KR20150120135A - Shattering-controled transgenic plant and method for producing thereof - Google Patents
Shattering-controled transgenic plant and method for producing thereof Download PDFInfo
- Publication number
- KR20150120135A KR20150120135A KR1020140045974A KR20140045974A KR20150120135A KR 20150120135 A KR20150120135 A KR 20150120135A KR 1020140045974 A KR1020140045974 A KR 1020140045974A KR 20140045974 A KR20140045974 A KR 20140045974A KR 20150120135 A KR20150120135 A KR 20150120135A
- Authority
- KR
- South Korea
- Prior art keywords
- gene
- plant
- seq
- recombinant vector
- os05g38120
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
본 발명은 탈립성이 조절된 형질전환 식물체 및 이의 제조방법에 관한 것이다.The present invention relates to a transgenic plant having regulated inagitability and a method for producing the same.
우리나라의 주요한 식량자원인 벼는 전 세계적으로 옥수수, 보리, 밀과 함께 주요한 작물로 연구가 계속해서 진행되어 왔지만, 생산 지역에 따른 기후 변화와 같은 환경 변화에 따라 적합한 품종을 개량하고 더 높은 생산성을 갖도록 하기 위한 지속적인 연구와 개발 등이 필요한 실정이다. 이를 위해 기존에 사용하던 육종 방법에 더하여 유용한 유전자의 기능을 분석하고 이를 도입한 새로운 품종 개발을 통해 생산성의 증대와 재배 환경에 더 적합한 벼를 만들기 위한 노력이 지속적으로 이루어지고 있다. Rice, which is a major food resource in Korea, has been continuously studied as a major crop with corn, barley, and wheat all over the world. However, in order to improve suitable varieties and to be more productive in accordance with environmental changes such as climate change It is necessary to continue research and development. To this end, efforts are being made to increase the productivity and to make rice more suitable for the cultivation environment through the development of new varieties by analyzing useful gene functions in addition to the existing breeding methods.
벼는 주요한 작물로 고대 인간들이 이용한 야생형에 가까운 벼에서 실제 우리가 사용하는 재배벼가 되기까지 선택적으로 교화 과정을 가지게 되었다. 선택적 교화 과정에 있어서 가장 대표적으로 변화되는 형질은 벼의 탈립성이다. 야생형 벼는 자연적으로 더 멀리 종자를 번식시키기 위해 탈립성이 높은 형질을 가지는데 반하여 재배벼는 탈립성이 클 경우 종자의 수확량이 크게 감소하여 이를 줄이는 방향으로 교화가 이루어졌다. 이에 따라 재배벼는 대부분 탈립성의 형질이 감소하게 되었지만, 탈립성을 크게 줄어드는 경우 탈곡과정에서 종자가 잘 털리지 않는 문제가 발생하기 때문에 벼의 탈립성을 적절하게 조절할 필요가 있다. 기존에 탈립성에 관련된 유전자 연구를 위해서 탈립성이 높은 야생형과 유사한 벼를 재배벼와 교배하여 QTL (양적 유전자좌) 분석으로 관련 유전자를 찾아낸 연구들이 일부 있었으나, 여전히 부족한 상태이다. Rice is a major crop and has been selectively cultivated until it becomes the cultivated rice that we used in the wild type rice used by ancient humans. The most prominent trait in the selective edification process is the overgrowth of rice. The wild type rice naturally has a highly infertile trait to propagate the seeds farther away, while the yield of seeds is greatly decreased when the overtaking ability of the cultivated rice is high. As a result, most of the cultivated rice is reduced in the quality of inaggregation. However, when the degree of overgrowth is greatly reduced, there is a problem that the seeds are not easily shaken during the threshing process. There have been some studies that have found related genes in QTL (quantitative locus) analysis by crossing the wild type and similar rice paddies with cultivated rice in order to study the genes related to the inability to overgrowth.
이에 따라, 탈립성을 조절할 수 있는 유전자 발굴을 통해 벼의 생산성 등을 증대 시킬 수 있는 연구가 필요하다. Therefore, research is needed to increase the productivity of rice plants through gene discovery that can regulate inagulation.
본 발명은 탈립성을 조절하는 유전자를 제공한다. The present invention provides a gene that regulates inaglipticity.
또한 본 발명은 탈립성을 조절하는 유전자의 발현을 조절하는 재조합 벡터를 제공한다. The present invention also provides a recombinant vector that regulates the expression of a gene that regulates inaglipticity.
또한 본 발명은 탈립성을 조절하는 유전자의 발현을 조절하는 재조합 벡터로 형질전환된 형질전환세포를 제공한다. The present invention also provides a transformed cell transformed with a recombinant vector that regulates the expression of a gene that regulates inagulation.
또한 본 발명은 단자엽 식물체의 탈립성 증진용 또는 억제용 조성물을 제공한다. The present invention also provides a composition for promoting or inhibiting in flushing of a terminal plant.
또한 본 발명은 탈립성이 조절된 형질전환 단자엽 식물체를 제공한다. The present invention also provides a transgenic monocotyledonous plant having regulated inability to inoculate.
또한 본 발명은 탈립성이 조절된 형질전환 단자엽 식물체를 제조하는 방법을 제공한다. In addition, the present invention provides a method for producing transgenic monocotyledonous plants having controlled inability to inoculate.
상기의 목적을 달성하기 위하여 본 발명자들은 식물체의 탈립성을 조절하는 유전자를 발굴하기 위해 예의 노력한 결과, 벼의 LOC_Os05g38120 유전자가 탈립성을 조절하는 것을 확인하고 이 유전자를 과발현하거나 억제하는 형질전환 식물체를 제조함으로써 본 발명을 완성하게 되었다. In order to accomplish the above object, the present inventors have made intensive efforts to discover a gene that regulates the inability to infer the plant, and as a result, they have found that the LOC_Os05g38120 gene of rice regulates the inability to inhale and produce a transgenic plant that overexpresses or suppresses the gene Thereby completing the present invention.
본 발명은 단자엽 식물체에 있어서 탈립성을 조절하는 유전자(이하 '본 발명의 유전자'라 함)를 제공한다. 본 발명에 있어서 탈립성을 조절하는 유전자는 벼의 LOC_Os05g38120 (Os05g0455200) 유전자이다. 본 유전자를 이용하여 이삭의 탈립성을 조절함으로써 단자엽 식물체, 특히 벼의 수확량 증대와 재배의 편리성을 유도할 수 있다. The present invention provides a gene (hereinafter referred to as 'the gene of the present invention') that regulates inability to overgrowth in a terminal plant. In the present invention, the gene that regulates inability to inactivate is LOC_Os05g38120 (Os05g0455200) gene of rice. By using this gene, it is possible to increase the yield and cultivation convenience of monocotyledonous plants, especially rice.
LOC_Os05g38120의 genome DNA 크기는 4572 bp이며 coding sequence의 크기는 1743 bp로 4개의 엑손과 3개의 인트론으로 구성되며 581개의 아미노산으로 번역되어 단백질이 만들어진다. The genome DNA size of LOC_Os05g38120 is 4572 bp and the coding sequence size is 1743 bp. It consists of 4 exons and 3 introns and is translated into 581 amino acids to make protein.
본 발명에 있어서, LOC_Os05g38120의 CDS는 서열번호 1로 기재하였으며 단백질 서열은 서열번호 2로 기재하였으며 LOC_Os05g38120의 genome DNA는 서열번호 4로 기재하였다. In the present invention, the CDS of LOC_Os05g38120 is shown as SEQ ID NO: 1, the protein sequence is shown as SEQ ID NO: 2, and the genome DNA of LOC_Os05g38120 is shown as SEQ ID NO:
또한 본 발명은 탈립성을 조절하는 유전자의 발현을 조절하는 재조합 벡터를 제공한다. 본 발명의 재조합 벡터는 그 구조에 따라 탈립성을 증진하거나 억제시킬 수 있다. The present invention also provides a recombinant vector that regulates the expression of a gene that regulates inaglipticity. The recombinant vector of the present invention can enhance or suppress the infertility according to its structure.
상기 통상의 재조합 벡터는 본 발명의 유전자를 도입하거나 본 발명의 유전자에 대한 RNA i, 안티센스 올리고뉴클레오티드 등을 도입할 수 있는 것이면 어떠한 것이든 무방하나, 바람직하게는 pCAMBIA계열, pGA계열, pGWB계열, 예컨대, pGA3383, pCAMBIA3301, pCAMBIA3300, pGA3426, pGA3780, pGWB12, pGWB14와 같은 Ti-plasmid 및 이에 파생된 벡터로 이루어진 군에서 선택된 어느 하나일 수 있다. 이 중 pGA계열의 pGA3426 vector의 경우 옥수수 유비퀴틴(ubiquithin) 유전자 프로모터를 가지고 있으며, 이 vector에 원하는 유전자를 cloning 한 후 식물체 내로 형질전환 시켜 목적하는 유전자를 과발현 시킬 수 있는 binary vector 이다. The conventional recombinant vector may be any vector as long as it can introduce the gene of the present invention or introduce RNA i, antisense oligonucleotide or the like to the gene of the present invention, preferably pCAMBIA series, pGA series, pGWB series, For example, a Ti-plasmid such as pGA3383, pCAMBIA3301, pCAMBIA3300, pGA3426, pGA3780, pGWB12, pGWB14, and vectors derived therefrom. Among them, the pGA3426 vector has a maize ubiquitin gene promoter, which is a binary vector capable of overexpressing the gene of interest by cloning the desired gene into this vector and transforming into the plant.
바람직하게 본 발명의 탈립성 증진을 위한 재조합 벡터는 서열번호 1로 표시되는 LOC_Os05g38120 유전자와 및 이와 작동가능하게 연결된 프로모터를 포함하는 재조합 벡터이다. 본 발명의 탈립성 증진을 위한 재조합 벡터는 3' 방향에 목적 단백질에 대한 유전자가 발현되도록 한다. Preferably, the recombinant vector for promoting inability to overexpress the present invention is a recombinant vector comprising the LOC_Os05g38120 gene represented by SEQ ID NO: 1 and a promoter operably linked thereto. The recombinant vector for enhancing inability to inactivate the expression of the gene of interest in the 3 'direction of the present invention.
상기 외래 프로모터는 식물체의 전신 또는 특별한 조직에만 국한시켜 발현되는 것이면 무엇이든 무방하며, 바람직하게는 전신발현을 유도하는 프로모터로서 예컨대 쌍자엽식물용 프로모터로 사용되는 꽃양배추 모자이크 바이러스(CaMV: cauliflower mosaic virus)의 35S RNA 유전자의 프로모터, 단자엽식물용 전신발현 유도 프로모터로는 벼 액틴(actin), 옥수수 유비퀴틴(ubiquithin) 유전자 프로모터 및 벼 시토크롬 C유전자(OsOc1)의 프로모터, 잎 등의 기타 조직 특이 프로모터 로서 예컨대 벼와 옥수수 유래의 알비씨에스 (rbcS: ribulose bisphosphate carboxylase/oxygenase small subunit) 프로모터, 아그로박테리움 유래의 식물 뿌리 발현을 유도하는 RolD 프로모터, 감자 유래 괴경 특이 발현 유도 파타틴 (patatin) 프로모터, 토마토 유래의 과실 성숙 특이 발현 유도 피디에스 (PDS: phytoene synthase) 프로모터 등이다. 바람직하게 본 발명의 프로모터는 옥수수 유비퀴틴(ubiquitin) promoter이며, 보다 바람직하게 서열번호 3으로 표시되는 프로모터를 사용할 수 있다. The exogenous promoter may be anything that is expressed only by the whole body or a specific tissue of the plant. Preferably, the promoter is CaMV (cauliflower mosaic virus), which is used as a promoter for a dicotyledonous plant, Promoter of the 35S RNA gene of the rice plant, and a promoter of the rice plant actin, a promoter of the rice ubiquitin gene and the rice cytochrome C gene (OsOc1) (RbcS: ribulose bisphosphate carboxylase / oxygenase small subunit) promoter, a RolD promoter for inducing the expression of plant roots derived from Agrobacterium, a potato-specific expression-inducing patatin promoter derived from potato, a tomato-derived fruit Mature specific expression-induced PDS (phytoene synthase) promoter. Preferably, the promoter of the present invention is a maize ubiquitin promoter, more preferably a promoter represented by SEQ ID NO: 3.
바람직하게 본 발명의 탈립성 억제를 위한 재조합 벡터는 LOC_Os05g38120 유전자의 발현을 억제할 수 있는 RNA i를 포함하는 재조합 벡터 또는 안티센스 올리고뉴클레오티드를 포함하는 재조합 벡터를 포함하며, 바람직하게는 RNA i를 포함하는 재조합 벡터이다. Preferably, the recombinant vector for inhibition of in vitro fertilization of the present invention comprises a recombinant vector comprising an RNA i capable of inhibiting the expression of the LOC_Os05g38120 gene, or a recombinant vector comprising an antisense oligonucleotide, It is a vector.
본 명세서에서 용어 "RNA i"는 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성된다. RNA i는 타겟 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운 방법으로서 또는, 유전자치료(gene therapy)의 방법으로 제공된다. RNA i는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음)등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. 본 발명의 탈립성 억제를 위한 재조합 벡터는 LOC_Os05g38120 유전자의 발현을 억제하여 탈립성을 억제시킬 수 있다. 본 발명의 RNA i서열은 서열번호 5 또는 서열번호 6으로 표시되는 뉴클레오티드 서열이다.As used herein, the term "RNAi" refers to short double-stranded RNA capable of inducing RNAi (RNA interference) phenomenon through cleavage of a specific mRNA. A sense RNA strand having a sequence homologous to the mRNA of the target gene and an antisense RNA strand having a sequence complementary thereto. Since RNA i can inhibit expression of a target gene, it is provided as an efficient gene knockdown method or as a method of gene therapy. RNA i is not limited to a pair of double-stranded RNA portions that are paired with each other, but a pair is formed by a mismatch (corresponding base is not complementary), a bulge (no base corresponding to one chain) And a portion that is not achieved may be included. The recombinant vector for inhibiting the inability to infertility of the present invention can inhibit the expression of the LOC_Os05g38120 gene and thereby inhibit the inability to inappropriately grow. The RNA i sequence of the present invention is the nucleotide sequence shown in SEQ ID NO: 5 or SEQ ID NO: 6.
"본 발명의 LOC_Os05g38120 유전자" 와 "기능적으로 동등한 절편"은 본 발명의 유전자와 실질적으로 동등한 효과를 나타내는, 서열번호 1로 표시되는 염기서열로 이루어진 핵산의 조각 또는 일부분을 의미한다. 이러한 핵산 절편은 서열번호 1에 기재된 염기서열과 비교하여 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지며, 이러한 핵산 절편은 당업계에 널리 알려진 분자생물학적 방법에 의하여 용이하게 제작될 수 있다."LOC_Os05g38120 gene of the present invention" and "functionally equivalent fragment" refer to a fragment or a fragment of a nucleic acid comprising the nucleotide sequence shown in SEQ ID NO: 1, which exhibits substantially equivalent effect to the gene of the present invention. These nucleic acid fragments are 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95% 96%, 97%, 98%, 99% or more of sequence homology. Such a nucleic acid fragment can be easily prepared by molecular biological methods well known in the art.
상기 재조합벡터는 통상의 벡터에 본 발명의 유전자를 도입하거나 본 발명의 유전자를 억제할 수 있는 서열 및 구조를 포함한 것일 수 있으며, 이처럼 본 발명의 유전자 등을 도입하여 재조합벡터를 제조하는 것은 본 발명이 속하는 기술 분야의 당업자라면 공지의 방법에 따라 용이하게 실시 가능하다.The recombinant vector may include a sequence and a structure capable of introducing the gene of the present invention into a conventional vector or inhibiting the gene of the present invention. The production of a recombinant vector by introducing the gene of the present invention, Those skilled in the art can easily carry out the present invention in accordance with known methods.
또한 본 발명은 상기 재조합 벡터에 의해 형질 전환된 형질 전환 세포를 제공한다. The present invention also provides transformed cells transformed with the recombinant vector.
상기한 재조합 벡터는 감염, 형질도입, 트랜스펙션, 전기천공 및 형질전환과 같은 주지된 기술을 이용하여 배양된 숙주 세포 내로 도입될 수 있다. 숙주의 대표적인 예는 박테리아 세포, 예를 들면, 대장균, 스트렙토마이세스 및 살모넬라 티피무리움 세포 및 식물 세포를 포함하나, 이에 제한되지 않는다.Such recombinant vectors may be introduced into host cells cultured using well known techniques such as infection, transfection, transfection, electroporation and transformation. Representative examples of a host include, but are not limited to, bacterial cells such as E. coli, Streptomyces and Salmonella typhimurium cells and plant cells.
식물의 형질전환에 이용되는 "식물 세포"는 임의의 식물 세포가 이용가능하다. 식물 세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물, 바람직하게는 배양 세포, 배양 조직 또는 배양 기관 및 더욱 바람직하게는 배양 세포의 어떤 형태도 가능하다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 줄기, 잎, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다.Any plant cell can be used as "plant cell" used for transformation of a plant. The plant cell may be any type of cultured cell, cultured tissue, cultured organ or whole plant, preferably cultured cell, cultured tissue or culture organ, and more preferably cultured cell. "Plant tissue" refers to a tissue of a differentiated or undifferentiated plant, such as, but not limited to, stem cells, leaves, cancer tissues, and various types of cells used in culture, such as single cells, protoplasts, Callus tissue.
본 발명은 단자엽 식물체의 탈립성 조절용 조성물을 제공한다. 본 발명의 단자엽 식물체의 탈립성 조절용 조성물은 재조합 벡터의 종류 또는 형질전환 세포의 종류에 따라 탈립성 증진용 조성물이거나 탈립성 억제용 조성물일 수 있다. The present invention provides a composition for controlling florability of a terminal plant. The composition for controlling off-gassing of a terminal plant of the present invention may be a composition for promoting in flushing or a composition for inhibiting flushing depending on the kind of the recombinant vector or the type of transformed cells.
바람직하게 단자엽 식물체의 탈립성 증진용 조성물은 상기 서열번호 1로 표시되는 유전자를 포함하는 탈립성 증진을 위한 재조합 벡터를 포함하거나 상기 서열번호 1로 표시되는 유전자를 포함하는 탈립성 증진을 위한 재조합 벡터로 형질전환된 형질전환 세포를 포함할 수 있다. Preferably, the composition for enhancing the in flushability of a monocotyledonous plant comprises a recombination vector for promoting inability to inoculate comprising the gene of SEQ ID NO: 1 or a recombinant vector for promoting inability to inoculate comprising the gene of SEQ ID NO: 1 RTI ID = 0.0 > transformed < / RTI > cells.
바람직하게 단자엽 식물체의 탈립성 억제용 조성물은 LOC_Os05g38120 유전자의 발현을 억제할 수 있는 RNA i를 포함하는 탈립성 억제를 위한 재조합 벡터 또는 안티센스 올리고뉴클레오티드를 포함하는 탈립성 억제를 위한 재조합 벡터를 포함하거나, 이들 재조합 벡터로 형질전환된 형질전환 세포를 포함할 수 있다. 보다 바람직하게 서열번호 5 또는 서열번호 6의 RNA i 서열을 포함하는 탈립성 억제를 위한 재조합 벡터를 포함하거나 이들 재조합 벡터로 형질전환된 형질전환 세포를 포함할 수 있다.Preferably, the composition for inhibiting flollability of the monocotyledonous plant comprises a recombinant vector for inhibiting the malleability, comprising RNA i capable of inhibiting the expression of the LOC_Os05g38120 gene, or a recombinant vector for inhibition of malacogenesis comprising the antisense oligonucleotide, Lt; RTI ID = 0.0 > transfected < / RTI > cells. And more preferably a recombinant vector containing the RNA i sequence of SEQ ID NO: 5 or SEQ ID NO: 6 for inhibition of inaggression or a transformed cell transformed with these recombinant vectors.
본 발명의 단자엽 식물체의 탈립성을 조절하는 조성물은 탈립성을 증진 또는 억제하여 단자엽 식물체에서 수확량 증대와 재배의 편리성을 도모할 수 있다. The composition of the present invention for controlling florability of a terminal plant may enhance or inhibit the infertility, so that the yield of the terminal plant and the convenience of cultivation can be improved.
또한 본 발명은 상기 벡터, 상기 형질전환 세포 또는 상기 탈립성 조절용 조성물로 형질 전환된 형질전환 단자엽 식물체를 제공한다. 단자엽 식물체로 도입된 상기 유전자에 의해 탈립성이 증진될 수 있으며, 상기 유전자에 대한 RNA i 또는 안티센스올리고뉴클레오티드 등에 의해 탈립성이 억제될 수 있다. 이러한 단자엽 식물체는 바람직하게 벼(Oryza sativa L.)이다. In addition, the present invention provides a transgenic plant transformed with the vector, the transfected cell or the composition for the control of asymmetry. The gene introduced into the monocotyledonous plant may enhance the inability to infertility, and the infertility can be suppressed by RNA i or antisense oligonucleotide for the gene. This monocotyledonous plant is preferably rice (Oryza sativa L.).
본 발명의 탈립성이 증진된 형질전환 단자엽 식물체는 서열번호 1로 표시되는 염기서열로 이루어진 핵산의 변이체와 비교하여 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 염기서열을 이용하여 제조된 형질 전환 단자엽 식물체로써, 탈립성 증대 효과가 실질적으로 동등한 수준의 형질전환 식물체를 포함할 수 있다. The transgenic monocotyledonous plants of the present invention exhibited improved ingrowthability of 60%, 65%, 70%, 75%, 80%, 85%, 90% and 91%, respectively, as compared with the variants of the nucleotide sequences represented by SEQ ID NO: The transgenic monocotyledonous plants prepared by using the nucleotide sequences having the nucleotide sequences of SEQ ID NO: 1, 2, 3, 4, 5, 92, 93, 94, 95, 96, 97, 98, 99 or more, And may include substantially equivalent levels of transgenic plants.
본 발명의 탈립성이 억제된 형질전환 단자엽 식물체는 서열번호 1로 표시되는 염기서열로 이루어진 유전자의 발현이 야생형과 대비하여 10%, 20%, 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90% 또는 그 이상 억제된 형질전환 식물체로써, 탈립성 억제 효과가 실질적으로 동등한 수준의 형질전환 식물체를 포함할 수 있다. The transgenic monocotyledonous plants of the present invention having suppressed inaggregation activity are characterized in that the expression of the nucleotide sequence of SEQ ID NO: 1 is 10%, 20%, 30%, 40%, 50%, 60%, 65% , 70%, 75%, 80%, 85%, 90%, or more of the transgenic plant.
본 발명의 식물체의 형질전환은 DNA를 식물에 전이시키기 위한 당업계에 알려진 임의의 방법에 의해 수행될 수 있다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직 배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 예를 들어, 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D.et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen.Genet. 202, 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316 호) 등으로부터 적당하게 선택될 수 있다. 이러한 변이체는 당업계에 널리 알려진 분자생물학적 방법에 의하여 용이하게 제작될 수 있다. Transformation of a plant of the present invention can be carried out by any method known in the art for transferring DNA to a plant. Such transformation methods do not necessarily have a regeneration and / or tissue culture period. Transformation of plant species is now common for plant species, including both terminal plants as well as dicotyledonous plants. For example, the calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373) (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microinjection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. (Klein et al., 1987, Nature 327, 70), infiltration of plants or mature pollen of various plant elements (DNA or RNA-coated) And infection by (non-integrative) viruses in Agrobacterium tumefaciens mediated gene transfer (
또한 본 발명은 상기 LOC_Os05g38120 유전자를 포함하는 재조합 벡터로 단자엽 식물체를 형질 전환시켜 탈립성을 조절하는 LOC_Os05g38120 유전자를 식물체에서 발현시키는 단계를 포함하는 탈립성이 증진된 단자엽 식물체의 제조 방법을 제공한다. In addition, the present invention provides a method for producing a terminal plant having improved ingrowth, comprising the step of transfecting a terminal plant with a recombinant vector containing the LOC_Os05g38120 gene and expressing the LOC_Os05g38120 gene which regulates inability to inactivate the plant in the plant.
바람직하게, 서열번호 1로 표시되는 염기서열을 포함하는 재조합 벡터를 제조하는 단계; 단자엽 식물체에 상기 재조합 벡터를 도입하는 단계; 및 상기 재조합 벡터가 도입되어 단자엽 식물체의 탈립성이 증진된 단자엽 형질전환 식물체를 선별하는 단계를 포함하는 탈립성이 증진된 단자엽 식물체의 제조 방법을 제공한다.Preferably, a step of preparing a recombinant vector comprising the nucleotide sequence shown in SEQ ID NO: 1; Introducing the recombinant vector into a terminal plant; And selecting a terminal transgenic plant having the transfection vector introduced therein to improve the inferiority of the transfacial plant to the transgenic plant.
또한 본 발명은 상기 LOC_Os05g38120 유전자의 발현을 억제할 수 있는 RNA i를 포함하는 재조합 벡터 또는 안티센스 올리고뉴클레오티드를 포함하는 재조합 벡터를 식물체에서 발현시키는 단계를 포함하는 탈립성이 억제된 단자엽 식물체의 제조 방법을 제공한다. Also, the present invention provides a method for producing an infertility-inhibited terminal plant comprising the step of expressing in a plant a recombinant vector comprising an RNA i or an antisense oligonucleotide capable of inhibiting the expression of the LOC_Os05g38120 gene do.
바람직하게, LOC_Os05g38120 유전자의 발현을 억제할 수 있는 서열번호 5 또서열번호 6으로 표시되는 RNA i를 포함하는 재조합 벡터를 제조하는 단계; 단자엽 식물체에 상기 재조합 벡터를 도입하는 단계; 및 상기 재조합 벡터가 도입되어 단자엽 식물체의 탈립성이 억제된 단자엽 형질전환 식물체를 선별하는 단계를 포함하는 탈립성이 억제된 단자엽 식물체의 제조 방법을 제공한다.Preferably, a step of preparing a recombinant vector comprising the RNA i represented by SEQ ID NO: 5 and SEQ ID NO: 6 capable of inhibiting the expression of the LOC_Os05g38120 gene; Introducing the recombinant vector into a terminal plant; And selecting a terminal transgenic plant having introduced the recombinant vector and inhibiting inversion of the terminal plant.
본 발명의 유전자를 이용하여 단자엽 식물체의 탈립성을 조절함으로써, 수확량을 증가시키고 탈곡의 편리함을 재배 품종과 재배 지역에 맞게 조절하여 효율적인 곡물 생산을 도모할 수 있다. By using the gene of the present invention, it is possible to increase the yield and control the ease of threshing according to the cultivated cultivated area and the cultivation area by controlling the infertility of the terminal plant.
도 1은 히트맵(heatmap)으로 LOC_Os05g38120 유전자와 3A-07285 계통의 T-DNA 삽입 위치 및 유전형 분석(genotyping) 결과를 표시한 도이다.
도 2는 3A-07285 계통에 있어서 T-DNA tagging에 따른 LOC_Os05g38120 유전자의 전사 증가량과 탈립성이 변화를 나타낸 도이다.
도 3은 3A-07285 계통의 탈립성 표현형을 나타낸 것으로 야생형과 대비하여 헤테로(hetero) 식물체 및 호모(homo) 식물체의 높은 탈립성을 보여주는 도이다.
도 4는 야생형과 3A-07285 계통에 있어서 탈리대(abscission zone)의 발달과 리그닌(lignin) 축적 변화를 확인한 도이다.
도 5는 LOC_Os05g38120 유전자의 과발현에 따른 탈립성 증가를 확인한 결과를 나타내는 도이다.
도 6은 LOC_Os05g38120 유전자의 3'UTR 부분과 5'UTR 부분을 이용하여 LOC_Os05g38120 유전자에 대한 RNA i 벡터를 제작한 모식도를 보여주는 도이다.
도 7은 탈립성이 큰 인디카 계열의 품종인 Kasalath에서 LOC_Os05g38120 유전자를 RNA i 벡터를 이용해 발현을 억제시킨 형질 전환 식물체에서 탈립성 감소 및 탈립대 발달 저해를 확인한 도이다.FIG. 1 is a diagram showing the LOC_Os05g38120 gene and the T-DNA insertion position and genotyping results of the 3A-07285 strain as a heatmap.
FIG. 2 shows changes in the transcriptional uptake and inability of LOC_Os05g38120 gene according to T-DNA tagging in the 3A-07285 strain.
Fig. 3 shows the proliferative phenotype of strain 3A-07285, which shows high hygroscopicity of hetero and homo plants compared to the wild type.
FIG. 4 shows the development of the abscission zone and changes in lignin accumulation in the wild type and the 3A-07285 strain.
FIG. 5 is a graph showing the results of confirming an increase in the inability to overexpress upon overexpression of the LOC_Os05g38120 gene.
FIG. 6 is a schematic diagram showing the production of an RNA i vector for the LOC_Os05g38120 gene using the 3'UTR portion and the 5'UTR portion of the LOC_Os05g38120 gene.
FIG. 7 is a graph showing the inhibition of in fl ashing and the inhibition of developmental defects in the transgenic plants in which expression of LOC_Os05g38120 gene was inhibited by RNA i vector in Kasalath, which is a variant of Indica which is highly inferable.
이하에서는, 실시 예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 그러나, 아래의 실시 예는 발명의 이해를 돕기 위한 예시일 뿐, 이에 의해 본 발명의 범위가 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples. However, the following embodiments are only examples for helping understanding of the invention, and thus the scope of the present invention is not limited thereto.
<< 실시예Example 1> 1> 탈립성이Inability to 증가하는 계통 선발 Increasing system selection
탈립성을 조절하는 유전자를 찾기 위해 10만 계통의 T-DNA 돌연변이 집단 중 활성화 변이체 집단을 이용하여 표현형을 관찰하였다. 야생형 동진 벼에서는 탈립성의 표현형을 관찰할 수 없지만, 3A-07285 활성화 변이체 집단에서 탈립성이 증가한 계통을 선별할 수 있었다. 탈립성은 digital force gauge를 이용하여 측정하였으며 벼의 이삭이 panicle에서 떨어질 때 힘을 측정함으로써 탈립성을 확인하였다. 헤테로 및 호모 돌연변이체에서 유전자 발현 증가에 따라 탈립성이 증가하는 것을 확인할 수 있었다. 호모 돌연변이는 탈립성을 측정하는 digital force gauge로 탈립성을 측정하기 전 수확단계에서 이미 종자가 떨어지고 남아 있지 않았으며, 야생형과 헤테로의 탈립성 변화를 측정한 결과는 표 1과 같았다.To identify the genes controlling the inability to overtake, phenotypes were observed using a population of active mutants among 100,000 T-DNA mutant populations. In the wild-type Dongjin rice, it was not possible to observe the phenotype of inerting ability, but it was able to select the line with increased inability in the active mutant group 3A-07285. The in flushability was measured using a digital force gauge and the force was measured when the grain of the rice fell from the panicle to confirm the flakiness. It was confirmed that in the heterozygous and homozygous mutants, the degree of infertility increases with increasing gene expression. The homozygous mutation was a digital force gauge to measure the inability to inoculate the seeds before harvesting. The results of the measurements of wild type and heterozygosity were as shown in Table 1.
표 1. 3A-07285 계통의 탈립성 변화 Table 1. Changes in the floristic behavior of strain 3A-07285
선발된 3A-07285 계통은 표 1에서 확인되는 바와 같이 동진 벼 backgroud의 야생형과 대비하여 hetero 돌연변이에서 탈립성이 크게 증가한 것을 확인할 수 있었다. As shown in Table 1, the selected 3A-07285 strains were significantly increased in heterozygosity compared to the wild type strains of the backgroud of Dongjin rice.
<< 실시예Example 2> 3A-07285 계통의 T- 2 > The T- DNADNA coco -- segregationsegregation 검증 및 유전자 활성 확인 Verification and confirmation of gene activity
T-DNA 삽입에 의해 제조된 3A-07285 계통은 pGA2715 벡터에 의해 유전자가 trap되었다. 이 계통에 대하여 삽입된 위치에 대해 유전형 분석(genotyping)을 실시하였다.The 3A-07285 strain produced by T-DNA insertion was trapped by the pGA2715 vector. Genotyping was performed on the inserted position in this system.
상기 선발된 계통의 벼 종자를 MSO 배지에 28 ℃에서 10일간 배양하였다. 이렇게 배양한 개체들의 잎 100mg을 채취하여 액체질소를 이용하여 급냉각한 후 분쇄하였다. 분쇄된 잎에서 CTAB 완충용액 (2% CTAB, 1.42M NaCl, 20mM EDTA (pH8.0), 100mM Tris-Cl (pH8.0))을 이용하여 genomic DNA를 추출하였다. The selected lineage rice seeds were cultured in MSO medium at 28 ° C for 10 days. 100 mg of the leaves of the cultivated individuals were sampled and pulverized by rapid cooling using liquid nitrogen. Genomic DNA was extracted from the crushed leaves using CTAB buffer (2% CTAB, 1.42 M NaCl, 20 mM EDTA (pH 8.0), 100 mM Tris-Cl (pH 8.0)).
3A-07285 계통은 LOC_Os05g38120 유전자의 정지코돈에서 4Kb 떨어진 곳에 삽입되어 있으며, 유전자를 활성화 시킬 수 있는 엔핸서 부위를 가지는 LB 방향으로 T-DNA가 삽입되어있다. 이를 확인하기 위한 genomic DNA 서열상의 프라이머와 T-DNA 분석을 확인하기 위한 프라이머 서열은 도 1 및 표 2에 나타내었다. The 3A-07285 strain is inserted 4 Kb away from the stop codon of the LOC_Os05g38120 gene and has T-DNA inserted in the LB direction with an engineer site capable of activating the gene. Primers on the genomic DNA sequence and primer sequences for confirming the T-DNA analysis are shown in FIG. 1 and Table 2, respectively.
T-DNA에 의해 LOC_Os05g38120의 발현이 증가하였는지를 관찰하기 위해 제조된 프라이머를 (서열번호 7 및 서열번호 8) 이용하여 LOC_Os05g38120의 발현을 관찰하였다. The expression of LOC_Os05g38120 was observed using primers (SEQ ID NO: 7 and SEQ ID NO: 8) prepared in order to observe whether the expression of LOC_Os05g38120 was increased by T-DNA.
표 2. 3A-07285 유전형 분석용 프라이머Table 2. 3A-07285 Primers for Genomic Analysis
PCR 반응은 95℃에서 5분 후; 95℃에서 30초, 55℃ 에서 30, 72℃에서 1분을 35회 반복하고, 마지막으로 72℃에서 7분을 진행하였다. PCR 산물은 아가로스 젤을 이용하여 전기영동으로 확인하였다. 이를 통해 유전형을 확인 및 선별하였다.PCR reactions were performed after 5 minutes at 95 ° C; 30 seconds at 95 ° C, 30 minutes at 55 ° C, 1 minute at 72 ° C for 35 minutes, and finally 7 minutes at 72 ° C. PCR products were confirmed by electrophoresis using agarose gel. The genotype was identified and selected.
또한, 실제로 LOC_Os05g38120 유전자의 발현이 활성화되었는지 확인하기 위하여 표 3의 프라이머를 이용하여 발현을 확인하였다. 대조군으로 벼의 유비퀴틴 5 프라이머를 사용하였다. 프라이머 정보는 표 3에 나타내었다. In order to confirm whether the expression of the LOC_Os05g38120 gene was actually activated, expression was confirmed using the primers shown in Table 3. As a control,
표 3. LOC_Os05g38120 transcript 확인용 프라이머Table 3. LOC_Os05g38120 transcript confirmation primer
다음으로, 두 계통의 종자를 MSO 배지에서 10일 키운 후, 개체들의 잎 100mg을 채취하여 액체질소를 이용해 급속냉동시켰다. 냉동된 잎 조직을 분쇄하여 RNA iso 완충용액(takara, http://www.takara-bio.com)을 이용하여 total RNA를 분리하였다. 2 ug의 total RNA을 Moloney murine leukemia virus reverse transcriptase (Promega, Madison,WI,USA)를 이용하여 cDNA를 합성하였다. 합성된 cDNA는 PCR을 통해 관찰하고, 합성된 cDNA를 이용하여 quantitative real time PCR을 수행하였다. 그 결과를 도 2에 나타내었다. Next, two lines of seeds were grown in MSO medium for 10 days, and then 100 mg of leaves of the individuals were harvested and rapidly frozen using liquid nitrogen. The frozen leaf tissue was pulverized and total RNA was isolated using RNA iso buffer (Takara, http://www.takara-bio.com). 2 ug of total RNA was synthesized by Moloney murine leukemia virus reverse transcriptase (Promega, Madison, WI, USA). The synthesized cDNA was observed by PCR and quantitative real time PCR was performed using the synthesized cDNA. The results are shown in Fig.
도 2에 나타낸 바와 같이, 3A-07286 계통에 있어서 real time PCR 결과가 탈립성이 증가하는 표현형과 일치함을 확인할 수 있었다. As shown in FIG. 2, it was confirmed that the real time PCR result in the 3A-07286 strain was consistent with the phenotype with increased inability to inappropriately grow.
이는 또한 도 3의 표현형을 통해 확인할 수 있으며 야생형에 비해 헤테로 및 호모 개체에서 LOC_Os05g38120 발현이 증가에 따라 탈립성이 증가하는 표현형을 보이는 것을 확인할 수 있으며, homo 식물체에서 탈립성이 가장 높음을 확인할 수 있었다. 즉, 상기 결과를 통해 3A-07285 계통은 LOC_Os05g38120 유전자에 co-segregation된 것이 확인하였다.It can also be confirmed by the phenotype shown in FIG. 3 that the phenotype of increased ineligibility increases with increasing expression of LOC_Os05g38120 in heterozygous and homozygous individuals compared with the wild type, and it is confirmed that homozygous plants have the highest inversion rate. That is, the above results confirmed that the 3A-07285 strain was co-segregated with the LOC_Os05g38120 gene.
<< 실시예Example 3> 3> LOCLOC __ Os05g38120Os05g38120 유전자 과발현 Gene overexpression 변이체의Mutant 탈립대Defrag 변화 확인 Confirm change
상기 실시예 2의 LOC_Os05g38120 활성화 변이체인 3A-07285 계통에 있어서 본 계통의 형질 변화를 세포학적으로 관찰하였다. In the line 3A-07285, which is an active mutant of LOC_Os05g38120 of Example 2, changes in the trait of this line were observed cytologically.
이삭의 세포 종단면을 관찰하여 탈립대(abscission zone)에서의 변화를 확인하고자 sp8 후기 이삭(Plant Cell Physiol. 2005 Jan;46(1):23-47 참고)을 샘플링하여 FAA 고정 용액 (포르말린 (35%): 아세트산: 에탄올 (70%) = 1:1:18)에 담그어 세포를 고정시켰다. 고정한 샘플은 파라핀 치환 후 블록을 만들고 LEICA RM2265 section 기기를 이용하여 10um 이내로 종단으로 자르고, 슬라이드 글라스 위에 놓아 붙였다. 재수화를 거친 샘플은 0.05% toluidine blue 용액과 리그닌을 염색할 수 있는 플로로글루시놀-HCl로 염색하여 광학현미경에서 10-20배율로 관찰하였다. 그 결과를 도 4에 나타내었다. To observe the changes in the abscission zone of the spinal cord, the spinal cord was sampled to determine the change in the FAA fixation solution (formalin (35 (1)) (see Plant Cell Physiol. 2005 Jan; %): Acetic acid: ethanol (70%) = 1: 1: 18). The immobilized sample was paraffin-substituted and the block was cut and terminated to within 10 μm using a LEICA RM2265 section instrument and placed on a slide glass. The rehydrated samples were stained with 0.05% toluidine blue solution and fluroglucinol-HCl capable of staining lignin, and observed with an optical microscope at 10-20 magnification. The results are shown in Fig.
도 4에 나타낸 바와 같이, toluidine blue 염색으로 세포 염색을 수행했을 때 LOC_Os05g38120의 활성화 변이체인 3A-07285 계통에서 탈립대(abscission zone)가 더 발달된 것을 확인하였다. 또한 리그닌 염색에서도 3A-07285 호모 돌연변이체의 탈립대와 소수경(pedicel) 주위에 리그닌(lignin) 축적이 현저히 감소한 것을 확인하였다. As shown in FIG. 4, when the cells were stained with toluidine blue staining, it was confirmed that the abscission zone was further developed in the active mutant of LOC_Os05g38120, strain 3A-07285. It was also confirmed that the lignin staining showed a remarkable decrease in lignin accumulation around the peel and pedicel of the 3A-07285 homo-mutant.
<< 실시예Example 4> 4> LOCLOC __ Os05g38120Os05g38120 유전자 과발현을 위한 유전자 Genes for gene overexpression 클로닝Cloning
LOC_Os05g38120 유전자를 클로닝하기 위하여 KOME cDNA를 주형으로 표 4에 나타낸 서열번호 14 및 서열번호 15를 이용하여 PCR을 수행하였다. 20 ng의 cDNA 주형과 각 프라이머 5 pmol을 사용하였다. PCR 반응은 95℃에서 5분 후; 95℃에서 30초, 55℃에서 30초, 72℃에서 3분을 35회 반복하고, 마지막으로 72℃에서 7분을 진행하였다. PCR 산물은 아가로스 젤을 사용하여 전기영동하고 정적크기의 사이즈 확인하고 분리동정하여, T-easy 벡터(sub-cloning용 벡터)에 클로닝하여 염기서열 해독을 하였다. 클로닝한 DNA를 HindⅢ와 SpeⅠ으로 절단한 후, 동일한 제한효소로 절단된 pGA3426 벡터(over-expression용 벡터)와 라이게이션을 14℃에서 12시간 수행하였다. 라이게이션 산물을 Top10 E.coli 컴피턴트 셀 50㎕과 혼합하여 1.5 ml 튜브에 옮긴 다음 얼음에 15분 방치하였다. 이어서, 37 ℃ 오븐에 1분을 다시 방치한 후 1 ml의 LB 액체 배지를 추가로 튜브에 넣은 다음 1시간 동안 37 ℃ 셰이킹 인큐베이터에서 방치하였다. 이어서, 앰피실린 저항성 LB 고체 배지에 도말하고 12시간을 기다려 생성되는 콜로니를 1mL의 LB 액체 배지에서 세포 배양 후 미니 프렙하였다. 미니 프렙으로 얻은 DNA를 제한 효소 HindⅢ와 SpeⅠ을 사용하여 절단 후 전기영동에서 아가로즈 젤 분리 하고서 밴드를 확인하였다. 이렇게 해서 얻어진 클로닝 DNA를 다시 염기 서열 분석을 하여 에러가 발생하지 않은 DNA를 선택하였다. 프라이머는 표 4에 나타내었다. In order to clone the LOC_Os05g38120 gene, PCR was performed using SEQ ID NO: 14 and SEQ ID NO: 15 shown in Table 4 as a template of KOME cDNA. 20 ng of cDNA template and 5 pmol of each primer were used. PCR reactions were performed after 5 minutes at 95 ° C; 35 seconds at 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 3 minutes, and finally at 72 ° C for 7 minutes. The PCR product was electrophoresed using an agarose gel, and its size was checked for its size, separated, and cloned into a T-easy vector (a vector for sub-cloning) to decode the base sequence. The cloned DNA was digested with HindIII and SpeI and ligated with the same restriction enzyme digested pGA3426 vector (over expression vector) and ligation at 14 DEG C for 12 hours. The ligation product was mixed with 50 占 퐇 of Top10 E. coli competent cells, transferred to a 1.5 ml tube, and left on ice for 15 minutes. Subsequently, 1 ml of LB liquid medium was further added to the tube after being left to stand in a 37 ° C oven for 1 minute, and then left in a 37 ° C shaking incubator for 1 hour. Then, the cells were plated on ampicillin-resistant LB solid medium and the resulting colonies were awaited for 12 hours and then mini-prepared after cell culture in 1 mL of LB liquid medium. The DNA obtained as miniprep was cleaved with restriction enzymes HindIII and SpeI, and electrophoresis was performed to separate the agarose gel and identify bands. The cloning DNA thus obtained was subjected to base sequence analysis again to select DNA that did not cause an error. The primers are shown in Table 4.
표 4. 염기 서열 분석을 위한 프라이머Table 4. Primers for sequencing
<< 실시예Example 5> 5> LOCLOC __ Os05g38120Os05g38120 유전자 과발현 형질전환 세포의 제작 Production of Transgenic Transgenic Cells
상기 실시예 4에서 제작한 벡터를 추출하였다. 아그로박테리움 컴피턴트 셀(Agrobacterium tumefaciens LB4404) 50㎕와 10㎍의 식물발현용 벡터를 혼합하여 얼음에 15분 방치하였다. 이어서, 액체질소에 1분 넣은 후, 37 ℃ 오븐에 5분을 다시 방치하는 과정을 3회 반복한 후 1 ml의 YEP 액체 배지를 넣은 다음 5시간 동안 28℃ 셰이킹 인큐베이터에서 방치하였다. 이어서, 테트라사이클린 저항성 LB 고체 배지에 도말하고 36시간을 기다려 생성되는 콜로니를 1mL의 테트라사이클린 항생제가 든 YEP 액체 배지에서 세포 배양 후 미니 프렙한 후, HindⅢ와 SpeⅠ을 사용하여 효소 절단 후 사이즈를 확인하였다. 상기 생성된 형질전환된 아그로박테리움을 이용하여 벼의 형질 전환 실험에서 사용하였다.The vector prepared in Example 4 was extracted. 50 아 of Agrobacterium tumefaciens LB4404 and 10 의 of plant expression vector were mixed and left on ice for 15 minutes. Subsequently, 1 minute was added to liquid nitrogen, and the same procedure was repeated 3 times in a 37 ° C oven for 5 minutes. Then, 1 ml of YEP liquid medium was added, followed by incubation in a 28 ° C shaking incubator for 5 hours. Next, the cells were plated on a tetracycline-resistant LB solid medium and incubated for 36 hours. Cells were cultured in a YEP liquid medium containing 1 mL of tetracycline antibiotics and mini-preparations were performed. The cells were digested with HindIII and SpeI Respectively. The resulting transformed Agrobacterium was used for transgenic rice transformation experiments.
<< 실시예Example 6> 6> LOCLOC __ Os05g38120Os05g38120 유전자 과발현 형질전환 식물체의 제작 Generation of overexpressed transgenic plants
N6D 고체 배지에서 동진벼를 10일 정도 28℃ 생장실에서 명조건으로 키워서 벼의 캘러스를 생성하였다. 생성된 캘러스를 상기 실시예 4에서 얻은 식물발현용벡터로 형질 전환된 아그로박테리움을 72시간 키운 세포와 혼합하여 N6D-Acetosyringone 을 포함한 배지에서 22℃ 암처리 생장실에 방치하였다.In the N6D solid medium, Dongjinbyeon was grown in 28 ℃ growth chamber for 10 days under light condition to produce calli of rice. The resulting callus was mixed with the cells cultured for 72 hours with Agrobacterium transformed with the plant expression vector obtained in Example 4 and left in a 22 占 폚 cancer-treated growth chamber in a medium containing N6D-Acetosyringone.
아그로박테리움에 오염된 캘러스를 세파탁신이 첨가된 3차 증류수로 깨끗이 5번 정도 헹구어 낸 다음 N6D 고체 배지에서 hygromycin 선발을 1차(hygromycin 30 mg/L), 2차 (hygromycin 40 mg/L)에 걸쳐서 계대 배양을 통해 진행하였다. 선발은 28℃ 생장실에서 각각 2주 씩 합해서 4 주 동안 이루어졌다. 분열된 캘러스를 재분화 배지인 MSR (hygromycin 40 mg/L) 고체배지에 옮겨 4주 28℃ 광조건 생장실에서 재분화를 유도한 후, 식물체를 MS 고체 배지로 옮기고 7일 28℃ 광조건 생장실에서 키우고 온실로 옮겨서 재분화 식물체를 키웠다.Hygromycin 30 mg / L, hygromycin 40 mg / L, and hygromycin 40 mg / L were used in the N6D solid medium, and the callus contaminated with Agrobacterium was rinsed 5 times with 3 times distilled water containing Sepharose. Lt; RTI ID = 0.0 > subculture. ≪ / RTI > Selection was made in the 28 ℃ growth room for 2 weeks each for 4 weeks. The divided callus was transferred to the MSR (hygromycin 40 mg / L) solid medium for regeneration and induced to regenerate in a light condition growth chamber for 4 weeks at 28 ° C. The plants were transferred to MS solid medium, grown in a light condition growth room for 7 days, To grow regenerated plants.
<< 실시예Example 7> 7> LOCLOC __ Os05g38120Os05g38120 유전자 과발현 형질전환 식물체에서의 Gene overexpression in transgenic plants 탈립성Infertility 증대 확인 Increase confirmation
상기 실시예 6에서 제조된 LOC_Os05g38120 유전자 과발현 형질전환 식물체의 탈립성 변화를 확인하여 그 결과를 도 5에 나타내었다. RT-PCR과 digital force gauge로의 탈립성 측정은 상기 실시예 1 및 2와 동일한 방법으로 수행하였다. FIG. 5 shows the results of confirming the inability to invert the LOC_Os05g38120 gene transgenic plants prepared in Example 6 above. RT-PCR and measurement of in flushability with a digital force gauge were carried out in the same manner as in Examples 1 and 2 above.
도 5에 나타낸 바와 같이, 서로 다른 LOC_Os05g38120 유전자 과발현 식물체인 OX1 내지 OX5에서 LOC_Os05g38120 발현을 관찰한 결과 대조군 식물체에 비해 transcript의 양이 증가한 것을 확인하였다. 이와 함께 LOC_Os05g38120 유전자 발현이 증가된 식물체에서 탈립성이 함께 증가함을 확인함으로써, LOC_Os05g38120 유전자의 과발현에 의해 탈립성을 증진시킬 수 있음을 확인하였다.As shown in FIG. 5, LOC_Os05g38120 expression was observed in different LOC_Os05g38120 gene overexpressing plants, OX1 to OX5, and the amount of transcript was increased compared to the control plant. In addition, it was confirmed that the inability to overexpress LOC_Os05g38120 gene could increase the overexpression by overexpression of LOC_Os05g38120 gene.
<< 실시예Example 8> 8> LOCLOC __ Os05g38120Os05g38120 유전자 발현 억제를 위한 For gene expression inhibition RNAiRNAi 포함 벡터 Inclusion vector 클로닝Cloning
LOC_Os05g38120 유전자의 발현을 감소시키기 위해 도 2에서 발현이 증가한 것을 관찰한 cDNA를 주형으로 사용하여 5'UTR의 208bp와 3'UTR 286bp에 대해 PCR를 수행하였다. PCR을 수행할 때 사용한 프라이머 중 reverse primer에 GGGGTACC (Kpn1 site)를 추가하였다. PFU를 이용한 PCR 산물을 EtOH ppt를 수행한 다음 Kpn1 제한효소를 이용하여 효소 절단을 수행하였다. pGA3720 (Amp 저항성gene/pGA3591(RV)) 벡터를 SmaI으로 잘라서 Amp 링커를 gel elution하고, binary vector backbone으로 사용할 pGA3426 벡터를 Kpn1으로 잘라 3가지 산물에 대하 triple ligation을 수행하였다. ligation을 수행한 DNA를 E.coli Top10에 형질전환하고, 테트라사이클린과 앰피실린에 모두 저항성을 가지는 콜로니를 선별하였다. 선별된 콜로니는 액체배지에서 배양하여 미니프렙을 수행하고 Kpn1으로 효소 절단해서 최종확인을 한 후 sequencing을 통해 DNA 서열상 에러가 없는 DNA를 선별하였다. LOC_Os05g38120 유전자의 발현을 감소시키기 위한 RNA i construction에 사용된 primer는 표 5에 나타내었으며, 제조된 RNA I는 서열번호 5 또는 서열번호 6의 뉴클레오티드 서열을 가진다. In order to reduce the expression of LOC_Os05g38120 gene, PCR was performed on 208 bp of 5'UTR and 286 bp of 3'UTR using the cDNA observed to increase expression in Fig. 2 as a template. GGGGTACC (Kpn1 site) was added to the reverse primer among the primers used for PCR. The PCR product using PFU was subjected to EtOH ppt and enzyme digestion was performed using Kpn1 restriction enzyme. pGA3720 (Amp resistance gene / pGA3591 (RV)) vector was cut out with SmaI to gel elution Amp linker, and pGA3426 vector used as a binary vector backbone was cut into Kpn1 and triple ligation was performed on three products. The ligation-performed DNA was transformed into E. coli Top10, and colonies having both resistance to tetracycline and ampicillin were selected. The selected colonies were cultured in a liquid medium to perform miniprep, digested with Kpn1, and finally sequenced to screen for DNA without error. The primers used in the RNA i construction for reducing the expression of the LOC_Os05g38120 gene are shown in Table 5, and the prepared RNA I has the nucleotide sequence of SEQ ID NO: 5 or SEQ ID NO: 6.
<< 실시예Example 9> 9> LOCLOC __ Os05g38120Os05g38120 유전자 발현 억제 형질전환 세포의 제작 Production of transgenic cells inhibiting gene expression
상기 실시예 5에서 제작한 벡터를 추출하였다. 아그로박테리움 컴피턴트 셀(Agrobacterium tumefaciens LB4404) 50㎕와 10㎍의 식물발현용 벡터를 혼합하여 얼음에 15분 방치하였다. 이어서, 액체질소에 1분 넣은 후, 37 ℃ 오븐에 5분을 다시 방치하는 과정을 3회 반복한 후 1 ml의 YEP 액체 배지를 넣은 다음 5시간 동안 28℃ 셰이킹 인큐베이터에서 방치하였다. 이어서, 테트라사이클린 저항성 LB 고체 배지에 도말하고 36시간을 기다려 생성되는 콜로니를 1mL의 테트라사이클린 항생제가 든 YEP 액체 배지에서 세포 배양 후 미니 프렙한 후, Kpn1을 사용하여 효소 절단 후 사이즈를 확인하였다. 상기 생성된 형질전환된 아그로박테리움을 이용하여 벼의 형질 전환 실험에서 사용하였다.The vector prepared in Example 5 was extracted. 50 아 of Agrobacterium tumefaciens LB4404 and 10 의 of plant expression vector were mixed and left on ice for 15 minutes. Subsequently, 1 minute was added to liquid nitrogen, and the same procedure was repeated 3 times in a 37 ° C oven for 5 minutes. Then, 1 ml of YEP liquid medium was added, followed by incubation in a 28 ° C shaking incubator for 5 hours. Then, the cells were plated on tetracycline-resistant LB solid medium and incubated for 36 hours. The resulting colonies were cultured in YEP liquid medium supplemented with 1 mL of tetracycline antibiotic. After mini-preparation, Kpn1 was used for enzyme cleavage and the size was confirmed. The resulting transformed Agrobacterium was used for transgenic rice transformation experiments.
<< 실시예Example 10> 10> LOCLOC __ Os05g38120Os05g38120 유전자 발현 억제 형질전환 식물체의 제작 Production of Transgenic Plants Suppressing Gene Expression
N6D 고체 배지에서 indica 품종의 Kasalath 종자를 10일 정도 28℃ 생장실에서 명조건으로 키워서 벼의 캘러스를 생성하였다. 생성된 캘러스를 상기 실시예 8에서 얻은 식물발현용벡터로 형질 전환된 아그로박테리움을 72시간 키운 세포와 혼합하여 N6D-Acetosyringone 을 포함한 배지에서 22℃ 암처리 생장실에 방치하였다.Kasalath seeds of indica cultivars were grown in N6D solid medium for 28 days at 28 ℃ for 10 days to produce calli of rice. The resulting callus was mixed with the cells cultured for 72 hours with Agrobacterium transformed with the plant expression vector obtained in Example 8 and left in a growth chamber containing 22DC-treated N6D-Acetosyringone.
아그로박테리움에 오염된 캘러스를 세파탁신이 첨가된 3차 증류수로 깨끗이 5번 정도 헹구어 낸 다음 N6D 고체 배지에서 hygromycin 선발을 1차(hygromycin 30 mg/L), 2차 (hygromycin 40 mg/L)에 걸쳐서 계대 배양을 통해 진행하였다. 선발은 28℃ 생장실에서 각각 2주 씩 합해서 4 주 동안 이루어졌다. 분열된 캘러스를 재분화 배지인 MSR (hygromycin 40 mg/L) 고체배지에 옮겨 4주 28℃ 광조건 생장실에서 재분화를 유도한 후, 식물체를 MS 고체 배지로 옮기고 7일 28℃ 광조건 생장실에서 키우고 온실로 옮겨서 재분화 식물체를 키웠다.Hygromycin 30 mg / L, hygromycin 40 mg / L, and hygromycin 40 mg / L were used in the N6D solid medium, and the callus contaminated with Agrobacterium was rinsed 5 times with 3 times distilled water containing Sepharose. Lt; RTI ID = 0.0 > subculture. ≪ / RTI > Selection was made in the 28 ℃ growth room for 2 weeks each for 4 weeks. The divided callus was transferred to the MSR (hygromycin 40 mg / L) solid medium for regeneration and induced to regenerate in a light condition growth chamber for 4 weeks at 28 ° C. The plants were transferred to MS solid medium, grown in a light condition growth room for 7 days, To grow regenerated plants.
<< 실시예Example 11> 11> LOCLOC __ Os05g38120Os05g38120 유전자 발현 억제 형질전환 식물체에서의 Gene Expression Suppression in Transgenic Plants 탈립Fleeing 성 억제 확인Sustained inhibition confirmation
상기 실시예 10에서 제조된 LOC_Os05g38120 유전자 발현 억제 형질전환 식물체의 탈립성 변화를 확인하여 그 결과를 도 7에 나타내었다. RT-PCR과 digital force gauge로의 탈립성 측정은 상기 실시예 1 및 2와 동일한 방법으로 수행하였으며, 세포학적 관찰은 실시예 3과 동일하게 수행하였다. FIG. 7 shows the results of the inactivation of the LOC_Os05g38120 gene expression-suppressing transgenic plant prepared in Example 10. FIG. RT-PCR and measurement of inability to a digital force gauge were carried out in the same manner as in Examples 1 and 2, and cytological observation was performed in the same manner as in Example 3.
도 7에 나타낸 바와 같이, 서로 다른 LOC_Os05g38120 유전자 발현 억제 식물체인 1 내지 10에서 LOC_Os05g38120 발현을 관찰한 결과 대조군 식물체에 비해 transcript의 양이 감소한 것을 확인하였다. 이와 함께 LOC_Os05g38120 유전자 발현이 감소된 식물체에서 탈립성 역시 함께 감소함을 확인하였다. 또한, 형질 전환 식물체 9 및 10을 확인한 결과, 탈립대(abscission zone) 발달이 야생형과 대비하여 떨어지는 것을 확인하였다. 이로부터 LOC_Os05g38120 유전자 발현 억제는 탈립성을 억제할 수 있음을 확인하였다. As shown in FIG. 7, LOC_Os05g38120 expression was observed in different LOC_Os05g38120 gene
<110> University-Industry Cooperation Group of Kyung Hee University <120> Shattering-controled transgenic plant and method for producing thereof <130> P14-009-KHU <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 1743 <212> DNA <213> Oryza sativa <400> 1 atgtcgtccg ccgcgggggg aggaggaggg tacgggggcg gaggcggcga gcatcagcat 60 cagcagcagc agcaccacct gctgcttggg caggcggcgg ggcagctgta ccacgtgccg 120 cagcacagcc ggcgggagaa gctgcggttc ccgcccgacc acccggcgga gtcgccgccg 180 ccgccgccgc ccgggtcgtg gccgctgccc ccggcgttct actcctacgc gtcgtcctcg 240 tcatcgtact cgccgcacag cccgacgctg gcgcacgcgc agttggtggc gcatgggatg 300 ccgccggggg ccgcgacgag cggaggggcc cagatcccga gccagaactt cgcgctgtcg 360 ctgtcgtcgg cgtcctcgaa ccctccgccc acgccgagga ggcagtttgg cggcggcggc 420 ggcggcggcg gggccgccgg gccgtacggg cccttcacgg gctacgccgc cgtgctcggg 480 cggtccaggt tcttgggccc cgcgcagaag ctgctcgagg agatctgcga cgtcggcggc 540 cgccccgcgc agcttgacag gggctccgac gagggtttgc tcgacgtaga cgccatggac 600 gccgcgggaa gcgtcgacca cgagatggac ggcagcgatc gcgccgtcgc ggacgcggtc 660 acggtctccg gcgccgagca gcagtggagg aagactaggc tcatctcgct tatggaagac 720 gtttgcaagc gatacaggca atactaccag caactccaag ctgtagtatc gtcctttgag 780 actgttgcgg gtctgagcaa tgctgctcct tttgcttcca tggctcttag gacaatgtcg 840 aagcatttca agtatttgaa gggcattata ctgaaccagc tgcgcaatac gggcaagggt 900 gctacaaaag atggtctcgg caaggaagac acaacaaact ttgggcttat gggcggcggc 960 gctggcctac taaggggaaa caatgtgaat tcgtttagcc aacctcacaa catatggcgc 1020 ccgcaaagag ggctaccaga gcgtgctgtt tcggttcttc gtgcatggct attcgaacac 1080 ttcctgcacc cgtatccaac tgacagcgat aagcagatgc ttgctaaaca gacaggatta 1140 actaggaacc aggtatcgaa ctggtttatc aatgcaaggg ttaggctctg gaagccaatg 1200 gttgaagaaa ttcacaacct cgagatgagg cagctgcaga agaatccgtc tcttgacaag 1260 aatcagctct ccatgcagca cacccaacat tcgtcggaca gcagcgggaa gccctgtgat 1320 ccatcaaact cgctgcaagg gcaaagtagc agcatgacca ggaatcacag catctccgcc 1380 tcccggcaca tcgaggacgg cctctcccag atgccccatg acatctccgg tcaggtgagc 1440 ttcgcataca acgggctcgc cgcgcatcac agcatcgcga tggcgcacca ccaccaacct 1500 gacctcattg gcaccggtgg tgccgcgaat gctggcggtg tctcactcac ccttggcctt 1560 caccagaaca ataaccgagc ttacattgct gagccccttc cggccgcgct tccgctcaat 1620 cttgcccatc gtttcggact ggaggacgtt agtgatgcct acgtgatgag ctcatttggt 1680 ggtcaggacc ggcatttcac caaggagatc ggtggccatt tgctccatga ctttgttggt 1740 tga 1743 <210> 2 <211> 580 <212> PRT <213> Oryza sativa <400> 2 Met Ser Ser Ala Ala Gly Gly Gly Gly Gly Tyr Gly Gly Gly Gly Gly 1 5 10 15 Glu His Gln His Gln Gln Gln Gln His His Leu Leu Leu Gly Gln Ala 20 25 30 Ala Gly Gln Leu Tyr His Val Pro Gln His Ser Arg Arg Glu Lys Leu 35 40 45 Arg Phe Pro Pro Asp His Pro Ala Glu Ser Pro Pro Pro Pro Pro Pro 50 55 60 Gly Ser Trp Pro Leu Pro Pro Ala Phe Tyr Ser Tyr Ala Ser Ser Ser 65 70 75 80 Ser Ser Tyr Ser Pro His Ser Pro Thr Leu Ala His Ala Gln Leu Val 85 90 95 Ala His Gly Met Pro Pro Gly Ala Ala Thr Ser Gly Gly Ala Gln Ile 100 105 110 Pro Ser Gln Asn Phe Ala Leu Ser Leu Ser Ser Ala Ser Ser Asn Pro 115 120 125 Pro Pro Thr Pro Arg Arg Gln Phe Gly Gly Gly Gly Gly Gly Gly Gly 130 135 140 Ala Ala Gly Pro Tyr Gly Pro Phe Thr Gly Tyr Ala Ala Val Leu Gly 145 150 155 160 Arg Ser Arg Phe Leu Gly Pro Ala Gln Lys Leu Leu Glu Glu Ile Cys 165 170 175 Asp Val Gly Gly Arg Pro Ala Gln Leu Asp Arg Gly Ser Asp Glu Gly 180 185 190 Leu Leu Asp Val Asp Ala Met Asp Ala Ala Gly Ser Val Asp His Glu 195 200 205 Met Asp Gly Ser Asp Arg Ala Val Ala Asp Ala Val Thr Val Ser Gly 210 215 220 Ala Glu Gln Gln Trp Arg Lys Thr Arg Leu Ile Ser Leu Met Glu Asp 225 230 235 240 Val Cys Lys Arg Tyr Arg Gln Tyr Tyr Gln Gln Leu Gln Ala Val Val 245 250 255 Ser Ser Phe Glu Thr Val Ala Gly Leu Ser Asn Ala Ala Pro Phe Ala 260 265 270 Ser Met Ala Leu Arg Thr Met Ser Lys His Phe Lys Tyr Leu Lys Gly 275 280 285 Ile Ile Leu Asn Gln Leu Arg Asn Thr Gly Lys Gly Ala Thr Lys Asp 290 295 300 Gly Leu Gly Lys Glu Asp Thr Thr Asn Phe Gly Leu Met Gly Gly Gly 305 310 315 320 Ala Gly Leu Leu Arg Gly Asn Asn Val Asn Ser Phe Ser Gln Pro His 325 330 335 Asn Ile Trp Arg Pro Gln Arg Gly Leu Pro Glu Arg Ala Val Ser Val 340 345 350 Leu Arg Ala Trp Leu Phe Glu His Phe Leu His Pro Tyr Pro Thr Asp 355 360 365 Ser Asp Lys Gln Met Leu Ala Lys Gln Thr Gly Leu Thr Arg Asn Gln 370 375 380 Val Ser Asn Trp Phe Ile Asn Ala Arg Val Arg Leu Trp Lys Pro Met 385 390 395 400 Val Glu Glu Ile His Asn Leu Glu Met Arg Gln Leu Gln Lys Asn Pro 405 410 415 Ser Leu Asp Lys Asn Gln Leu Ser Met Gln His Thr Gln His Ser Ser 420 425 430 Asp Ser Ser Gly Lys Pro Cys Asp Pro Ser Asn Ser Leu Gln Gly Gln 435 440 445 Ser Ser Ser Met Thr Arg Asn His Ser Ile Ser Ala Ser Arg His Ile 450 455 460 Glu Asp Gly Leu Ser Gln Met Pro His Asp Ile Ser Gly Gln Val Ser 465 470 475 480 Phe Ala Tyr Asn Gly Leu Ala Ala His His Ser Ile Ala Met Ala His 485 490 495 His His Gln Pro Asp Leu Ile Gly Thr Gly Gly Ala Ala Asn Ala Gly 500 505 510 Gly Val Ser Leu Thr Leu Gly Leu His Gln Asn Asn Asn Arg Ala Tyr 515 520 525 Ile Ala Glu Pro Leu Pro Ala Ala Leu Pro Leu Asn Leu Ala His Arg 530 535 540 Phe Gly Leu Glu Asp Val Ser Asp Ala Tyr Val Met Ser Ser Phe Gly 545 550 555 560 Gly Gln Asp Arg His Phe Thr Lys Glu Ile Gly Gly His Leu Leu His 565 570 575 Asp Phe Val Gly 580 <210> 3 <211> 3341 <212> DNA <213> Oryza sativa <400> 3 tcatctcgca cgtgcttatc gatggcccta catacaccat agcctaacct cttcaaaatt 60 gacaacacca taacaatgta ttgagtgcta cttactttgt aacatactgt aagagacagc 120 ttgtgaattc cttcatggat tatacacatg agaacgtttg aaatagttgt ttggatgaaa 180 cacaaacata tagtaattaa aaaactaaaa aagggaaaaa aaaagctttg ttcggaaact 240 ccaatgaaat atctcaaaag gaaatttgaa gagtcattta tattccatat gactacctat 300 aattatctac gagatttaaa ttcttatgga cacaaattct tcggataaat ttacttgaac 360 ttcggtgaaa gaaccctaaa cacatgtatg catccagaca atgaaaagca agcgtgccat 420 gagattttct atttgggccg tgtttagatt aaaatttttt tcttcaaact tccaactttt 480 tcgttacatc aaatgttagg acatatgcat ggagttttaa atgtagacga aaaaaatcaa 540 ttgcatagtt tgcatgtaaa tcgcgagacg aatcttttga tcctaattac gccatgattt 600 gataatgtga tgctacagta aacatttgct aatgacagat taattagact taataaattc 660 gtctcgtctt ttacatgcgg aatctgtaat ttgttttgtt attagtctac gtttgatact 720 tcaaatatgt gttcatatat ttaaaaaaaa tctagcacac gaactaaaca caaccttgga 780 tggcctccta agactgtctc caacaagtga cccataagag cacccaaacc caaaatgggt 840 ctccgatagt actatttcag cctccaacag agtacctata cagaagaccc attttgcgtg 900 ctataagagg cataacctaa atctgagtat cctctctcct gaagacctat ttgcagtaag 960 tgttctcttt taggtcttat tgttggagaa gaccaaaaat atgtattgaa gtctttgact 1020 gtagcgctat gtaaacatga aatgtgtctt gtattttggg tttcattgtt ggagatagcc 1080 taagttgctt atccggtttt actgcctgcc atataagaac cccatcatcc atatccgaag 1140 aggacatatt tttattgcaa aactttaaaa ttataataat aatgtaacta caatataaca 1200 taactagtac ataactagta gtacatgtaa cgtttgttca agcaattata ctactaccat 1260 agtacgattg cgtataaagt ttttcaattc aaaaatgttg ctgccgtttt ctagatggtg 1320 aaaaacaaac ttcacccatc tccgacgaac tacaaaaccc tcagctcgat ctccgcacag 1380 tcccgggcca cgcccacacc accctgatcc gctcacccct tccaccacag ggtccaggag 1440 gacctcgccc ccctcctcct cctcgtcgca cgaccagacc agcagcacca actccctttc 1500 tgcctttcgc tttcactgct cagtgctgct cctacacacc atttccccgt ccgtccttcg 1560 ccccccgcgt ctcttttccg cacccatctg ctgcagctgc gcacctttaa tttgcagaaa 1620 gaaagaaaga aagaaaggaa agcaaggccc ccccgagcgc aacagctagc ccaacacacc 1680 tcctccatca ccaccgagaa ggcaacgcat atcaaaagcg cgggcgcaaa gcaaagataa 1740 catcagatca ggtcggcgcc ccccgctccc ggctgccgca aagcccaccc gatcgatcga 1800 tcgacgcctc gttctcctcc tcctccgagg ctactctctg cagggcgctc gcttacgtct 1860 gcctctgcgt acgtgcaccg cccagcgcgg gcgccatgtc gtccgccgcg gggggaggag 1920 gagggtacgg gggcggaggc ggcgagcatc agcatcagca gcaccacctg ctgcttgggc 1980 aggcggcggg gcagctgtac cacgtgccgc agcacagccg gcgggagaag ctgcggttcc 2040 cgcccgacca cccggcggag tcgccgccgc cgccgccgcc cgggtcgtgg ccgctgcccc 2100 cggcgttcta ctcctacgcg tcgtcctcgt catcgtactc gccgcacagc ccgacgctgg 2160 cgcacgcgca gttggtggcg catgggatgc cgccgggggc cgcgacgagc ggaggggccc 2220 agatcccgag ccagaacttc gcgctgtcgc tgtcgtcggc gtcctcgaac cctccgccca 2280 cgccgaggag gcagtttggc ggcggcggcg gcggcggcgg ggccgccggg ccgtacgggc 2340 ccttcacggg ctacgccgcc gtgctcgggc ggtccaggtt cttgggcccc gcgcagaagc 2400 tgctcgagga gatctgcgac gtcggcggcc gccccgcgca gcttgacagg ggctccgacg 2460 agggtttgct cgacgtagac gccatggacg ccgcgggaag cgtcgaccac gagatggacg 2520 gcagcgatcg cgccgtcgcg gacgcggtca cggtctccgg cgccgagcag cagtggagga 2580 agactaggct catctcgctt atggaagacg tgagtaatcg caagctatat ttgttgtttc 2640 atatcgctgc ttctgttttt ccaaagaaaa tactatacta gactttactt ttgctaccct 2700 gcattaatta acttcatgaa taagaatcta ataacgaaca cctcatggtc acatcatgga 2760 tgcacttact gttgttgcac agattatttc ttgtgcttgt gatttgatga gggttgatct 2820 ggattagtga cacatctctt ctcttttgga tatatttttg ttctttaata tgtctcaaat 2880 caatcaacag ttcaaggctc ttttaagctc ccttctaaaa ctagcaggag gtgatccgca 2940 gtttatctat aatcaaaagg tagcatacaa ttctgtgaaa atgcacgata gaagctaaat 3000 tcctcaggat gctcttaatt acatcataaa caaaaattca gtttgctagt acttgataag 3060 attccagcag tttgtcctct ttcacgagat aagattcgtt gagtttgtca gcagaaagat 3120 tctgattata tagttactag tacatactga aaatatgttg agcaccagtt tttttatttg 3180 caatggtgtc aaatatgatc ctcgttcctt aattaggaag cttgcgttgg tgtagtgtcc 3240 acatgatcgt aaagtaggtc tgcacacctt gatgtattat taaacaatta attgggttac 3300 atatcgtgat gtcctcttaa cagttacaaa aaaccttgta g 3341 <210> 4 <211> 5961 <212> DNA <213> Oryza sativa <400> 4 tcatctcgca cgtgcttatc gatggcccta catacaccat agcctaacct cttcaaaatt 60 gacaacacca caacaatgta ttgagtgcta cttactttgt aacatactgt aagagacagc 120 ttgtgagttc cttcatggat tatacacatg agaacgtttg aaatagttgt ttggatgaaa 180 cacaaacata tagtaattaa aaaactaaaa aagggaaaaa aaagctttgt tcggaaactc 240 caatgaaata tctcaaaagg aaatttgaag agtcacttat attccatatg actacctata 300 attatctacg agatttaaat tcttatggac acaaattctt cggataaatt tacttgaact 360 ttggtgaaag aaccctaaac acatgtatgc atccagacaa tggaaagcaa gcgtgccatg 420 agattttcta tttgggccgt gtttagatta aaattttttt cttcaaactt ccaacttttt 480 cgttacatca aatgttagga catatgcatg gagttttaaa tgtggacgaa aaaaatcaat 540 tgcatagttt gcatgtaaat cgcgagacga atcctttgag cctaattacg ccatgatttg 600 acaatgtgat gctacagtaa acatttgcta atgacagatt aattagactt aataaattcg 660 tctcgtcttt tacatgcgga atctgtaatt tgttttgtta ttagtctatg tttgatactt 720 caaatatgtg ttcgtatatt taaaaaaaat ctagcacacg aactaaacac aaccttggat 780 ggccttctaa gactgtctcc aacaagtgac ccataagagc acccaaaccc aaaatgggtc 840 tccgatagta ctatttcagc ctccaacaga gtacctatac aaaagaccca ttttgcgtgc 900 tataagaggc ataacctaaa tctgagtatc ctctctcctg aagacctatt tgcagtaagt 960 gttctctttt aggtcttatt gttggagaag accaaaaata tgtattgaac tctttgactg 1020 tagcgctatg caaacgtgaa atggttcttg tattatgggt ttcattgttg gagatagcct 1080 aagttgctta tccggtttta ttgcctgcca tataagaacc ccatcatcca catccgaaga 1140 ggacatattt ttgttgcaaa actttaaaat tataataata atgtaactac aatataacat 1200 aactagtaca tgtaacgttt gttcaagcaa ttatactact accatagtac gattgcgtat 1260 aaagtttttc aattcaaaaa tgttgctgcc gttttctaga tggtgaaaaa caaacttcac 1320 ccatctccga cgaactacaa aaccctcagc tcgatctccg cacagtcccg ggccacgccc 1380 acaccaccct gatccgctca ccccttccac cacagggtcc aggaggacct cgcccccctc 1440 ctcctcctcg tcgcacgacc agaccagcag caccaactcc ctttctgcct ttcgctttca 1500 ctgctcagtg ctgctcctac acaccatttc cccgtccgtc cttcgccccc cgcgtctctt 1560 ttccgcaccc atctgctgca gctgcgcacc tttaatttgc agaaagaaag aaagaaagaa 1620 agaaaggaaa gcaaggcccc cccgagcgca acagctagcc caacacacct cctccatcac 1680 caccgagaag gcaacgcata tcaaaagcgc gggcgcaaag caaagataac atcagatcag 1740 gtcggcgccc cccgctcccg gctgccgcaa agcccacccg atcgatcgat cgacgcctcg 1800 ttctcctcct cctccgaggc tactctctgc agggcgctcg cttacgtctg cctctgcgta 1860 cgtgcaccgc ccagcgcggg cgccatgtcg tccgccgcgg ggggaggagg agggtacggg 1920 ggcggaggcg gcgagcatca gcatcagcag cagcagcacc acctgctgct tgggcaggcg 1980 gcggggcagc tgtaccacgt gccgcagcac agccggcggg agaagctgcg gttcccgccc 2040 gaccacccgg cggagtcgcc gccgccgccg ccgcccgggt cgtggccgct gcccccggcg 2100 ttctactcct acgcgtcgtc ctcgtcatcg tactcgccgc acagcccgac gctggcgcac 2160 gcgcagttgg tggcgcatgg gatgccgccg ggggccgcga cgagcggagg ggcccagatc 2220 ccgagccaga acttcgcgct gtcgctgtcg tcggcgtcct cgaaccctcc gcccacgccg 2280 aggaggcagt ttggcggcgg cggcggcggc ggcggggccg ccgggccgta cgggcccttc 2340 acgggctacg ccgccgtgct cgggcggtcc aggttcttgg gccccgcgca gaagctgctc 2400 gaggagatct gcgacgtcgg cggccgcccc gcgcagcttg acaggggctc cgacgagggt 2460 ttgctcgacg tagacgccat ggacgccgcg ggaagcgtcg accacgagat ggacggcagc 2520 gatcgcgccg tcgcggacgc ggtcacggtc tccggcgccg agcagcagtg gaggaagact 2580 aggctcatct cgcttatgga agacgtgagt aatcgcaagc tatatttgtt gtttcatatc 2640 gctgcttctg tttttccaaa gaaaatacta tactagactt tacttttgct accctgcatt 2700 aattaacttc atgaataaga atctaataac gaacacctca tggtcacatc atggatgcac 2760 ttactgttgt tgcacagatt atttcttgtg cttgtgattt gatgagggtt gatctggatt 2820 agtgacacat ctcttctctt ttggatatat ttttgttctt taatatgtct caaatcaatc 2880 aacagttcaa ggctctttta agctcccttc taaaactagc aggaggtgat ccgcagttta 2940 tctataatca aaaggtagca tacaattctg tgaaaatgca cgatagaagc taaattcctc 3000 aggatgctct taattacatc ataaagaaaa attcagtttg ctagtacttg ataagattcc 3060 agcagtttgt cctctttcac gagataagat tcgttgagtt tgtcagcaga aagattctga 3120 ttatatagtt actagtacat actgaaaata tgttgagcac cagttttttt tatttgcaat 3180 ggtgtcaaat atgatcctcg ttccttaatt aggaagcttg cgttggtgta gtgtccacat 3240 gatcgtaaag taggtctgca caccttgatg tattattaaa caattaattg ggttacatat 3300 cgtgatgtcc tcttaacagt tacaaaaaac cttgtaggtt tgcaagcgat acaggcaata 3360 ctaccagcaa ctccaagctg tagtatcgtc ctttgagact gttgcgggtc tgagcaatgc 3420 tgctcctttt gcttccatgg ctcttaggac aatgtcgaag catttcaagt atttgaaggg 3480 cattatactg aaccagctgc gcaatacggg caagggtgct acaaaagatg gtctcggcaa 3540 ggaagacaca acaaactttg ggcttatggg cggcggcgct ggcctactaa ggggaaacaa 3600 tgtgaattcg tttagccaac ctcacaacat atggcgcccg caaagagggc taccagagcg 3660 tgctgtttcg gttcttcgtg catggctatt cgaacacttc ctgcacccgt aagtatatga 3720 tataaatcat cgcaacagaa tttttctttt taggtatgct aatctggaag cacataactg 3780 aatatgcgta ttgtgcacta attggaaaaa taaaaggaaa aaggacttta tggtatatat 3840 actgcatgtt gcatttttac accgacaagg gtgtacatgg attcctatta gtggagaatt 3900 atccatagac cctacaaatg ggtaatatga aggatattgc aaccaaaccg ttggtgaaaa 3960 ttgttatttt gctttattga aatcttggat tttttttcct cctttagatg cattaaaatg 4020 attgtggttt tagtgcatgg tttacacaag tcattgttgt gcacttacag gggagtcttg 4080 gtctccatca catataacct ttattgttgt ttcaatttta gatgtgattg ccgttgaaca 4140 atcattagtt gcatgttatg tttattggat acctgtatgg gtcccaattg atatttggtt 4200 tgagatgata ctacaacaac ttgaaagtgc attttatttt ccaccaattt agggcaacca 4260 ttgtgtgtag tttctatcca cacataccat atcttcattc ttcttggcaa cttctatttt 4320 ggtacagttt ttcctacagt aaattcctcc ttttgtggcc ctgacgaacc attaattcat 4380 gtttgtacta catcagatag aaaatatata tagtagtaca cagtttcaat ttatacacgt 4440 ggtcttgaaa acttcaatgt ttactaatgc ctattggatg gatagtttac tcgaaaagtg 4500 agtaccatca catactaaca cttgataatt gtgtgtacct tcattttcat tgtggttatt 4560 gccttggcat aatggaggag aatttttgcc ataggacatc caactgactt gctgacttgc 4620 acatggcaac aacctttttg ctgtaattta attaatttgt tccatgcaat aattgttgaa 4680 aatattgttt tttaatctag aattctttcc tatcctacta cacgtaatgt gcaatgaggg 4740 ttggcttgtt gtttatgttt agtttcattt gttcttccat attttgtatg tggtgcttca 4800 tccttgtgca attgtgtatg taccggcatt ctaatgttgg tgcttgattt caggtatcca 4860 actgacagcg ataagcagat gcttgctaaa cagacaggat taactaggaa ccaggtaaac 4920 aaccatttca agtttttctt ttcccaaatt tatatcgatg taactagcta gtccgctaca 4980 gttgtccact agcaatatct ttgggtccat aatgttacta gcgttgtaaa acattttgat 5040 atctcaattc ttgagcaggt atcgaactgg tttatcaatg caagggttag gctctggaag 5100 ccaatggttg aagaaattca caacctcgag atgaggcagc tgcagaagaa tccgtctctt 5160 gacaagaatc agctctccat gcagcacacc caacattcgt cggacagcag cgggaagccc 5220 tgtgatccat caaactcgct gcaagggcaa agtagcagca tgaccaggaa tcacagcatc 5280 tccgcctccc ggcacatcga ggacggcctc tcccagatgc cccatgacat ctccggtcag 5340 gtgagcttcg catacaacgg gctcgccgcg catcacagca tcgcgatggc gcaccaccac 5400 caacctgacc tcattggcac cggtggtgcc gcgaatgctg gcggtgtctc actcaccctt 5460 ggccttcacc agaacaataa ccgagcttac attgctgagc cccttccggc cgcgcttccg 5520 ctcaatcttg cccatcgttt cggactggag gacgttagtg atgcctacgt gatgagctca 5580 tttggtggtc aggaccggca tttcaccaag gagatcggtg gccatttgct ccatgacttt 5640 gttggttgaa gagcagatat gattgtttca ccaaggagat cggtggtgat tattgtagga 5700 tgcagatgta tgatctacct atattgtagt tggaagtagg aggtgaagaa aagaggggca 5760 ttggcacgcc tgtcgtagat ccacgaatgc ttgtcgatat ttgacattgt ggggctatag 5820 agagcatatg actatacctt tgaagacctg tttgtagtgt tgttccctat ttgttctgat 5880 ccgcggttaa gccgtgttaa ccctgtacta ttcatctgac ttgcaaatgt ggttgctccc 5940 actctggcaa ataaagggtg c 5961 <210> 5 <211> 208 <212> DNA <213> Artificial Sequence <220> <223> Loc Os05g38120 5'UTR RNAi <400> 5 caacagctag cccaacacac ctcctccatc accaccgaga aggcaacgca tatcaaaagc 60 gcgggcgcaa agcaaagata acatcagatc aggtcggcgc cccccgctcc cggctgccgc 120 aaagcccacc cgatcgatcg atcgacgcct cgttctcctc ctcctccgag gctactctct 180 gcagggcgct cgcttacgtc tgcctctg 208 <210> 6 <211> 286 <212> DNA <213> Artificial Sequence <220> <223> Loc Os05g38120 3'UTR RNAi <400> 6 ccaaggagat cggtggtgat tattgtagga tgcagatgta tgatctacct atattgtagt 60 tggaagtagg aggtgaagaa aagaggggca ttggcacgcc tgtcgtagat ccacgaatgc 120 ttgtcgatat ttgacattgt ggggctatag agagcatatg actatacctt tgaagacctg 180 tttgtagtgt tgttccctat ttgttctgat ccgcggttaa gccgtgttaa ccctgtacta 240 ttcatctgac ttgcaaatgt ggttgctccc actctggcaa ataaag 286 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 3A-07285 LS <400> 7 cgtattcgag aaggaagcta 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 3A-07285 R <400> 8 acgaagatag cccattgtta 20 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> L1S <400> 9 ctagagtcga gaattcagta ca 22 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 F <400> 10 aggctcatct cgcttatgga 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 R <400> 11 tcttccttgc cgagaccatc 20 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ubi F <400> 12 aaccagctga ggcccaaga 19 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ubi R <400> 13 acgattgatt taaccagtcc atga 24 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 FL F <400> 14 aagcttatgt cgtccgccgc ggg 23 <210> 15 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 FL R <400> 15 actagttcaa ccaacaaagt catggagc 28 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Tnos R <400> 16 ccatctcata aataacgtca tgc 23 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pUbi F3 <400> 17 cagctatatg tggatttttt tagc 24 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 5'UTR RNAi F <400> 18 caacagctag cccaacacac 20 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 5'UTR RNAi R <400> 19 ggggtaccca gaggcagacg taagcgag 28 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 3'UTR RNAi F <400> 20 ccaaggagat cggtggtgat t 21 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 3'UTR RNAi R <400> 21 ggggtaccct ttatttgcca gagtgggagc 30 <110> University-Industry Cooperation Group of Kyung Hee University <120> Shattering-controlled transgenic plant and method for producing the <130> P14-009-KHU <160> 21 <170> Kopatentin 2.0 <210> 1 <211> 1743 <212> DNA <213> Oryza sativa <400> 1 atgtcgtccg ccgcgggggg aggaggaggg tacgggggcg gaggcggcga gcatcagcat 60 cagcagcagc agcaccacct gctgcttggg caggcggcgg ggcagctgta ccacgtgccg 120 cagcacagcc ggcgggagaa gctgcggttc ccgcccgacc acccggcgga gtcgccgccg 180 ccgccgccgc ccgggtcgtg gccgctgccc ccggcgttct actcctacgc gtcgtcctcg 240 tcatcgtact cgccgcacag cccgacgctg gcgcacgcgc agttggtggc gcatgggatg 300 ccgccggggg ccgcgacgag cggaggggcc cagatcccga gccagaactt cgcgctgtcg 360 ctgtcgtcgg cgtcctcgaa ccctccgccc acgccgagga ggcagtttgg cggcggcggc 420 ggcggcggcg gggccgccgg gccgtacggg cccttcacgg gctacgccgc cgtgctcggg 480 cggtccaggt tcttgggccc cgcgcagaag ctgctcgagg agatctgcga cgtcggcggc 540 cgccccgcgc agcttgacag gggctccgac gagggtttgc tcgacgtaga cgccatggac 600 gccgcgggaa gcgtcgacca cgagatggac ggcagcgatc gcgccgtcgc ggacgcggtc 660 acggtctccg gcgccgagca gcagtggagg aagactaggc tcatctcgct tatggaagac 720 gtttgcaagc gatacaggca atactaccag caactccaag ctgtagtatc gtcctttgag 780 actgttgcgg gtctgagcaa tgctgctcct tttgcttcca tggctcttag gacaatgtcg 840 aagcatttca agtatttgaa gggcattata ctgaaccagc tgcgcaatac gggcaagggt 900 gctacaaaag atggtctcgg caaggaagac acaacaaact ttgggcttat gggcggcggc 960 gctggcctac taaggggaaa caatgtgaat tcgtttagcc aacctcacaa catatggcgc 1020 ccgcaaagag ggctaccaga gcgtgctgtt tcggttcttc gtgcatggct attcgaacac 1080 ttcctgcacc cgtatccaac tgacagcgat aagcagatgc ttgctaaaca gacaggatta 1140 actaggaacc aggtatcgaa ctggtttatc aatgcaaggg ttaggctctg gaagccaatg 1200 gttgaagaaa ttcacaacct cgagatgagg cagctgcaga agaatccgtc tcttgacaag 1260 aatcagctct ccatgcagca cacccaacat tcgtcggaca gcagcgggaa gccctgtgat 1320 ccatcaaact cgctgcaagg gcaaagtagc agcatgacca ggaatcacag catctccgcc 1380 tcccggcaca tcgaggacgg cctctcccag atgccccatg acatctccgg tcaggtgagc 1440 ttcgcataca acgggctcgc cgcgcatcac agcatcgcga tggcgcacca ccaccaacct 1500 gacctcattg gcaccggtgg tgccgcgaat gctggcggtg tctcactcac ccttggcctt 1560 caccagaaca ataaccgagc ttacattgct gagccccttc cggccgcgct tccgctcaat 1620 cttgcccatc gtttcggact ggaggacgtt agtgatgcct acgtgatgag ctcatttggt 1680 ggtcaggacc ggcatttcac caaggagatc ggtggccatt tgctccatga ctttgttggt 1740 tga 1743 <210> 2 <211> 580 <212> PRT <213> Oryza sativa <400> 2 Met Ser Ser Ala Gly Gly Gly Gly Gly Gly Tyr Gly Gly Gly Gly Gly 1 5 10 15 Glu His Gln His Gln Gln Gln Gln His His Leu Leu Leu Gly Gln Ala 20 25 30 Ala Gly Gln Leu Tyr His Val Pro Gln His Ser Arg Arg Glu Lys Leu 35 40 45 Arg Phe Pro Pro Asp His Pro Ala Glu Ser Pro Pro Pro Pro Pro 50 55 60 Gly Ser Trp Pro Leu Pro Pro Ala Phe Tyr Ser Tyr Ala Ser Ser Ser 65 70 75 80 Ser Ser Tyr Ser Pro His Ser Pro Thr Leu Ala His Ala Gln Leu Val 85 90 95 Ala His Gly Met Pro Gly Ala Ala Thr Ser Gly Gly Ala Gln Ile 100 105 110 Pro Ser Gln Asn Phe Ala Leu Ser Leu Ser Ser Ala Ser Ser Asn Pro 115 120 125 Pro Pro Thr Pro Arg Arg Gln Phe Gly Gly Gly Gly Gly Gly Gly Gly 130 135 140 Ala Ala Gly Pro Tyr Gly Pro Phe Thr Gly Tyr Ala Ala Val Leu Gly 145 150 155 160 Arg Ser Phe Leu Gly Pro Ala Gln Lys Leu Leu Glu Glu Ile Cys 165 170 175 Asp Val Gly Gly Arg Pro Ala Gln Leu Asp Arg Gly Ser Asp Glu Gly 180 185 190 Leu Leu Asp Val Asp Ala Met Asp Ala Ala Gly Ser Val Asp His Glu 195 200 205 Met Asp Gly Ser Asp Arg Ala Val Ala Asp Ala Val Thr Val Ser Gly 210 215 220 Ala Glu Gln Gln Trp Arg Lys Thr Arg Leu Ile Ser Leu Met Glu Asp 225 230 235 240 Val Cys Lys Arg Tyr Arg Gln Tyr Tyr Gln Gln Leu Gln Ala Val Val 245 250 255 Ser Ser Phe Glu Thr Val Ala Gly Leu Ser Asn Ala Ala Pro Phe Ala 260 265 270 Ser Met Ala Leu Arg Thr Met Ser Lys His Phe Lys Tyr Leu Lys Gly 275 280 285 Ile Ile Leu Asn Gln Leu Arg Asn Thr Gly Lys Gly Ala Thr Lys Asp 290 295 300 Gly Leu Gly Lys Glu Asp Thr Thr Asn Phe Gly Leu Met Gly Gly Gly 305 310 315 320 Ala Gly Leu Leu Arg Gly Asn Asn Val Asn Ser Phe Ser Gln Pro His 325 330 335 Asn Ile Trp Arg Pro Gln Arg Gly Leu Pro Glu Arg Ala Val Ser Val 340 345 350 Leu Arg Ala Trp Leu Phe Glu His Phe Leu His Pro Tyr Pro Thr Asp 355 360 365 Ser Asp Lys Gln Met Leu Ala Lys Gln Thr Gly Leu Thr Arg Asn Gln 370 375 380 Val Ser Asn Trp Phe Ile Asn Ala Arg Val Arg Leu Trp Lys Pro Met 385 390 395 400 Val Glu Glu Ile His Asn Leu Glu Met Arg Gln Leu Gln Lys Asn Pro 405 410 415 Ser Leu Asp Lys Asn Gln Leu Ser Met Gln His Thr Gln His Ser Ser 420 425 430 Asp Ser Ser Gly Lys Pro Cys Asp Pro Ser Asn Ser Leu Gln Gly Gln 435 440 445 Ser Ser Ser Met Thr Arg Asn His Ser Ser Ser Ala Ser Arg His Ile 450 455 460 Glu Asp Gly Leu Ser Gln Met Pro His Asp Ile Ser Gly Gln Val Ser 465 470 475 480 Phe Ala Tyr Asn Gly Leu Ala Ala His His Ser Ile Ala Met Ala His 485 490 495 His His Gln Pro Asp Leu Ile Gly Thr Gly Gly Ala Ala Asn Ala Gly 500 505 510 Gly Val Ser Leu Thr Leu Gly Leu His Gln Asn Asn Asn Arg Ala Tyr 515 520 525 Ile Ala Glu Pro Leu Pro Ala Ala Leu Pro Leu Asn Leu Ala His Arg 530 535 540 Phe Gly Leu Glu Asp Val Ser Asp Ala Tyr Val Met Ser Ser Phe Gly 545 550 555 560 Gly Gln Asp Arg His Phe Thr Lys Glu Ile Gly Gly His Leu Leu His 565 570 575 Asp Phe Val Gly 580 <210> 3 <211> 3341 <212> DNA <213> Oryza sativa <400> 3 tcatctcgca cgtgcttatc gatggcccta catacaccat agcctaacct cttcaaaatt 60 gacaacacca taacaatgta ttgagtgcta cttactttgt aacatactgt aagagacagc 120 ttgtgaattc cttcatggat tatacacatg agaacgtttg aaatagttgt ttggatgaaa 180 cacaaacata tagtaattaa aaaactaaaa aagggaaaaa aaaagctttg ttcggaaact 240 ccaatgaaat atctcaaaag gaaatttgaa gagtcattta tattccatat gactacctat 300 aattatctac gagatttaaa ttcttatgga cacaaattct tcggataaat ttacttgaac 360 ttcggtgaaa gaaccctaaa cacatgtatg catccagaca atgaaaagca agcgtgccat 420 gagattttct atttgggccg tgtttagatt aaaatttttt tcttcaaact tccaactttt 480 tcgttacatc aaatgttagg acatatgcat ggagttttaa atgtagacga aaaaaatcaa 540 ttgcatagtt tgcatgtaaa tcgcgagacg aatcttttga tcctaattac gccatgattt 600 gataatgtga tgctacagta aacatttgct aatgacagat taattagact taataaattc 660 gtctcgtctt ttacatgcgg aatctgtaat ttgttttgtt attagtctac gtttgatact 720 tcaaatatgt gttcatatat ttaaaaaaaa tctagcacac gaactaaaca caaccttgga 780 tggcctccta agactgtctc caacaagtga cccataagag cacccaaacc caaaatgggt 840 ctccgatagt actatttcag cctccaacag agtacctata cagaagaccc attttgcgtg 900 ctataagagg cataacctaa atctgagtat cctctctcct gaagacctat ttgcagtaag 960 tgttctcttt taggtcttat tgttggagaa gaccaaaaat atgtattgaa gtctttgact 1020 gtagcgctat gtaaacatga aatgtgtctt gtattttggg tttcattgtt ggagatagcc 1080 taagttgctt atccggtttt actgcctgcc atataagaac cccatcatcc atatccgaag 1140 aggacatatt tttattgcaa aactttaaaa ttataataat aatgtaacta caatataaca 1200 taactagtac ataactagta gtacatgtaa cgtttgttca agcaattata ctactaccat 1260 agtacgattg cgtataaagt ttttcaattc aaaaatgttg ctgccgtttt ctagatggtg 1320 aaaaacaaac ttcacccatc tccgacgaac tacaaaaccc tcagctcgat ctccgcacag 1380 tcccgggcca cgcccacacc accctgatcc gctcacccct tccaccacag ggtccaggag 1440 gacctcgccc ccctcctcct cctcgtcgca cgaccagacc agcagcacca actccctttc 1500 tgcctttcgc tttcactgct cagtgctgct cctacacacc atttccccgt ccgtccttcg 1560 ccccccgcgt ctcttttccg cacccatctg ctgcagctgc gcacctttaa tttgcagaaa 1620 gaaagaaaga aagaaaggaa agcaaggccc ccccgagcgc aacagctagc ccaacacacc 1680 tcctccatca ccaccgagaa ggcaacgcat atcaaaagcg cgggcgcaaa gcaaagataa 1740 catcagatca ggtcggcgcc ccccgctccc ggctgccgca aagcccaccc gatcgatcga 1800 tcgacgcctc gttctcctcc tcctccgagg ctactctctg cagggcgctc gcttacgtct 1860 gcctctgcgt acgtgcaccg cccagcgcgg gcgccatgtc gtccgccgcg gggggaggag 1920 gagggtacgg gggcggaggc ggcgagcatc agcatcagca gcaccacctg ctgcttgggc 1980 aggcggcggg gcagctgtac cacgtgccgc agcacagccg gcgggagaag ctgcggttcc 2040 cgcccgacca cccggcggag tcgccgccgc cgccgccgcc cgggtcgtgg ccgctgcccc 2100 cggcgttcta ctcctacgcg tcgtcctcgt catcgtactc gccgcacagc ccgacgctgg 2160 cgcacgcgca gttggtggcg catgggatgc cgccgggggc cgcgacgagc ggaggggccc 2220 agatcccgag ccagaacttc gcgctgtcgc tgtcgtcggc gtcctcgaac cctccgccca 2280 cgccgaggag gcagtttggc ggcggcggcg gcggcggcgg ggccgccggg ccgtacgggc 2340 ccttcacggg ctacgccgcc gtgctcgggc ggtccaggtt cttgggcccc gcgcagaagc 2400 tgctcgagga gatctgcgac gtcggcggcc gccccgcgca gcttgacagg ggctccgacg 2460 agggtttgct cgacgtagac gccatggacg ccgcgggaag cgtcgaccac gagatggacg 2520 gcagcgatcg cgccgtcgcg gacgcggtca cggtctccgg cgccgagcag cagtggagga 2580 agactaggct catctcgctt atggaagacg tgagtaatcg caagctatat ttgttgtttc 2640 atatcgctgc ttctgttttt ccaaagaaaa tactatacta gactttactt ttgctaccct 2700 gcattaatta acttcatgaa taagaatcta ataacgaaca cctcatggtc acatcatgga 2760 tgcacttact gttgttgcac agattatttc ttgtgcttgt gatttgatga gggttgatct 2820 ggattagtga cacatctctt ctcttttgga tatatttttg ttctttaata tgtctcaaat 2880 caatcaacag ttcaaggctc ttttaagctc ccttctaaaa ctagcaggag gtgatccgca 2940 gtttatctat aatcaaaagg tagcatacaa ttctgtgaaa atgcacgata gaagctaaat 3000 tcctcaggat gctcttaatt acatcataaa caaaaattca gtttgctagt acttgataag 3060 attccagcag tttgtcctct ttcacgagat aagattcgtt gagtttgtca gcagaaagat 3120 tctgattata tagttactag tacatactga aaatatgttg agcaccagtt tttttatttg 3180 caatggtgtc aaatatgatc ctcgttcctt aattaggaag cttgcgttgg tgtagtgtcc 3240 acatgatcgt aaagtaggtc tgcacacctt gatgtattat taaacaatta attgggttac 3300 atatcgtgat gtcctcttaa cagttacaaa aaaccttgta g 3341 <210> 4 <211> 5961 <212> DNA <213> Oryza sativa <400> 4 tcatctcgca cgtgcttatc gatggcccta catacaccat agcctaacct cttcaaaatt 60 gacaacacca caacaatgta ttgagtgcta cttactttgt aacatactgt aagagacagc 120 ttgtgagttc cttcatggat tatacacatg agaacgtttg aaatagttgt ttggatgaaa 180 cacaaacata tagtaattaa aaaactaaaa aagggaaaaa aaagctttgt tcggaaactc 240 caatgaaata tctcaaaagg aaatttgaag agtcacttat attccatatg actacctata 300 attatctacg agatttaaat tcttatggac acaaattctt cggataaatt tacttgaact 360 ttggtgaaag aaccctaaac acatgtatgc atccagacaa tggaaagcaa gcgtgccatg 420 agattttcta tttgggccgt gtttagatta aaattttttt cttcaaactt ccaacttttt 480 cgttacatca aatgttagga catatgcatg gagttttaaa tgtggacgaa aaaaatcaat 540 tgcatagttt gcatgtaaat cgcgagacga atcctttgag cctaattacg ccatgatttg 600 acaatgtgat gctacagtaa acatttgcta atgacagatt aattagactt aataaattcg 660 tctcgtcttt tacatgcgga atctgtaatt tgttttgtta ttagtctatg tttgatactt 720 caaatatgtg ttcgtatatt taaaaaaaat ctagcacacg aactaaacac aaccttggat 780 ggccttctaa gactgtctcc aacaagtgac ccataagagc acccaaaccc aaaatgggtc 840 tccgatagta ctatttcagc ctccaacaga gtacctatac aaaagaccca ttttgcgtgc 900 tataagaggc ataacctaaa tctgagtatc ctctctcctg aagacctatt tgcagtaagt 960 gttctctttt aggtcttatt gttggagaag accaaaaata tgtattgaac tctttgactg 1020 tagcgctatg caaacgtgaa atggttcttg tattatgggt ttcattgttg gagatagcct 1080 aagttgctta tccggtttta ttgcctgcca tataagaacc ccatcatcca catccgaaga 1140 ggacatattt ttgttgcaaa actttaaaat tataataata atgtaactac aatataacat 1200 aactagtaca tgtaacgttt gttcaagcaa ttatactact accatagtac gattgcgtat 1260 aaagtttttc aattcaaaaa tgttgctgcc gttttctaga tggtgaaaaa caaacttcac 1320 ccatctccga cgaactacaa aaccctcagc tcgatctccg cacagtcccg ggccacgccc 1380 acaccaccct gatccgctca ccccttccac cacagggtcc aggaggacct cgcccccctc 1440 ctcctcctcg tcgcacgacc agaccagcag caccaactcc ctttctgcct ttcgctttca 1500 ctgctcagtg ctgctcctac acaccatttc cccgtccgtc cttcgccccc cgcgtctctt 1560 ttccgcaccc atctgctgca gctgcgcacc tttaatttgc agaaagaaag aaagaaagaa 1620 agaaaggaaa gcaaggcccc cccgagcgca acagctagcc caacacacct cctccatcac 1680 caccgagaag gcaacgcata tcaaaagcgc gggcgcaaag caaagataac atcagatcag 1740 gtcggcgccc cccgctcccg gctgccgcaa agcccacccg atcgatcgat cgacgcctcg 1800 ttctcctcct cctccgaggc tactctctgc agggcgctcg cttacgtctg cctctgcgta 1860 cgtgcaccgc ccagcgcggg cgccatgtcg tccgccgcgg ggggaggagg agggtacggg 1920 ggcggaggcg gcgagcatca gcatcagcag cagcagcacc acctgctgct tgggcaggcg 1980 gcggggcagc tgtaccacgt gccgcagcac agccggcggg agaagctgcg gttcccgccc 2040 gaccacccgg cggagtcgcc gccgccgccg ccgcccgggt cgtggccgct gcccccggcg 2100 ttctactcct acgcgtcgtc ctcgtcatcg tactcgccgc acagcccgac gctggcgcac 2160 gcgcagttgg tggcgcatgg gatgccgccg ggggccgcga cgagcggagg ggcccagatc 2220 ccgagccaga acttcgcgct gtcgctgtcg tcggcgtcct cgaaccctcc gcccacgccg 2280 aggaggcagt ttggcggcgg cggcggcggc ggcggggccg ccgggccgta cgggcccttc 2340 acgggctacg ccgccgtgct cgggcggtcc aggttcttgg gccccgcgca gaagctgctc 2400 gaggagatct gcgacgtcgg cggccgcccc gcgcagcttg acaggggctc cgacgagggt 2460 ttgctcgacg tagacgccat ggacgccgcg ggaagcgtcg accacgagat ggacggcagc 2520 gatcgcgccg tcgcggacgc ggtcacggtc tccggcgccg agcagcagtg gaggaagact 2580 aggctcatct cgcttatgga agacgtgagt aatcgcaagc tatatttgtt gtttcatatc 2640 gctgcttctg tttttccaaa gaaaatacta tactagactt tacttttgct accctgcatt 2700 aattaacttc atgaataaga atctaataac gaacacctca tggtcacatc atggatgcac 2760 ttactgttgt tgcacagatt atttcttgtg cttgtgattt gatgagggtt gatctggatt 2820 agtgacacat ctcttctctt ttggatatat ttttgttctt taatatgtct caaatcaatc 2880 aacagttcaa ggctctttta agctcccttc taaaactagc aggaggtgat ccgcagttta 2940 tctataatca aaaggtagca tacaattctg tgaaaatgca cgatagaagc taaattcctc 3000 aggatgctct taattacatc ataaagaaaa attcagtttg ctagtacttg ataagattcc 3060 agcagtttgt cctctttcac gagataagat tcgttgagtt tgtcagcaga aagattctga 3120 ttatatagtt actagtacat actgaaaata tgttgagcac cagttttttt tatttgcaat 3180 ggtgtcaaat atgatcctcg ttccttaatt aggaagcttg cgttggtgta gtgtccacat 3240 gatcgtaaag taggtctgca caccttgatg tattattaaa caattaattg ggttacatat 3300 cgtgatgtcc tcttaacagt tacaaaaaac cttgtaggtt tgcaagcgat acaggcaata 3360 ctaccagcaa ctccaagctg tagtatcgtc ctttgagact gttgcgggtc tgagcaatgc 3420 tgctcctttt gcttccatgg ctcttaggac aatgtcgaag catttcaagt atttgaaggg 3480 cattatactg aaccagctgc gcaatacggg caagggtgct acaaaagatg gtctcggcaa 3540 ggaagacaca acaaactttg ggcttatggg cggcggcgct ggcctactaa ggggaaacaa 3600 tgtgaattcg tttagccaac ctcacaacat atggcgcccg caaagagggc taccagagcg 3660 tgctgtttcg gttcttcgtg catggctatt cgaacacttc ctgcacccgt aagtatatga 3720 tataaatcat cgcaacagaa tttttctttt taggtatgct aatctggaag cacataactg 3780 aatatgcgta ttgtgcacta attggaaaaa taaaaggaaa aaggacttta tggtatatat 3840 actgcatgtt gcatttttac accgacaagg gtgtacatgg attcctatta gtggagaatt 3900 atccatagac cctacaaatg ggtaatatga aggatattgc aaccaaaccg ttggtgaaaa 3960 ttgttatttt gctttattga aatcttggat tttttttcct cctttagatg cattaaaatg 4020 attgtggttt tagtgcatgg tttacacaag tcattgttgt gcacttacag gggagtcttg 4080 gtctccatca catataacct ttattgttgt ttcaatttta gatgtgattg ccgttgaaca 4140 atcattagtt gcatgttatg tttattggat acctgtatgg gtcccaattg atatttggtt 4200 tgagatgata ctacaacaac ttgaaagtgc attttatttt ccaccaattt agggcaacca 4260 ttgtgtgtag tttctatcca cacataccat atcttcattc ttcttggcaa cttctatttt 4320 ggtacagttt ttcctacagt aaattcctcc ttttgtggcc ctgacgaacc attaattcat 4380 gtttgtacta catcagatag aaaatatata tagtagtaca cagtttcaat ttatacacgt 4440 ggtcttgaaa acttcaatgt ttactaatgc ctattggatg gatagtttac tcgaaaagtg 4500 agtaccatca catactaaca cttgataatt gtgtgtacct tcattttcat tgtggttatt 4560 gccttggcat aatggaggag aatttttgcc ataggacatc caactgactt gctgacttgc 4620 acatggcaac aacctttttg ctgtaattta attaatttgt tccatgcaat aattgttgaa 4680 aatattgttt tttaatctag aattctttcc tatcctacta cacgtaatgt gcaatgaggg 4740 ttggcttgtt gtttatgttt agtttcattt gttcttccat attttgtatg tggtgcttca 4800 tccttgtgca attgtgtatg taccggcatt ctaatgttgg tgcttgattt caggtatcca 4860 actgacagcg ataagcagat gcttgctaaa cagacaggat taactaggaa ccaggtaaac 4920 aaccatttca agtttttctt ttcccaaatt tatatcgatg taactagcta gtccgctaca 4980 gttgtccact agcaatatct ttgggtccat aatgttacta gcgttgtaaa acattttgat 5040 atctcaattc ttgagcaggt atcgaactgg tttatcaatg caagggttag gctctggaag 5100 ccaatggttg aagaaattca caacctcgag atgaggcagc tgcagaagaa tccgtctctt 5160 gacaagaatc agctctccat gcagcacacc caacattcgt cggacagcag cgggaagccc 5220 tgtgatccat caaactcgct gcaagggcaa agtagcagca tgaccaggaa tcacagcatc 5280 tccgcctccc ggcacatcga ggacggcctc tcccagatgc cccatgacat ctccggtcag 5340 gtgagcttcg catacaacgg gctcgccgcg catcacagca tcgcgatggc gcaccaccac 5400 caacctgacc tcattggcac cggtggtgcc gcgaatgctg gcggtgtctc actcaccctt 5460 ggccttcacc agaacaataa ccgagcttac attgctgagc cccttccggc cgcgcttccg 5520 ctcaatcttg cccatcgttt cggactggag gacgttagtg atgcctacgt gatgagctca 5580 tttggtggtc aggaccggca tttcaccaag gagatcggtg gccatttgct ccatgacttt 5640 gttggttgaa gagcagatat gattgtttca ccaaggagat cggtggtgat tattgtagga 5700 tgcagatgta tgatctacct atattgtagt tggaagtagg aggtgaagaa aagaggggca 5760 ttggcacgcc tgtcgtagat ccacgaatgc ttgtcgatat ttgacattgt ggggctatag 5820 agagcatatg actatacctt tgaagacctg tttgtagtgt tgttccctat ttgttctgat 5880 ccgcggttaa gccgtgttaa ccctgtacta ttcatctgac ttgcaaatgt ggttgctccc 5940 actctggcaa ataaagggtg c 5961 <210> 5 <211> 208 <212> DNA <213> Artificial Sequence <220> <223> Loc Os05g38120 5'UTR RNAi <400> 5 caacagctag cccaacacac ctcctccatc accaccgaga aggcaacgca tatcaaaagc 60 gcgggcgcaa agcaaagata acatcagatc aggtcggcgc cccccgctcc cggctgccgc 120 aaagcccacc cgatcgatcg atcgacgcct cgttctcctc ctcctccgag gctactctct 180 gcagggcgct cgcttacgtc tgcctctg 208 <210> 6 <211> 286 <212> DNA <213> Artificial Sequence <220> <223> Loc Os05g38120 3'UTR RNAi <400> 6 ccaaggagat cggtggtgat tattgtagga tgcagatgta tgatctacct atattgtagt 60 tggaagtagg aggtgaagaa aagaggggca ttggcacgcc tgtcgtagat ccacgaatgc 120 ttgtcgatat ttgacattgt ggggctatag agagcatatg actatacctt tgaagacctg 180 tttgtagtgt tgttccctat ttgttctgat ccgcggttaa gccgtgttaa ccctgtacta 240 ttcatctgac ttgcaaatgt ggttgctccc actctggcaa ataaag 286 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 3A-07285 LS <400> 7 cgtattcgag aaggaagcta 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 3A-07285 R <400> 8 acgaagatag cccattgtta 20 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> L1S <400> 9 ctagagtcga gaattcagta ca 22 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 F <400> 10 aggctcatct cgcttatgga 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 R <400> 11 tcttccttgc cgagaccatc 20 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ubi F <400> 12 aaccagctga ggcccaaga 19 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ubi R <400> 13 acgattgatt taaccagtcc atga 24 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 FL F <400> 14 aagcttatgt cgtccgccgc ggg 23 <210> 15 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 FL R <400> 15 actagttcaa ccaacaaagt catggagc 28 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Tnos R <400> 16 ccatctcata aataacgtca tgc 23 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pUbi F3 <400> 17 cagctatatg tggatttttt tagc 24 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 5'UTR RNAi F <400> 18 caacagctag cccaacacac 20 <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 5'UTR RNAi R <400> 19 ggggtaccca gaggcagacg taagcgag 28 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 3'UTR RNAi F <400> 20 ccaaggagat cggtggtgat t 21 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LOC_Os05g38120 3'UTR RNAi R <400> 21 ggggtaccct ttatttgcca gagtgggagc 30
Claims (14)
서열번호 1로 표시되는 유전자와 이와 작동가능하게 연결된 프로모터를 포함하는 재조합 벡터를 제조하는 단계;
단자엽 식물체에 상기 재조합 벡터를 도입하는 단계; 및
상기 재조합 벡터의 도입에 따라 서열번호 1로 표시되는 유전자가 과발현되는 형질전환 식물체를 선별하는 단계.5. The method of claim 4, further comprising the step of:
Preparing a recombinant vector comprising a gene represented by SEQ ID NO: 1 and a promoter operably linked to the gene;
Introducing the recombinant vector into a terminal plant; And
Selecting a transgenic plant overexpressing the gene of SEQ ID NO: 1 upon introduction of the recombinant vector;
서열번호 1로 표시되는 유전자의 발현을 억제하는 서열번호 5 또는 서열번호 6으로 표시되는 RNA i를 포함하는 재조합 벡터를 제조하는 단계;
단자엽 식물체에 상기 재조합 벡터를 도입하는 단계; 및
상기 재조합 벡터의 도입에 따라 서열번호 1로 표시되는 유전자 발현이 억제되는 형질전환 식물체를 선별하는 단계.12. The method according to claim 11, which comprises the following steps:
Preparing a recombinant vector comprising the RNA i represented by SEQ ID NO: 5 or SEQ ID NO: 6 which inhibits the expression of the gene represented by SEQ ID NO: 1;
Introducing the recombinant vector into a terminal plant; And
Selecting a transgenic plant having a gene expression inhibition represented by SEQ. ID. No. 1 according to the introduction of the recombinant vector;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140045974A KR101608578B1 (en) | 2014-04-17 | 2014-04-17 | Shattering-controled transgenic plant and method for producing thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140045974A KR101608578B1 (en) | 2014-04-17 | 2014-04-17 | Shattering-controled transgenic plant and method for producing thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150120135A true KR20150120135A (en) | 2015-10-27 |
KR101608578B1 KR101608578B1 (en) | 2016-04-11 |
Family
ID=54428446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140045974A KR101608578B1 (en) | 2014-04-17 | 2014-04-17 | Shattering-controled transgenic plant and method for producing thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101608578B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105309300A (en) * | 2014-07-29 | 2016-02-10 | 安徽省农业科学院水稻研究所 | Method for breeding shattering-resisting high-yield hybrid rice |
KR101880394B1 (en) * | 2017-03-24 | 2018-07-20 | 경희대학교 산학협력단 | A method for controlling shattering property of plants using LOC_Os07g03770 gene |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003052381A (en) * | 2001-08-20 | 2003-02-25 | National Institute Of Agrobiological Sciences | GENE qSH-1 INDUCING SHATTERING HABIT OF PLANT AND UTILIZATION THEREOF |
-
2014
- 2014-04-17 KR KR1020140045974A patent/KR101608578B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105309300A (en) * | 2014-07-29 | 2016-02-10 | 安徽省农业科学院水稻研究所 | Method for breeding shattering-resisting high-yield hybrid rice |
CN105309300B (en) * | 2014-07-29 | 2017-10-24 | 安徽省农业科学院水稻研究所 | A kind of method that seed selection is difficult the High-Yielding Hybrid Rice of shattering |
KR101880394B1 (en) * | 2017-03-24 | 2018-07-20 | 경희대학교 산학협력단 | A method for controlling shattering property of plants using LOC_Os07g03770 gene |
Also Published As
Publication number | Publication date |
---|---|
KR101608578B1 (en) | 2016-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100037346A1 (en) | Promoter, promoter control elements, and combinations, and uses thereof | |
CN104789573A (en) | Plant having enhanced yield-related trait and method for making same | |
CN104745608A (en) | Plants having enhanced yield-related traits and a method for making the same | |
RU2665804C2 (en) | Cotton phya1 rnai improving fiber quality, root elongation, flowering, maturity and yield potential in upland cultivars (gossypium hirsutum l.) | |
US20240093218A1 (en) | Nucleic acid constructs, plants with increased tuber yield, and methods for increasing tuber yield in a plant | |
CN101778942A (en) | Plants having enhanced yield-related traits and a method for making the same | |
CN114805510B (en) | Gene for regulating and controlling aluminum-toxicity-resistant transcription factor STOP-1 protein and application thereof | |
JP2016013057A (en) | Nucleic acid imparting high yielding ability to plant, method for producing transformation plant in which yield is increased, and method for increasing plant yield | |
TWI534265B (en) | Method, genetic construct and transgenic p;ant cell for manipulating fructan biosynthesis in photosynthetic cells of a plant | |
KR101608578B1 (en) | Shattering-controled transgenic plant and method for producing thereof | |
JP4998809B2 (en) | Polypeptides for improving plant iron deficiency tolerance and use thereof | |
JP5592652B2 (en) | Putative cytokinin receptor and method of use thereof | |
CN112029794B (en) | Application of G protein alpha subunit in improving cucumber endogenous hormone salicylic acid content | |
KR100990118B1 (en) | Use of OsHXK5 gene as glucose sensor | |
AU2013278070B2 (en) | Compositions and methods for mediating plant stomatal development in response to carbon dioxide and applications for engineering drought tolerance in plants | |
US8569580B2 (en) | Transformed plants or algae with highly expressed chloroplast protein BPG2 | |
KR102231138B1 (en) | OsXCP2-5 gene from Oryza sativa for controlling salt stress tolerance of plant and uses thereof | |
WO2020184402A1 (en) | Method for selecting promoter that functions in organelle | |
KR101247355B1 (en) | Transgenic plant for regulating for plant root growth and method thereof | |
KR101711848B1 (en) | Method for producing functional stay-green transgenic plant with improved tolerance to abiotic stress using ONAC106 gene and the plant thereof | |
Liu | Ectopic expression of a truncated Pinus radiata AGAMOUS homolog (PrAG1) causes alteration of inflorescence architecture and male sterility in Nicotiana tabacum | |
KR101785101B1 (en) | OsDWD1 gene and use thereof | |
KR20150003099A (en) | ATPG6 Protein Providing Yield Increase and Stress Tolerance as well as Delaying Senescence in Plants, the Gene Encoding the Protein and Those Uses | |
US20110035837A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 polypeptides | |
KR101592357B1 (en) | Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190107 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20200128 Year of fee payment: 5 |