하부로 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있다. 따라서, 본 발명에서 본 발명의 한 실시예적으로 (하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 하부(또는 하단부)에서, 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 표현하는 것은 1). 그래파인(Graphyne)의 상부, 하부, 측면, 중 선택되는 위치를 의미하는 것, 2). 장벽조정회로가 그래파인(Graphyne)의 상부, 하부, 측면, 중 선택되는 위치로 구비되는 것, 3). 장벽조정회로가 그래파인(Graphyne)의 Fermi Lever의 높이를 같이 조절할 수 있는 위치이며, 더하여 (하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있는 것, 4). (하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있는 것, 5). (하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 그래파인(Graphyne)의 상부, 하부, 측면, 중 선택되는 위치로 구비되는 것, 6). 장벽조정회로가 그래파인(Graphyne)과 (하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)의 상부, 하부, 측면, 중 선택되는 위치에 구비되는 것, 7). 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있는 위치에 장벽조정회로가 구비되는 것, 8). 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는데 있어서, 굽힘변형되되, 굽힘변형되는 외각부의 반사적 굽힘변형부나, 외각부의 반사적 위치이동부를 구비할 수 있는 위치에 구비되는 것, 9). 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있는 위치에 장벽조정회로가 구비되되, 굽힘변형되는 외각부의 반사적 굽힘변형부나, 외각부의 반사적 위치이동부를 구비하는 구성인 것, 10). (하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것)이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는데 있어서, 굽힘변형되되, 굽힘변형되는 외각부의 반사적 굽힘변형부나, 외각부의 반사적 위치이동부를 구비할 수 있는 위치에 구비되는 것, 로 구성되는 상기 1) 내지 10), 중 하나 이상 선택되는 것 또는 상기 1) 내지 10), 중 하나 이상 선택되는 것의 구성상황을 포함할 수 있는 의미로 해석될 수 있으며, 중요한 요점은 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것이다.
본 발명에서 본 발명의 한 실시예적으로 (하나 이상의 Piezo(피에조) 물질)이 하부(또는 하단부)에서, 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것으로 표현하는 것은 1). 그래파인(Graphyne)의 상부, 하부, 측면, 중 선택되는 위치를 의미하는 것, 2). 장벽조정회로가 그래파인(Graphyne)의 상부, 하부, 측면, 중 선택되는 위치로 구비되는 것, 3). (하나 이상의 Piezo(피에조) 물질)이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있는 것, 4). (하나 이상의 Piezo(피에조) 물질)이 그래파인(Graphyne)의 상부, 하부, 측면, 중 선택되는 위치로 구비되는 것, 5). 장벽조정회로가 그래파인(Graphyne)과 (하나 이상의 Piezo(피에조) 물질)의 상부, 하부, 측면, 중 선택되는 위치에 구비되는 것, 6). 하나 이상의 Piezo(피에조) 물질이 그래파인(Graphyne)을 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비할 수 있는 위치에 장벽조정회로가 구비되는 것, 로 구성되는 상기 1) 내지 6), 중 하나 이상 선택되는 것 또는 상기 1) 내지 6), 중 하나 이상 선택되는 것의 구성상황을 포함할 수 있는 의미로 해석될 수 있으며, 중요한 요점은 그래파인(Graphyne)이 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하는 것이다.
본 발명의 한 실시형태에서, 본 발명에서 제시되는 교차회로(또는 교차되는 장벽조정회로)가 구비되는 것이 주어질 때마다 기본적으로 교차회로(또는 교차되는 장벽조정회로) 하부에 (a). 절연층, 또는 (b). 진공층, 에어층 중 선택되는 것과 절연층이 구비된 것, 로 구성되는 상기 (a) 내지 (b) 중 선택되는 것;을 의미할 수 있으며, 더하여 교차회로에 CMOS 회로를 구비하는 공정이 선택적으로 사용될 수 있으나, 발명의 요지가 너무 복잡해져서 흐려질 것을 염려하여 기재하지는 않았다. 본 발명의 한 실시형태에서, 본 발명에서 제시되는 교차회로(또는 교차되는 장벽조정회로)는 그래파인(Graphyne)층 하부에 구비될 수 있으며, 예를들어, 1). 절연층/그래파인(Graphyne)/자성입자/절연층(또는 기판층)/장벽조정회로, 2). 절연층/진공층/그래파인(Graphyne)/자성입자/절연층(또는 기판층)/장벽조정회로, 3). 절연층/그래파인(Graphyne)/전하를갖는입자/절연층(또는 기판층)/장벽조정회로, 4). 절연층/진공층/그래파인(Graphyne)/전하를갖는입자/절연층(또는 기판층)/장벽조정회로의 순서를 구비할 수 있다.
본 발명의 한 실시형태에서, 본 발명에서 제시하는 각각의 제조공정에는 공정 시작전에 화학적 기계적 연마 (chemical mechanical polishing(CMP) 제조공정이 이 선택적으로 추가될 수 있다(두께 및 평탄도를 바람직한 수준으로 조절하기 위하여).
본 발명의 한 실시형태에서, 본 발명의 트랜지스터는 그래파인(Graphyne)과 그래파인(Graphyne)의 상부층의 장벽조정회로를 분리하여 제조하는 단계와 그 다음 페이스 투 페이스(웨이퍼 결합 프로세스)들을 구비하여 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것의 그래파인(Graphyne) 굽힘 회로와 장벽조정회로를 통합하는 단계를 포함하는 3D 통합방법을 사용한다. 상기 3D 통합방법은 그래파인(Graphyne)과 그래파인(Graphyne)의 상부층의 장벽조정회로를 분리하여 제조한 다음 나중에 그 둘을 페이스 투 페이스(웨이퍼 결합 프로세스)에서 통합하는 공정이다. 본 발명의 한 실시형태에서, (1). 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것의 그래파인(Graphyne) 굽힘 회로와 장벽조정회로를 구비하고 (2). CMOS 웨이퍼를 분리하여 제조한 다음 나중에 그 둘을<(1)과(2)를> 페이스 투 페이스(웨이퍼 결합 프로세스)에서 통합하는 제조방법을 구비할 수 있음은 물론이다. 또는, 본 발명의 한 실시형태에서, (1). 하나 이상의 Fermi Level(페르미레벨)의 높이조절, 쇼키 장벽(Schottky Barrier)의 높이조절, 중 하나 이상 선택되는 것의 그래파인(Graphyne) 굽힘 회로를 구비하고, (2). CMOS 웨이퍼를 분리하여 제조한 다음 나중에 그 둘을 <(1)과(2)를> 페이스 투 페이스(웨이퍼 결합 프로세스)에서 통합하는 제조방법 이후, (3). 상기 페이스 투 페이스 결합으로 뒤집어서 결합 후, 그래파인(Graphyne) 회로가 구비되어 있는 기판(1)에 장벽조정회로를 형성할 수 있다. 본 발명의 한 실시형태에서, 페이스 투 페이스 결합방법은 여러 단계들을 추가 포함할 수 있으나, 기본적으로 그래파인(Graphyne) 굽힘 회로 웨이퍼를 구비, CMOS 웨이퍼를 구비, 그래파인(Graphyne) 굽힘 회로 웨이퍼와 CMOS 웨이퍼를 페이스 투 페이스 결합하는 단계를 수행하는 것이다. 상기 단계에서 장벽조정회로는 1) 그래파인(Graphyne) 굽힘 회로 웨이퍼에 구비, 2) CMOS 웨이퍼에 구비, 3) 페이스 투 페이스 결합이후, 그래파인(Graphyne) 굽힘 회로 웨이퍼 또는 CMOS 웨이퍼에 구비, 로 구성되는 1) 내지 3) 중 선택되는 위치에 구비된다.
본 발명의 한 실시형태에서, 제 1 웨이퍼 및 제 2 웨이퍼는, 상기 제 1 웨이퍼를 상기 제 2 웨이퍼와 페이스 투 페이스 결합을 수행하되, 측면 대 측면으로 결합하는 방법을 구비할 수 있다.
본 발명의 한 실시형태에서, 본 발명의 트랜지스터는 그래파인(Graphyne) 기반의 회로와 장벽조정회로(CMOS 회로)를 모두 갖는 반도체 디바이스를 의미할 수 있다.
본 발명의 한 실시형태에서, 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터는 "(◆트랜지스터에서의 Fermi level(페르미레벨)◆)"을 하나 이상 구비한다. 상기 (◆트랜지스터에서의 Fermi level(페르미레벨)◆)은 아래와 같이 설명된다.
(001-001). Fermi level(페르미레벨)
(001-001-01). 페르미 레벨은 전자 (또는 전자에 대한 전기 화학 전위)의 총 화학 포텐셜이며 일반적으로 μ 또는 EF로 표시됩니다.
(001-001-02). 신체의 페르미 레벨은 열역학적 양이며, 그 의미는 (그것이 나온 곳에서 전자를 제거하는 데 필요한 작업을 계산하지 않음) 본체에 전자를 하나 추가 할 필요 열역학적 일입니다.
(001-001-03). 페르미 레벨 방법에 대한 정확한 이해는 다음과 같이 설명됩니다, 전자 밴드 구조는 전압과 관련이 있습니다. 더하여 전자 성질을 결정하는 전하의 흐름은 고체 물리학의 이해에 필수적이며, 회로 전자에서 페르미 레벨은 열역학적 평형이, 에너지 레벨이 임의의 주어진 시간에 점유되는 50 %의 확률을 가질 것으로, 전자의 가상의 에너지 레벨로 간주 될 수 있습니다.
(001-001-04). 페르미 레벨은 반드시 실제 에너지 레벨 (절연체에 페르미 준위가 밴드 갭에 달려있다)에 대응하지 않으며, 심지어 밴드 구조의 존재를 요구합니다.
(001-001-05). 그럼에도 불구하고, 페르미 레벨은 정확하게 열역학적 양으로 정의되며, 페르미 레벨의 차이는 전압계로 간단히 측정 할 수 있습니다.
(001-002). 페르미 레벨과 전압
(001-002-01). 전자 회로의 과도하게 단순화 된 설명으로는 전류는 정전기 전위(electrostatic potential)의 차이에 의해 구동되는 것으로 알려져 있습니다, 하지만 정확한 설명은 아래에서 설명됩니다.
(001-002-02). 분명히, 정전기 전위(electrostatic potential)가 물자의 전하의 흐름에 영향을 미치는 유일한 요인은 아닙니다 파울리 반발 및 열 효과 또한 중요한 역할을 합니다.
(001-002-03). 사실, 전자 회로에서 측정 한 "전압"이라고 하는 양은 단순히 전자 (페르미 레벨)를 위한 화학 포텐셜에 관한 것입니다.
(001-002-04). 전압계의 리드가 회로의 두 지점에 연결되어 있는 경우, 표시되는 전압은 전하의 작은 양이 다른 한 지점에서 유동 할 수 있도록 하여 구하는, 단위 비용 당 얻을 수있는 전체 작업의 기준입니다.
(001-002-05). 간단한 와이어 (단락을 형성) : 서로 다른 전압의 두 지점 사이에 접속되는 경우, 전류는 열로 가능한 업무를 변환 네거티브 전압에 포지티브 전압(positive voltage to negative voltage)으로부터 흐를 것입니다.
(001-002-06). 신체의 페르미 레벨은 그것에 전자를 추가하는 데 필요한 작업을 표현하거나 전자를 제거하는데 필요한 작업을 의미합니다.
(001-002-07). 따라서, 관찰 된 차이는 화학식으로 페르미 레벨 - 다른 - (μB-μA) 전자 회로에서, 두 지점 "A"와 "B"사이의 전압 (VA-VB)가 정확히 대응 차이에 관련되어 아래와 같이 설명됩니다,
Figure pat00002
(001-002-08). 여기서 -e 는 전자 충전 입니다.
(001-002-09). 간단한 경로가 제공되는 경우 위의 논의에서 그것은 전자가 낮은 μ (고전압)에 높은 μ (낮은 전압)의 신체에서 움직일 것이다는 것을 알 수 있습니다.
(001-002-10). 전자의 이 흐름은 낮은 μ가 (충전 또는 다른 반발 효과 때문에) 증가의 원인이 될 수 있고, 마찬가지로 높은 μ가 감소하게 되는 원인이 됩니다.
(001-002-11). 결국, μ는 두 기관(both bodies)에서 같은 값으로 정착됩니다.
(001-002-12). 이 평형 전자 회로 (해제) 상태에 관한 중요한 사실에 이르게합니다(아래설명) :
(001-002-13). 열역학적 평형 상태에서의 전자 회로는, 그 접속 부분에 걸쳐 일정한 페르미 레벨을 갖습니다.
(001-002-14). 이것은 또한 임의의 두 점 사이 (전압계로 측정) 전압이 평형에서는 0이 되는 것을 의미합니다.
(001-003-01). 페르미 레벨과 밴드 구조
(001-003-02). 금속 및 반 금속에서 페르미 레벨 EF는 적어도 하나의 밴드 안에 놓여있습니다. 절연체 및 반도체는 페르미 레벨이 밴드 갭 내에 있습니다, 그러나 반도체 밴드에서 열적 전자 또는 정공 채워야 하는 것은, 페르미 레벨에 충분히 가까이 있습니다.
(001-003-03). 고체의 밴드 이론에서는, 전자가 단일 입자 에너지 고유 상태에서 이루어지는 밴드 일련 점유로 여겨지며, ε에 의해 각각 표지 됩니다.
(001-003-04). 이러한 단일 입자 픽쳐가 근사치이지만, 크게 전자 행동의 이해를 단순화하며 올바르게 적용될 때 전체적으로 올바른 결과를 제공합니다.
(001-003-05). 페르미-디랙 분포
Figure pat00003
는 (열역학적 평형에서) 전자가 갖는 에너지 상태 ε을 점유할 확률을 줍니다.
(001-003-06). 대안으로, 파울리 배타 원리에 의해 부과 된 제한을 주어 그 상태를 차지할 전자의 평균 수를 줍니다 :
Figure pat00004
(001-003-07). 여기서 T는 절대 온도 와 K는 볼츠만 상수를 의미합니다.
(001-003-08). 상태가 페르미 레벨 (ε = μ)에 있을 경우, 이 상태는 임의의 주어진 시간에 점유 될 확률이 50 %가 있을 것입니다.
(001-003-09). 물질의 밴드 구조 내의 μ의 위치는 재료의 전기적 거동을 결정하는데 중요합니다.
(001-003-09-1). 절연체에서, μ는, 큰 밴드 갭 내에 자리잡습(lies)니다.
(001-003-09-2). 금속, 반 금속 또는 퇴화 반도체(degenerate semiconductor)에서, μ는 비편 재화 밴드(delocalized band) 내에 자리 잡고 있습니다. 상태의 많은 인근 μ는 열적으로 활성화되고 쉽게 전류(current)를 수행(carry)합니다.
(001-003-09-3). 내장(intrinsic)이나 도핑 된(lightly doped) 반도체에서, μ는 그 밴드의 가장자리 근처에 거주하는 열적으로 여기 된(thermally excited) 캐리어의 희석 수에 있다는 것을, 그리하여, 밴드의 가장자리에 가까이 있습니다.
(001-003-10). 반도체와 밴드 구조에서 μ의 위치를 반 금속은 일반적으로 도핑 또는 게이팅에 의해 상당한 정도로 제어 할 수 있습니다(그래파인(Graphyne)과 전기적으로 접촉하는 전도성 물질 회로 구성에 상기 이론들은 유용하게 사용됩니다).
(001-003-11). 이러한 컨트롤은 변경되지 않습니다 μ를 전극에 의해 고정 된 것이 아니라 그들은 전체 밴드 구조가 아래로 이동 (때로는 밴드 구조의 모양을 변경)하는 원인이 됩니다.
(001-004-01). 로컬 전도대 내부 화학 포텐셜, 및 매개 변수
Figure pat00005
(001-004-02). 심볼 경우 E 은 , 그 바깥 쪽 밴드 바닥의 에너지를 기준으로 측정 된 전자 에너지 레벨을 나타 내기 위해
Figure pat00006
후 일반적으로 우리가 E =
Figure pat00007
가지고 사용됩니다, 특히 우리 파라미터 정의 할
Figure pat00008
를 밴드 가장자리에 페르미 레벨을 참조하여 아래와 같이 표기합니다:
Figure pat00009
(001-004-03). 이 페르미 - 디랙 분포 함수는 또한 다음과 같이 표기합니다.
Figure pat00010
(001-004-04).
Figure pat00011
는 직접 활성 전하 캐리어(active charge carriers)의 갯수뿐만 아니라 전형적인 운동 에너지에 관련되며, 따라서 그것은 직접적으로 (전기적으로 전도성) 재료의 지역 특성을 결정하는데 관여합니다.
(001-004-05). 이러한 이유로 단일 균질 전도성 물질 내의 전자의 특성에 집중 때
Figure pat00012
의 값에 집중하는 일반적인 이유가 됩니다.
(001-004-06). 자유 전자의 에너지 상태와 유사하여, E 상태가 있습니다 운동 에너지 상태와
Figure pat00013
는 잠재적 인 에너지인 것입니다.
(001-004-07). 이것을 염두에 두고, 매개 변수
Figure pat00014
는 또한 "페르미 (Fermi) 운동 에너지"로 표시 할 수 있습니다.
(001-004-08). μ는 달리, 매개 변수
Figure pat00015
Figure pat00016
의 변화로 인해 여러 값을 가지며, 평형 상수가 아닙니다.
(001-004-09).
Figure pat00017
는 대개 재료의 품질(예를들어, 그래파인(Graphyne)의 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 하나 이상 구비되는 표면 거칠기(surface roughness))의 요인에 따라, 재료에 지역마다(location to location) 다릅니다.
(001-004-10). 그래파인(Graphyne)의 표면 근방,
Figure pat00018
는 강하게 외부인가 전계(교차되는 장벽조정회로)에 의해 제어 될 수 있습니다.
(001-004-11).
Figure pat00019
는 멀티 밴드 소재에서 한 곳에서 여러 값에 걸릴 수 있습니다.
(001-005-01). 페르미 준위와 평형 중 온도
(001-005-02). 준 페르미 준위
(001-005-03). 페르미 레벨 μ 및 온도 T의 예는 아무것도 하지 않고 선반(shelf)에 앉아(sitting)있는 경우로서, 열역학적 평형 상태에서 고체 상태 장치에 대한 상수를 정의합니다.
(001-005-04). 장치가 평형 상태에서 빠져 나올 경우 및 사용에 투입 될 경우, 엄격하게 페르미 레벨과 온도를 말하는 것은 더 이상 잘 정의되지 않습니다.
(001-005-05). 다행히, 정확하게 열 분배의 측면에서 국가(상태)의 점령을 설명하는, 특정 위치에 대한 준 페르미 준위와 준 온도를 정의하는 것이 가능합니다.
(001-005-06). 이때, 이 장치는 '준 평형 상태'에 있다고 합니다.
(001-005-07). 준 평형 접근 방식은 하나의 (T에서 그라디언트의 결과로) (μ의 그라데이션으로 인해 발생과 같은) 금속 조각의 전기 전도도나 열전도와 같은 일부 비 평형 효과를 간단하게 구축 할 수 있습니다.
(001-005-08). 준 μ 와 준 T는 변화 (또는 전혀 존재한다)와 같은 비 평형 상태에 있습니다. 아래의 두개로 예시됩니다.
(001-005-08-1). 장치가 변경(altered)되었지만, 다시 평형(re-equilibrate)을 구비하기 위한 충분한 시간을 가지고 있지 않을 때. (압전(piezoelectric) 또는 초전(pyroelectric) 물질에서와 같이).
(001-005-08-2). 시스템은 전자기장을 변화에 노출되어있는 경우(커패시터 등)
(001-006-01). 페르미 레벨 - 참조 제로 페르미 레벨의 위치
(001-006-02). 많은 좌표계의 원점의 선택처럼, 에너지의 영점을 임의로 정의 할 수 있습니다.
(001-006-03). 관찰 할 수있는 현상은 에너지의 차이에 따라 달라집니다.
(001-006-04). 별개의 신체를 비교할 때, 그러나, 그들은 모두 제로 에너지의 위치를 자신의 선택에 일치하거나, 다른 무의미한 결과를 얻을 수 있는 것이 중요합니다.
(001-006-05). 따라서 명시 적으로 다른 구성 요소가 계약(agreement)을 보장하기 위해 공통 지점의 이름을 하는 것이 도움이 될 수 있습니다.
(001-006-06). 기준점 (예컨대 "진공" 아래를 참조)를 모호하게 선택되는 경우에, 다른 한편으로는, 더 많은 문제를 야기 할 것입니다.
(001-006-07). 일반적인 점(point)의 실제(practical)와 잘된 정렬 선택(well-justified choice)은 전기 접지 또는 접지(Earth)와 같은 부피가 큰 물리적 도체입니다. 이러한 도체는 좋은 열역학적 평형 상태에 있는 것으로 간주 될 수 있고, 그래서 그것의 μ 는 잘 정의됩니다.
(001-006-08). 그것은 전하의 저장을 제공하여 전자의 많은 수의 충전 효과를 발생시키지 않고 추가하거나 제거 할 수 있습니다
(001-006-09). 또한 다른 개체의 페르미 레벨이 전압계로 간단히 측정 할 수 있도록, 액세스되는 장점이 있습니다.
(001-007-01). 두 개의 금속(그래파인(Graphyne)과 전기적으로 접촉되는 전도성 물질). 그러나, "진공"의 정확히 위치를 정의하여 주의하지 않는 한 이 방법은 권장되지 않습니다.
(001-007-02). 두 개의 금속(그래파인(Graphyne)과 전기적으로 접촉되는 전도성 물질)이 열역학적 평형 (동일 페르미 레벨)에 같이 있을 때, 진공 정전기 전위 φ이 때문에 그것의 차이에서 평평하지 않은 일 함수를 보여줄 수 있습니다.
(001-007-03). 원칙적으로, 하나의 에너지에 대한 기준점으로 진공 고정 전자의 상태를 고려할 수 있습니다. 그러나, "진공"의 정확히 위치를 정의하여 주의하지 않는 한 이 방법은 권장되지 않습니다. 문제는 진공에서 모든 지점이 동일하다는 것입니다.
(001-007-04). 열역학적 평형, 그것은 전위(electrical potential) 진공 (볼타 전위)에 존재하기 위해 1 V의 차이에 대한 전형적인 열역학적 평형입니다.
(001-007-05). 발명의 한 실시형태에서, 이 진공 전위 변동의 소스는 진공에 노출 된 다른 전도성 물질 사이(그래파인(Graphyne)과 전기적으로 접촉되는 전도성 물질)의 일 함수의 변화일 수 있습니다.
(001-007-06). 다만 외부 도체, 정전기 전위는 물질에 민감하게 의존할 뿐만 아니라, 어떤면(surface)이 선택됩니다. (그 결정 배향, 및 다른 세부 사항)
(001-007-07). 보편성에 가장 근사치를 제공하는 매개 변수는 접지(Earth)를 참조할 수 있습니다. 페르미 준위는 위의 제안입니다. 이것은 또한 전압계로 측정 할 수 있다는 장점을 갖습니다.
(001-008-01). DiscreTe charging effecTs in small sysTems(작은 시스템에서 개별 충전 효과)
(001-008-02). 작은 시스템에서 개별충전효과로 인해 싱글 일렉트론에 "대전 효과"비 무시(non-negligible)할 경우에, 상기 정의는 명확해야 합니다. 예를 들어, 커패시터, 두 개의 동일한 평행 판으로 만든 것과 같은 형식에서처럼 고려됩니다.
(001-008-03). 커패시터가 충전되지 않은 경우, 페르미 레벨은 양쪽에 동일하므로, 다른 한 플레이트에서 전자를 이동하는 no 에너지를 가지는 것으로 생각할 수 있습니다.
(001-008-04). 전자가 이동되었을 때, 커패시터 (약간) 충전이 되었습니다, 그래서 이것은 에너지의 약간의 금액(amount)을 거쳐야합니다.
(001-008-05). 통상 커패시터, 이것은 무시할 만하지만 나노 스케일 커패시터(그래파인(Graphyne)과 전도성 물질을 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여, 구비되는 형태에서)는 더 중요 할 수 있습니다.
(001-008-06). 이 경우 하나는 화학 포텐셜의 열역학적 정의뿐만 아니라, 장치의 상태에 대한 정확한 전기적 절연 이여야 합니다, 또는 그것은 전극에 접속(connected to an electrode)입니다.
(001-008-07). 신체 전극 (리저버)와 전자 에너지를 교환 할 수 있는 경우, 그것은 정식 그랜드 앙상블(grand canonical ensemble)에 의해 설명됩니다.
(001-008-08). 화학 전위의 값 μ은 전극에 의해 고정 될 수 있다고 할 수 있고, 전자의 개수 N 의 신체는 변동될 수 있습니다.
(001-008-09). 이 경우, 본체의 화학 포텐셜은 극미량으로서, 전자의 평균 개수를 증가시키기 위해 필요한 작업의 극미량입니다 (비록 언제든지 전자의 수는 정수일지라도, 그 것의 평균 개수가 연속적으로 변화합니다.)
Figure pat00020
(001-008-10). F (N, T)는 그랜드 정식 앙상블의 자유 에너지 기능입니다.
(001-008-11). 체내에서의 전자의 개수가 고정됩니다 (그러나 몸은 여전히 열적 가열 욕(heat bath)에 접속되어 있으면), 그것은 정식 앙상블에 있습니다.
(001-008-12). 일은 이미 전자가, 정확히 N이 신체에 전자를 하나 추가 할 필요에 따라 우리는 문자 그대로 이 경우에 "화학 포텐셜"을 정의 할 수 있습니다.
Figure pat00021
(001-008-13). F (N, T)의 자유 에너지 정규 앙상블의 함수, 또는 대안 적으로 그 신체에서 전자를 제거함으로써 얻어진 작품으로서,
Figure pat00022
(001-008-14). 이러한 화학 전위는 동일하지 않습니다 μ ≠ μ ' ≠ μ'' 를 제외하고, 열역학적 제한입니다.
(001-008-15). 상기 차이는 쿨롱 봉쇄를 보여주는 것과 같은 작은 시스템에서 중요합니다. 본 발명의 한 실시예에서, Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은 쿨롱 봉쇄(Coulomb blockade)의 형태로서 설명될 수 있습니다.
(001-008-16). 파라미터 μ (즉, 전자의 개수가 변동하는 것이 허용되는 경우)에도 작은 시스템에서, 정확히 전압계 전압이 관련되어 남아 있습니다.
(001-008-17). 정확히 말하면, 다음, 페르미 레벨은 하나의 전자 전하에 의해 결정 충전 이벤트에 의해 정의되지 않았습니다, 오히려 전자의 극미량으로 통계 충전 이벤트입니다.
(002-001-01). Bending(굽힘)
(002-001-02). 공정 역학에서, (또는 굴곡라고도 함)는 벤딩 요소의 종 방향 축에 수직으로 인가되는 외부 하중을 받는 가느다란 구조 요소(element)의 동작을 특징 짓습니다.
(002-001-03). 길이가 폭과 두께보다 훨씬 더 긴 경우, 요소는 빔이라고 합니다.
(002-001-04). 한편, 쉘(shell)은 길이와 폭이 동일한 정도의 크기로 되어 있지만, ( '벽'이라고도 함) 구조의 두께가 상당히 작은 기하학적 형태의 구조입니다
(002-001-05). 그것의 끝에서 지원 측면으로 로드되어 큰 변형하지만, 얇은 벽, 벤딩 경험은 쉘(shell)의 예입니다. 본 발명의 한 실시형태에서, 쉘(shell)의 벤딩변형은 플레이트의 굽힘변형으로 설명 될 수 있습니다.
(002-002-01). QuasisTaTic bending of beams(빔 QuasisTaTic(준정적) 굽힘)
(002-002-02). 가로 하중이 그것에 인가 될 때 빔 변형과 응력은 그 안에 전개됩니다. quasistatic(준정적) 경우, 굽힘편향(bending deflection) 및 굽힘 응력(bending stresses)의 양은 시간에 걸쳐 변하지 않는 것으로 가정합니다.
(002-002-03). 빔의 밑면에서 재료가 연신되는 동안 단부에서 지지되고 중간에 아래쪽으로 로드(loaded)되어 수평 빔에서 빔의 과잉 측 재료가 압축됩니다. 횡 방향 하중에 의한 내부 응력의 두 가지 형태가 있습니다 :
(002-002-03-1). 하중 방향에 수직 인 횡 방향 하중, 더하기(plus) 평면에 상보 전단 응력, 응력에 평행 한 전단응력;
(002-002-03-2). 빔의 상부에 직접 압축 응력, 및 빔의 하부 영역에 직접적인 인장 응력.
(002-002-04). 그들은 크기가 같고 방향은 반대로이며, 상기 각각의 설명에서 마지막 두 힘은 몇 모멘트를 형성합니다. 이 굽힘 모멘트는 빔에 발생하는 굽힘 늘어짐 변형 특성에 강한저항을 보여줍니다. 빔 내의 응력 분포는 매우 정확하게 몇몇 간단한 가정이 사용되는 경우에도 예측 될 수 있습니다.
(002-003-01). QuasisTaTic bending of plaTes(판 Quasistatic(준정적) 굽힘)
(002-003-02). 변위를 강조하는 얇은 판의 변형
(002-003-03). 빔 형성 기능의 정의는 하나의 치수(또는 차원)이 다른 2개의 치수(또는 차원)보다 큰것입니다.
(002-003-04). 상기에서 평평하며 그 치수(또는 차원) 중 하나가 많으면 구조가 플레이트라고 할 수 있습니다. 널리 사용되어 것 중에, 적용 하중에 따라 판의 변형 및 응력을 설명하는 여러 가지 이론이 있습니다. 이들은
(002-003-04-1). 판의 키르히 호프 - 사랑 이론 (또한 고전 판 이론이라고 함)
(002-003-04-2). Mindlin-Reissner 판 이론 (또한 플레이트의 1 차 전단 이론이라고도 함)
(002-004-01). Kirchhoff-Love theory of plates(플레이트의 키르히 호프 - 사랑 이론)
(002-004-02). 키르히 호프 - 사랑 이론의 가정은
(002-004-02-1). 중간 표면에 수직 인 직선(straight lines)이 직선 변형 후(straight after deformation)에 남습니다.
(002-004-02-2). 중간 표면에 수직(normal)인 직선을 변형 한 후 중간 표면에 수직(normal)을 유지합니다.
(002-004-02-3). 판의 두께는 변형 동안 변경되지 않습니다.
(002-004-03). 이러한 가정은 아래와 같이 의미됩니다.
Figure pat00023
Figure pat00024
(002-004-04). 여기서
Figure pat00025
는 판에 한 점의 변위이고
Figure pat00026
는 중간 표면의 변위입니다.
(002-004-05). 변형률 - 변위 관계는 아래와 같습니다.
Figure pat00027
Figure pat00028
Figure pat00029
(002-004-06). 평형 방정식은 아래와 같습니다.
Figure pat00030
(002-004-07). 상기 식에서
Figure pat00031
는 판의 표면에 통상 가해지는 힘입니다.
(002-004-08). 변위의 관점에서, 외부 부하가 없는 상태에서 등방성 선형 탄성 플레이트 평형 방정식은 다음과 같이 쓸 수 있습니다
Figure pat00032
직접 텐서 표시법으로는,
Figure pat00033
(002-005-01). Mindlin-Reissner Theory of plaTes(판 Mindlin-Reissner(민드린-레이스너) 이론)
(002-005-02). 이 이론의 특별한 가정은 중간 표면에 법선이 직선과 비 신축성하지만 변형 후 중간 표면에 반드시 정상(normal)이 남아 있다는 것입니다
(002-005-03). 플레이트의 변위가 주어집니다.
Figure pat00034
Figure pat00035
(002-005-04). 상기 식에서
Figure pat00036
는 정상(normal)의 회전입니다.
(002-005-05). 이러한 가정에서 발생 하는 변형-변위 관계는 아래와 같습니다.
Figure pat00037
Figure pat00038
Figure pat00039
(002-005-06). 상기 식에서
Figure pat00040
는 전단 보정 계수입니다. 평형 방정식 에서는 아래와 같이 설명됩니다.
Figure pat00041
Figure pat00042
여기에서,
Figure pat00043
입니다.
(002-006-01). Dynamic bending of plaTes(동적 판 굽힘), Dynamic bending of plaTes(동적 판 굽힘)는 Dynamics of Thin Kirchhoff plaTes(얇은 키르히 호프 판의 역학)을 의미합니다.
(002-007-01). Dynamics of Thin Kirchhoff plaTes(얇은 키르히 호프 판의 역학)
(002-007-02). 플레이트의 동적 이론은 플레이트(plates)의 전파(propagation of waves)를 결정하고, 정상파(standing waves) 진동 모드(vibration modes)를 적용합니다.
(002-007-03). 키르히 호프 판의 동적 굽힘을 지배하는 방정식은
Figure pat00044
입니다.
상기 식에서, 밀도와 plate(판)는
Figure pat00045
Figure pat00046
그리고
Figure pat00047
(002-007-04). 원형 판의 몇몇 진동 모드 표시.
(002-007-04-1). 모드 k = 0, p = 1,
(002-007-04-2). 모드 k = 0, p = 2,
(002-007-04-3). 모드 k = 1, p = 2,
,로 구성되는 상기 설명하는 (001-001) 내지 (002-007-04-3) 중 하나 이상 선택되는 것을 하나 이상 구비되어 있는 것을 의미하되, (a). 상기 (001-001) 내지 (002-007-04-3) 중 하나 이상 선택되는 것의 설명의 의미, (b). 일반적으로 통용되는 상기 (001-001) 내지 (002-007-04-3) 중 하나 이상 선택되는 것에 대한 의미, (c). 상기 (001-001) 내지 (002-007-04-3) 중 하나 이상 선택되는 것의 이론에 대한 설명, 설명의 전체적 범위, 설명의 부분적 범위, 중 하나 이상 선택되는 것, (d). 상기 (001-001) 내지 (002-007-04-3) 중 하나 이상 선택되는 것의 전체적인 요소, 부분적인 요소, 중 하나 이상 선택되는 것, 로 구성되는 상기 (a) 내지 (d) 중 하나 이상 선택되는 것을 하나 이상 구비한다.
본 발명의 한 실시예에서, 영률(Young's modulus)은 아래와 같이 설명된다.
(001-1). 영률 E는 응력 - 변형 곡선의 탄성 (초기 선형) 부분의 신장 변형에 의해 인장 응력을 나눔으로써 계산 될 수 있습니다 :
Figure pat00048
여기에서,
(001-2). E는 영률 (탄성 계수)입니다
(001-3). F는 긴장(tension)에서 물체에 작용하는 힘입니다;
(001-4). A 0은 힘이 적용되는 것을 통하는 단면적의 원래의 단면적입니다
(001-5). ΔL은 개체 변경의 길이의 양(amount)입니다
(001-6). L 0은 객체의 원래 길이입니다.
(002). 늘어나거나 수축 물질에 의해 가해지는 힘 
(002-1). 재료의 영률은 특정 변형률에 따라 발휘되는 힘을 계산하는데 사용될 수 있습니다.(변형이 된 그래파인(Graphyne)이나 그래파인(Graphyne)이 포함된 다층상태에서 발휘되는 힘)
Figure pat00049
(002-2). F는 ΔL에 의해 계약 된(contracted) 또는 기지개(stretched) 될 때, 물질에 의해 가해지는 힘입니다.
(002-3). 후크의 법칙은 이상적인 스프링의 강성을 설명하는 이 공식에서 파생 될 수 있습니다:
Figure pat00050
(002-4). 그것은 포화 상태(saturation)에 오는 곳
Figure pat00051
 과 
Figure pat00052
입니다.
(003). 탄성 위치 에너지(변형이 된 그래파인(Graphyne)이나 그래파인(Graphyne)이 포함된 다층상태에서 구비되는 탄성 위치 에너지) 
(003-1). 저장된 탄성 위치 에너지는 L에 대해 이 식의 적분에 의해 주어집니다:
Figure pat00053
(003-2). 여기서 Ue는 탄성 퍼텐셜 에너지(elastic potential energy) 입니다.
(003-3). 단위 부피당 잠재적 탄성 에너지는 다음과 같습니다 :
Figure pat00054
(003-4). 여기서 
Figure pat00055
는 material(재료)의 변형입니다
(003-5). 이 공식은 또한 후크의 법칙의 정수로 표현 될 수 있습니다 :
Figure pat00056
(004). 탄성 상수 사이의 관계 
(004-1). 균질 등방성 재료에 대한 간단한 관계는 한 두 가지가 알려진대로 그들 모두를 계산을 허용하는 탄성 상수 (영률 E, 전단 계수(shear modulus) G, 대량 계수(bulk modulus) K, 푸 아송의 비(Poisson's ratio) v), 사이에 존재합니다:
Figure pat00057
,로 구성되는 상기 설명하는 (001-1) 내지 (004-1) 중 하나 이상 선택되는 것을 하나 이상 구비되어 있는 것을 의미하되, (a). 상기 (001-1) 내지 (004-1)중 하나 이상 선택되는 것의 설명의 의미, (b). 일반적으로 통용되는 상기 (001-1) 내지 (004-1)중 하나 이상 선택되는 것에 대한 의미, (c). 상기 (001-1) 내지 (004-1)중 하나 이상 선택되는 것의 이론에 대한 설명, 설명의 전체적 범위, 설명의 부분적 범위, 중 하나 이상 선택되는 것, (d). 상기 (001-1) 내지 (004-1)중 하나 이상 선택되는 것의 전체적인 요소, 부분적인 요소, 중 하나 이상 선택되는 것, 로 구성되는 상기 (a) 내지 (d) 중 하나 이상 선택되는 것을 하나 이상 구비한다.
본 발명의 한 실시예에서, Fermi level(페르미레벨)의 높이를 하나 이상 조절하는 것은 쿨롱 봉쇄(Coulomb blockade)로서 설명될 수 있다. 쿨롱 봉쇄(Coulomb blockade)는 아래와 같이 설명된다.
(001-1). 물리학에서, 찰스 - 오거 드 쿨롱의 전기 힘의 이름을 따서 명명 쿨롱 봉쇄 (약칭 CB)는, 적어도 하나의 낮은 정전 용량 터널 접합을 포함하는 전자 장치의 작은 바이어스 전압의 증가 저항을 의미합니다.
(001-2). 소수 전자가 관여하고 외부의 정적 자계(여기서는 정전기적 준위를 의미한다)가 인가되는 경우, 쿨롱 봉쇄 전자 사이의 상호 작용에 의한 스핀 양자 역학적 효과를 포함합니다 (또는 파울리 봉쇄(Pauli blockade)로 불리는). 쿨롱봉쇄(Coulomb blockade)는 스핀 봉쇄(spin blockade) 위한 접지(ground)를 제공합니다.
(002). Coulomb blockade in a tunnel junction(터널 접합의 쿨롱 봉쇄)
(002-1). 터널 접합은 가장 간단한 형태로, 전극 간의 도전성이 얇은 절연 배리어에서를 의미합니다.
(002-2). 고전 전기 역학의 법칙에 따르면, 전류가 절연 장벽을 통과 할 수 없습니다.
(002-3). 그러나 양자 역학의 법칙에 따르면, nonvanishing(논배니슁)가 (0보다 큰) 확률를 갖으며, 다른쪽에 도달하는 배리어의 한쪽에서의 전자 (양자 터널링 참조)가 있습니다.
(002-4). 바이어스 전압이 인가되는 경우, 이 전류가, 그리고, 추가 효과를 무시하는 것을 의미합니다, 터널링 전류가 바이어스 전압에 비례합니다.
(002-5). 전기적인 관점에서, 터널 접합은 오믹 저항(ohmic resistor)으로 알려진 일정한 저항을 갖는 저항으로서 행동합니다.
(002-6). 저항은 장벽 두께에 기하 급수적으로 의존합니다.(본 발명에서는 장벽의 두께가 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 시켜 그래파인(Graphyne)의 상단부에 구비된 절연층이 조정되는 것으로 이해할 수 있다.)
(002-7). 일반적인 장벽의 두께는 수(several) 나노 미터에 있습니다.
(002-8). 뿐만 아니라, 두 도체(그래파인(Graphyne)과 전도성물질)의 배열 사이에 절연층을 가지지만 저항을 가지지 않으며, 그것은 유한 한 커패시턴스로 해석될 수 있습니다.
(002-9). 절연체도 이러한 맥락에서 유전체라고 합니다, 터널 접합은 커패시터로 동작합니다.
(002-10). 때문에 전기 요금의 불연속성에, 터널 접합을 통해 전류가 다음과 같이 설명됩니다. 정확히 하나의 전자가 (두 개의 전자가 터널하는 동시에(simultaneously)에서, 우리는 cotunneling(코터널링) 을 무시합니다) 터널 장벽을 통해 (터널)을 통과하는 일련의 이벤트입니다
(002-11). 터널 접합 커패시터는 원인이 되는 터널링 전자에 의해 하나의 기본 요금으로 충전 전압 상승 
Figure pat00058
입니다, 여기서 e 는 전하량 1.6 x 10 -19  쿨롱을 의미하며, 및 
Figure pat00059
는 접합의 정전 용량을 의미합니다. 
(002-12). 커패시턴스가 매우 작은 경우, 전압 상승은 터널링로부터 다른 전자를 방지하기에 충분한 클 수 있습니다.
(002-13). 전류는 그 다음 낮은 바이어스 전압에서 억제되며, 소자의 저항은 더 이상 일정하지 않게 됩니다.
(002-14). 제로 바이어스 주변의 차동 저항의 증가는 쿨롱 봉쇄라고 합니다.
(003). Single electron transistor(단일 전자 트랜지스터)의 형태로서 설명
(003-1). 그것은 섬으로 알려진 낮은 자체 커패시턴스으로 하나의 공통 전극(본 발명에서 설명하는 교차회로)에 터널 접합을 통해 연결된 드레인(전도성 물질)과 소스(그래파인(Graphyne))로 알려진 두 개의 전극으로 구성됩니다.
(003-2). 게이트 용량은 섬에 결합이 섬의 전기적 전위로 알려진 제 3 전극(본 발명에서 설명하는 교차회로 즉, 교차되는 장벽조정회로)에 의해 조정될 수 있습니다.
(003-3). 블로킹 상태에서 액세스 가능하지 않은 에너지 준위는 소스 접점에서 전자의 터널링 범위 내에 있습니다.
(003-4). 섬 전극(island electrode)에 있는 모든 에너지 준위는 낮은 에너지와 함께 점유하고 있습니다.
(003-5). 양의 전압이 게이트 전극(본 발명에서 설명하는 교차회로 즉, 교차되는 장벽조정회로)에 인가되면 섬 전극의 에너지 준위가 낮아집니다.
(003-5-1). 전자(1행동), 하나 이상의 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것이 상부에 구비된 그래파인(Graphyne)을, 그래파인(Graphyne) 상부에 구비된 절연층과 함께 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비(2행동), 전자가 아일랜드 상에 터널(3행동), 이전에 공석 에너지 레벨을 점유 할 것입니다.
(003-5-2). 거기서부터 할 수 있습니다. 터널이 드레인 전극 상에 위치(tunnel onto the drain electrode) (4행동). 비탄성적으로 산란 및 드레인 전극의 페르미 레벨 에 도달할 것입니다(5행동).
(003-5-3). 발명의 한 실시예에서, 상기 (5 행동) 달성 후 하나 이상의 Piezo(피에조) 물질이 상부에 구비된 그래파인(Graphyne)을, 그래파인(Graphyne) 상부에 구비된 절연층과 함께 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비(6행동) 할 수 있습니다.
(003-6). 섬 전극의 에너지 준위가 균등의 간격으로 이격되어 
Figure pat00060
를 나타냅니다. 이것이 자기 커패시턴스를 
Figure pat00061
를 일으킵니다, 정의는 섬(island) 입니다,
Figure pat00062
(003-7). 쿨롱 봉쇄를 달성하기 위해, 세 가지 조건이 충족되어야 할 것입니다 :
(003-7-1). 바이어스 전압은 섬의 자기 커패시턴스로 나눈 전하량보다 낮아야 합니다 : 
Figure pat00063
 
(003-7-2). 소스접촉 열 에너지(thermal energy in the source contact) 더하기 섬에 있는 열에너지(thermal energy in the island), 즉 
Figure pat00064
는 충전 에너지 이하로 해야합니다 
Figure pat00065
그렇지 않으면 전자는 열 자극을 통해 절연층을 통과 할 수있을 것입니다, 그리고
(003-7-3). 터널링 저항은 
Figure pat00066
보다 커야합니다. 
Figure pat00067
는 하이젠 베르크의 유래되는 불확정성 원리입니다
,로 구성되는 상기 설명하는 (001-1) 내지 (003-7-3) 중 하나 이상 선택되는 것을 하나 이상 구비되어 있는 것을 의미하되, (a). 상기 (001-1) 내지 (003-7-3)중 하나 이상 선택되는 것의 설명의 의미, (b). 일반적으로 통용되는 상기 (001-1) 내지 (003-7-3)중 하나 이상 선택되는 것에 대한 의미, (c). 상기 (001-1) 내지 (003-7-3)중 하나 이상 선택되는 것의 이론에 대한 설명, 설명의 전체적 범위, 설명의 부분적 범위, 중 하나 이상 선택되는 것, (d). 상기 (001-1) 내지 (003-7-3)중 하나 이상 선택되는 것의 전체적인 요소, 부분적인 요소, 중 하나 이상 선택되는 것, 로 구성되는 상기 (a) 내지 (d) 중 하나 이상 선택되는 것을 하나 이상 구비한다
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 일면에서 상세하게 서술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 일면에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다.
본 발명에 특별히 기술된 것보다, 일반적으로 알려진 방법, 알려진 수학식, 알려진 법칙, 알려진 논문, 알려진 설명, 장치, 장치 소자, 재료, 순서 및 기술은 불필요한 실험에 의지하지 않고 넓게 드러나 있는 본 발명의 실시에 적용될 수 있다. 여기서 기술된 방법, 장치, 장치 소자, 재료, 순서 그리고 특히 기술적으로 동일하게 알려진 모든 기술은 본 발명의 실시예에 적용될 수 있다.
여기서 채용된 용어 및 표현들은 발명의 상세한 설명의 용어로써 사용되나 의미를 제한하는 것은 아니며, 설명되거나 도시된 특징과의 임의의 등가물의 용어나 표현을 제한할 의도는 없다. 다만, 본 발명의 청구된 범위 안에서 다양한 변형들이 가능하다. 그러므로, 본 발명이 몇몇 바람직한 실시예들에 의해 개시되었음에 불구하고 대표적 실시예 및 선택적 특징들, 여기서 개시된 개념의 수정 및 변화가 종래 기술등에 의해 재분류될 수 있다고 이해되어야 하며, 이러한 수정 및 변화들은 첨부된 청구항에 의해 정의된 바와 같이 본 발명의 범위 안에서 고려될 수 있다.
여기서 제공된 특정 실시예는 본 발명의 유용한 실시예의 예시이고, 본 발명이 장치들, 장치 구성요소들, 방법단계들의 많은 변화들을 사용하여 수행되어질 수 있다는 것은 명백하다.
본 발명의 유용한 실시예는 다양한 선택적 구성 및 절차 구성요소 및 단계들을 포함할 수 있다.
여기서 치환된 구성요소들이 개시될 때, 그것은 모든 하위 그룹 및 그룹의 모든 개별 멤버들이 각각 개시된 것으로 이해되어야 한다.
여기서 마쿠쉬 그룹 또는 다른 그룹들이 사용될 때, 상기 그룹의 모든 개별 멤버들 및 모든 조합과 상기 그룹의 가능한 하위 조합은 개시된 범위 안에서 개별적으로 포함된다.
부가적으로, 다른 설명이 필요하지 않은 경우, 본 발명의 한 실시형태에서, 개시된 물질의 변형물은 개시된 바에 의해 망라되는 것으로 의도된다. 예를 들어 하나 이상의 자석은 자석, 자석 원자, 자석 입자, 자석 나노 입자, 자석 화합물, 자석 결합물, 자석 합금, 나노 자석 화합물, 나노 자석 결합물, 나노 자석 합금, 나노 자석 분자, 중 하나 이상 선택되는 것으로 대체될 수 있는 것으로 이해될 수 있다.
본 발명의 한 실시형태에서, 단수개로 설명된 것은 복수개를 의미할 수 있다. 본 발명의 한 실시형태에서, 자성입자는 하나 이상의 자성입자를 의미할 수 있다.
여기서 개시되거나 설명된 구성요소의 물질이나 구성요소의 구체적인 명칭은 본 발명이 속하는 기술분야의 일반적 기술을 가진자가 같은 구성요소의 물질이나 구성요소의 구체적인 명칭을 다르게 부를 수도 있는 점에서 임의의 예시로서 불려질 수 있다.
여기서 개시되거나 설명된 구성요소의 모든 조합은 달리 언급되지 않더라도 본 발명을 실시하기 위하여 사용되어질 수 있다. 예를 들어, 온도, 시간, 농도, 전압, 전기, 분위기 등과 같은 범위가 상세하게 주어질 때 뿐만 아니라 상기 범위들에 포함된 모든 개별 값들은 개시된 범위에 포함되는 것으로 의도된다.
본 발명의 한 실시형태에서, 여기서 개시되거나 설명된 구성요소의 모든 분자구조 또는 합성분자조합 또는 합성물은 달리 언급되지 않더라도 본 발명을 실시하기 위하여 사용되어질 수 있다.
여기서 개시된 설명에 포함된 설명의 범위, 하위 범위, 포함범위 내의 개별 값들은 여기서 청구된 청구항에는 나타나지 않을 수 있다고 이해되어질 수 있다.
본 발명의 한 실시형태에서, 본 발명의 내용은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자의 레벨에서 설명되었다. 더하여, 중요한 조합이 청구된 때, 본 발명의 한 실시형태에서, 제공되는 자성입자(예를들어, 자석합성물질)을 포함하며 출원인의 종래 기술에서 활용가능하고 알려진 자성입자의 여러 형태의 합성물질은 여기서 청구된 중요한 조합에 의도되지 않게 포함된 것으로 이해될 수 있다. 또한, 중요한 조합이 청구된 때, 본 발명의 한 실시형태에서, 제공되는 Piezo(피에조) 물질은 출원인의 종래 기술에서 활용가능하고 알려진 Piezo(피에조) 물질의 여러 형태가 여기서 청구된 중요한 조합에 의도되지 않게 포함된 것으로 이해될 수 있다. 또한, 중요한 조합이 청구된 때, 본 발명의 한 실시형태에서, 제공되는 전하를갖는입자 또는 전하를 띠는 입자는 출원인의 종래 기술에서 활용가능하고 알려진 전하를갖는입자 또는 전하를 띠는 입자의 여러 형태가 여기서 청구된 중요한 조합에 의도되지 않게 포함된 것으로 이해될 수 있다.
본 발명의 한 실시형태에서, 범위, 하위 범위, 포함범위로 설명된 본 발명은, 본 발명의 설명의 범위내에서 실현될 수 있다.
본 발명이 속하는 기술분야에서 통상의 지식을 가진자는 본 발명을 실시하기위한 다양한 방법들이 과도한 실험에 기대지 않고도 본 발명의 실시에 채용될 수 있다는 것을 알 수 있을 것이다. 임의의 재료들 및 방법들의 기능적으로 등가인 알려진 모든 기술들은 본 발명의 한 실시형태에서, 포함되어질 수 있다.
이상, 본 발명을 상세하게 설명하였으나, 본 발명은 상기 내용에 한정되지 않으며, 여러 가지 하나 이상의 형태로 변형될 수 있으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다.
또한 적당하게 도식적으로 설명된 본 발명은 임의의 구성요소 또는 구성요소들, 상세하게 개시되지 않은 제한 또는 제한들이 없는 경우에도 실현될 수 있다.
임의의 재료들 및 방법들의 기능적으로 등가인 알려진 모든 기술들은 본 발명의 실시예에 적용될 수 있다.
[참고문헌]
(문헌1) Published Online, May 17 2012, Science 1 June 2012:Vol. 336 no. 6085 pp. 1140-1143, DOI: 10.1126/science.1220527, Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier, Heejun Yang, Jinseong Heo, Seongjun Park, Hyun Jae Song, David H. Seo, Kyung-Eun Byun, Philip Kim, InKyeong Yoo, Hyun-Jong Chung, Kinam Kim
90 : 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)을 의미한다.
100 : 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)을 의미한다.
110 : 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것과 그래파인(Graphyne)을 의미한다.
200 : 하나 이상의 그래파인(Graphyne)을 의미한다.
300 : 그래파인(Graphyne)과 쇼키장벽(Schottky Barrier), Fermi level(페르미레벨), 중 하나 이상 선택되는 것의 높이를 하나 이상 조절할 수 있게 구성되는 물질, 본 발명의 한 실시형태에서 다층상태의 300을 의미할 수 있다. 본 발명의 한 실시형태에서, 300 은 실리콘, 반도체, 중 하나 이상 선택되는 것을 의미할 수 있다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것(맨 밑에 하단부에 구비되어 있는)이 그래파인(Graphyne)(변형이 가해져 있는 상부층)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 회로를 의미 할 수 있다. 본 발명의 한 실시형태에서, 하나 이상의 쇼키장벽(Schottky Barrier)의 높이를 하나 이상 조절할 수 있는 것, Fermi level(페르미레벨)의 높이를 하나 이상 조절할 수 있는 것, 중 하나 이상 선택되는 것을 정전기적 준위에 의하여 하나 이상의 그래파인(Graphyne)을 하나 이상 굽힘변형, 위치이동, 중 하나 이상 선택되는 것으로 구비하여 Work funiction(일함수)의 하나 이상의 조절으로 연결되는 회로를 의미 할 수 있다.
500 : 본 발명의 한 실시형태에서, 도면의 구성이 포함되어 있는 주위 환경(예를들어 90, 100, 110, 중 하나 이상 선택되는 것이 포함되는 물질)을 의미한다. 본 발명의 한 실시형태에서, 500 은 실리콘을 의미할 수 있다.
(◆300, 500◆) : 300 또는 500을 의미한다.
600 : 빈공간, 또는 90 또는 100의 통로, 또는 300의 통로(일부)를 의미한다. 본 발명의 한 실시예에서, 상기 빈공간은 진공층, Air층(에어층), 중 선택되는 것을 의미한다. 본 발명의 한 실시예에서, 상기 통로는 하나 이상의 접착층, 액체고분자층, 엘라스토머층, 부도체층, 절연층, 진공층, Air층(에어층), 중 하나 이상 선택되는 층을 의미한다.
610 : 빈공간, 또는 200의 통로, 또는 300의 통로(일부)를 의미한다. 본 발명의 한 실시예에서, 상기 빈공간은 진공층, Air층(에어층), 중 선택되는 것을 의미한다. 본 발명의 한 실시예에서, 상기 통로는 하나 이상의 접착층, 액체고분자층, 엘라스토머층, 부도체층, 절연층, 진공층, Air층(에어층), 중 하나 이상 선택되는 층을 의미한다.
1000 : 하나 이상의 Piezo(피에조) 물질, 자성입자, 전하를갖는입자 또는 전하를 띠는 입자, 중 하나 이상 선택되는 것을 의미한다.

Claims (1)

  1. 침전방법을 구비하는 것; 을
    특징으로 하는 그래파인(Graphyne)의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 Work function(일함수)을 하나 이상 조절하는 트랜지스터의 제조방법
KR1020150095642A 2015-07-05 2015-07-05 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터 KR20150134294A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150095642A KR20150134294A (ko) 2015-07-05 2015-07-05 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150095642A KR20150134294A (ko) 2015-07-05 2015-07-05 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140061222A Division KR20150134188A (ko) 2014-05-21 2014-05-21 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터

Publications (1)

Publication Number Publication Date
KR20150134294A true KR20150134294A (ko) 2015-12-01

Family

ID=54882742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150095642A KR20150134294A (ko) 2015-07-05 2015-07-05 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터

Country Status (1)

Country Link
KR (1) KR20150134294A (ko)

Similar Documents

Publication Publication Date Title
KR20150134188A (ko) 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20150140516A (ko) 그래핀의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20160014742A (ko) 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20150134294A (ko) 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20150134295A (ko) 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20150134296A (ko) 그래파인의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR102251916B1 (ko) 그래핀의 하나 이상의 굽힘변형, 위치이동, 중 하나이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20160001047A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터
KR20170006626A (ko) 그래파인의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래파인 단일 전자 트랜지스터 및 전자 터널링 그래파인 트랜지스터
KR20160019353A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160109539A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160009094A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터
KR20160009093A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터
KR20160009095A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터
KR20160083768A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160079213A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160109538A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160109540A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160019351A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160019350A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160084775A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160019352A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160127355A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160127353A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터
KR20160127354A (ko) 그래핀의 하나 이상의 굽힘변형을 구비하여 전기의 On/Off를 조절하는 트랜지스터 및 그래핀 단일 전자 트랜지스터 및 전자 터널링 그래핀 트랜지스터

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination